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Abstract

Single-cell ATAC-seq (scATAC-seq) enables high-resolution mapping of chromatin accessi-
bility, yet privacy regulations and data size constraints hinder multi-institutional sharing.
Federated learning (FL) offers a privacy-preserving alternative, but faces three fundamental
barriers in scATAC-seq analysis: ultra-high dimensionality, extreme sparsity, and severe
cross-institutional heterogeneity. We propose FL-Sailer, the first FL framework designed
for scATAC-seq data. FL-Sailer integrates two key innovations: (i) adaptive leverage score
sampling, which selects biologically interpretable features while reducing dimensionality by
80%, and (ii) an invariant VAE architecture, which disentangles biological signals from
technical confounders via mutual information minimization. We provide a convergence
guarantee, showing that FL-Sailer converges to an approximate solution of the original
high-dimensional problem with bounded error. Extensive experiments on synthetic and
real epigenomic datasets demonstrate that FL-Sailer not only enables previously infeasible
multi-institutional collaborations but also surpasses centralized methods by leveraging adap-
tive sampling as an implicit regularizer to suppress technical noise. Our work establishes
that federated learning, when tailored to domain-specific challenges, can become a superior
paradigm for collaborative epigenomic research.

1 Introduction

Recent advances in single-cell epigenomic sequencing have revolutionized genomics by enabling the simulta-
neous molecular profiling of millions of cells (Fang et al., 2021; Ashuach et al., 2022; Chen et al., 2021a; Xu
et al., 2022). These technologies provide unprecedented resolution for characterizing cellular heterogeneity
in complex tissues, advancing the foundational goals of precision medicine. Concurrently, transparent data-
sharing initiatives support the integration of population-scale single-cell atlases, facilitating the dissection
of disease mechanisms across diverse patient cohorts and accelerating the development of personalized diag-
nostic and therapeutic strategies. However, two critical challenges still impede our progress. First, genomic
datasets often contain sensitive clinical information, compelling most data to remain siloed across institu-
tions under stringent privacy regulations (Bonomi et al., 2020; Clayton et al., 2019; Shabani & Borry, 2018;
Naveed et al., 2015), which severely restricts access. Second, the immense size of single-cell data—often
reaching tens of terabytes—imposes prohibitive bandwidth and storage demands, rendering cross-site trans-
fer of high-dimensional epigenetic profiles such as scATAC-seq (Cusanovich et al., 2015; Hwang et al., 2025;
Emani et al., 2024) infeasible. These barriers underscore an urgent need for computational frameworks that
ensure privacy protection and efficient data integration in single-cell studies (Bonomi et al., 2020; Pfitzner
et al., 2021).

Federated learning(FL) methods have been proposed to address these challenge by training models collab-
oratively without moving the raw data from their original locations. Instead of centralizing datasets, the
approach distributes the learning process by sending a global model to each local site for training on its
private data. Only the model updates, rather than the data itself, are transmitted back to be aggregated
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Figure 1: FL-Sailer: Federated Learning for Single-Cell Epigenomics. FL-Sailer makes federated
learning feasible for million-feature genomic data by jointly addressing dimensionality (adaptive leverage
score sampling: d→ s, 80% reduction) and heterogeneity (invariant VAE: I(z, c) minimization), transforming
a computationally impossible problem into a practical solution with superior performance.
Pipeline: (1) Clients subsample local n × d matrices to n × s via leverage scores; (2) Federated training
of chromosome-block VAE disentangles biological signals z from technical confounders c; (3) Unified latent
space enables multi-institutional downstream discovery.

into an improved global model. This method not only preserves data privacy and compliance but also ef-
ficiently leverages large, distributed datasets by parallelizing the computational workload across multiple
institutions. However, while FL has proven successful in non-biological domains (McMahan et al., 2017;
Reddi et al., 2020; Li et al., 2021; 2022), standard FL fails on collaborative single cell epigenetic data
due to three compounding barriers: ultra-high dimensionality (105–107 features) requiring prohibitive
gigabyte-scale communication, extreme sparsity (∼95%) that obscures biological signals, and severe cross-
institutional heterogeneity from technical and biological confounders. Therefore, how to adapt FL algorithms
to the single-cell field is still a unresolved question.

To address this, we present FL-Sailer, a federated learning framework engineered to overcome the barriers
to multi-institutional single-cell epigenomic analysis. FL-Sailer operates without centralizing sensitive raw
data, thus preserving patient privacy by design. It simultaneously addresses the critical challenges of com-
munication efficiency and model performance, preventing the degradation that typically plagues distributed
learning on heterogeneous genomic datasets. This approach enables robust, scalable, and privacy-conscious
collaboration, facilitating studies that were previously infeasible. The major contributions of this work are:

• Adaptive leverage score sampling that preserves biological interpretability. Unlike PCA which
creates uninterpretable linear combinations, our sampling module directly selects biologically informative
genomic regions. For extreme-dimensional datasets (up to 423K features), this achieves 80% dimension
reduction and orders-of-magnitude communication savings. More importantly, it actually improves clus-
tering performance over standard methods by focusing computation on high-signal regulatory regions.
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• Invariant representation learning for robust handling of batch effects. FL-Sailer’s VAE archi-
tecture explicitly disentangles biological signals from technical confounders through mutual information
minimization. This directly addresses severe batch effects common in multi-institutional data, where se-
quencing depth varies 50-fold and technical variations correlate with institutions. Our approach ensures
meaningful biological discovery across datasets with different experimental conditions.

• First convergence theory for federated learning with aggressive feature sampling. We establish
that FL-Sailer maintains linear convergence under extreme dimension reduction, with approximation
error O(ϵ · L(U∗)) vanishing as ϵ = O(

√
r/(ρd)) → 0 for high-dimensional data (Theorem 5.1). This

extends non-convex FL theory to the previously unanalyzed regime of aggressive sampling, proving that
substantial dimension reduction is both necessary for privacy-preserving genomic analysis and theoretically
guaranteed.

• Systematic benchmarking on diverse simulated and real datasets. We performed extensive
benchmarking to evaluate our framework. FL-Sailer not only maintains strict data privacy but also ro-
bustly outperforms conventional centralized models. These results establish FL, when properly engineered
for domain-specific constraints, as a superior paradigm for collaborative epigenomic studies.

We release FL-Sailer as a scalable tool capable of processing millions of cells, enabling the epigenomics com-
munity to conduct privacy-preserving multi-institutional studies. The remainder of this paper is organized as
follows. Section 2 reviews related work. Section 3 formally defines the federated single-cell analysis problem.
Sections 4 and 5 present our theoretical framework: Section 4 establishes the properties of our adaptive
sampling and invariant learning components, while Section 5 proves end-to-end convergence guarantees for
FL-Sailer. Section 6 presents comprehensive experiments on simulated and real-world datasets, demonstrat-
ing that FL-Sailer not only enables previously infeasible analyses but often outperforms centralized methods.
We conclude with a discussion of implications for collaborative epigenomic research.

2 Related Work

2.1 The Centralized Paradigm: Established Tools for Single-Cell Epigenomics

Single-cell epigenomic sequencing, particularly scATAC-seq, has revolutionized the study of gene regulation
by profiling chromatin accessibility at unprecedented resolution (Buenrostro et al., 2015; Cusanovich et al.,
2015). To analyze these high-dimensional datasets, computational methods have evolved from linear statisti-
cal baselines (e.g., LSI, chromVAR) to deep generative models like SCALE (Xiong et al., 2019) and PeakVI,
which capture nonlinear latent structures from sparse counts. Among these, SAILER (Cao et al., 2021) rep-
resents a significant milestone, employing a chromosome-block VAE with invariant representation learning
to explicitly disentangle biological signals from technical confounders. Despite its effectiveness, SAILER
fundamentally relies on pooling data into a single repository. As dataset scales grow to millions of cells and
privacy regulations (e.g., GDPR, HIPAA) intensify, the centralized training paradigm becomes increasingly
untenable, necessitating a shift toward decentralized frameworks.

2.2 The Federated Frontier: Decentralized Learning for Biomedical Data Analysis

FL has emerged as the standard for collaborative model training without data sharing (McMahan et al.,
2017). Its utility is well-documented in biomedical domains ranging from genome-wide association studies
(GWAS) (Cho et al., 2025) to rare cancer detection (Pati et al., 2022) and multi-omics integration (Zhou et al.,
2024). Within single-cell biology, recent frameworks such as scPrivacy (Chen et al., 2023) and scFed (Wang
et al., 2024) have demonstrated the feasibility of FL for transcriptomic (scRNA-seq) analysis. However,
these methods are primarily tailored for lower-dimensional, less sparse modalities. They do not address the
unique computational barriers presented by scATAC-seq, where the feature space expands by an order of
magnitude and sparsity reaches extreme levels.

2.3 Methodological Gaps: Dimensionality, Sparsity, and Theory

The direct adaptation of FL to scATAC-seq is hindered by three fundamental gaps in existing literature:
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The Communication-Computation Gap. Standard FL algorithms like FedAvg require O(d) commu-
nication per round. With scATAC-seq features, this cost is prohibitive. While dimensionality reduction
techniques such as leverage score sampling (Drineas et al., 2012) and CUR decompositions (Boutsidis &
Woodruff, 2014) are well-established, they are inherently designed for centralized matrices. There is currently
no efficient, privacy-preserving mechanism to perform importance sampling on distributed, high-dimensional
genomic data without first centralizing it.

The Heterogeneity-Sparsity Gap. scATAC-seq data are characterized by extreme sparsity (∼ 95% zeros)
and severe cross-institutional batch effects (Stuart et al., 2019). In this regime, local stochastic gradients
exhibit high variance and misalignment. Standard aggregation strategies (e.g., weighted averaging in FedAvg)
fail to correct for systematic technical confounders across clients, leading to model divergence or the learning
of spurious batch-specific features (Karimireddy et al., 2020).

The Theoretical Gap. Although recent works have extended FL convergence theory to non-convex settings
under relaxed assumptions (Li et al., 2022), these analyses presume that full-gradient transmission is feasible.
They do not account for the aggressive feature selection required for genomic scalability. To our knowledge, no
prior work provides convergence guarantees for FL that simultaneously addresses ultra-high dimensionality,
sparsity, and non-IID heterogeneity—a theoretical void this work aims to fill.

3 Overview and Problem Setup

We introduce FL-Sailer, a federated learning framework that facilitates privacy-preserving, collaborative
analysis of ultra-high-dimensional single-cell epigenomic data. As illustrated in Figure 1, the FL-Sailer
pipeline is specifically designed to overcome the fundamental challenge of computational feasibility in FL
for genomic data comprising millions of features, while simultaneously ensuring the preservation of critical
biological signals.

3.1 Problem Formulation and Notation

We consider N institutions, each holding private scATAC-seq data represented as binary matrices Ai ∈
{0, 1}ni×d, where d ∈ [105, 107] denotes the ultra-high dimensionality of genomic regions. The conceptual
stacked matrix A = [A1; . . . ;AN ] encapsulates all distributed data, with rows representing cells and columns
representing genomic features. Each cell on client i is characterized by a pair (xij , cij), where xi,j := Ai[j, :
] ∈ {0, 1}d represents the chromatin accessibility profile, and ci,j ∈ C denotes technical confounders (e.g.,
sequencing depth, batch identifier, or institution-specific effects).

Let [n] = {1, 2, . . . , n}. For vectors, ∥ · ∥2 denotes the ℓ2 norm and ∥ · ∥0 the number of non-zero entries. For
matrices, ∥ · ∥ denotes the spectral norm and (·)† the Moore-Penrose pseudoinverse. Throughout this paper,
W denotes model parameters in general mathematical statements, while U specifically represents global
model parameters in federated algorithms. Tilde notation (e.g., Ũ) indicates quantities in the dimensionally-
reduced space after feature sampling, with T denoting the sampling transformation matrix.

3.2 Centralized task and objective

We first formalize the learning task in the centralized setting, where all scATAC-seq data are accessible in
a single matrix A ∈ {0, 1}n×d. Our goal is to learn an encoder qθ(z|x) that maps a cell’s high-dimensional
accessibility profile x to a low-dimensional, biologically meaningful latent representation z, while being
invariant to technical confounders c (e.g., sequencing batch or depth). A conditional decoder pϕ(x|z, c) is
simultaneously learned to reconstruct the input. This is achieved by minimizing the following objective,
adapted from the SAILER framework (Cao et al., 2021):

L(θ, ϕ) = Lprior + λLmarginal + (1 + λ)Lrecon

where the marginal term upper-bounds I(z; c) and the reconstruction term uses a likelihood suitable for
sparse/binary counts. At inference, we use the posterior mean of qθ(z|x) as the cell embedding; for imputation
we decode with c fixed to reference values.
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3.3 Federated task and assumptions

While the centralized objective in Section 3.2 provides a foundational formulation, it is predicated on direct
access to the entire dataset A, which is infeasible under the data privacy requirements of multi-institutional
collaborations.
Problem 3.1 (Federated scATAC-seq Analysis). Our goal is to learn a shared model U that minimizes a
global objective function, which is the average of the local objectives from all participating clients:

min
U
L(U) =

N∑
i=1

ni

n
Li(U), (1)

where Li(U) is the local objective function for client i, calculated over its private dataset Di. The learning
process is subject to three critical constraints, privacy, communication efficiency and robustness.

4 Enabling Federated Learning for High-Dimensional Single-Cell Data: Theoretical
Foundations

Overview. This section develops the theoretical ingredients that make federated single-cell epigenomic
analysis both feasible and robust. In Section 4.1 we show that adaptive leverage-score sampling yields
a near-isometric subspace embedding for ultra-high-dimensional scATAC-seq matrices, reducing per-round
communication from O(d) to O(s) with s = Θ(r log(r/δ)/ε2) while preserving optimization geometry and
biological structure. In Section 4.2, we adopt an adapted invariant representation for VAE (Cao et al., 2021)
and restate the variational bound and resulting objective under our federated, communication-constrained
setting. These components set up the end-to-end convergence analysis in Section 5.

4.1 Adaptive Feature Selection for Communication Efficiency

To make FL computationally feasible for scATAC-seq with millions of features, we introduce an efficient
sampling strategy based on leverage scores that preserves essential biological structure while dramatically
reducing communication costs.
Lemma 4.1 (Feature Leverage Score Sampling). Let A ∈ Rn×d have rank(A) = r ≤ min{n, d}. For each
j ∈ [d], define the column leverage score as

ℓcol
j := a⊤

:,j
(
AA⊤)†

a:,j ≥ 0,

where a:,j ∈ Rn is the j-th column of A. Note that
∑d

j=1 ℓ
col
j = r. Define the sampling probabilities

pj = ℓcol
j /r.

Let s be the number of columns to sample. We select a subset of indices S = {j1, . . . , js} ⊂ [d] via weighted
sampling without replacement, where the sampling probabilities are proportional to {pj}d

j=1. Let T ∈ Rd×s be
the sampling and rescaling matrix. For each m ∈ {1, . . . , s}, the m-th column of T corresponds to the index
jm ∈ S. Specifically, T is defined by the non-zero entries Tjm,m = 1/√s · pjm , with all other entries set to
zero. The sketched matrix is then constructed as Ã = AT ∈ Rn×s.

For any ϵ ∈ (0, 1) and δ ∈ (0, 1/2), if we choose s = Θ(r log(r/δ)/ϵ2), then with probability 1 − δ, the
following holds:

(1− ϵ)AA⊤ ⪯ ÃÃ⊤ ⪯ (1 + ϵ)AA⊤.

In other words, with probability 1− δ, for all y ∈ Rn,

(1− ϵ) ∥A⊤y∥2
2 ≤ ∥(AT )⊤ y∥2

2 ≤ (1 + ϵ) ∥A⊤y∥2
2.

Remark 4.2. While classical leverage score sampling typically employs sampling with replacement to guar-
antee spectral approximation (Drineas et al., 2012; Boutsidis & Woodruff, 2014), we adopt a sampling without
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replacement strategy. In the context of scATAC-seq, features correspond to specific physical genomic coor-
dinates. Selecting the same genomic region multiple times provides redundant biological information and
hinders the interpretability of the selected marker set. By sampling without replacement, we ensure a diverse
coverage of distinct regulatory elements. Theoretically, this modification is justified by (Gross & Nesme,
2010, Theorem 1), who established that the Matrix Hoeffding inequalities underpinning our convergence
bounds remain valid under the sampling without replacement setting.

Using this foundational lemma, we now establish our main result on communication efficiency:

Theorem 4.3 (Communication Efficiency via Feature Leverage Score Sampling). Let A ∈ Rn×d repre-
sent scATAC-seq data with rank(A) = r ≤ min{n, d}. Following the leverage score sampling framework
(Lemma 4.1), we construct a sketched matrix Ã = AT ∈ Rn×s, s.t. the communication cost is reduced from
O(d) to O(s) in the federated setting, achieving a compression ratio of O(d/s) = O(dϵ2/(r log(r/δ))).

Crucially, the leverage score sampling preserves both the optimization geometry and gradient information
in the sampled subspace. Specifically, the solution in the sampled space provides an approximation to the
original high-dimensional problem, with bounded reconstruction error and preserved gradient norms (see
Appendix B.1 for detailed characterization).

Biological structure is preserved. Our leverage score sampling maintains key biological signals while
reducing dimensionality. Formally, the sampling preserves (i) cell-type separability, (ii) clustering structure,
and (iii) provides theoretical guarantees for selecting biologically informative genomic regions. We defer the
formal statement and proof to Appendix B.2. This ensures that restricting optimization and communication
to the sampled subspace does not destroy biologically meaningful geometry.

4.2 Invariant Representation Learning with Communication Constraints

Having addressed communication efficiency, we now tackle client heterogeneity. We adapt an invariant VAE
architecture (Cao et al., 2021) to learn representations robust to technical confounders c (e.g., sequencing
depth, batch effects) while preserving biological signals.

Our objective minimizes the mutual information I(z; c) between latent representations z and confounders
c, ensuring z encodes only technically invariant information. By minimizing a tractable variational upper
bound (Appendix C.1), we obtain the federated optimization objective:

Corollary 4.4 (Optimization Objective, (Cao et al., 2021)). The complete loss function for invariant
representation learning, with parameters W = (θ, ϕ), can be expressed as a sum of three key components:

L(W ) = Lprior(W ) + λLmarginal(W ) + (1 + λ)Lrecon(W ) (2)

where the components are defined as:

• Prior KL Divergence: Lprior(W ) = Ex∼q(x)[KL[qθ(z|x)∥p(z)]] enforces that posterior distributions remain
close to the prior p(z), preventing latent collapse.

• Marginal KL (Invariance) Term: Lmarginal(W ) = Ex∼q(x)[KL[qθ(z|x)∥qθ(z)]] minimizes the mutual infor-
mation I(z;x), which serves as a variational upper bound for I(z; c) to suppress technical confounders via
information bottleneck regularization.

• Reconstruction Loss: Lrecon(W ) = −Ex,c[Ez∼qθ(z|x)[log pϕ(x|z, c)]] ensures reconstruction fidelity through
conditional decoding, with coefficient (1 + λ) balancing invariance and reconstruction quality.

This objective facilitates federated training by allowing clients to learn a unified biological representation
z, resilient to local technical variations, thus enabling effective model aggregation. Full derivations and
regularity assumptions are deferred to Appendices C.1 and C.2.
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Algorithm 1 FL-Sailer: Federated Learning with Column Leverage Score Sampling
Require: Client datasets {Di}N

i=1 with matrices Ai ∈ Rni×d; rounds R; sampling rate ρ; sketch size sk

Ensure: Global model UR

Phase 1: Federated Dynamic Feature Selection
1: for all i ∈ [N ] in parallel do
2: Generate Ωi ∼ N (0, 1)sk×ni

3: Bi ← ΩiAi ∈ Rsk×d

4: Compute Thin QR: B⊤
i = QiRi ▷ Qi ∈ Rd×sk

5: ℓ̂col
i [j]← ∥(Qi)j,:∥2

2, ∀j ∈ [d]
6: Send (ℓ̂col

i , ni) to server
7: end for

Server: Aggregate and sample
8: n←

∑N
i=1 ni

9: ℓ̂global[j]←
∑N

i=1
ni

n ℓ̂col
i [j], ∀j

10: pj ← ℓ̂global[j]
/∑

j′ ℓ̂global[j′]
11: s← ⌊ρd⌋
12: Sample S ⊂ [d] of size s using p without replacement
13: Broadcast S to all clients

Phase 2: Subspace Federated Training
1: for round t = 1, . . . , R do
2: Server broadcasts U t−1

3: for client i = 1, . . . , N in parallel do
4: Construct Ãi by selecting columns S
5: W t

i,0 ← U t−1

6: for local step k = 1, . . . ,K do
7: W t

i,k ←W t
i,k−1 − ηl∇L̃i(W t

i,k−1)
8: end for
9: Send ∆W t

i ←W t
i,K − U t−1 to server

10: end for
11: U t ← U t−1 +

∑N
i=1

ni

n ∆W t
i

12: end for
13: return U (R)

4.3 Algorithm Overview

To address these fundamental barriers, we introduce FL-Sailer, a federated learning framework that lever-
ages the inherent low-rank structure of single-cell genomic data to overcome the challenges of ultra-high
dimensionality, extreme sparsity, and institutional heterogeneity.

Phase 1: Federated Dynamic Feature Selection Each client computes local column leverage scores on
ultra high dimensional scATAC-seq data using randomized QR decomposition, providing a communication-
efficient alternative to exact SVD while maintaining theoretical guarantees. The server aggregates these
scores to construct a global feature sampling distribution that prioritizes biologically informative genomic
regions, reducing per-round communication from O(d) to O(s) with s = Θ(r log(r/δ)/ϵ2).

Phase 2: Subspace Federated Training Clients sample features according to the global distribution and
collaboratively train an invariant VAE within the reduced subspace. Our approach combines a chromosome-
block architecture with explicit mutual information minimization to disentangle biological signals from tech-
nical confounders, enabling robust model aggregation across heterogeneous institutions while preserving
privacy.

Federated Implementation. In Algorithm 1, clients compute approximate leverage scores locally via
randomized projection and transmit only these O(d) scalars. The server aggregates them weighted by
sample size to prioritize features that are informative across the federation. This approach exploits the
shared genomic coordinate system inherent to scATAC-seq, where feature informativeness reflects conserved
regulatory biology rather than institution-specific artifacts.

5 Convergence in the Sampled Subspace

Overview. This section establishes the end-to-end convergence guarantee for FL-Sailer. We build on the
convergence result from Li et al. (2022), which extends convergence to nonconvex objectives under relaxed
assumptions. We show that our invariant VAE objective satisfies these assumptions in the sampled subspace.
Then we incorporate the subspace embedding guarantees (Section 4) to prove that the sampled problem
closely approximates the original problem, yielding explicit convergence rates with bounded optimization
and approximation errors.
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5.1 Key Assumptions and Preliminaries

Our convergence analysis builds on the foundational work of Li et al. (2022), who extended FedAvg con-
vergence theory to non-convex settings via relaxed smoothness conditions. Rather than requiring global
smoothness, they established that FedAvg converges at a linear rate up to a variance‑dependent error floor
under three practical conditions: (a, b)-semi-smoothness allows gradient errors scaled by function value,
(α, β)-semi-Lipschitz bounds gradient differences, and (τ1, τ2)-non-critical-point ensures progress near op-
tima. The formal assumptions and the full FedAvg convergence result are provided in Appendix D.1.

To apply this theory to FL-Sailer, we must verify that our VAE loss function (defined in Corollary 4.3)
satisfies these conditions in the sampled subspace. In Appendix D.2, we prove that the VAE loss inherits
the necessary semi-smoothness properties from the original loss, enabling the use of FedAvg in our setting.
Additionally, the leverage score sampling (Section 4.1) ensures that the optimization geometry is preserved
in the sampled subspace, as formalized in Appendix D.3. These foundations allow us to establish end-to-end
convergence for FL-Sailer in Section 5.2.

5.2 Convergence of FL-Sailer

The convergence of FL-Sailer is established through a two-part argument: (1) convergence to the sampled
problem’s solution via FL, and (2) bounding the approximation error introduced by feature sampling relative
to the original problem.
Theorem 5.1 (FL-Sailer Convergence, Main Result). Consider FL-Sailer with N clients, leverage score
sampling rate ρ = s/d, and VAE loss satisfying Theorem D.3. Let Ũ t denote the global model at round t in
the sampled space. Under the conditions of Theorem D.1, after R communication rounds:

E[L̃(ŨR)]− L(U∗) ≤ (1− λ1)R∆0 + 2λ2︸ ︷︷ ︸
FedAvg optimization error

+ C · ϵ · L(U∗)︸ ︷︷ ︸
Sampling approximation error

where:

• λ1 = Kηlηg

4 (1− 4bKηlηg − 2a)τ2
1 (convergence rate)

• λ2 = (1 + a+ bKηlηg) Kηlηg

10 σ2 (variance floor)

• ∆0 = L̃(Ũ0)− L̃(Ũ∗) (initial gap in sampled space)

This establishes that FL-Sailer converges to an ϵ-approximate solution of the original high-dimensional prob-
lem with explicit control over both sources of error. The first term represents standard FedAvg optimization
error that decays exponentially with rounds R, while the second term captures the fixed approximation error
due to feature sampling. Remarkably, for high-dimensional genomic data where d ≫ r, even aggressive
sampling with ρ = 0.2 yields small approximation error since ϵ = O(

√
r/(ρd)) vanishes as d → ∞. In

practice, sampling actually improves performance by acting as an implicit regularizer that aligns gradients
across heterogeneous clients.

Proof Sketch. Part A: Convergence on the sampled problem. Since the sampled VAE loss L̃ inherits
the semi-smoothness properties from the original loss (Theorem D.3), we can apply Theorem D.1 to obtain:

E[L̃(ŨR)]− L̃(Ũ∗) ≤ (1− λ1)R∆0 + 2λ2.

Part B: Approximation quality bound. Apply the result from Lemma D.5, there is

|L̃(Ũ∗)− L(U∗)| ≤ C · ϵ · L(U∗).

Combining Parts A and B via triangle inequality completes the proof.

We defer the complete proof in Appendix D.4.
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Figure 2: FL-Sailer overcomes key FL barriers on synthetic scATAC-seq dataset. (a) Performance
under homogeneous conditions: FL-Sailer matches centralized accuracy while preserving privacy. (b) Ro-
bustness to confounded heterogeneity: Disentangles biological signals from technical noise. (c) Robustness
to extreme class imbalance: Maintains rare cell population detection across SNRs. Collectively, these results
demonstrate that FL-Sailer not only enables federated analysis but turns heterogeneity into a robustness
advantage.

6 Experiments

Overview. This section systematically validates FL-Sailer through three critical stages. We first establish
that our federated framework matches centralized performance under homogeneous conditions while demon-
strating superior robustness to sequencing depth heterogeneity, confounded variations, and extreme class
imbalance (Section 6.1). We then reveal the core breakthrough: on real-world scATAC-seq data, adaptive
sampling enables FL to outperform centralized methods while achieving >80% communication reduction
(Section 6.2). Finally, comprehensive benchmarking shows FL-Sailer’s domain-specific design yields state-
of-the-art performance where general-purpose federated algorithms fail (Section 6.3). These experiments
collectively establish FL-Sailer as both an enabler and superior paradigm for collaborative single-cell epige-
nomics.

6.1 FL-Sailer Solves the Problem of Statistical Heterogeneity and Client Drift

We first validate FL-Sailer’s fundamental robustness on simulated data (SCAN-ATAC-sim (Chen et al.,
2021b); see Appendix E), which allows controlled assessment against key federated challenges.

9
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Performance Under Homogeneous Conditions Under ideal, homogeneous conditions (i.e., no batch
effects or confounding factors), FL-Sailer achieves clustering performance virtually identical to the central-
ized Sailer baseline (Figure 2a), with ARI scores of 0.950–1.000 across varying signal-to-noise ratios (SNR)
and sequencing depths. This establishes that our federated framework introduces no performance degrada-
tion compared to centralized training when data is uniformly distributed, providing a crucial baseline for
evaluating its advantages under heterogeneity.

Table 1: Clustering performance under heterogeneous sequencing depths across clients. Five
clients possess data with varying sequencing depths (3000, 4000, 5000, 6000, and 7000 fragments per cell).

Sailer (Centralized) FL-Sailer (Federated)
SNR ARI Silhouette ARI Silhouette

0.4 0.620 0.214 0.858 0.740
0.6 0.999 0.802 0.981 0.846
0.8 1.000 0.817 1.000 0.849

Robustness to Heterogeneous Sequencing Depth Under heterogeneous sequencing depths across
clients (3000–7000 fragments/cell), FL-Sailer outperforms centralized training despite the latter’s full data
access. At low SNR (0.4), FL-Sailer achieves ARI=0.858 versus 0.620 for centralized (38% improvement),
with superior silhouette scores (0.740 vs. 0.214; Table 1). While centralized training is confounded by mixing
data of varying quality, FL-Sailer leverages this diversity: each client learns robust features locally before
aggregation, building a global model resilient to individual client noise.

Robustness to Confounded Heterogeneity When technical and biological variations are confounded
(each client with unique SNR and cell-type distributions; Table 5 in Appendix F.1), centralized training fails
(ARI=0.221) as it learns spurious correlations between noise patterns and cell identity (Figure 2b). In con-
trast, FL-Sailer achieves successful disentanglement through invariant representation learning (I(z; c) ≤ ϵ),
yielding clear biological clustering (ARI=0.871)—a 3.9× improvement. This demonstrates that explicit
invariance modeling, not mere data availability, enables robust biological discovery under confounded het-
erogeneity.

Robustness to Extreme Class Imbalance FL-Sailer effectively preserves rare cell populations under
extreme class imbalance (16-fold difference; CMP: 2.1%, see Appendix F.2). Despite severe non-IID distri-
butions, it achieves perfect clustering (ARI=1.000) across all SNR conditions (Figure 2c). This capability
stems from two mechanisms: (1) the invariance objective prevents majority classes from imposing local bi-
ases during aggregation, and (2) the chromosome-block architecture maintains gradient flow from minority
classes by capturing cell-type-specific regulatory modules, ensuring rare population signals persist through
federated training.

6.2 FL-Sailer Solves the Communication Bottleneck in High-Dimensional Settings

We evaluate FL-Sailer on three real-world scATAC-seq datasets with extreme dimensionality: Brain PFC
(127K features), PsychENCODE (423K features), and PBMC (108K features). Our adaptive sampling
strategy transforms the computational barrier of FL into a performance advantage, enabling FL-Sailer to
surpass centralized methods with full data access while achieving dramatic communication reduction.

From Feasibility to Superiority: Synergistic Gains on Real-World Data FL-Sailer achieves state-
of-the-art performance on real-world scATAC-seq data, outperforming both centralized and federated base-
lines (Figure 3). With adaptive sampling (ρ = 0.2), it surpasses the centralized SAILER (Cao et al., 2021)
oracle (Brain PFC: 0.802 vs 0.682; PsychENCODE: 0.764 vs 0.626; PBMC: 0.743 vs 0.622) while dramat-
ically outperforming vanilla FedAvg (McMahan et al., 2017) which suffers from performance collapse (e.g.,
PsychENCODE: 0.418). The key insight is the synergistic effect between FL and adaptive sampling: while
offering marginal gains in centralized settings, sampling transforms federated performance by acting as an

10
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Figure 3: Comparative analysis of FL-Sailer clustering performance on real world scATAC-seq
dataset. We evaluate four approaches on Brain PFC (127,219 features), PsychENCODE (423,443 features),
and PBMC (108,344 features) datasets, visualized using UMAP projections. We compare our proposed FL-
Sailer architecture with the raw data and various methods: (1) centralized training, i.e. Sailer’s method (Cao
et al., 2021); centralized training with adaptive leverage score sampling; FedAvg method (McMahan et al.,
2017).

implicit regularizer that aligns client gradients and suppresses client-specific noise, enabling biological clus-
tering sharper than even the full-data oracle.

Communication Efficiency Analysis FL-Sailer achieves approximately 80% communication reduction
at the optimal sampling rate (ρ = 0.2), transforming prohibitive costs into practical requirements: from
20.40 GB to 4.12 GB for PsychENCODE, 6.16 GB to 1.27 GB for Brain PFC, and 5.26 GB to 1.09 GB for
PBMC over 100 rounds (Table 2). Crucially, this biologically-informed sampling simultaneously enhances
clustering performance—unlike generic compression methods that typically sacrifice accuracy for efficiency.

Impact of Sampling Rate The sampling rate ρ balances communication efficiency and model perfor-
mance. Table 3 reveals that any sampling (ρ < 1.0) dramatically improves federated performance over the
no-sampling baseline (e.g., PsychENCODE: 0.418 → >0.735), confirming that feature selection enhances
rather than compromises performance. We identify an optimal range of ρ = 0.15–0.30 across datasets,
with peak performance at ρ = 0.15 (Brain PFC, ARI=0.855), ρ = 0.20 (PsychENCODE, ARI=0.781), and
ρ = 0.30 (PBMC, ARI=0.743). This demonstrates that retaining only 15–30% of features captures the core
biological signal while enabling efficient FL.

6.3 Comparison with Standard FL Methods

FL-Sailer consistently and substantially outperforms all FL baselines across three real-world datasets (Ta-
ble 4). On the most complex PsychENCODE dataset, FL-Sailer achieves an ARI of 0.781, significantly
surpassing the next-best method, FedProx (Li et al., 2020) (0.733), and other approaches: FedAvg (McMa-
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Table 2: Complete communication efficiency analysis of FL-Sailer across all sampling rates and
datasets. The table reports model parameters, per-round communication cost, total communication for 100
rounds, and percentage reduction compared to the no-sampling (ρ = 1.0) baseline.

Brain PFC (127,219 features) PsychENCODE (423,443 features) PBMC (108,344 features)
Params MB/ Total Reduc- Params MB/ Total Reduc- Params MB/ Total Reduc-

ρ (M) round GB tion (M) round GB tion (M) MB/ Total tion

1.00 16.55 63.12 6.16 - 54.75 208.87 20.40 - 14.11 53.83 5.26 -
0.50 8.34 31.82 3.11 49.6% 27.44 104.68 10.22 49.9% 7.12 27.17 2.65 49.5%
0.45 7.52 28.69 2.80 54.6% 24.71 94.26 9.21 54.9% 6.42 24.51 2.39 54.5%
0.40 6.70 25.56 2.50 59.5% 21.98 83.84 8.19 59.9% 5.73 21.84 2.13 59.4%
0.35 5.88 22.43 2.19 64.5% 19.25 73.42 7.17 64.8% 5.03 19.17 1.87 64.4%
0.30 5.06 19.30 1.88 69.4% 16.52 63.00 6.15 69.8% 4.33 16.51 1.61 69.3%
0.25 4.24 16.17 1.58 74.4% 13.79 52.59 5.14 74.8% 3.63 13.84 1.35 74.3%
0.20 3.42 13.03 1.27 79.4% 11.06 42.17 4.12 79.8% 2.93 11.18 1.09 79.2%
0.15 2.60 9.90 0.97 84.3% 8.32 31.75 3.10 84.8% 2.23 8.51 0.83 84.2%
0.10 1.78 6.77 0.66 89.3% 5.59 21.33 2.08 89.8% 1.53 5.85 0.57 89.1%

Table 3: Impact of the leverage score sampling rate ρ on clustering performance across three
datasets. Bold values indicate the best performance for each dataset.

Dataset Metric 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 1.00

Brain PFC ARI 0.834 0.855 0.802 0.783 0.769 0.772 0.737 0.730 0.734 0.651
Silhouette 0.426 0.463 0.453 0.435 0.438 0.445 0.383 0.411 0.368 0.441

PsychENCODE ARI 0.735 0.740 0.781 0.755 0.682 0.701 0.732 0.738 0.602 0.418
Silhouette 0.283 0.330 0.378 0.338 0.343 0.350 0.365 0.374 0.339 0.183

PBMC ARI 0.727 0.732 0.731 0.738 0.743 0.734 0.693 0.724 0.724 0.615
Silhouette 0.192 0.211 0.222 0.230 0.230 0.225 0.198 0.228 0.221 0.148

han et al., 2017) (0.418), FedOpt (Reddi et al., 2020) (0.482), SCAFFOLD (Karimireddy et al., 2020) (0.655),
FedNova (Wang et al., 2020) (0.461), and FedBN (Li et al., 2021) (0.623).

This superior performance underscores the critical importance of domain-specific design. While general-
purpose FL methods (e.g., FedProx, SCAFFOLD) address non-IID data generically, FL-Sailer’s synergistic
combination of a chromosome-block architecture and invariant representation learning directly captures
biological signals while suppressing technical noise, establishing a new state-of-the-art for federated single-
cell analysis.

Table 4: Comparison of federated methods (ARI and Silhouette Scores).

Dataset Metric FedAvg FedProx FedBN FedOpt SCAFFOLD FedNova FL-Sailer

Brain PFC ARI 0.651 0.683 0.509 0.630 0.675 0.662 0.855
Silhouette 0.441 0.307 0.147 0.425 0.389 0.435 0.463

PsychENCODE ARI 0.418 0.733 0.623 0.482 0.655 0.461 0.781
Silhouette 0.183 0.325 0.411 0.191 0.280 0.195 0.378

PBMC ARI 0.615 0.738 0.732 0.657 0.721 0.635 0.743
Silhouette 0.148 0.173 0.207 0.153 0.165 0.151 0.230

7 Conclusion

We present FL-Sailer, a federated learning framework that overcomes scalability and heterogeneity barriers in
scATAC-seq analysis via adaptive sampling and invariant representation learning with theoretical guarantee.
It enables efficient, privacy-preserving multi-institutional studies and even outperforms centralized methods,
establishing a new paradigm for collaborative genomics.
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A Algorithmic Implementation of Randomized Leverage Score Sampling

Algorithm 2 Randomized Column Leverage Score Sampling
Require: Matrix A ∈ Rn×d, sketch size sk, number of columns to sample s.

1: Generate random matrix Ω← randn(sk, n)
2: B ← ΩA ∈ Rsk×d

3: Compute QR factorization: B⊤ = QR
4: for j = 1, . . . , d do
5: ℓ̂j ← ∥Qj,:∥2

2
6: end for
7: Lsum ←

∑d
j=1 ℓ̂j

8: for j = 1, . . . , d do
9: pj ← ℓ̂j/Lsum

10: end for
11: Sample S = {j1, . . . , js} ⊂ {1, . . . , d} of size s using weighted sampling without replacement based on

probabilities p
12: Construct Ã by selecting columns indexed by S
13: return Ã

In this appendix, we detail the randomized sketching technique used in Phase 1 of Algorithm 1. Computing
exact leverage scores requires singular value decomposition (SVD), which incurs a prohibitive computational
cost of O(n2d) for high-dimensional scATAC-seq data.

To overcome this, Algorithm 2 employs a randomized projection method (Drineas et al., 2012). The key
idea is to project the input matrix A ∈ Rn×d onto a lower-dimensional subspace using a Gaussian random
matrix Ω ∈ Rsk×n, where sk ≪ n is the sketch size. This projection preserves the geometry of the column
space, allowing us to approximate the leverage scores using the orthogonal basis of the sketched matrix.

Complexity Analysis. The dominant operations are the matrix multiplication B = ΩA and the QR
decomposition of the reduced matrix. This reduces the overall time complexity to O(nnz(A)sk +ds2

k), which
is linear in both the number of cells n and features d, making it highly efficient for client-side execution.

B Theoretical Guarantees of Adaptive Feature Sampling

B.1 Preservation of Optimization Geometry in the Reduced Subspace

Remark B.1 (Optimization Objective under Feature Sampling). Consider the original optimization problem:
minw∈Rd ∥Aw − y∥2

2, After feature sampling with selection matrix T ∈ Rd×s (where s ≪ d), we obtain the
reduced matrix Ã = AT ∈ Rn×s. The optimization problem becomes:

min
w̃∈Rs

∥Ãw̃ − y∥2
2 = min

w̃∈Rs
∥ATw̃ − y∥2

2,

where w̃ ∈ Rs is the parameter vector in the reduced feature space.

From Lemma 4.1, the relationship between the original and reduced problems is characterized as follows:
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1. Let w∗ = arg minw ∥Aw − y∥2
2 = A†y be the optimal solution in the original space, and w̃∗ =

arg minw̃ ∥ATw̃ − y∥2
2 = (AT )†y be the optimal solution in the reduced space.

2. The reconstruction wrecon = Tw̃∗ provides an exact solution in terms of objective value. Under the
assumptions of Lemma 4.1, we have

∥Awrecon − y∥2
2 = ∥Aw∗ − y∥2

2.

3. The gradient information is preserved: for any w̃ ∈ Rs, if ∇f(w) = 2A⊤(Aw − y) and ∇f̃(w̃) =
2(AT )⊤(ATw̃ − y), there is

(1− ϵ)∥∇f(Tw̃)∥2
2 ≤ ∥∇f̃(w̃)∥2

2 ≤ (1 + ϵ)∥∇f(Tw̃)∥2
2

Remark B.2 (Federated Leverage Score Aggregation). The weighted aggregation in Algorithm 1 computes
an approximation to the global leverage scores. For scATAC-seq data, all institutions profile identical genomic
regions governed by conserved regulatory programs, which induces shared column space structure across clients.
This biological constraint ensures that the aggregated scores preserve the relative ranking of feature importance,
a property sufficient for selecting informative regulatory regions. Section 6 empirically validates this approach
across diverse real-world datasets.

B.1.1 Proof of Remark B.1, Part 2

Proof. Let Ã = AT . We define the optimal solutions for the original and sampled problems respectively as:

w∗ := arg min
w∈Rd

∥Aw − y∥2
2, w̃∗ := arg min

w̃∈Rs
∥Ãw̃ − y∥2

2.

Define the reconstructed vector wrecon := Tw̃∗, so that Awrecon = ATw̃∗ = Ãw̃∗.

First, we establish a lower bound. We have:

∥Aw∗ − y∥2
2 ≤ ∥Awrecon − y∥2

2 = ∥Ãw̃∗ − y∥2
2, (3)

where the inequality follows from the fact that w∗ is the global minimizer of the original objective ∥Aw−y∥2
2,

and the equality follows from the definition Awrecon = Ãw̃∗.

Next, we establish the upper bound. By Lemma 4.1, with probability 1− δ, for all v ∈ Rn:

(1− ϵ)∥A⊤v∥2
2 ≤ ∥Ã⊤v∥2

2 ≤ (1 + ϵ)∥A⊤v∥2
2. (4)

This subspace embedding property implies that the column spaces of the original and sampled matrices are
identical:

col(Ã) = ker(Ã⊤)⊥ = ker(A⊤)⊥ = col(A),

where the first and last equalities follow from the fundamental theorem of linear algebra, and the middle
equality follows from (4) which implies ker(A⊤) = ker(Ã⊤) (since for ϵ ∈ (0, 1), ∥A⊤v∥2 = 0 if and only if
∥Ã⊤v∥2 = 0).

Since Aw∗ ∈ col(A), the column space equality implies Aw∗ ∈ col(Ã). Therefore, there exists a vector u ∈ Rs

(e.g., u = Ã†Aw∗) such that:

Ãu = Aw∗. (5)

Using this vector u, we can bound the objective value of the sampled problem:

∥Ãw̃∗ − y∥2 ≤ ∥Ãu− y∥2

= ∥Aw∗ − y∥2, (6)
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where the inequality follows from the optimality of w̃∗ for the problem minw̃ ∥Ãw̃ − y∥2
2, and the equality

follows from substituting (5).

Finally, combining the bounds yields the result:

∥Awrecon − y∥2
2 = ∥Aw∗ − y∥2

2,

where the equality follows from combining the lower bound in (3) and the upper bound in (6). This demon-
strates that under the subspace embedding assumption, the reconstruction error matches the original optimal
error exactly.

B.1.2 Proof of Remark B.1, Part 3

Proof. For any w̃ ∈ Rs, let f(w) = ∥Aw − y∥2
2 and f̃(w̃) = ∥ATw̃ − y∥2

2. We aim to prove

(1− ϵ)∥∇f(Tw̃)∥2
2 ≤ ∥∇f̃(w̃)∥2

2 ≤ (1 + ϵ)∥∇f(Tw̃)∥2
2

Here the gradients are

∇f(w) = 2A⊤(Aw − y)
∇f̃(w̃) = 2(AT )⊤(ATw̃ − y).

For the composed function at w = Tw̃, we have ∇f(Tw̃) = 2A⊤(ATw̃ − y). Therefore,

∥∇f̃(w̃)∥2
2 = 4∥(AT )⊤(ATw̃ − y)∥2

2;
∥∇f(Tw̃)∥2

2 = 4∥A⊤(ATw̃ − y)∥2
2.

Let e := ATw̃ − y ∈ Rn. By Lemma 4.1, for all v ∈ Rn,

(1− ϵ)∥A⊤v∥2
2 ≤ ∥(AT )⊤v∥2

2 ≤ (1 + ϵ)∥A⊤v∥2
2.

Applying this with v = e yields

(1− ϵ)∥A⊤(ATw̃ − y)∥2
2 ≤ ∥(AT )⊤(ATw̃ − y)∥2

2

≤ (1 + ϵ)∥A⊤(ATw̃ − y)∥2
2.

Multiplying by 4 gives
(1− ϵ)∥∇f(Tw̃)∥2

2 ≤ ∥∇f̃(w̃)∥2
2 ≤ (1 + ϵ)∥∇f(Tw̃)∥2

2.

This completes the proof.

B.2 Preservation of Biological Structure and Marker Gene Informativeness

This section proves that our adaptive sampling preserves biological signal. While the previous section showed
it maintains optimization geometry, Theorem B.3 guarantees it also retains the data’s biological structure.
Specifically, we prove the sampling (i) preserves distances between cell types, (ii) maintains clustering struc-
ture, and (iii) preferentially selects discriminative genomic regions. This ensures that dimensionality reduc-
tion removes noise while keeping features necessary for interpretable biological discovery.
Theorem B.3 (Biological Signal Preservation under Leverage Score Sampling). Let A ∈ Rn×d be a scATAC-
seq data matrix where rows represent cells and columns represent genomic features. Assume cells belong to
K distinct cell types C = {C1, C2, . . . , CK}.

For a leverage score sampling transformation T : Rd → Rs (where s = ρd and ρ is the sampling rate)
satisfying the conditions of Remark B.1, the following properties hold:
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1. Cell Type Separability Preservation: For any two distinct cell types Ci, Cj, define their sepa-
ration in the original space as ∆ij = ∥µi − µj∥2/

√
σ2

i + σ2
j where µi, µj are class centers and σ2

i , σ
2
j

are within-class variances. The separation after sampling ∆̃ij satisfies:

P
[
(1− 2ϵ)∆ij ≤ ∆̃ij ≤ (1 + 2ϵ)∆ij

]
≥ 1− δ.

2. Clustering Structure Preservation: Define the Davies-Bouldin index as DB =
1
K
∑K

i=1 maxj ̸=i
σi+σj

∥µi−µj∥2
. Then the DB index before and after sampling satisfies:

|DBsampled −DBoriginal| ≤ 2ϵ ·DBoriginal.

3. Biological Marker Preservation: If genomic region j is a marker for cell type Ci (i.e., its average
accessibility in Ci is significantly higher than in other types), then its selection probability satisfies:

πj ≥ min

{
1, s
r
· ∥aCi,j − a¬Ci,j∥2

2∑d
ℓ=1 ∥aCi,ℓ − a¬Ci,ℓ∥2

2

}
where aCi,j denotes the average accessibility of cell type Ci at region j.

B.2.1 Proof of Theorem B.3, Part 1

Proof. We aim to prove that the cell type separability measure is preserved under leverage score sampling
with high probability.

Let A ∈ Rn×d be the data matrix where rows represent cells and columns represent genomic features. For each
cell type Ci ⊆ [n], define the class center µi = 1

|Ci|
∑

i′∈Ci
a⊤

i′ ∈ Rd where a⊤
i′ is the row of A corresponding

to cell i′ the within-class variance σ2
i = 1

|Ci|
∑

k∈Ci
∥ak − µi∥2

2, and the original separability ∆ij = ∥µi−µj∥2√
σ2

i
+σ2

j

.

After leverage score sampling with selection matrix T ∈ Rd×s, we obtain the sampled data Ã = AT ∈ Rn×s,
sampled class center µ̃i = 1

|Ci|
∑

k∈Ci
a⊤

k T = µ⊤
i T ∈ Rs, sampled variance σ̃2

i = 1
|Ci|

∑
k∈Ci

∥a⊤
k T − µ⊤

i T∥2
2,

and sampled separability ∆̃ij = ∥µ̃i−µ̃j∥2√
σ̃2

i
+σ̃2

j

.

First, we apply the subspace embedding property to the class center difference. For any vector v in the row
space of A, we have with probability at least 1− δ:

(1− ϵ)∥v∥2
2 ≤ ∥vT∥2

2 ≤ (1 + ϵ)∥v∥2
2. (7)

Since µi − µj = 1
|Ci|

∑
k∈Ci

a⊤
k − 1

|Cj |
∑

ℓ∈Cj
a⊤

ℓ is a linear combination of rows of A, it lies in the row space
of A. Therefore:

(1− ϵ)∥µi − µj∥2
2 ≤ ∥(µi − µj)T∥2

2 = ∥µ̃i − µ̃j∥2
2 ≤ (1 + ϵ)∥µi − µj∥2

2, (8)

where the inequalities follow from applying (7) with v = µi − µj , and the equality follows from the linearity
of matrix multiplication. Taking square roots of (8) yields:

√
1− ϵ∥µi − µj∥2 ≤ ∥µ̃i − µ̃j∥2 ≤

√
1 + ϵ∥µi − µj∥2. (9)

Next, we analyze the within-class variances. For each i′ ∈ Ci, the vector (ai′ − µi)⊤ is in the row space of
A since (ai′ − µi)⊤ = a⊤

i′ − 1
|Ci|

∑
ℓ∈Ci

a⊤
ℓ . In the event of (7), there is

(1− ϵ)∥ai′ − µi∥2
2 ≤ ∥(ai′ − µi)T∥2

2 ≤ (1 + ϵ)∥ai′ − µi∥2
2. (10)

Since this two-sided bounds holds simultaneously for all i′ ∈ Ci,

σ̃2
i = 1
|Ci|

∑
i′∈Ci

∥(ai′ − µi)T∥2
2
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∈

[
1
|Ci|

∑
i′∈Ci

(1− ϵ)∥ai′ − µi∥2
2,

1
|Ci|

∑
i′∈Ci

(1 + ϵ)∥ai′ − µi∥2
2

]
= [(1− ϵ)σ2

i , (1 + ϵ)σ2
i ], (11)

where the second step follows from applying the bounds in (10) pointwise, and the third step follows from
the definition of σ2

i . Similarly, under the event of (7), we have (1− ϵ)σ2
j ≤ σ̃2

j ≤ (1 + ϵ)σ2
j .

Therefore, as (7) holds with probability at least 1 − δ, we can give a two-sided bound to the sampled
separability ∆̃ij = ∥µ̃i−µ̃j∥2√

σ̃2
i

+σ̃2
j

. For the lower bound:

∆̃ij ≥
√

1− ϵ · ∥µi − µj∥2√
(1 + ϵ)(σ2

i + σ2
j )

=
√

1− ϵ
1 + ϵ

· ∥µi − µj∥2√
σ2

i + σ2
j

=
√

1− ϵ
1 + ϵ

·∆ij , (12)

where the first step follows from the lower bound in (9) and the upper bound in (11), and the second step
follows from algebraic manipulation. Similar result also holds for the upper bound. As a result, there is√

1− ϵ
1 + ϵ

·∆ij ≤ ∆̃ij ≤
√

1 + ϵ

1− ϵ
·∆ij . (13)

Finally, we refine the bounds in (12) and (13). For ϵ ∈ (0, 1), we have:√
1− ϵ
1 + ϵ

=
√

1− ϵ · (1 + ϵ)−1/2

≥ (1− ϵ/2)(1− ϵ/2)
= 1− ϵ+ ϵ2/4
≥ 1− ϵ,

where the second step follows from the inequalities
√

1− x ≥ 1−x/2 and (1+x)−1/2 ≥ 1−x/2 for x ∈ [0, 1],
and the third step follows from expanding the product. Similarly, for ϵ ∈ (0, 1/2),

√
1+ϵ
1−ϵ ≤ 1 + 2ϵ. Hence

we have

P
[
(1− 2ϵ)∆ij ≤ ∆̃ij ≤ (1 + 2ϵ)∆ij

]
≥ 1− δ.

This completes the proof.

B.2.2 Proof of Theorem B.3, Part 2

Proof. We prove that |DBsampled − DBoriginal| ≤ C · ϵ · DBoriginal for some constant C, where the Davies-
Bouldin index is defined as DB = 1

K
∑K

i=1 maxj ̸=i Rij , with Rij = σi+σj

∥µi−µj∥2
.

Our strategy is to bound the ratio R̃ij/Rij . From the proof of Part 1, we have already established the
following bounds which hold simultaneously with high probability:

1. Bound on inter-class distance (from (9)):
√

1− ϵ∥µi − µj∥2 ≤ ∥µ̃i − µ̃j∥2 ≤
√

1 + ϵ∥µi − µj∥2.
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2. Bound on intra-class standard deviation (from (11) after taking square root):
√

1− ϵ σi ≤ σ̃i ≤
√

1 + ϵ σi.

Now, we combine these bounds to analyze R̃ij = σ̃i+σ̃j

∥µ̃i−µ̃j∥2
.

For the upper bound of R̃ij :

R̃ij = σ̃i + σ̃j

∥µ̃i − µ̃j∥2
≤
√

1 + ϵ(σi + σj)√
1− ϵ∥µi − µj∥2

=
√

1 + ϵ

1− ϵ
·Rij .

For the lower bound of R̃ij :

R̃ij ≥
√

1− ϵ(σi + σj)√
1 + ϵ∥µi − µj∥2

=
√

1− ϵ
1 + ϵ

·Rij .

As established in the proof of Part 1, for ϵ ∈ (0, 1/2), we have
√

1+ϵ
1−ϵ ≤ 1 + 2ϵ and

√
1−ϵ
1+ϵ ≥ 1− ϵ. Combining

these, we get:

(1− ϵ)Rij ≤ R̃ij ≤ (1 + 2ϵ)Rij .

Since the max operation preserves these relative bounds, for each i:

(1− ϵ) max
j ̸=i

Rij ≤ max
j ̸=i

R̃ij ≤ (1 + 2ϵ) max
j ̸=i

Rij .

Summing over all i and dividing by K gives the bound for the DB index:

(1− ϵ)DBoriginal ≤ DBsampled ≤ (1 + 2ϵ)DBoriginal.

This implies that |DBsampled−DBoriginal| is bounded by a term proportional to ϵ·DBoriginal, which completes
the proof.

B.2.3 Proof of Theorem B.3, Part 3

Proof. We prove that if genomic region j is a marker for cell type Ci, then its selection probability (inclusion
probability) πj satisfies the lower bound behavior proportional to its discriminative power.

Let h ∈ Rn be a vector that captures the cell type distinction:

hi =

{
1

|Ci| if cell i ∈ Ci

− 1
|¬Ci| if cell i ∈ ¬Ci

(14)

where w has positive weight for cells in type Ci and negative weight for cells not in Ci.

The discriminative score for feature j is:

dj = h⊤a:,j =
n∑

i=1
hiaij = aCi,j − a¬Ci,j , (15)

where the first equality follows from the definition of matrix-vector multiplication, and the second equality
follows from the specific structure of h in (14) and the definition of average accessibility.

Let A = UΣV ⊤ be the SVD of A. Since a:,j lies in the column space of A, we can write:

dj = h⊤a:,j = h⊤UU⊤a:,j =
r∑

i=1
(h⊤ui)(u⊤

i a:,j)
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=
r∑

i=1
(h⊤ui)σi ·

u⊤
i a:,j

σi
, (16)

where the first equality follows from UU⊤ being the projection onto the column space of A, the second
equality follows from expanding the matrix multiplication, and the third equality follows from multiplying
and dividing by σi for each term.

By the Cauchy-Schwarz inequality applied to (16):

d2
j ≤

(
r∑

i=1
(h⊤ui)2σ2

i

)
·

(
r∑

i=1

(u⊤
i a:,j)2

σ2
i

)
, (17)

where we set xi = (h⊤ui)σi and yi = u⊤
i a:,j

σi
.

The first term in (17) represents the total discriminative signal:
r∑

i=1
(h⊤ui)2σ2

i = h⊤UΣ2U⊤h

= h⊤AA⊤h

= ∥A⊤h∥2
2

=
d∑

ℓ=1

(h⊤a:,ℓ)2

=
d∑

ℓ=1

d2
ℓ

=
d∑

ℓ=1

∥aCi,ℓ − a¬Ci,ℓ∥2
2, (18)

where the first equality follows from the SVD AA⊤ = UΣ2U⊤, the second equality follows from the identity
∥A⊤h∥2

2 = h⊤AA⊤h, and the last equality follows from the definition of dℓ in (15).

The second term in (17) is exactly the leverage score:
r∑

i=1

(u⊤
i a:,j)2

σ2
i

= a⊤
:,jUΣ−2U⊤a:,j = a⊤

:,j(AA⊤)†a:,j = ℓcol
j , (19)

where the equalities follow from the properties of the pseudoinverse (AA⊤)† = UΣ−2U⊤ and the definition
of column leverage score in Lemma 4.1.

Combining (17), (18), and (19), we obtain:

d2
j ≤

(
d∑

ℓ=1

d2
ℓ

)
· ℓcol

j . (20)

Rearranging (20) gives a lower bound on the leverage score:

ℓcol
j ≥

d2
j∑d

ℓ=1 d
2
ℓ

= ∥aCi,j − a¬Ci,j∥2
2∑d

ℓ=1 ∥aCi,ℓ − a¬Ci,ℓ∥2
2
. (21)

Finally, we relate leverage scores to the inclusion probability. From Lemma 4.1, define the (base) sampling
weights qj := ℓcol

j /r. Let πj := P(j ∈ S) be the probability that feature j is included in the sampled set S
of size s produced by weighted sampling without replacement.
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Under successive weighted sampling without replacement, at each draw the conditional probability of select-
ing j given that it has not been selected is at least qj . Hence

P(j /∈ S) ≤ (1− qj)s,

so

πj ≥ 1− (1− qj)s ≥ 1− e−sqj

= 1− exp
(
−s
r
ℓcol

j

)
.

Combining with (21), we obtain

πj ≥ 1− exp

(
−s
r
·

d2
j∑d

ℓ=1 d
2
ℓ

)

= 1− exp

(
−s
r
· (aCi,j − a¬Ci,j)2∑d

ℓ=1(aCi,ℓ − a¬Ci,ℓ)2

)
.

In particular, using 1− e−x ≥ (1− e−1) min{1, x} for x ≥ 0 yields the proportional lower bound.

C Derivation and Regularity Analysis of the Invariant VAE Objective

C.1 Variational Upper Bound Derivation for Disentanglement

This section provides the complete theoretical derivations for the invariant VAE component, which builds
upon the SAILER framework (Cao et al., 2021) and adapts it to the federated learning setting.
Definition C.1 (Mutual Information). For random variables X, Y with joint distribution p(x, y), their
mutual information is defined as: I(X;Y ) = Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
.

Our goal is to minimize the mutual information I(z; c) between learned representations z and confounding
variables c, while maintaining the model’s primary learning objectives. Using variational inference techniques
and Lemma C.2, we can show following upper bound for I(z; c).
Lemma C.2 (Mutual Information Decomposition). For the Markov chain c→ x→ z, the mutual informa-
tion I(z; c) can be decomposed as:

I(z; c) = I(z;x)− I(z;x|c)

Proof. Starting with the chain rule of mutual information:

I(z; c) = I(z;x)− I(z;x|c) + I(z; c|x).

By the Markov chain property, we have I(z; c|x) = 0 since z depends only on x. Therefore:

I(z; c) = I(z;x)− I(z;x|c).

Theorem C.3 (Variational Upper Bound). For any variational encoder distribution qθ(z|x) and decoder
distribution pϕ(x|z, c), we have:

I(z; c) ≤ Ex∼q(x)
[

KL[qθ(z|x)∥qθ(z)]
]
−H(x|c)− Ex,c∼q(x,c),z∼qθ(z|x)

[
log pϕ(x|z, c)

]
(22)

where q(x), q(x, c) are empirical distribution with respect to x and (x, c). Note that H(x|c) would be a constant
with respect to our optimization.
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Proof of Theorem C.3. Starting with the decomposition from Lemma C.2, we express the mutual information
I(z; c) as:

I(z; c) = I(z;x)− I(z;x|c)
= I(z;x)−H(x|c) +H(x|z, c), (23)

where the first step follows from the chain rule of mutual information, and the second step follows from the
definition of conditional mutual information I(z;x|c) = H(x|c)−H(x|z, c).

We analyze the terms in Eq. (23) separately. First, the mutual information term I(z;x) is defined as the KL
divergence between the joint and the product of marginals, averaged over x:

I(z;x) = Ex∼q(x) [KL(qθ(z|x)∥qθ(z))] , (24)

where qθ(z) = Ex∼q(x)[qθ(z|x)] is the aggregated posterior.

Next, we bound the conditional entropy term H(x|z, c). Let q(x|z, c) denote the true (intractable) inverse
posterior induced by the data distribution q(x, c) and the encoder qθ(z|x). For any variational decoder
pϕ(x|z, c), the KL divergence is non-negative:

KL(q(x|z, c)∥pϕ(x|z, c)) ≥ 0.

Expanding the KL divergence definition, we have:

Ex∼q(x|z,c)[log q(x|z, c)− log pϕ(x|z, c)] ≥ 0,

therefore

−Ex∼q(x|z,c)[log q(x|z, c)] ≤ −Ex∼q(x|z,c)[log pϕ(x|z, c)].

Taking the expectation over the joint distribution of the conditioning variables (z, c) (induced by x, c ∼ q(x, c)
and z ∼ qθ(z|x)), we obtain the bound for the conditional entropy:

H(x|z, c) = Ez,c

[
−Ex∼q(x|z,c)[log q(x|z, c)]

]
≤ Ez,c

[
−Ex∼q(x|z,c)[log pϕ(x|z, c)]

]
= −Ex,c∼q(x,c),z∼qθ(z|x)[log pϕ(x|z, c)], (25)

where the first equality is the definition of conditional entropy, the inequality follows from the variational
principle (non-negativity of KL), and the final equality follows from the law of iterated expectations.

Finally, substituting Eq. (24) and Eq. (25) back into Eq. (23), we arrive at the upper bound:

I(z; c) ≤ Ex∼q(x) [KL(qθ(z|x)∥qθ(z))]−H(x|c)− Ex,c∼q(x,c),z∼qθ(z|x)[log pϕ(x|z, c)]. (26)

This completes the proof.

C.2 Regularity Assumptions for Non-Convex Federated Optimization

Assumption C.4 (Encoder Regularity). The encoder network qθ(z|x) = N (µθ(x), σ2
θ(x)) satisfies:

1. Parameter Lipschitz continuity: For any input x ∈ X and any pair of parameter vectors θ1, θ2,
the mapping functions satisfy:

∥µθ1(x)− µθ2(x)∥ ≤ Lµ∥θ1 − θ2∥,
∥σθ1(x)− σθ2(x)∥ ≤ Lσ∥θ1 − θ2∥.

2. Bounded variance: σmin ≤ σθ(x) ≤ σmax for all x ∈ X ;
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3. Bounded mean: ∥µθ(x)∥ ≤M for all x ∈ X .

Assumption C.5 (Decoder Invariance Properties). The decoder pϕ(x|z, c) follows a Gaussian distribution
satisfies the following properties for invariant representation learning:

1. Bounded interaction strength: There exists a constant γ > 0 such that for any z ∈ Rdz and
confounding factors c1, c2, the decoder’s sensitivity to z has bounded variation:

∥∇z log pϕ(x|z, c1)−∇z log pϕ(x|z, c2)∥ ≤ γ∥c1 − c2∥.

This ensures that technical variations c only moderately modulate how biological signals z are decoded.

2. Gradient orthogonality: Let Lrecon(θ, ϕ) = −Ex,c[Ez∼qθ(z|x)[log pϕ(x|z, c)]]. For the gradient
components corresponding to z-dependent and c-dependent transformations:

∣∣∣∣Ex,c,z

[〈
∂ log pϕ(x|z, c)

∂z
,
∂ log pϕ(x|z, c)

∂c

〉]∣∣∣∣ ≤ κ
√√√√E

[∥∥∥∥∂ log pϕ

∂z

∥∥∥∥2
]
· E

[∥∥∥∥∂ log pϕ

∂c

∥∥∥∥2
]

for a small constant κ ∈ (0, 1).

3. Confounding factor necessity: The decoder requires confounding information for accurate re-
construction: there exists ∆ > 0 such that

inf
z

sup
c1 ̸=c2

DKL(pϕ(x|z, c1)∥pϕ(x|z, c2)) ≥ ∆.

D End-to-End Convergence Analysis of FL-Sailer in High-Dimensional Spaces

This appendix provides the detailed proofs and technical verifications referenced in Section 5. We first
recap the FedAvg convergence theory (Appendix D.1), then show that our VAE loss satisfies the required
conditions (Appendix D.2), analyze the approximation quality of sampling (Appendix D.3), and finally
present the end-to-end proof of Theorem 5.1 (Appendix D.4).

D.1 Preliminaries: Convergence Framework for Non-Convex FedAvg

Theorem D.1 (FedAvg Convergence for Non-Convex Settings (Theorem 4.7 in Li et al. (2022))). Let N
denote the number of clients, K denote the number of local update steps and Dmodel denote the dimension of
the model parameters. Consider the FedAvg algorithm with local learning rate ηl and global learning rate ηg.

• (a, b)-semi-smooth: For any W,U ∈ RDmodel ,

L(U) ≤ L(W ) + ⟨∇L(W ), U −W ⟩+ b∥W − U∥2
2 + a∥W − U∥2 · L(W )1/2.

• (α, β)-semi-Lipschitz: For any W,U ∈ RDmodel ,

∥∇L(W )−∇L(U)∥2
2 ≤ β2∥W − U∥2

2 + α2∥W − U∥2 ·max{L(W )1/2,L(U)1/2}

• (τ1, τ2)-non-critical point: For any U in a neighborhood of U∗ (a minimizer of L),

τ2
1L(U) ≤ ∥∇L(U)∥2

2 ≤ τ2
2L(U).

Let L(W ) = 1
N

∑N
c=1 Li(W ) denote the global loss function. Assume the stochastic gradients gi(W ) =

∇Li(W ; ζi) are unbiased with variance bounded by σ2, i.e., E[gi(W )] = ∇Li(W ) and E[∥gi(W ) −
∇Li(W )∥2] ≤ σ2.
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If the learning rates satisfy

ηl ≤ min
{

1
α2K

,
1

102Kτ2(β + α)
,

1
102
√
K(β + α)

}
,

ηg ≤
τ2

1
20Kbηl

,

then for FedAvg with U t denoting the global model at round t, we have

E[L(U t)− L(U∗)] ≤ (1− λ1)t · (L(U0)− L(U∗)) + 2λ2,

where

λ1 = Kηlηg

4
(1− 4bKηlηg − 2a)τ2

1 ,

λ2 = (1 + a+ bKηlηg)Kηlηg

10
σ2.

The parameter λ1 determines the convergence rate, while λ2 represents the optimization error due to stochastic
gradients. The theorem shows a linear convergence rate up to the variance-induced error floor 2λ2.
Corollary D.2 (Communication Complexity (Corollary 4.8 in Li et al. (2022))). For any desired accuracy
ϵ > 0, by choosing the global step-size

ηg ≤ min
{

τ2
1

20Kbηl
,

2ϵ
σ2(1 + a+ τ2

1 /20K)

}
,

after R = log
(

2(L(U0)−L(U∗))
ϵ

)
· 1

λ1
communication rounds, we have

E[L(U t)− L(U∗)] ≤ ϵ.

D.2 Verifying Smoothness and Regularity Conditions for the VAE Loss

We now establish that our VAE loss function (Corollary 4.4) satisfies the relaxed smoothness conditions
required for federated convergence analysis. This forms the crucial theoretical bridge connecting FL-Sailer
to the FedAvg convergence guarantee, leveraging both the structural properties of VAEs and the non-smooth
optimization framework of Li et al. (2022).
Theorem D.3 (VAE Loss Satisfies Semi-smoothness). Let L(·) be the VAE loss function defined in Corol-
lary 4.4: For any parameter vector W = (θ, ϕ), the loss is:

L(W ) = −(1 + λ)E[log pϕ(x|z, c)] + E[KL[qθ(z|x)∥p(z)]] + λE[KL[qθ(z|x)∥qθ(z)]]

Under Assumptions C.4 and C.5, this loss function satisfies Assumptions in D.1 with the following parameters:

1. (a, b)-semi-smoothness with a = O(
√

1 + λ(Lenc + Ldec)) and b = O((1 + λ)(Lenc + Ldec)2);

2. (τ1, τ2)-non-critical gradient in the region of interest for optimization;

3. (α, β)-semi-Lipschitz with β2 = O((1 + λ)2(Lenc + Ldec)4) and α2 = O((1 + λ)3/2(Lenc + Ldec)4).

Proof Sketch. Given Assumptions C.4 and C.5, which provide Lipschitz constants Lenc and Ldec for the
encoder and decoder networks respectively, we can characterize the behavior of each loss component. For
networks with piecewise smooth activation functions, the composite loss inherits semi-smoothness properties
with constants that scale with the network Lipschitz constants. The full derivation proceeds by bounding the
remainder terms of each loss component (prior, marginal, reconstruction) and combining them via Cauchy-
Schwarz to obtain the final parameters a, b, α, β.
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D.2.1 Proof of Theorem D.3.1

Proof of Theorem D.3, Part 1: (a, b)-semi-smoothness. We prove that the VAE loss function L(W ) satisfies
(a, b)-semi-smoothness. Let W = (θ, ϕ) denote the combined parameter vector. From Corollary 4.4:

L(W ) = Lprior(W ) + λLmarginal(W ) + (1 + λ)Lrecon(W ). (27)

For the remainder term Rf (U,W ) = f(U)−f(W )−⟨∇f(W ), U −W ⟩ of any function f , the total remainder
is:

Rf (U,W ) = Rprior(U,W ) + λRmarginal(U,W ) + (1 + λ)Rrecon(U,W ). (28)

Based on the theoretical framework for neural network optimization Li et al. (2022), each component satisfies
semi-smoothness with the following scaling. For the prior KL term Lprior, which is a composition of the
smooth KL divergence function with Lipschitz encoder outputs (Assumption C.4), we have:

Rprior(U,W ) ≤ bprior∥U −W∥2
2 + aprior∥U −W∥2

√
Lprior(W ), (29)

where aprior = O(Lenc) and bprior = O(L2
enc), with the scaling following from the Lipschitz property of the en-

coder and the smoothness of the KL divergence when variances are bounded away from zero (Assumption C.4,
part 2).

Similarly, for the reconstruction loss Lrecon, which involves the decoder network:

Rrecon(U,W ) ≤ brecon∥U −W∥2
2 + arecon∥U −W∥2

√
Lrecon(W ), (30)

where arecon = O(Lenc + Ldec) and brecon = O((Lenc + Ldec)2).

For the marginal KL term Lmarginal, which involves the empirical marginal distribution:

Rmarginal(U,W ) ≤ bmarginal∥U −W∥2
2 + amarginal∥U −W∥2

√
Lmarginal(W ), (31)

where amarginal = O(Lenc) and bmarginal = O(L2
enc).

Substituting (29), (31), and (30) into (28):

Rf (U,W ) ≤ (bprior + λbmarginal + (1 + λ)brecon)︸ ︷︷ ︸
b

∥U −W∥2
2

+ ∥U −W∥2 (aprior

√
Lprior(W ) + λamarginal

√
Lmarginal(W ) + (1 + λ)arecon

√
Lrecon(W ))︸ ︷︷ ︸

A(W )

. (32)

Computing constant b: From the scaling relations:

b = bprior + λbmarginal + (1 + λ)brecon = O((1 + λ)(Lenc + Ldec)2).

Computing constant a: We need to bound A(W ) in terms of
√
L(W ). Define weight vector w =

[1,
√
λ,
√

1 + λ] and let:

u = [aprior,
√
λamarginal,

√
1 + λarecon],

v = [
√
Lprior(W ),

√
λLmarginal(W ),

√
(1 + λ)Lrecon(W )].

Then A(W ) = u · v. By the Cauchy-Schwarz inequality:

A(W ) ≤ ∥u∥2∥v∥2 = ∥u∥2
√
L(W ),
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where the equality follows from ∥v∥2
2 = Lprior(W ) + λLmarginal(W ) + (1 + λ)Lrecon(W ) = L(W ).

Computing ∥u∥2:

∥u∥2
2 = a2

prior + λa2
marginal + (1 + λ)a2

recon

= O(L2
enc + λL2

enc + (1 + λ)(Lenc + Ldec)2)
= O((1 + λ)(Lenc + Ldec)2),

where the second step follows from substituting the scaling relations, and the third step follows from algebraic
simplification.

Therefore, a = ∥u∥2 = O(
√

1 + λ(Lenc +Ldec)). This completes the proof of (a, b)-semi-smoothness with the
stated constants.

D.2.2 Proof of Theorem D.3.2

Proof of Theorem D.3, Part 2: Non-critical gradient. We need to establish that the VAE loss satisfies the
(τ1, τ2)-non-critical point condition, i.e., there exist constants τ1, τ2 > 0 such that for all W in a neighborhood
of the optimal solution:

τ2
1L(W ) ≤ ∥∇L(W )∥2

2 ≤ τ2
2L(W ). (33)

The upper bound in (33) follows directly from the Lipschitz properties established in Assumptions C.4
and C.5. Specifically, the gradient norm is bounded by:

∥∇L(W )∥2
2 ≤ O((1 + λ)2(Lenc + Ldec)2) · L(W ),

where the inequality follows from the bounded gradients of the neural network components.

For the lower bound, following the theoretical framework of Li et al. (2022) Section 4.2, we work under the
standard assumption that the optimization maintains the non-critical gradient property in a neighborhood
of the initialization. Under appropriate initialization and learning rate schedules, the FedAvg iterates satisfy:

∥∇L(W (t))∥2
2 ≥ τ2

1L(W (t))

for some constant τ1 > 0. This completes the verification of the required conditions.

D.2.3 Proof of Theorem D.3.3

Proof of Theorem D.3, Part 3: (α, β)-semi-Lipschitz. We prove that the VAE loss satisfies:

∥∇L(W )−∇L(U)∥2
2 ≤ β2∥W − U∥2

2 + α2∥W − U∥2 ·max{L(W )1/2,L(U)1/2}.

From (27), the gradient decomposes as:

∇L(W ) = ∇Lprior(W ) + λ∇Lmarginal(W ) + (1 + λ)∇Lrecon(W ). (34)

By the inequality ∥a+ b+ c∥2
2 ≤ 3(∥a∥2

2 + ∥b∥2
2 + ∥c∥2

2):

∥∇L(W )−∇L(U)∥2
2 ≤ 3∥∇Lprior(W )−∇Lprior(U)∥2

2

+ 3λ2∥∇Lmarginal(W )−∇Lmarginal(U)∥2
2

+ 3(1 + λ)2∥∇Lrecon(W )−∇Lrecon(U)∥2
2. (35)

Following the theoretical framework for neural network gradients Li et al. (2022), each component satisfies
semi-Lipschitz properties. Let Gmax,i = max{Li(W )1/2,Li(U)1/2} for i ∈ {prior,marginal, recon}.
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For the prior KL term:

∥∇Lprior(W )−∇Lprior(U)∥2
2 ≤ β2

prior∥W − U∥2
2 + α2

prior∥W − U∥2 ·Gmax,prior, (36)

where β2
prior = O(L4

enc) and α2
prior = O(L4

enc).

Similarly for the marginal and reconstruction terms:

∥∇Lmarginal(W )−∇Lmarginal(U)∥2
2 ≤ β2

marginal∥W − U∥2
2 + α2

marginal∥W − U∥2 ·Gmax,marginal, (37)
∥∇Lrecon(W )−∇Lrecon(U)∥2

2 ≤ β2
recon∥W − U∥2

2 + α2
recon∥W − U∥2 ·Gmax,recon, (38)

where β2
marginal = O(L4

enc), α2
marginal = O(L4

enc), β2
recon = O((Lenc + Ldec)4), and α2

recon = O((Lenc + Ldec)4).

Computing constant β: Collecting the Lipschitz terms from (35), (36), (37), and (38):

β2 = 3(β2
prior + λ2β2

marginal + (1 + λ)2β2
recon) = O((1 + λ)2(Lenc + Ldec)4).

Computing constant α: For the semi-Lipschitz terms, we need to relate Gmax,i to Gmax =
max{L(W )1/2,L(U)1/2}. Since λiLi ≤ L where λi ∈ {1, λ, 1 + λ} are the weights in (27), we have
Gmax,i ≤ Gmax/

√
λi.

The total semi-Lipschitz contribution is:

A′(W,U) = 3∥W − U∥2
(
α2

priorGmax,prior + λ2α2
marginalGmax,marginal + (1 + λ)2α2

reconGmax,recon
)

≤ 3∥W − U∥2Gmax

(
α2

prior + λ3/2α2
marginal + (1 + λ)3/2α2

recon

)
,

where the inequality follows from the bounds on Gmax,i.

Therefore:

α2 = 3(α2
prior + λ3/2α2

marginal + (1 + λ)3/2α2
recon) = O((1 + λ)3/2(Lenc + Ldec)4).

This completes the proof of (α, β)-semi-Lipschitz with the stated constants.

Remark D.4 (Dependence on Data Domain Geometry). The regularity constants derived in Theorem D.3
(a, b, α, β, τ) depend explicitly on the Lipschitz constants of the encoder (Lenc) and decoder (Ldec). Cru-
cially, these Lipschitz constants are evaluated over the compact data support X ⊂ Rd. As we will show in
Appendix D.4, our adaptive sampling strategy constructs a subspace embedding that preserves the geometry
of X , thereby ensuring that these favorable optimization properties are inherited by the sampled objective
function.

D.3 AApproximation Bounds: Linking Sampled and Original Objectives

Lemma D.5 (Approximation Quality of Sampled VAE Objective). Let T ∈ Rd×s be the leverage score
sampling matrix from Remark B.1 with error parameter ϵ ∈ (0, 1). Under Assumptions C.4–C.5, for the
optimal values of the original and sampled VAE objectives, there is

|L̃(Ũ∗)− L(U∗)| ≤ C · ϵ · L(U∗)

where U∗ = arg minU L(U), Ũ∗ = arg minŨ L̃(Ũ), and C is a constant depending on the VAE architecture.

Proof. We condition on the event E defined in Lemma 4.1, where T acts as a (1 ± ϵ)-subspace embedding
for the row space of A. Specifically, for all v ∈ row(A), the following isometry property holds:

(1− ϵ)∥v∥2
2 ≤ ∥vT∥2

2 ≤ (1 + ϵ)∥v∥2
2. (39)
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Let A = UΣV ⊤ be the thin SVD of A, where V ∈ Rd×r contains orthonormal columns that span row(A).
We define the row-space lifting matrix Rlift ∈ Rd×s as:

Rlift := V (T⊤V )†. (40)

Under the event E , the matrix T⊤V ∈ Rs×r has full column rank r, implying that (T⊤V )†(T⊤V ) = Ir.
Consequently, for any vector v ∈ row(A), which can be expressed as v = u⊤V ⊤ for some u ∈ Rr, we have:

(vT )R⊤
lift = u⊤V ⊤T

(
V (T⊤V )†)⊤

= u⊤(T⊤V )⊤ ((T⊤V )†)⊤
V ⊤

= u⊤ ((T⊤V )†(T⊤V )
)⊤
V ⊤

= u⊤IrV
⊤

= v, (41)

where the first equality follows from the definition of Rlift in (40), the second equality follows from the
identity (AB)⊤ = B⊤A⊤, the third equality follows from grouping the terms involving T⊤V , and the fourth
equality follows from the left-inverse property of the pseudoinverse for full-rank matrices.

Furthermore, this implies an identity on the projected subspace. For any ṽ ∈ row(A)T , there exists v ∈
row(A) such that ṽ = vT . Thus:

ṽR⊤
liftT = (vT )R⊤

liftT = vT = ṽ, (42)

where the second equality follows directly from (41).

We define deterministic mappings to transfer parameters between the full d-dimensional space and the
sampled s-dimensional space.

(i) Full → Sampled (F ): Given U = (θ, ϕ), define Ũ = F (U) = (θ̃, ϕ̃) by:

qθ̃(z | x̃) := qθ(z | x̃R⊤
lift), ∀x̃ ∈ Rs,

µϕ̃(z, c) := µϕ(z, c)T. (43)

(ii) Sampled → Full (G): Given Ũ = (θ̃, ϕ̃), define U = G(Ũ) = (θ, ϕ) by:

qθ(z | x) := qθ̃(z | xT ), ∀x ∈ Rd,

µϕ(z, c) := µϕ̃(z, c)R⊤
lift. (44)

We show that the KL divergence terms are preserved under these mappings. For the mapping F (U):

L̃prior(F (U)) = Ex [KL (qθ̃(z | xT ) ∥ p(z))]
= Ex

[
KL
(
qθ(z | (xT )R⊤

lift) ∥ p(z)
)]

= Ex [KL (qθ(z | x) ∥ p(z))]
= Lprior(U), (45)

where the first equality is the definition of the sampled prior loss, the second equality follows from the
definition of the embedded encoder in (43), and the third equality follows from the identity (xT )R⊤

lift = x
established in (41) for x ∈ row(A).

Since the conditional distributions match, the aggregated posteriors also coincide: qθ̃(z) = Ex[qθ̃(z | xT )] =
Ex[qθ(z | x)] = qθ(z). Consequently:

L̃marginal(F (U)) = Ex [KL (qθ̃(z | xT ) ∥ qθ̃(z))]
= Ex [KL (qθ(z | x) ∥ qθ(z))]
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= Lmarginal(U). (46)

By symmetric reasoning using the definition in (44), the reverse mapping G(Ũ) satisfies:

Lprior(G(Ũ)) = L̃prior(Ũ) and Lmarginal(G(Ũ)) = L̃marginal(Ũ). (47)

We analyze the reconstruction error under the isotropic Gaussian decoder assumption, where the loss is
proportional to the squared Euclidean distance.

(i) Full → Sampled Upper Bound: For Ũ = F (U), we have:

L̃recon(F (U)) = Ex,cEz∼qθ̃(z|xT )

[
∥xT − µϕ̃(z, c)∥2

2

]
= Ex,cEz∼qθ(z|x)

[
∥xT − µϕ(z, c)T∥2

2
]

= Ex,cEz∼qθ(z|x)
[
∥(x− µϕ(z, c))T∥2

2
]

≤ (1 + ϵ)Ex,cEz∼qθ(z|x)
[
∥x− µϕ(z, c)∥2

2
]

= (1 + ϵ)Lrecon(U), (48)

where the second equality follows from substituting the definitions from (43) and (41), and the inequality
follows from applying the upper bound of the subspace embedding property (39) to the vector v = x−µϕ(z, c),
which lies in row(A).

(ii) Sampled → Full Upper Bound: For U = G(Ũ), we observe that µϕ̃(z, c) ∈ row(A)T implies
µϕ̃(z, c)R⊤

liftT = µϕ̃(z, c) by (42). Thus:

Lrecon(G(Ũ)) = Ex,cEz∼qθ(z|x)
[
∥x− µϕ(z, c)∥2

2
]

= Ex,cEz∼qθ̃(z|xT )

[
∥x− µϕ̃(z, c)R⊤

lift∥2
2

]
≤ 1

1− ϵ
Ex,cEz∼qθ̃(z|xT )

[
∥(x− µϕ̃(z, c)R⊤

lift)T∥2
2

]
= 1

1− ϵ
Ex,cEz∼qθ̃(z|xT )

[
∥xT − µϕ̃(z, c)∥2

2

]
= 1

1− ϵ
L̃recon(Ũ), (49)

where the inequality follows from the lower bound of the subspace embedding property (39) applied to
v = x− µϕ̃(z, c)R⊤

lift ∈ row(A), and the third equality uses the identity derived in (42).

Let U∗ = arg minU L(U) and Ũ∗ = arg minŨ L̃(Ũ).

Upper Bound on L̃(Ũ∗):

L̃(Ũ∗) ≤ L̃(F (U∗))
= L̃prior(F (U∗)) + λL̃marginal(F (U∗)) + (1 + λ)L̃recon(F (U∗))
≤ Lprior(U∗) + λLmarginal(U∗) + (1 + λ)(1 + ϵ)Lrecon(U∗)
≤ (1 + ϵ)L(U∗), (50)

where the first inequality follows from the optimality of Ũ∗, the second inequality follows from the KL
preservation in (45)–(46) and the reconstruction bound in (48), and the final inequality follows from the
non-negativity of the KL terms (since ϵ > 0).

Lower Bound on L̃(Ũ∗):

L(U∗) ≤ L(G(Ũ∗))
= Lprior(G(Ũ∗)) + λLmarginal(G(Ũ∗)) + (1 + λ)Lrecon(G(Ũ∗))
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≤ L̃prior(Ũ∗) + λL̃marginal(Ũ∗) + 1 + λ

1− ϵ
L̃recon(Ũ∗)

≤ 1
1− ϵ

L̃(Ũ∗), (51)

where the first inequality follows from the optimality of U∗, the second inequality follows from the KL
preservation in (47) and the reconstruction bound in (49), and the final inequality follows from the fact that

1
1−ϵ > 1 and the KL terms are non-negative.

Rearranging (51) yields L̃(Ũ∗) ≥ (1− ϵ)L(U∗). Combining this with (50), we obtain:

(1− ϵ)L(U∗) ≤ L̃(Ũ∗) ≤ (1 + ϵ)L(U∗).

This implies |L̃(Ũ∗)− L(U∗)| ≤ ϵL(U∗), completing the proof with C = 1.

D.4 Proof of Theorem 5.1: Total Convergence with Bounded Approximation Error

D.4.1 Proof of Theorem 5.1, Part A: Convergence on the Sampled Subspace

Instead of re-deriving the semi-smoothness and semi-Lipschitz properties from scratch, we prove that our
adaptive leverage score sampling acts as a structure-preserving transformation. This ensures that the sampled
objective L̃ inherits the theoretical guarantees established for the general VAE architecture in Appendix D.2.

Step 1: Geometry Preservation via Subspace Embedding. First, we establish that the sampling
matrix T preserves the geometric structure of the data manifold. This is the theoretical foundation for why
aggressive dimensionality reduction does not destabilize federated training.
Lemma D.6 (Geometry Preservation via Leverage Score Sampling). Let X ⊂ row(A) be the support of
the scATAC-seq data. Under the event E defined in Lemma 4.1, the sampling matrix T acts as a subspace
embedding. Consequently, for any data points x, y ∈ X , their distance in the sampled space is bounded:

(1− ϵ)∥x− y∥2
2 ≤ ∥xT − yT∥2

2 ≤ (1 + ϵ)∥x− y∥2
2. (52)

This implies that the mapping ψ(x) = xT is a bi-Lipschitz embedding from the original data manifold to the
sampled space with distortion at most κ(ϵ) ≈

√
1 + ϵ.

Proof. This follows directly from Lemma 4.1. Since x, y ∈ row(A), their difference v = x − y also lies in
row(A). Applying the subspace embedding property: (1− ϵ)∥v∥2

2 ≤ ∥vT∥2
2 ≤ (1 + ϵ)∥v∥2

2.

Step 2: Regularity in the Sampled Space. Given the geometry preservation, we formalize the regularity
of the sampled optimization problem.
Assumption D.7 (Regularity in Sampled Space). Let X̃ := {xT : x ∈ X} be the sampled data domain. We
assume the sampled encoder and decoder satisfy the analogues of Assumptions C.4–C.5 on X̃ with constants
L̃enc and L̃dec. Due to the bi-Lipschitz property (Lemma D.6), these constants are related to the original
ones by L̃enc ≈ Lenc and L̃dec ≈ Ldec. Furthermore, we assume the sampled objective L̃ satisfies the (τ̃1, τ̃2)-
non-critical point condition in the region traversed by FedAvg iterates, consistent with the local geometry
analysis in Appendix D.2.1.

Step 3: Convergence Guarantee. We now complete the proof of Part A by invoking the general VAE
properties.

Proof of Part A. The sampled objective function L̃(W̃ ) has the identical functional form as the general VAE
objective analyzed in Appendix D.2. By Theorem D.3 applied to L̃ under Assumption D.7, L̃ satisfies:

1. (ã, b̃)-semi-smoothness with ã = O(L̃enc) and b̃ = O(L̃2
enc);

2. (α̃, β̃)-semi-Lipschitz continuity;
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3. (τ̃1, τ̃2)-non-critical point condition.

Therefore, the sampled optimization problem satisfies all assumptions of the FedAvg convergence theorem
(Theorem D.1). Applying Theorem D.1 to L̃ yields:

E[L̃(Ũ (R))]− L̃(Ũ∗) ≤ (1− λ1)R∆0 + 2λ2, (53)

where λ1, λ2 are defined as in Theorem D.1 using the sampled constants. This proves that FL-Sailer converges
linearly to the optimal solution in the sampled subspace.

D.4.2 Proof of Theorem 5.1, Part B

Proof of Theorem 5.1, Part B. We prove the total convergence guarantee by decomposing the error into
optimization and sampling components. Let U∗ = arg minU L(U) denote the optimal parameters in the
original d-dimensional space, and Ũ∗ = arg minŨ L̃(Ũ) denote the optimal parameters in the sampled s-
dimensional space.

By decomposing the total error using the triangle inequality, we have

E[L̃(Ũ (R))]− L(U∗) = E[L̃(Ũ (R))]− L̃(Ũ∗)︸ ︷︷ ︸
optimization error

+ L̃(Ũ∗)− L(U∗)︸ ︷︷ ︸
sampling approximation error

≤ (1− λ1)R∆0 + 2λ2 + C · ϵ · L(U∗)

where the equality follows from adding and subtracting L̃(Ũ∗). The desired inequality follows immediately
from the result in Part A as well as Lemma D.5. This completes the proof.

E Dataset

This study utilizes one simulated and three real-world scATAC-seq datasets to comprehensively evaluate
our proposed framework. These datasets represent a range of complexities, dimensionalities, and biological
contexts.

Simulated scATAC-seq Dataset The simulated scATAC-seq datasets were generated using SCAN-
ATAC-sim Chen et al. (2021b), which efficiently down-samples bulk ATAC-seq profiles from ENCODE cell
lines to create single-cell data with known ground truth labels. The simulation incorporates key parameters
that reflect real experimental variations: signal-to-noise ratio (SNR), controlling the percentage of reads
in true peak regions (ranging from 0.4 to 0.8), and sequencing depth, determining the average number of
fragments per cell (ranging from 3000 to 8000). We simulated data for five distinct cell types from the
hematopoietic system: Common Myeloid Progenitors (CMP), and their differentiated progeny Monocytes
(MONO), Neutrophils (NEU), Megakaryocytes (MEGA), and Erythroid lineage cells (ERY), using bulk pro-
files from ENCODE. The resulting binary peak-by-cell matrix exhibits 92% sparsity across 90,635 features,
capturing the inherent sparsity and high dimensionality characteristic of real scATAC-seq data. This sim-
ulated dataset provides an ideal benchmark for method evaluation as it offers ground truth labels while
maintaining the technical complexities observed in experimental scATAC-seq data.

Brain Prefrontal Cortex (PFC) Dataset The Brain PFC dataset Xu et al. (2022) provides a challeng-
ing real-world test case from complex tissue. It consists of 21,045 single-cell chromatin accessibility profiles
from post-mortem human prefrontal cortex (PFC) tissue, aggregated from three different donors. After
standard processing and Harmony-based batch correction, the dataset comprises an ultra-high-dimensional
feature space of 127,219 genomic regions with approximately 95% sparsity. The dataset encompasses nine
distinct cell types, including major neuronal and glial classes. Its key characteristic for our evaluation is that
these cell populations form distinct and well-separated clusters. This clear separation makes it an ideal case
for validating a method’s fundamental ability to correctly identify discrete cell identities in a heterogeneous
environment before tackling more complex scenarios.
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PsychENCODE Dataset The PsychENCODE dataset Emani et al. (2024) is a large-scale scATAC-seq
study of human post-mortem prefrontal cortex tissue, containing 96,673 cells profiled across an ultra-high-
dimensional feature space of 423,443 genomic regions, with sparsity around 99%. The dataset captures
the full cellular diversity of the brain, including major neuronal, glial, vascular, and immune cells. The
chromatin accessibility patterns show characteristic scATAC-seq sparsity, with a right-skewed distribution of
accessible regions per cell. With its massive feature dimension and complex cellular heterogeneity, this brain
cell atlas serves as a critical benchmark for testing the scalability and robustness of computational methods
in extreme-dimensional settings.

10x Genomics PBMC Dataset The PBMC (Peripheral Blood Mononuclear Cells) dataset is a compre-
hensive single-cell chromatin accessibility atlas from 10x Genomics, containing 11,493 cells profiled across
108,344 genomic regions, with sparsity around 93%. It captures 18 distinct immune cell populations, includ-
ing numerous subtypes of T cells, B cells, and monocytes. Unlike the brain datasets, PBMC populations
represent a continuous developmental hierarchy with transitional states between cell types. This results
in less distinct cluster boundaries but biologically meaningful proximity between related cell populations,
making it an ideal test for methods that must preserve both local and global structure in the learned repre-
sentations.

F Additional Experiment Details and Configurations

This appendix provides supplementary details for key experiments presented in the main text, focusing on
the specific configurations and parameters that were omitted for brevity.

F.1 Details for Confounded Heterogeneity Experiment

This experiment simulates a challenging federated scenario where each client’s technical noise (SNR) is
systematically correlated with its biological signal (cell-type distribution), creating a deliberately confounded,
non-IID data partition. The configuration across N = 5 clients is detailed in Table 5, where each client has
a unique SNR and a unique, skewed distribution over K = 5 cell types (MONO, NEU, CMP, MEGA, ERY).
It directly tests the model’s core capability to disentangle biological identity from client-specific technical
artifacts.

Table 5: Experimental setup for confounded heterogeneity analysis in federated learning. Each
client has a unique signal-to-noise ratio (SNR) and distinct cell-type distribution, creating correlated
technical-biological heterogeneity.

Cell Type Distribution (cells)
Client SNR MONO NEU CMP MEGA ERY

Client 1 0.4 5,000 4,000 3,000 2,000 1,000
Client 2 0.5 4,000 3,000 2,000 1,000 5,000
Client 3 0.6 3,000 2,000 1,000 5,000 4,000
Client 4 0.7 2,000 1,000 5,000 4,000 3,000
Client 5 0.8 1,000 5,000 4,000 3,000 2,000

F.2 Details for Extreme Class Imbalance Experiment

To evaluate FL-Sailer’s resilience against the “minority class collapse” problem common in distributed learn-
ing, we designed a synthetic dataset exhibiting severe class imbalance, mirroring real-world hematopoietic
differentiation hierarchies. In this setting, abundant differentiated cells often dominate the gradient updates,
potentially erasing the signal of rare progenitor populations.

Dataset Configuration. We constructed a dataset comprising 23,500 cells with a 16-fold imbalance
between the majority and minority classes. The population distribution is detailed in Table 6. The Common
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Myeloid Progenitor (CMP) population (500 cells, ≈2.1%) serves as the critical “stress test.” Biologically,
CMPs are the upstream progenitors that give rise to the four differentiated lineages (MONO, NEU, MEGA,
ERY). Consequently, the model’s ability to distinguish CMPs from their progeny is not merely a classification
task but a test of its ability to preserve developmental structure amidst statistical noise.

Experimental Protocol. We evaluated this imbalanced configuration across three distinct Signal-to-Noise
Ratios (SNR ∈ {0.4, 0.6, 0.8}) to decouple the effects of sparsity from class imbalance. The data was parti-
tioned across N = 5 clients. This setup rigorously tests whether the global model aggregation in FL-Sailer
can preserve rare signals that might be locally insignificant or statistically drowned out by majority classes
during local training.

Table 6: Cell population statistics for the extreme class imbalance experiment. The dataset
simulates a realistic bone marrow environment where differentiated cells vastly outnumber progenitors.

Cell Type Biological Role Count Proportion Imbalance Ratio (vs CMP)
MONO Monocytes (Differentiated) 8,000 34.0% 16.0×
NEU Neutrophils (Differentiated) 5,000 21.3% 10.0×
MEGA Megakaryocytes (Differentiated) 5,000 21.3% 10.0×
ERY Erythroid (Differentiated) 5,000 21.3% 10.0×
CMP Progenitor (Rare) 500 2.1% 1.0×
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