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ABSTRACT

For real-world brain–computer interface (BCI) applications, lightweight Elec-
troencephalography (EEG) systems offer the best cost–deployment balance. How-
ever, such spatial sparsity of EEG limits spatial fidelity, hurting learning and in-
troducing bias. EEG spatial super-resolution methods aim to recover high-density
EEG signals from sparse measurements, yet is often hindered by distribution shift
and signal distortion and thus reducing fidelity and usability for EEG analysis and
visualization. To overcome these challenges, we introduce SRGDiff, a step-aware
residual-guided diffusion model that formulates EEG spatial super-resolution as
dynamic conditional generation. Our key idea is to learn a dynamic residual con-
dition from the low-density input that predicts the step-wise temporal and spatial
details to add and uses the evolving cue to steer the denoising process toward
high density reconstructions. At each denoising step, the proposed residual con-
dition is additively fused with the previous denoiser feature maps, then a step-
dependent affine modulation scales and shifts the activation to produce the cur-
rent features. This iterative procedure dynamically extracts step-wise temporal
rhythms and spatial-topographic cues to steer high-density recovery and maintain
a fidelity–consistency balance. We adopt a comprehensive evaluation protocol
spanning signal-, feature-, and downstream-level metrics across SEED, SEED-IV,
and Localize-MI and multiple upsampling scales. SRGDiff consistently achieves
higher SNR than the baseline ESTformer and STAD among Localize-MI, SEED
and SEED-IV datasets, with up to roughly 75% relative SNR improvement in the
most challenging 8× setting.. Moreover, topographic visualizations comparison
and substantial EEG-FID gains jointly indicate that our SR EEG mitigates the spa-
tial–spectral shift between low- and high-density recordings. Our code is available
at https://anonymous.4open.science/r/DDPM-VAE-6F6B.

1 INTRODUCTION

Electroencephalography (EEG) is a noninvasive technique for monitoring the brain’s electri-
cal activity, with widespread applications in neuroscience and clinical practice—ranging from
brain–computer interfaces and epilepsy diagnosis to emotion recognition (Jiang et al., 2025). How-
ever, EEG’s spatial resolution is inherently constrained by the number of scalp electrodes and the
volume-conduction effect (Li et al., 2025a). High-density (HD) systems with hundreds of channels
can mitigate these issues but are costly, cumbersome to deploy, and uncomfortable for extended
wear, whereas low-density (LD) setups (e.g., 8 or 16 electrodes) are far more practical yet suffer
from severe under-sampling bias (Wang et al., 2025). Indeed, as illustrated in Figure 1(c), the inter-
channel activation patterns of 256-channel HD EEG diverge dramatically from those of 16-channel
LD EEG, highlighting the strong bias in sparse recordings. EEG spatial super-resolution (SR) has
therefore garnered growing attention, with methods that reconstruct high-density EEG from sparse
recordings increasingly explored and applied.

Traditionally, EEG spatial super-resolution has relied on direct feature-mapping techniques that
learn an end-to-end mapping from low-density to high-density representations. These methods fall
into two main categories: one employs convolutional neural networks or Transformers to upsam-
ple LD feature maps into HD ones (Tang et al., 2022), and the other leverages generative adversarial
networks-based architectures that synthesize SR EEG signals conditioned on LD inputs (Wang et al.,
2024). However, by treating the mapping as a static projection, these approaches often oversimplify
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the complex, nonlinear inter-electrode dependencies or demand vast amounts of training data and
compute, resulting in overly smooth, detail-poor reconstructions that fail to capture true spatial con-
sistency. Figure 1(c) indicates that such feature-mapping methods merely extend LD information,
rather than recovering authentic HD channel relationships.

Figure 1: (a) Existing static guidance strategy vs. (b) our
residual guidance strategy for EEG super-resolution, and (c)
corresponding topographical maps of LD input, ESTformer
output, GT HD EEG, and SRGDiff reconstruction.

Recently, diffusion models have been
widely applied to time-series gen-
eration and missing-data imputation
(Huang et al., 2025; Yuan & Qiao,
2024; Li et al., 2025b). In this
context, EEG spatial super-resolution
can be cast as conditional genera-
tion, where LD observations guide
the recovery of HD signals. Within
this line of work, researchers mainly
focused on conditioning strategies
through concatenating low-density
features with the noise input (Vet-
ter et al., 2024) or using cross-
attention between modalities (Wang
et al., 2025) as shown in Fig-
ure 1(a). While effective in prac-
tice, these approaches remain suscep-
tible to a consistency–fidelity trade-
off. Interpolation-oriented SR tends

to cause distribution shift, making reconstructions adhere too closely to the LD observation and
deviate from the HD ground truth. Conversely, generation-oriented SR often introduces distortion,
producing HD-like content that fails to remain consistent with the LD input.

To tackle these challenges, we introduce Step-aware Residual-Guided Diffusion (SRGDiff) for EEG
Spatial Super-Resolution, which reframes super-resolution as a dynamic conditional generation task.
The core idea is to estimate the forward-noising residual from low-density channels, and use it as
a per-step corrective direction in the reverse process. Technically, SRGDiff first encodes the low-
density EEG with a pre-trained VAE encoder to obtain a compact latent and multi-scale features,
and applies forward diffusion to the high-density latent. At each reverse step, a lightweight residual
head predicts a path residual from the low-density features and uses it as a directional correction
that is additively fused with the previous denoising features to form an incremental feature. The
feature is then weighted with a step-dependent affine modulation estimated from the low-density
features and the timestep embedding, yielding the current denoised features. This loop repeats over
timesteps, coupling the low-density forward-noising and high-density reverse-denoising trajectories
and progressively steering samples toward the high-density manifold. Our main contributions in this
work can be summarized as follows:

• We recast EEG spatial super-resolution as dynamic conditional generation, coupling the
LD forward–noising trajectory with the HD reverse–denoising trajectory to balance consis-
tency with the LD observation and fidelity to the HD target.

• We propose a dynamic residual guidance paradigm: the path residual estimated from LD
inputs serves as a per-step directional correction and is fused additively for incremental up-
dates, yielding a stable, step-aware sampling scheme that remains effective across datasets
and a wide range of SR factors.

• We establish a three-level evaluation protocol across three datasets, covering signal-
level (temporal consistency, spectral fidelity, spatial topology), feature-level (representation
quality), and downstream-level (classification accuracy), which provides a comprehensive
assessment beyond pointwise error.

2 RELATED WORK

Diffusion Models for Missing Data Imputation. Diffusion-based models have emerged as a
powerful framework for time-series imputation, leveraging denoising diffusion processes to recon-
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Figure 2: SRGDiff overview. (a) Overall architecture: Low-density EEG XL conditions the latent
reverse process. RDM predicts a residual direction from XL and current decoder features. SMM
provides step-aware affine parameters to fuse the residual and modulate activations. (b) Residual
learning: At each step, the predicted residual guides denoising, and the residual derived from the
forward noising process provides supervision via a residual loss.

struct missing values. Diffusion-TS (Yuan & Qiao, 2024) demonstrates interpretable conditional
generation across diverse time-series without domain-specific priors. More recently, RDPI (Liu
et al., 2025) further enhances precision and efficiency by first generating coarse estimates of miss-
ing values through deterministic interpolation, then conditioning a diffusion model on both observed
data and these estimates to iteratively refine residual errors. SaSDim (Zhang et al., 2024) introduces
self-adaptive noise scaling to preserve spatial dependencies within sensor networks, while SADI
(Islam et al., 2025) integrate self-attention mechanisms to handle partial data missing.

EEG Spatial Super-Resolution. Early attempts at EEG spatial super-resolution adapted image-
based frameworks to reconstruct dense electrode maps from sparse recordings. EEGSR-GAN
(Corley & Huang, 2018) first applied adversarial training to hallucinate missing channels. EST-
former (Li et al., 2025a) then introduced spatiotemporal transformers to model long-range depen-
dencies across electrodes and successfully capture global patterns. More recent diffusion-based and
attention-driven approaches have sought to address these limitations. DDPM-EEG (Vetter et al.,
2024) leverages denoising diffusion probabilistic models to iteratively refine spatial patterns. STAD
(Wang et al., 2025) tackles this by decomposing spatial–temporal interactions into spatial-temporal
attention streams. This diffusion-based generative paradigm improves diversity and spectral fidelity
compared to GANs, yet their static condition can still lead to distribution drifts and distortion.

Residual diffusion in related domains. Several recent works incorporate residual signals into
diffusion models. Ou et al. (2024) synthesize PET from MRI by learning a modality residual un-
der prior information, i.e., a static cross-modal gap that conditions generation. Zhu et al. (2024)
reconstruct event-driven video by predicting temporal residuals with inter-frame differences as the
generation target to recover dynamics. Mao et al. (2025) address medical segmentation by learn-
ing a residual-to-prior that corrects a coarse segmentation, improving calibration and efficiency.
These designs either treat the residual as a fixed target/offset or inject it once as a global prior,
with weak coupling to the step-by-step reverse dynamics. In contrast, our method targets EEG spa-
tial super-resolution and introduces a dynamic, step-aware residual direction that is re-estimated at
every reverse step from the LD observation, and the timestep embedding.

3 PRELIMINARIES AND DYNAMIC CONDITIONAL FORMULATION

Data and Latent Space. Let XL ∈ RCL×Length and XH ∈ RCH×Length denote low- and high-
density EEG with CH > CL. A pre-trained VAE encoder E maps signals to a latent space z =
E(XH) and a feature extractor F provides LD features as condition c = F (XL) to condition
generation. In practice, we reuse the VAE encoder as the feature extractor to obtain condition c.

3
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Forward Diffusion on the HD Latent. We corrupt the HD latent with a standard Gaussian forward
process

q(zt | zz−1) = N
(√

αt zt−1, (1− αt)I
)
. t = 1, . . . , T (1)

Dynamic Conditional Reverse Process. In the reverse generation stage, sampling begins from
an isotropic Gaussian noise initialization ẑT ∼ N (0, I), and the model iteratively predicts ẑt−1

from ẑt until recovering the final latent representation ẑ0. Unlike conventional diffusion models that
rely solely on a base denoiser, SRGDiff explicitly conditions each reverse step on low-density EEG
observations, thereby coupling the LD forward-noising trajectory with the HD reverse-denoising
trajectory. The reverse denoiser is defined as:

pθ(ẑt−1 | ẑt, c) = N
(
µθ(ẑt, c)︸ ︷︷ ︸
base denoiser

+ (γt, βt, rϕ(c, t))︸ ︷︷ ︸
dynamic conditional update

, βtI
)
. (2)

Here, the base denoiser µθ(ẑt, c) is implemented as a U-Net that estimates the noise component.
To further enhance temporal fidelity and spatial coherence, we augment the base denoiser with two
lightweight modules that inject step-wise conditional guidance from LD features:

• Residual Direction Module (RDM). At each timestep, RDM predicts a path residual rϕ(c, t)
from the LD features and applies it as a directional correction:

ẑRDM
t−1 = ẑt + rϕ(c, t). (3)

• Step-Aware Modulation Module (SMM). SMM calibrates the residual update with timestep-
aware affine modulation. Specifically, it predicts a scale γt and bias βt from LD features
and the timestep embedding, and applies them to the residual-corrected state:

ẑSMM
t−1 = γt ⊙ ẑRDM

t−1 + βt. (4)

Together, the pair (rϕ, γt, βt) realizes dynamic conditional generation: at every denoising step, LD
features provide both a directional residual and a step-dependent modulation strength, yielding a
stable and temporally consistent correction of the reverse diffusion process.

4 PROPOSED METHOD

This section presents the step-aware residual-guided diffusion framework, and outlines its architec-
ture and core components. SRGDiff reframes SR as dynamic conditional generation that couples
the LD forward-noising trajectory with the HD reverse-denoising trajectory, using an LD-estimated
residual as a per-step corrective direction and a step-aware calibration to modulate its strength. The
framework comprises four parts: the latent diffusion model backbone, Residual Direction Module
(RDM) for additive directional updates, Step-Aware Modulation Module (SMM) for step-dependent
modulation, and the overall training strategy. An overview is provided in Figure 2, and the following
subsections describe each component in detail.

4.1 LATENT DIFFUSION MODEL BACKBONE

Our backbone consists of a VAE that builds the latent space and a denoising U-Net that performs
diffusion in that space. The VAE follows the EEG autoencoding setup of Aristimunha et al. (2023).
We train an encoder–decoder (E,D) on HD EEG XH to obtain z = E(XH) and X̂H = D(ẑ), and
optimize a reconstruction–regularization objective

LVAE = ∥X̂H −XH∥22 +λspec
∥∥STFT(X̂H)− STFT(XH)

∥∥
1
+λKL KL

(
qE(z |XH) ∥N (0, I)

)
,

(5)
where STFT(·) denotes the short-time Fourier transform applied along the temporal dimension of
each EEG channel to encourage spectral fidelity.

Empirically, we set the spectral weight to 0.1 and the KL weight to 10−4. After convergence, (E,D)
are frozen. On top of this latent space, we adopt a latent-diffusion model in the style of Rombach
et al. (2022).
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4.2 RESIDUAL DIRECTION MODULE

In the context of EEG spatial SR, most diffusion approaches condition the U-Net via feature concate-
nation or cross-attention. We instead turn EEG spatial SR into finer and step-aware conditioning by
learning residual direction from low-density recordings. We use the VAE encoder to extract multi-
scale condition c and an RDM head Rϕ takes (c, τ(t)) to predict a residual Rest in the encoder
feature space, which acts as a per-step directional correction to the reverse process. Concretely, we
first sample a timestep t, encode the HD EEG to obtain the latent z0 = E(XH), and draw

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (6)

In the forward process, we obtain at each step the noise-corrupted latent of the HD EEG and use this
sequence of step-dependent features as supervision targets for the residual. The residual labels span
t = 0, . . . , T and are defined as δzt := z0 − zt,.

In the reverse process, we estimate δzt from the low-density EEG to supply the step-wise temporal
and spatial details required for denoising. We introduce a lightweight convolutional predictor Rϕ

that takes the timestep embedding τ(t) and LD features c = F (XL) as input and outputs the residual
feature Rest, and trained by

Rest = Rϕ

(
τ(t), c

)
, Lres =

T∑
t=0

∥∥Rest − δzt
∥∥2
2
. (7)

Finally, the predicted residual feature is then added to ẑt as an incremental update:

ẑRDM
t = LayerNorm(ẑt) + Rest. (8)

4.3 STEP-AWARE MODULATION MODULE

After obtaining ẑRDM
t , we further modulate the current step to control the extent to which the resid-

ual condition influences denoising. To enforce temporal fidelity, SMM explicitly weighted the cur-
rent diffusion timestep with a step-dependent affine modulation estimated from the low-density fea-
tures and the current timestep embedding.

Specifically, SMM first encodes the low-density EEG through a lightweight 1D convolutional net-
work ESMM to produce a feature map ht. To enable the conditioning to recognize the current
diffusion step, SMM maps each sampled timestep t into a sinusoidal time embedding et. A learn-
able weight σt that decays linearly with t balances these two streams, yielding a fused feature:

h̃t = σtht + (1− σt)et = σtESMM (c) + (1− σt)et. (9)

For spatial coherence, we adopt an affine calibration mechanism. The fused feature h̃t is passed
through two MLPs MLPγ and MLPβ to predict channel-wise scale γc

t and bias βc
t :

ẑSMM
t = γt ⊙ ẑRDM

t + βc
t = MLPγ(h̃t, t) ⊙ ẑRDM

t + MLPβ(h̃t, t). (10)
Finally, SRGDiff feeds the updated latent ẑt into the U-Net decoder to obtain the next denoised state
ẑt−1.

4.4 TRAINING STRATEGY

To stabilize optimization and decouple latent representation learning from conditional diffusion
modeling, we adopt a two-stage training strategy.

Stage 1: VAE Pre-training. We first train the VAE encoder-decoder pair on high-density EEG data
to obtain a stable and structured latent space. After convergence, the VAE parameters are frozen to
provide fixed latent representations for subsequent diffusion modeling.

Stage 2: Residual-Guided Latent Diffusion. On the frozen latent space, the final training objective
is a weighted combination of the three terms:

LStage 2 = Ez0,ϵ,t

[
∥ϵ−ϵθ(zt, t, c)∥22

]
+λres

T∑
t=1

∥Rφ(c, t)−(z0−zt)∥22+λSMM (∥γt−1∥22+∥βt∥22).

(11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Empirically, we set the residual weight to 1 and the SMM weight to 10−2. The term λSMM
(
∥γt −

1∥22 + ∥βt∥22
)

serves as a regularization component to prevent excessively large values of γt and βt,
thereby stabilizing the training dynamics.

5 EXPERIMENTS

5.1 DOWNSTREAM DATASETS

In this study, we employ three publicly available EEG datasets. The SEED dataset (Zheng & Lu,
2015) uses 15 film clips of approximately four minutes each as emotional stimuli to induce stable
and continuous emotional responses in three categories: positive, neutral, and negative. Data were
acquired via 62 channels at 1000 Hz, downsampled to 200 Hz, band-pass filtered (0–75 Hz) and
segments with faulty sensors removed. SEED-IV (Zheng et al., 2018) extends SEED by using the
same 15 subjects and 62-channel setup (1000 Hz) but adds music and image stimuli to evoke hap-
piness, sadness, fear and neutral states; preprocessing mirrors that of SEED. Localize-MI (Mikulan
et al., 2020) contains 61 presurgical sessions from seven drug-resistant epilepsy patients, where
256-channel scalp EEG was recorded at 8000 Hz during 0.1–5 mA intracerebral single-pulse stim-
ulation; preprocessing includes a 0.1 Hz high-pass filter, notch filter, bad-channel/trial removal and
alignment of trials to the -300 ms to +50 ms stimulus-artifact window.

5.2 EXPERIMENT SETUP

Data Preprocessing. The experimental setup for the EEG super-resolution task follows the ES-
Tformer and STAD frameworks. The preprocessed EEG signals were segmented into fixed-length
windows: continuous, non-overlapping 4-second windows for SEED and SEED-IV datasets, and
260 ms windows (from 250 ms before stimulation to 10 ms after) for Localize-MI. In SEED and
SEED-IV, we designed different super-resolution scale factors (2×, 4× and 8×) to evaluate recon-
struction performance. The selection of visible channels and the super-resolution scaling factors
follow the configurations used in ESTformer. For Localize-MI, due to the high channel density, we
applied more extensive scale factors (2×, 4×, 8×, 16×).

Training & Environment Settings. For each dataset, we split the data into train/test with an
80%/20% ratio and reserve 10% of the training portion as a validation set. Stage I is trained only
on the HD signals from the training split. Stage II is trained on paired LD/HD samples constructed
from the same training split by masking HD channels according to the target SR scale; the validation
set is used for early stopping and hyperparameter selection. The held-out test split is used once for
final reporting, with no fine-tuning.

Baselines. We compare SRGDiff with strong EEG SR and time-series imputation baselines: ES-
Tformer (Li et al., 2025a) and STAD (Wang et al., 2025) (transformer-/diffusion-based EEG SR),
DDPMEEG (Vetter et al., 2024) (diffusion for ECoG SR), SaSDim (Zhang et al., 2024) and SADI
(Islam et al., 2025) (advanced missing data imputation), and the two-stage residual method RDPI
(Liu et al., 2025). We use authors’ official implementations when available and otherwise provide
carefully verified reimplementations, applying their recommended hyperparameters and unifying
training epochs and sampling steps across methods.

5.3 EVALUATION PROTOCOL.

We assess SR quality at three complementary levels to balance faithfulness to the ground truth,
preservation of neurophysiological structure, and practical utility.

Signal level (does the waveform match?): We follow ESTformer and report normalized mean
squared error (NMSE), Pearson correlation coefficient (PCC), and reconstruction signal-to-noise
ratio (SNR) with respect to the HD reference, plus topology maps for qualitative inspection (formal
definitions in the Appendix).
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Model Ref Metric 2 4 8 16

SaSDim IJCAI 2024
NMSE 0.2675±0.003 0.3427±0.001 0.4174±0.004 0.4613±0.003

PCC 0.8194±0.002 0.7246±0.007 0.6926±0.003 0.6476±0.002

SNR 5.7443±0.007 4.3796±0.003 3.5549±0.009 2.7678±0.005

SADI AAAI 2025
NMSE 0.2637±0.003 0.3442±0.001 0.4164±0.004 0.4566±0.003

PCC 0.8243±0.002 0.7391±0.007 0.6944±0.003 0.6554±0.002

SNR 5.7511±0.007 4.3724±0.003 3.5498±0.008 2.8942±0.009

RDPI AAAI 2025
NMSE 0.2561±0.003 0.3562±0.001 0.4076±0.004 0.4531±0.003

PCC 0.8246±0.002 0.7396±0.007 0.7062±0.003 0.6549±0.002

SNR 5.7311±0.007 4.3966±0.003 3.5643±0.009 2.7731±0.007

DDPMEEG Patterns 2024
NMSE 0.2046±0.003 0.3108±0.001 0.3554±0.004 0.4076±0.002

PCC 0.8516±0.002 0.8163±0.007 0.7306±0.003 0.6739±0.002

SNR 6.2151±0.008 5.5126±0.003 3.9891±0.009 3.2715±0.005

ESTformer KBS 2025
NMSE 0.2721±0.003 0.3578±0.001 0.4466±0.004 0.4837±0.002

PCC 0.8061±0.002 0.7205±0.007 0.6867±0.003 0.6319±0.002

SNR 5.5403±0.008 3.8671±0.003 3.3023±0.007 2.5671±0.004

STAD TCE 2025
NMSE 0.1902±0.003 0.3067±0.001 0.3649±0.004 0.4106±0.003

PCC 0.8635±0.002 0.8194±0.007 0.7216±0.003 0.6694±0.002

SNR 7.2591±0.008 5.5234±0.003 3.8715±0.009 3.2642±0.005

SRGDiff OURS
NMSE 0.1449±0.003 0.2384±0.001 0.2957±0.004 0.3457±0.002

PCC 0.9213±0.002 0.8854±0.007 0.8323±0.003 0.7322±0.002

SNR 8.3755±0.008 6.3617±0.003 5.2249±0.009 4.0197±0.006

Table 1: Performance of all methods on Localize-MI across different channel settings.

Feature level (does the representation distribution match?): We adopt EEG-FID following Lai
et al. (2025), using a frozen EEGNet trained per dataset on its training split; the embedding di-
mension is 256 for SEED/SEED-IV and 512 for Localize-MI. In addition, we report a frequency-
domain MAE: we first compute channel-wise STFTs of the reconstructed and reference HD EEG,
form their power spectra, and then compute the normalized mean squared error between these spec-
tra averaged over channels and frequency bins, so as to capture spectral distortions that are not
reflected by time-domain NMSE alone.

Downstream level (is it useful?): We evaluate SEED/SEED-IV subject-dependent emotion recog-
nition without cross-validation and binary epileptic classification on Localize-MI, both reporting
accuracy. All results are summarized as mean±std over subjects; implementation details and metric
formulas are provided in the Appendix.

5.4 MAIN RESULTS

We report signal-level reconstruction quality in Tables 1 and 2. For the most demanding 16× up-
sampling on Localize-MI, SRGDiff attains an NMSE of 0.3457, over 15% lower than DDPMEEG’s
0.4076, indicating that dynamic conditioning effectively guides the diffusion model to generate
super-resolved signals that closely approximate the true high-density data. Its PCC improves from
0.6739 to 0.7322, and its SNR increases from 3.27 dB to 4.02 dB (over 22%), demonstrating that
under challenging settings the dynamic conditioning still learns the HD trend while maintaining
a favorable signal-to-noise ratio. On SEED with high temporal variability and frequent outliers,
SRGDiff reduces the 2× NMSE from ESTformer’s 0.3288 to 0.1632 (a reduction of more than
50%) and raises PCC from 0.8368 to 0.9102. A similar pattern is observed on SEED-IV, where
NMSE drops to 0.1663 versus 0.3448 and PCC increases to 0.9113 versus 0.8106, indicating that
despite lower SNR, the dynamic conditioning exhibits strong generalization.

5.5 FEATURE-LEVEL RECONSTRUCTION EVALUATION

We report EEG-FID results in Figure 3, and our method consistently achieves the lowest FID scores
across SEED, SEED-IV, and Localize-MI datasets under different scale factors. These results indi-
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Model Metric SEED (62) SEED-IV (62)

2 4 8 2 4 8

SaSDim
NMSE 0.4399±0.004 0.6234±0.002 0.7767±0.007 0.3633±0.004 0.5543±0.002 0.7122±0.005
PCC 0.7341±0.002 0.5649±0.001 0.4349±0.004 0.7249±0.002 0.6211±0.009 0.5009±0.003
SNR 4.1154±0.096 2.2940±0.046 1.1349±0.127 4.5940±0.009 2.6004±0.004 1.6211±0.111

SADI
NMSE 0.4439±0.004 0.6049±0.002 0.8106±0.007 0.3557±0.004 0.5349±0.002 0.6844±0.005
PCC 0.7234±0.002 0.5819±0.001 0.4064±0.004 0.7624±0.002 0.6293±0.009 0.5243±0.003
SNR 4.2419±0.097 2.5160±0.046 1.0137±0.127 4.7093±0.009 2.6044±0.004 1.6610±0.112

RDPI
NMSE 0.4064±0.004 0.6134±0.002 0.7916±0.007 0.3491±0.004 0.5416±0.002 0.6915±0.005
PCC 0.7416±0.002 0.5716±0.001 0.4216±0.004 0.7861±0.002 0.6316±0.009 0.5164±0.003
SNR 4.2619±0.097 2.3160±0.046 1.0316±0.127 4.7190±0.009 2.6194±0.004 1.6492±0.115

DDPMEEG
NMSE 0.4916±0.004 0.7319±0.002 0.8634±0.007 0.5136±0.004 0.6513±0.001 0.7916±0.005
PCC 0.6941±0.002 0.5134±0.001 0.3419±0.004 0.7346±0.001 0.5316±0.009 0.4305±0.003
SNR 4.1943±0.095 1.5391±0.042 0.9431±0.125 4.4165±0.008 2.1064±0.003 1.6105±0.110

ESTformer
NMSE 0.3288±0.004 0.3483±0.002 0.4149±0.007 0.3448±0.004 0.3911±0.0015 0.5125±0.005
PCC 0.8368±0.002 0.8012±0.001 0.7670±0.004 0.8106±0.002 0.7822±0.009 0.7048±0.003
SNR 5.0560±0.097 4.5838±0.044 3.8871±0.126 4.7535±0.008 4.1933±0.003 2.9821±0.113

STAD
NMSE 0.4319±0.004 0.6913±0.002 0.8671±0.007 0.3819±0.004 0.6713±0.002 0.7193±0.005
PCC 0.7136±0.002 0.4946±0.001 0.3441±0.004 0.7316±0.002 0.5219±0.009 0.4319±0.003
SNR 4.1364±0.099 1.4349±0.043 0.9134±0.125 4.4930±0.008 2.0492±0.003 1.6193±0.114

SRGDiff
NMSE 0.1632±0.004 0.2977±0.002 0.3494±0.007 0.1663±0.004 0.2115±0.002 0.2603±0.005
PCC 0.9102±0.002 0.8445±0.001 0.8167±0.004 0.9113±0.002 0.8846±0.009 0.8210±0.003
SNR 7.8413±0.097 5.2606±0.043 4.5912±0.127 7.8660±0.008 6.6402±0.003 6.0346±0.120

Table 2: Performance comparison of different models on SEED and SEED-IV datasets across dif-
ferent channel settings.

Figure 3: EEG-FID evaluation across three datasets compared with ESTformer and STAD.

cate that our approach generates EEG signals that are statistically closer to the real distribution in
the temporal domain.

We further analyze the spectral fidelity of generated signals by visualizing EEG topographic maps
under different scale factors. An EEG topographic map projects the power spectral density (PSD) of
each channel onto the scalp surface, providing an intuitive representation of the spatial distribution
of oscillatory energy. As shown in Figure 4 and Figure 15, although our reconstructed signals still
exhibit minor deviations from the original data, they preserve a high degree of overlap in critical
regions with strong PSD responses.

Beyond qualitative inspection, we also report a frequency-domain error metric that quantifies the
mean absolute error between reconstructed and real HD topomaps. As shown in Table 3, SRGDiff
consistently achieves the lowest frequency-domain MAE across datasets and SR scales, indicating
better preservation of the spatial distribution of spectral power.
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Figure 4: Visualization of EEG topographic maps between ground-truth and reconstructed EEG
signals by ESTformer, STAD and SRGDiff.

Model SEED SEED-IV Localize-MI

2× 4× 8× 2× 4× 8× 2× 4× 8× 16×
ESTformer 6.96 9.31 9.73 7.11 8.30 8.86 7.03 16.67 32.32 35.73
STAD 9.19 11.04 14.40 9.50 10.95 13.12 8.76 13.11 22.53 25.37
SRGDiff 3.89 5.12 4.95 3.99 4.08 4.84 3.86 7.30 11.50 13.76

Table 3: Frequency-domain MAE between reconstructed and real HD topomaps on SEED, SEED-
IV, and Localize-MI under different SR factors.

5.6 DOWNSTREAM TASKS

Method SEED SEED-IV Localize-MI
2 4 8 2 4 8 2 4 8 16

GT 0.7152 0.7152 0.7152 0.7027 0.7027 0.7027 0.8368 0.8368 0.8368 0.8368
LR 0.4981 0.4702 0.4424 0.5685 0.5618 0.5011 0.7208 0.6534 0.5219 0.3862

SaSDim 0.5097 0.4793 0.4429 0.5794 0.5692 0.4912 0.7193 0.6519 0.5237 0.3845
SADI 0.5137 0.4834 0.4456 0.5718 0.5644 0.4987 0.7215 0.6634 0.5314 0.3957
RDPI 0.5044 0.4802 0.4531 0.5591 0.5741 0.5071 0.7230 0.6624 0.5210 0.3892
DDPMEEG 0.4738 0.4610 0.4238 0.5548 0.5487 0.4838 0.7015 0.6387 0.5187 0.3767
ESTformer 0.6887 0.6509 0.6057 0.6782 0.6500 0.5084 0.7445 0.6033 0.4739 0.4391
STAD 0.5437 0.5249 0.4610 0.6651 0.6410 0.4977 0.7589 0.6797 0.6344 0.5384
SRGDiff 0.7019 0.6812 0.6273 0.6821 0.6558 0.5127 0.7641 0.7163 0.6806 0.5887

Table 4: Classification accuracy comparison across different methods and datasets. GT represents
the ground truth performance. Best results are shown in bold, second-best are underlined.

Table 4 reports results on the three datasets under various super-resolution scales. As the scale
grows, accuracy for both raw and super-resolved inputs declines, yet SRGDiff’s reconstructions
consistently maintain a clear advantage. In particular, SRGDiff greatly outperforms missing-value
imputation methods and leads all other spatial imputation approaches. At 2× scale factor, its clas-
sification accuracy approaches that obtained from the original full-channel recordings. We further
compared the runtime efficiency of different methods as shown in Table 13. Although our proposed
SRGDiff is slightly slower than the transformer-based ESTformer, it can still complete EEG super-
resolution within 0.1s, which meets the real-time requirement in practical applications. The detailed
runtime statistics of all models are provided in the Appendix.
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Figure 5: Ablation study performance comparison between SRGDiff and three variant models on
the SEED dataset.

5.7 ABLATION STUDY

To evaluate the contribution of each module in SRGDiff to EEG super-resolution reconstruction, we
conducted ablation studies comparing SRGDiff with three variant models. LDM+LD keeps only
the VAE–DDIM backbone and takes the LD EEG as its input condition; LDM+SMM preserves the
Step-aware modulation module; LDM+RDM retains the Residual Direction Module. All models
were tested under the same experimental settings.

Figure 5 reports NMSE, PCC and SNR across 2×, 4× and 8× upsampling in SEED dataset. At 8×,
adding SMM to the baseline cuts NMSE from 0.86 to 0.45 with 47% reduction and boosts PCC from
0.34 to 0.69, demonstrating its effectiveness in temporally aligning the denoising trajectory. Incor-
porating RDM yields a comparable NMSE reduction with 44% and raises PCC to 0.67, highlighting
its role in injecting prior information for spatial consistency. When combined in SRGDiff, these
modules further decrease NMSE to 0.34 with 60% overall reduction and elevate PCC to 0.81. More
ablation results in SEED-IV and Localize-MI datasets are shown in Figure 11 in the Appendix.

6 CONCLUSION

We introduced SRGDiff, a step-aware residual-guided diffusion model that reframes EEG spatial
super-resolution as guided HD generation with a step-aware residual direction and adaptive mod-
ulation. Across SEED, SEED-IV, and Localize-MI, SRGDiff consistently improves signal-level
metrics, achieves the best EEG-FID across scales, and better preserves spectral and scalp topogra-
phies. Downstream evaluations further show higher accuracy on emotion recognition and patient-
wise classification, indicating that the reconstructed signals are not only visually and statistically
closer to HD EEG but also more useful for analysis. These results validate that explicit, step-wise
conditioning on sparse inputs is both necessary and effective for high-fidelity, topology-preserving
EEG super-resolution.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including SEED, SEED-IV and Localize-MI, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. Details could
be found in Appendix. We have taken care to avoid any biases or discriminatory outcomes in our
research process. No personally identifiable information was used, and no experiments were con-
ducted that could raise privacy or security concerns. We are committed to maintaining transparency
and integrity throughout the research process.
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8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
SRGDiff, to assist others in reproducing our experiments.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

Figure 6: Example of a raw SEED EEG segment with sensor faults highlighted.

B DATASET PREPROCESS DETAILS

B.1 DATASET DETAILS

We use three publicly available EEG datasets: SEED, SEED-IV, and Localize-MI.
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Figure 7: Example of a raw SEED EEG segment with sensor faults highlighted.

SEED (available at http://bcmi.sjtu.edu.cn/˜seed/) consists of recordings from 15
subjects watching emotion-eliciting film clips (≈ 4 min each) designed to induce positive, neutral,
and negative states. Data were acquired with a 62-channel 10–20 montage at 1000 Hz, downsampled
to 200 Hz, and band-pass filtered to 0.5–75 Hz. We manually inspected and removed sessions with
sensor faults as depicted in Figure 6 and Figure 7.

SEED-IV (available at http://bcmi.sjtu.edu.cn/˜seed/seed-iv.html) is a pub-
licly available EEG dataset designed for emotion recognition research. It includes four emotional
categories: happiness, sadness, neutrality, and fear. Emotional states are elicited using two types
of stimuli: music and images. EEG recordings were collected from 15 subjects using a 62-channel
system with a sampling rate of 1000 Hz.During preprocessing, the EEG signals were downsampled
to 200 Hz and filtered with a bandpass filter ranging from 0.5 to 75 Hz. To ensure data quality,
visually corrupted or invalid trials were manually excluded.

Localize-MI (available at https://doi.org/10.12751/g-node.1cc1ae) is a high-
density intracranial EEG dataset from seven drug-resistant epilepsy patients during 61 presurgi-
cal sessions. Stereo–EEG electrodes delivered single-pulse biphasic currents (0.1–5 mA), and 256
channels were recorded at 8000 Hz. Preprocessing included 0.1 Hz high-pass filtering, notch fil-
ters at 50/100/150/200 Hz, bad-channel/trial removal, and trial alignment using stimulation artifact
peaks (–300 to +50 ms window). In the Localize-MI dataset, we designed a binary classification
task (epileptic vs. nonepileptic) to evaluate the effectiveness of synthetic super-resolution EEG (SR
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EEG) in detecting epileptic abnormalities. Specifically, EEG signals recorded before electrical stim-
ulation are labeled as nonepileptic, while those recorded during stimulation are labeled as epileptic.
The detailed experimental setup follows the description provided in the STAD (Wang et al., 2025)
model section.

B.2 MORE EXPERIMENTAL DETAILS

We follow ESTformer and STAD slicing strategies. Preprocessed signals are windowed into fixed
lengths: SEED and SEED-IV use non-overlapping 4 s segments, while Localize-MI retains –250 ms
to +10 ms around each stimulus (260 ms total). We randomly split 80% for training and 20% for
testing, yielding 24265×62×800 train / 6067×62×800 test samples for SEED; 29199×62×800
train / 7300 × 62 × 800 test for SEED-IV; and 1914 × 256 × 2081 train / 479 × 256 × 2081
test for Localize-MI. For SEED and SEED-IV we evaluate 2×, 4×, and 8× super-resolution; for
Localize-MI we additionally include 16×. As shown in Figure 8, Localize-MI employs a 256-
channel intracranial grid, while Figure 9 shows the 62-channel scalp montage used in SEED-IV and
SEED.

Figure 8: Electrode topology of the Localize-MI dataset (256 intracranial channels).

C MORE SRGDIFF MODEL DETAILS

C.1 VARIATIONAL AUTOENCODER

In this paper, Variational Autoencoder (VAE) follows the AutoencoderKL design (Aristimunha et al.,
2023), comprising a convolutional encoder, a latent distribution (mean and variance) with KL reg-
ularization toward N (0, I), and a decoder with deconvolutions and upsampling. We augment both
encoder and decoder with attention layers (multi-head and non-local attention), residual connec-
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Figure 9: Electrode topology of the SEED-IV and SEED datasets (62 scalp channels).

tions, and GroupNorm to capture global EEG features while ensuring stable training and efficient
latent representations.

C.2 DDIM SCHEDULER

The DDIMScheduler manages noise scheduling and sampling in the forward and reverse diffusion
processes. It supports multiple noise prediction types and variance strategies. At each step, it com-
putes the noise coefficient, predicts the denoised sample, clips values for numerical stability, and
injects random perturbations to control output diversity.

D PARAMETER STUDY

D.1 VAE LATENT SHAPE SELECTION

We found that the latent shape balances reconstruction precision and generalization. Higher di-
mensions capture more detail but risk overfitting, while lower dimensions blur outputs. We experi-
mented across the three datasets and selected a latent of 32× 400 for SEED/SEED-IV and 64× 500
for Localize-MI, which yielded optimal NMSE, PCC, and SNR. Table 5 and Table 6 shows the
performance of SRGDiff in different latent shapes.
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Shape NMSE PCC SNR (dB)
64× 400 0.15 0.93 7.75
32×400 0.12 0.95 8.72
16× 200 0.20 0.89 6.81
8× 400 0.16 0.92 7.26

SEED

Shape NMSE PCC SNR (dB)
64× 400 0.16 0.92 7.58
32×400 0.13 0.94 8.58
16× 200 0.21 0.87 6.86
8× 400 0.19 0.91 7.23

SEED-IV

Table 5: VAE latent shape selection results on SEED and SEED-IV.

Shape NMSE PCC SNR (dB)
128× 1000 0.13 0.94 8.60
64×500 0.09 0.96 9.01
32× 500 0.15 0.92 7.61
32× 1000 0.13 0.94 8.62

Table 6: Localize-MI: VAE latent shape selection results

D.2 DIFFUSION HYPERPARAMETERS

D.2.1 DIFFUSION SCHEDULES

We compare linear and cosine noise schedules. Linear adds noise at a constant rate but may cause
instability at endpoints; cosine offers smoother transitions and better performance for long diffusion
chains. We fixed 1000 timesteps with cosine scheduling and evaluated NMSE, PCC, and SNR on
the latent reconstructions to choose this setting as shown in Table 7.

Dataset Schedule NMSE PCC SNR (dB)

SEED Linear 0.42 0.71 4.18
Cosine 0.20 0.86 7.15

SEED-IV Linear 0.51 0.66 4.02
Cosine 0.19 0.88 7.24

Localize-MI Linear 0.14 0.93 8.39
Cosine 0.11 0.95 8.88

Table 7: Comparison of noise schedules on three datasets (NMSE, PCC, SNR).

D.2.2 TRAINING TIMESTEP LENGTHS

We also tested different training timestep lengths (200, 1000, 2000). Larger values introduce
stronger noise but make denoising harder; smaller values lack coverage of high-noise regimes. Using
cosine scheduling, the results in Table 8 exhibit that 1000 timesteps to be optimal across datasets.

D.2.3 COSINE SCHEDULE OFFSET FACTOR

In the cosine noise schedule for DDIM, the offset factor s adjusts the smoothness and starting point
of the noise variance curve to prevent instability from overly small initial noise levels. Concretely,
s introduces a phase shift in the cosine function, producing a more gradual noise increase at early
timesteps—thereby avoiding abrupt noise jumps—while still covering the full variance range at later
steps. Smaller values of s yield gentler initial noise ramp-up, whereas larger s accelerate early noise
growth. Table 9 depicts the effect of cosine schedule offset factors on reconstruction quality.

D.3 EFFECT OF λRES AND λSMM .
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Dataset Steps NMSE PCC SNR (dB)

SEED
200 0.32 0.76 5.95
1000 0.20 0.86 7.15
2000 0.29 0.78 6.19

SEED-IV
200 0.36 0.75 5.93
1000 0.19 0.88 7.24
2000 0.31 0.76 6.11

Localize-MI
200 0.15 0.92 8.37
1000 0.11 0.95 8.88
2000 0.11 0.95 8.94

Table 8: Impact of training timesteps on reconstruction quality

Dataset s NMSE PCC SNR (dB)

SEED
0.005 0.20 0.86 7.15
0.010 0.24 0.84 7.02
0.025 0.26 0.83 6.93

SEED-IV
0.005 0.20 0.86 7.17
0.010 0.19 0.88 7.24
0.025 0.20 0.85 7.11

Localize-MI
0.005 0.11 0.95 8.94
0.010 0.15 0.93 8.41
0.025 0.18 0.91 8.23

Table 9: Effect of cosine schedule offset factor s on reconstruction quality

To assess the sensitivity of SRGDiff to the weighting coefficients in the loss, we conduct a parameter
study on the most challenging SR settings (highest SR factor) for each dataset. We vary the residual-
guidance weight λres and the step-aware modulation weight λSMM around the default values used in
the main paper, while keeping all other hyperparameters fixed.

Concretely, we sweep λres ∈ {0.1, 0.5, 1.0, 2.0, 5.0} (relative to the default), and λSMM ∈
{0.001, 0.005, 0.01, 0.02, 0.1}. Tables 10 report the NMSE on SEED, SEED-IV, and Localize-MI
under these settings.

λres SEED SEED-IV Localize-MI

0.1 0.3928 0.3286 0.3941
0.5 0.3532 0.2822 0.3578
1.0 0.3494 0.2603 0.3457
2.0 0.3508 0.2810 0.3565
5.0 0.4012 0.3369 0.3827

(a) Effect of λres

λSMM SEED SEED-IV Localize-MI

0.001 0.3975 0.3133 0.3904
0.005 0.3539 0.2696 0.3519
0.01 0.3494 0.2603 0.3457
0.02 0.3513 0.2712 0.3489
0.1 0.3990 0.3240 0.3915

(b) Effect of λSMM

Table 10: Effect of λres and λSMM on NMSE (hardest SR setting per dataset).

Overall, the performance is reasonably stable within a broad range around the default values, indi-
cating that SRGDiff is not overly sensitive to these hyperparameters. When λres becomes too large,
the residual guidance term dominates and suppresses learning in the diffusion backbone; when it is
too small, the residual guidance has almost no effect. Similarly, if λSMM is too small, the guidance
feature modulation is overly strong, whereas for very large λSMM the diffusion model effectively
ignores the guidance features. The default configuration achieves the best overall trade-off across
datasets.
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Model SEED SEED-IV Localize-MI

2× 4× 8× 2× 4× 8× 2× 4× 8× 16×
ESTformer 6.96 9.31 9.73 7.11 8.30 8.86 7.03 16.67 32.32 35.73
STAD 9.19 11.04 14.40 9.50 10.95 13.12 8.76 13.11 22.53 25.37
SRGDiff 3.89 5.12 4.95 3.99 4.08 4.84 3.86 7.30 11.50 13.76

Table 11: Frequency-domain NMSE between reconstructed and real HD topomaps on SEED, SEED-
IV, and Localize-MI under different SR factors.

E DOWNSTREAM TASK

E.1 CLASSIFICATION FEATURE EXTRACTION

E.1.1 DIFFERENTIAL ENTROPY FEATURE

Raw EEG at 1000 Hz is downsampled to 200 Hz, band-pass filtered (1–50 Hz) with a 6th-order
Butterworth filter, and segmented into non-overlapping 1 s windows (200 samples). Each win-
dow is transformed by STFT (Hanning window, 200-point length, 256-point FFT). We compute
band-specific power E for δ (1–3Hz), θ (4–7Hz), α (8–13Hz), β (14–30Hz), and γ (31–50Hz) ,
normalize by the number of bins N , and define differential entropy (DE) feature as log(E/N) with
a small constant added for numerical stability.

E.1.2 POWER SPECTRAL DENSITY FEATURE

Power spectral density (PSD) feature features use the same STFT pipeline but report the mean
squared magnitude (average power) in each band.

E.2 RANDOM FOREST CLASSIFIER

For emotion classification on SEED and SEED-IV and epileptic detection on Localize-MI, we em-
ploy a random forest with 100 trees. This set of hyperparameters balances nonlinearity modeling
with computational efficiency, yielding robust performance on high-dimensional EEG features.

F SUPPLEMENTAL ABLATION RESULTS

F.1 FREQUENCY-DOMAIN TOPOMAP ERROR

To complement the qualitative topographic visualizations in Figure 4 and rule out potential visual
selection bias, we report a quantitative frequency-domain MAE between reconstructed and real HD
topomaps. Concretely, we first transform both reconstructed and reference HD EEG into the fre-
quency domain, aggregate power within standard EEG bands (e.g., θ, α, β), and interpolate the
band power of each channel onto a 2D scalp grid using electrode coordinates. We then compute the
pixel-wise normalized mean squared error between the reconstructed and real topomaps, averaged
over all frequency bands and test samples. A lower value indicates that the model better preserves
both the spectral content and its spatial distribution over the scalp.

Table 11 reports frequency-domain MAE on SEED, SEED-IV, and Localize-MI under different SR
factors. SRGDiff consistently achieves the lowest error across all datasets and scales, with a larger
margin over ESTformer and STAD than in time-domain NMSE/PCC/SNR. This confirms that our
residual-guided generative formulation not only improves pointwise reconstruction quality, but also
more faithfully recovers the HD spectral–spatial structure.

F.2 ADDITIONAL ABLATION STUDIES ON SEED-IV AND LOCALIZE-MI DATASETS

Figure 10 illustrates the LDM+LD baseline used in our ablations. In the first stage (top row), we
pretrain a VAE on full high-density (HD) EEG: preprocessed HD signals are passed through the
encoder E and decoder D to learn a latent space tailored to HD scalp topography. In the second
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stage (bottom row), low-density EEG is first mapped into this latent space using the pretrained
encoder E, yielding a static guidance feature. This guidance feature is then added to the diffusion
latent during the denoising process, and the final denoised latent is decoded by D back to HD EEG,
without employing RDM or SMM.

Figure 11 presents additional ablation studies on SEED-IV and Localize-MI datasets, reporting
NMSE, PCC, and SNR for the baseline LDM+LD, LDM+SMM, LDM+RDM, and the full SRGDiff
across various upsampling scales. These plots further illustrate the individual and combined contri-
butions of our two modules to reconstruction quality.

Figure 10: Illustration of the LDM+LD baseline.

Figure 11: Ablation results on SEED-IV and Localize-MI: comparison of NMSE, PCC, and SNR
for LDM+LD, LDM+SMM, LDM+RDM, and SRGDiff at 2×, 4×, and 8× upsampling and 2×, 4×,
8×, and 16× upsampling, respectively.
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G EFFICIENCY ANALYSIS

G.1 COMPUTATIONAL COST UNDER COMPARABLE PARAMETER BUDGETS

To complement the main-paper results, we further compare the computational cost of SRGDiff with
simpler transformer-based SR models under comparable parameter budgets. Table 12 reports, for
ESTformer, STAD, and SRGDiff, the total number of trainable parameters and the average compu-
tation cost per 4 s EEG window (measured as FLOPs under the same input resolution). Although
SRGDiff requires more FLOPs than the single-pass transformer ESTformer due to the iterative de-
noising process, its parameter count remains in the same order of magnitude as transformer-based
baselines, and the additional cost is the price we pay for exploiting a strong latent diffusion prior.

Method #Params (M) GFLOPs / window

ESTformer 12.111 4.302
STAD 13.949 1.650
SRGDiff 2.342 1.38

Table 12: Computational cost of different SR models under comparable parameter budgets. We
report the total number of trainable parameters and GFLOPs per 4 s EEG window. SRGDiff uses a
diffusion-based denoiser, so its FLOPs are higher than those of ESTformer, but the parameter budget
remains comparable.

G.2 RUNTIME COMPARISON

In addition to static computational cost, we also measure wall-clock runtime for all methods on
the three EEG datasets under a unified implementation and hardware setup (same GPU, batch size,
and input length). Table 13 reports the average per-sample latency for a 4 s window. Despite using
an iterative denoising process, SRGDiff achieves inference times between 63 ms and 92 ms, which
are significantly faster than most diffusion-based baselines and are well below 0.1 s. In contrast,
ESTformer attains the smallest latency thanks to its single-pass transformer structure, but, as shown
in the main paper, does not match SRGDiff in reconstruction quality. Overall, these results indicate
that SRGDiff strikes a favorable balance between accuracy and efficiency, and is suitable for real-
time EEG spatial super-resolution.

Method SEED SEED-IV Localize-MI

SasDim 265.4 269.5 374.4
SADI 329.0 324.1 428.7
RDPI 318.1 315.9 421.2
DDPMEEG 549.3 558.2 841.7
ESTformer 3.51 3.55 5.03
STAD 232.6 227.8 385.9
SRGDiff 63.0 62.1 92.5

Table 13: Runtime (ms) of different methods on SEED, SEED-IV, and Localize-MI datasets. Values
are average per-sample latency for a 4 s EEG window measured on the same GPU. SRGDiff remains
below 0.1 s in all cases while achieving the best reconstruction quality.

H GENERALIZATION ANALYSIS

H.1 EXTENSION TO CROSS-SUBJECT AND CROSS-SESSION SETTINGS

EEG signals are known to exhibit strong subject- and session-specific variability. To explicitly
examine whether SRGDiff can generalize under this variability, we perform additional experiments
on the SEED dataset in a stricter cross-subject and cross-session regime.

For the cross-session setting, we use all subjects in SEED and conduct three experiments: in each
experiment, two sessions are used for training and the remaining session is held out for testing.
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Model Metric Cross-subject (SEED) Cross-session (SEED)

2× 4× 8× 2× 4× 8×

ESTformer
NMSE 0.4411±0.004 0.4729±0.006 0.5633±0.008 0.3624±0.004 0.4029±0.008 0.5129±0.007
PCC 0.7393±0.009 0.7189±0.007 0.6515±0.009 0.7924±0.009 0.7742±0.007 0.6954±0.009
SNR 3.9516±0.031 3.5414±0.004 2.7279±0.039 4.8753±0.034 4.4097±0.047 3.1375±0.043

STAD
NMSE 0.5537±0.004 0.7325±0.002 0.9267±0.008 0.5617±0.003 0.7675±0.002 0.9376±0.007
PCC 0.6224±0.003 0.4587±0.002 0.2959±0.004 0.6373±0.003 0.4397±0.002 0.2791±0.004
SNR 3.3872±0.097 1.2449±0.049 0.7276±0.139 3.1794±0.089 1.1297±0.042 0.7168±0.122

SRGDiff
NMSE 0.2675±0.003 0.3829±0.005 0.4512±0.005 0.2480±0.003 0.3529±0.004 0.4127±0.005
PCC 0.8023±0.004 0.7232±0.004 0.6902±0.004 0.8508±0.004 0.7932±0.003 0.7702±0.007
SNR 5.6913±0.067 4.5657±0.055 4.1189±0.084 6.1473±0.093 4.1857±0.052 3.8189±0.034

Table 14: Cross-subject and cross-session reconstruction performance on SEED under different SR
factors (mean ± std over folds) in terms of NMSE, PCC, and SNR.

We then report averages over all subjects and session splits. For the cross-subject setting, we train
SRGDiff on subjects 1-12 and evaluate on held-out subjects 13-15 without any subject-specific fine-
tuning.

The reconstruction performance under both cross-session and cross-subject protocols is summarized
in Table 14. We observe that SRGDiff degrades gracefully in the cross-session setting, maintaining
strong performance at 2× and 4× SR with more noticeable degradation at 8×, while the cross-
subject setting is substantially more challenging and leads to larger performance drops across all
SR factors than the random division settings. Nevertheless, SRGDiff maintains a clear margin over
strong baselines ESTformer, STAD in terms of NMSE, PCC, and SNR, indicating that the proposed
partial-observation diffusion formulation is reasonably robust to session- and subject-level variabil-
ity on SEED.

H.2 EXTENSION TO ECOG CHANNEL SUPER-RESOLUTION

To examine whether SRGDiff is specific to scalp EEG or can generalize to other multi-channel neu-
rophysiological signals, we further evaluate it on an invasive electrocorticography (ECoG) dataset.
We use the public ECoG benchmark AJILE12 (Peterson et al., 2022) and follow the setting of
Vetter et al. (2024). Applying SRGDiff here serves two purposes: (i) it tests whether our partial-
observation formulation and dynamic residual guidance are modality-agnostic within the family of
spatially organized neural recordings, and (ii) it verifies that the proposed method works under a
different signal regime (invasive ECoG rather than scalp EEG) without any architecture or hyperpa-
rameter changes. As shown in Table 15, SRGDiff consistently improves over transformer-based SR
baselines on the ECoG benchmark, supporting our claim that the approach extends beyond EEG to
other neurophysiological channel super-resolution tasks.

Model Metric 2× 4× 8×

ESTformer
NMSE 0.4573 0.7189 0.8517
PCC 0.7367 0.5299 0.3845
SNR 3.3991 1.4334 0.6974

STAD
NMSE 0.4932 0.6901 0.7987
PCC 0.6854 0.5118 0.4312
SNR 3.1686 1.4449 1.1684

SRGDiff (ours)
NMSE 0.3575 0.6529 0.7312
PCC 0.8023 0.5332 0.4502
SNR 4.8913 2.1657 1.9089

Table 15: Channel super-resolution performance (NMSE, PCC, and SNR) on the ECoG dataset from
Vetter et al. (2024), following their windowing and data split. SRGDiff consistently improves over
transformer-based baselines across all SR factors and metrics.
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Train LD chans Test LD chans NMSE PCC SNR

16 8 0.4542 0.7196 4.0329
16 10 0.4031 0.7650 4.4211
16 12 0.3588 0.8012 4.8705
16 14 0.3245 0.8268 5.1203
16 16 (base) 0.2977 0.8445 5.2606
32 8 0.4753 0.6735 3.9518
32 16 0.3585 0.7820 4.4002
32 32 (base) 0.1632 0.9102 7.8413

Table 16: SEED dataset: robustness of SRGDiff to variable LD montages. The model is trained
with either a 16- or 32-channel LD configuration and evaluated on subsampled LD inputs at test
time without retraining.

H.3 EXTENSION TO VARIABLE AND IRREGULAR LD ELECTRODE LAYOUTS

In many practical deployments, the available low-density electrode layout may differ across sub-
jects, sessions, or hardware configurations. In addition, real-world recordings often contain missing
or corrupted channels, leading to irregular montages that deviate from the nominal LD design. A
natural question is whether a single model can generalize across such variable and potentially irreg-
ular LD layouts.

In SRGDiff, the LD input is treated as a set of spatially localized observations that are first mapped
into a common latent representation via the pretrained VAE. Concretely, each LD electrode is em-
bedded into a continuous scalp (or cortical) coordinate space, and its signal is projected onto a fixed
latent grid on which the diffusion model operates. The guidance network then consumes these latent
features rather than discrete channel indices, so the conditioning is not tied to a specific LD channel
configuration. This design makes the model inherently more flexible to changes in the number and
spatial arrangement of LD electrodes at inference time.

To verify this empirically, we conducted two sets of experiments on SEED. First, we trained
SRGDiff with a 16-electrode LD configuration and evaluated it at test time on 8/10/12/14-electrode
inputs obtained by subsampling the 16-channel montage. Second, we trained SRGDiff with a 32-
electrode LD configuration and evaluated it on 8- and 16-electrode inputs, again using only subsam-
pling at test time and no retraining. As summarized in Tables 16, SRGDiff degrades gracefully as
the LD montage becomes sparser: NMSE increases moderately, while PCC and SNR remain com-
petitive across all tested LD configurations. These results indicate that a single SRGDiff model can
handle sparser or irregular LD layouts at inference time without retraining, provided that the new
electrodes can be embedded into the same spatial coordinate system and projected onto the latent
grid used during training.

I RECONSTRUCTION VISUALIZATION

Figure 12 through Figure 14 illustrate qualitative reconstructions on the three datasets. For each,
we plot a single representative channel over time, comparing the ground-truth high-density EEG
(black) against STAD (blue), ESTformer (red), and SRGDiff (green). These overlays demonstrate
SRGDiff’s closer alignment with the true waveform across diverse temporal patterns.
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Figure 12: Reconstruction of a representative channel on Localize-MI (motor imagery): ground
truth (black), STAD (blue), ESTformer (red), and SRGDiff (green).

Figure 13: Reconstruction of a representative channel on SEED-IV (emotion recognition): ground
truth (black), STAD (blue), ESTformer (red), and SRGDiff (green).
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Figure 14: Reconstruction of a representative channel on SEED (emotion recognition): ground truth
(black), STAD (blue), ESTformer (red), and SRGDiff (green).

Figure 15: Visualization of EEG topographic maps between ground-truth and reconstructed EEG
signals by ESTformer, STAD and SRGDiff on Localize-MI.
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