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Abstract

Model ensembling is a widely adopted technique for improving the robustness of convolu-
tional neural network (CNN) classifiers against distribution shifts. This method involves
either averaging the predictions of multiple models or combining their weights. However,
it comes with considerable computational overhead, as it requires training multiple net-
works. Recently, fine-tuning with very high dropout rates at the penultimate layer has
been shown to mimic many benefits of ensembling without requiring multiple training runs.
However, a performance gap persists, likely due to the limited regularization applied solely
at the final layer of CNNs. In this paper, we present MixFilter, a novel dropout strategy
that is designed for fine-tuning convolutional neural networks that leverage rich pre-trained
representations for domain generalization. MixFilter enhances functional diversity across
subnetworks by stochastically mixing convolutional filters from all the layers of fine-tuned
and pre-trained models. Our experimental results indicate that on five domain generaliza-
tion benchmarks—PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet—MixFilter
achieves out-of-domain accuracy comparable to ensemble-based approaches while avoid-
ing additional inference or training overhead. Anonymized source code is available at
https://anonymous.4open.science/r/MixFilter-6EEE.

1 Introduction

Convolutional neural networks (CNNs) LeCun et al. (1989) have revolutionized image classification, leading
to numerous breakthroughs Krizhevsky et al. (2017); Szegedy et al. (2015); He et al. (2016). However, their
performance can degrade significantly when there is a substantial distribution shift between the training and
test data (Koh et al., 2021). To address this issue, domain generalization (DG) aims to develop methods
that train models on a limited number of source domains and evaluate them on distinct, unseen domains
(Zhou et al., 2022).

Among state-of-the-art DG techniques, ensembling (Lakshminarayanan et al., 2017) and weight averaging
(Wortsman et al., 2022a) stand out in terms of their performance on diverse DG benchmarks under fair
evaluation protocols in realistic settings (Gulrajani & Lopez-Paz, 2020; Rame et al., 2022; Arpit et al., 2022).
Ensembling combines predictions from multiple models, whereas weight averaging merges the parameters of
several models into a single one before making predictions. These approaches can significantly outperform
other DG methods by leveraging the diversity among multiple models. However, achieving such outstanding
performance necessitates numerous training sessions with varied hyperparameters and initializations. This
requirement can become prohibitively expensive, especially when dealing with large-scale datasets.

An effective yet straightforward method to enhance the generalization of a model is deactivating some neurons
during training, as demonstrated by Dropout (Srivastava et al., 2014). Dropout acts as an implicit ensemble
by only updating sparse subnetworks during training. Despite its efficacy, Dropout has two significant
limitations. First, randomly dropping features works well for fully connected layers but is less effective for
convolutional layers due to the spatial correlations between features. This spatial correlation still allows
substantial input information to propagate to the next layer, diminishing the regularization effect. Second,
a powerful pre-trained model is crucial for the success of DG methods (Wiles et al., 2021; Koh et al.,
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2021), and Dropout does not address the integration of such models. To overcome these issues, structured
variants of Dropout, such as SpatialDropout (Tompson et al., 2015) and DropBlock (Ghiasi et al., 2018),
have been introduced to better regularize convolutional networks by focusing on spatially correlated features.
Additionally, Mixout (Lee et al., 2019) proposes a stochastic blending of MLP parameters from fine-tuned
and pre-trained models, enhancing the use of pre-trained networks. However, no approach in DG effectively
addresses both drawbacks simultaneously for CNNs.

In this paper, we present MixFilter, a novel Dropout strategy that enhances Standard Dropout in CNNs for
out-of-domain settings by adhering to three main principles. 1⃝ MixFilter incorporates pre-trained knowledge
into the dropout process by stochastically blending filters from both fine-tuned and pre-trained models. 2⃝
The choice of working on filters rather than relying on random activation, as in standard dropout, enables
effective information regularization within the CNN structure. 3⃝ Blending filters in the weight space, rather
than the activation space, makes MixFilter computationally more efficient. MixFilter’s effectiveness stems
from creating an implicit ensemble through numerous subnetworks with extensive weight sharing. Unlike
Standard Dropout, these subnetworks are not sparse and heavily rely on pre-trained weights, facilitating
knowledge transfer to the target task without overfitting. Furthermore, unlike traditional ensemble methods
that require training multiple models, MixFilter enhances network robustness within a single training session.

Our main contributions can be summarized as follows.

1. We identify three key principles that enable Standard Dropout on CNNs to achieve ensemble-level
performance in the DG setting with a single training run. Based on these principles, we introduce
MixFilter, a pre-trained-aware Dropout variant that enhances CNN robustness against distribution
shifts.

2. Through numerous ablation studies, our design choices are validated and underscore the advantages
of MixFilter compared to other dropout variants.

3. Empirical results indicate that, on average, MixFilter achieves out-of-domain accuracy comparable
to ensemble and weight averaging methods on five DG benchmarks from DomainBed, all without
incurring any additional inference or training overhead.

2 Related Work

2.1 Dropout

Dropout (Srivastava et al., 2014) is a regularization method where, during training, a random subset of
neuron activation is set to zero, effectively deactivating them. This introduces noise into the neural network,
preventing overfitting by ensuring each training sample is processed by a different sub-network. All neurons
are active during inference, but their outputs are scaled to match the training conditions. This process
can be seen as training an implicit ensemble of many sub-networks, improving the model’s generalization.
Dropout has inspired various techniques to inject noise into neural networks (Ferianc et al., 2024) by randomly
deactivating entire layers (Huang et al., 2016; Larsson et al., 2016), channels (Pan et al., 2020; Tompson et al.,
2015), neuron connections (Wan et al., 2013), or contiguous regions of a feature map (Ghiasi et al., 2018),
all aimed at preventing overfitting by introducing randomness. These methods typically apply Dropout
during training from scratch. However, using Dropout directly in pre-trained models can disrupt learned
representations, making the pre-trained weights less effective (Zhang & Bottou, 2024). Mixout (Lee et al.,
2019) addresses this for MLPs by stochastically mixing pre-trained and fine-tuned parameters. For CNNs,
where structured noise is more effective, our method, MixFilter, extends this idea by mixing entire filters
from pre-trained and fine-tuned models. This allows for retaining pre-trained features while adapting to new
tasks without losing the benefits of pre-training.

2.2 Domain Generalization

State-of-the-art approaches to DG can be broadly categorized into three main strategies: (1) regularization
of feature and predictor, (2) data augmentation, and (3) leveraging pre-trained models.
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Regularization of feature and predictor. DANN (Ganin et al., 2016) utilizes adversarial networks to
ensure features from different domains are statistically indistinguishable. This foundational work has led to
various other methods that apply regularization to the feature space such as minimizing the maximum mean
discrepancy (Li et al., 2018a), invariance of the conditional distribution (Li et al., 2018b; Albuquerque et al.,
2019), and invariance of the covariance matrix of the feature distribution (Sun & Saenko, 2016). Instead of
regularizing the feature space, techniques like IRM (Arjovsky et al., 2019) enforce the same optimal classifier
across different domains. Fish (Shi et al., 2021) and IGA (Koyama & Yamaguchi, 2020), introduce gradient
alignment constraints to ensure consistency across training environments. GroupDRO (Sagawa et al., 2019)
addresses DG by focusing on minimizing the worst-case training loss and prioritizing more challenging domain
samples during training. Meta-learning approaches, as explored in Bui et al. (2021), adapt model parameters
to new domains during training. Despite these innovations, achieving true invariance is often challenging and
can be overly restrictive (Zhao et al., 2019). The effectiveness of these regularization techniques is mixed,
as evidenced by the strong performance of Empirical Risk Minimization (ERM) (Gulrajani & Lopez-Paz,
2020), suggesting that some regularizations may be either too strong to optimize reliably or too weak to
meet their objectives (Zhang et al., 2022).

Data augmentation. Data augmentation is another powerful strategy to enhance DG by expanding the
diversity of the training dataset. Techniques such as RandAugment (Cubuk et al., 2020), TrivialAugment
(Müller & Hutter, 2021), AugMix (Hendrycks et al., 2019), and MixUp (Zhang et al., 2017) create robust
models by introducing variability in the training data. Beyond heuristic augmentations, some methods
leverage domain meta-data to learn challenging and diverse transformations (Zhou et al., 2020; Yan et al.,
2020; Aminbeidokhti et al., 2024) or synthesize novel domains through style mixing (Zhou et al., 2021) or
generative models (Goel et al., 2020).

Leveraging pre-trained models. Several recent approaches aim to leverage generalizable features from a
model pre-trained on large-scale data. Adapting these models without forgetting their broad and versatile
representations is key to achieving generalization in downstream tasks. Model soups (Wortsman et al.,
2022a) and DiWA (Rame et al., 2022) use weight averaging to combine the properties of diverse fine-tuned
networks. (Cha et al., 2021; Arpit et al., 2022; Wortsman et al., 2022b) maintain a running average of
model parameters during training, effectively creating an ensemble of the initial and fine-tuned models. To
prevent feature distortion, Kumar et al. (2022) propose pre-training a linear probe before fine-tuning the
model backbone. MIRO (Cha et al., 2022) maximizes the mutual information in feature space between the
fine-tuned and pre-trained networks.

Recent research (Zhang & Bottou, 2024) shows that applying Standard Dropout within a nonlinear deep
network introduces complex noise patterns, which can hinder the development of internal representations and
stall the optimization process. To address this, they employed a very high Dropout rate at the penultimate
layer during the fine-tuning of large pre-trained models, effectively narrowing the performance gap between
single-model training and ensemble methods. However, our experiments indicate that using MixFilter not
only enables Dropout in a nonlinear deep network but also significantly boosts generalization, often matching
or surpassing the performance of ensemble-based techniques.

3 MixFilter: Pre-train Aware Structured Dropout

We aim to adapt the Dropout mechanism to enhance its suitability for DG tasks. To achieve this, we focus
on three key principles: 1⃝ leveraging pre-trained knowledge through mixing fine-tuned and pre-trained acti-
vations, 2⃝ effective information regularization through structured masking, and 3⃝ computational efficiency
by switching to weight space. This section reviews the Standard Dropout mechanism and then elaborates on
the design choices that align with each of these principles.

Standard Dropout. Consider a convolutional layer in a neural network. Let X ∈ RH×W ×Cin and
Y ∈ RH′×W ′×Cout represent the input and the output (activations) tensors where H, W, H ′, W ′ show the
spatial dimensions and Cin, Cout demonstrate the number of channels. Let W ∈ Rk×k×Cin×Cout represent
convolutional filter weights with kernel size of k. The activations Y are computed by convolving the weight
matrix W over the input X, followed by applying a non-linear activation function a, such as ReLU. During
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Figure 1: Components of MixFilter. In this diagram, pre-trained and fine-tuned information is represented
in green and blue, respectively. Squares depict activations, while circles represent convolutional filters. (a)
Standard Dropout is applied to the activation space. (b) Include pre-trained knowledge with a mix of pre-
trained and fine-tuned activations. (c) Structured masking to enhance the regularization of information
propagation in CNNs. (d) Transition to the weight space to ensure computational efficiency.
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training, the Standard Dropout technique randomly retains each element of the layer’s output with proba-
bility p. Elements not retained are set to zero with a probability of 1 − p. In practice, an inverted version of
Dropout is used to maintain the same expected output scale, where the activations are scaled by 1

1−p during
training. This operation can be expressed mathematically as:

Y = a(W ∗ X) ⊙ M

1 − p
, (1)

where ⊙ denotes element-wise product, ∗ denotes convolution operation, and M is a binary mask matrix of
the same size as Y with each element drawn independently from the Bernoulli distribution with a mean equal
to p. Normally we tune p using the validation set. In Figure 1a, you can find the visualization of Standard
Dropout on activations of a convolutional layer. In the figure, we drop the scaling factors for simplifications.

Leveraging pre-trained knowledge through mixing fine-tuned and pre-trained activations. Pre-
training on a large dataset is widely recognized as a crucial technique to mitigate performance degradation
caused by distribution shifts across different datasets (Wiles et al., 2021). However, the Standard Dropout
mechanism does not inherently utilize the valuable information embedded in pre-trained models. To ad-
dress this limitation, a straightforward approach is to replace the dropped activations with corresponding
activations derived from a pre-trained model, instead of setting them to zero (Lee et al., 2019). This modifi-
cation enables us to infuse the network with pre-trained knowledge during Dropout. The Standard Dropout
operation can be redefined to incorporate this pre-trained information as follows:

Y = a(Wpre ∗ X) ⊙ (I − M) + a(Wft ∗ X) ⊙ M − a(Wpre ∗ X) · p

1 − p
, (2)

where I is the identity vector and Wft and Wpre denotes the fine-tuned and pre-trained parameters respec-
tively. In the equation 2 there are two main differences compared to Standard Dropout in equation 1. The
red part handles the pre-trained knowledge infusion and the blue part ensures that the expectation of the
output during training and inference stays the same. This process is illustrated in Figure 1b. As before, the
figure is simplified by dropping scaling factors.

Effective information regularization through structured masking. While randomly dropping fea-
tures, as in Standard Dropout, can be effective for fully connected layers, its efficacy diminishes when applied
to convolutional layers due to the strong spatial correlations among features. These correlations allow signif-
icant information about the input to propagate through the network even when some features are masked,
which can lead to overfitting. This highlights the need for a more structured and spatially-aware approach
for masking to effectively regularize convolutional networks. To address this issue in convolutional layers, two
effective methods are SpatialDropout (Tompson et al., 2015) and DropBlock (Ghiasi et al., 2018). Spatial-
Dropout randomly drops entire channels from a feature map, while DropBlock removes a contiguous region
of the feature map. As we will explain below, we opt for SpatialDropout because it is computationally more
efficient to integrate with pre-trained models. Figure 1c illustrates the impact of structured masking on a
sample feature map, showcasing how this strategy disrupts the spatial information to regularize the network.

Computational efficiency by switching to weight space. Ensemble and weight averaging methods
have shown superior results in DG compared to regularization and data augmentation-based techniques
(Rame et al., 2022; Arpit et al., 2022). However, these methods come with significant training overheads.
Creating an effective ensemble requires training multiple models initialized with different hyper-parameters
and weights, leading to considerable computational demands. Instead, we aim to use a method that does not
add computation to training and inference. Following the standard formulation, using pre-trained knowledge
in Dropout requires forward passes through both the pre-trained and fine-tuned models to obtain activations,
which doubles the training computation. We overcome this by applying Dropout to the weight connections
instead of the activations. This modification allows us to implement Dropout before the forward pass,
eliminating the need to run the pre-trained and fine-tuned models separately. By integrating Dropout
directly into the weight connections, we streamline the process, enhancing efficiency. This approach can be
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expressed mathematically in terms of the weights as follows:

W̄ft = Wpre ⊙ (I − M) + Wft ⊙ M − Wpre · p

1 − p
(3)

where W̄ft is the new fine-tuned parameters after mixing the previous one with pre-trained weights. Mix-
Filter can be viewed as a pre-trained-aware, structured variant of Dropout which stochastically mixes the
convolutional filters from fine-tuned and pre-trained models. While it shares similarities with Mixout (Lee
et al., 2019), which was initially developed for NLP tasks and primarily used in MLP layers, MixFilter
is tailored specifically for CNNs. This approach is particularly designed to address the challenges of DG
tasks in these models. Figure 1 shows the overview of MixFilter. In section 4.2, different design choices are
explored for MixFilter to validate of our proposed method wrt other variants.

4 Experiments

Datatsets. Following DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), we evaluate our method on
five diverse datasets. PACS (Li et al., 2017) is a 7-way object classification task with 4 domains and 9,991
samples. VLCS (Fang et al., 2013) is a 5-way classification task with 4 domains and 10,729 samples. This
dataset mostly contains real photos. The distribution shifts are subtle and simulate real-life scenarios well.
OfficeHome (Venkateswara et al., 2017) is a 65-way classification task depicting everyday objects with 4
domains and a total of 15,588 samples. TerraIncognita (Beery et al., 2018) is a 10-way classification problem
of animals in wildlife cameras, where the 4 domains are different locations. There are 24,788 samples. This
represents a realistic use case where generalization is indeed critical. DomainNet (Peng et al., 2019) is a
345-way object classification task with 6 domains. With a total of 586,575 samples, DomainNet is larger
than most of the other evaluated datasets in both samples and classes.

Evaluation Protocol. We report out-of-domain accuracies for each domain and their average using a
leave-one-out cross-validation method. In this approach, each domain is sequentially used as the target (test)
domain, while the remaining domains are utilized as source (training) domains. Our evaluation protocol
adheres closely to the DomainBed framework for training and evaluation (Gulrajani & Lopez-Paz, 2020),
with one notable modification: we employ the "IMAGENET1K_V2" variant from PyTorch (Paszke et al.,
2019) as the pre-trained weights for ResNet50 backbone. This selection is motivated by the observation that
robust pre-trained models can significantly outperform more sophisticated fine-tuning approaches (Zhang &
Bottou, 2024; Wiles et al., 2021). We use Adam (Kingma & Ba, 2014) optimizer with a mini-batch containing
all domains and 32 examples per domain. For the model hyperparameters, such as learning rate, dropout
rate, and weight decay, we use the same configuration as proposed in Cha et al. (2021), as detailed in the
Appendix B. We follow Cha et al. (2021) and train models for 15000 steps on DomainNet and 5000 steps for
other datasets, corresponding to a variable number of epochs dependent on dataset size. Every experiment
is repeated three times with different seeds. We leave 20% of source domain data for validation. We use
training-domain validation for the model selection, in which, for each random seed, we choose the model,
maximizing the accuracy of the validation set.

Baselines. In addition to Empirical Risk Minimization (ERM) (Vapnik, 1991), we include CORAL (Sun
& Saenko, 2016) which is the best approach among domain invariance learning methods. We evaluate
MixFilter against ensemble (ENS) (Lakshminarayanan et al., 2017) and weight averaging (DiWA) methods,
which typically outperform ERM and other DG baselines but require many models to train (Cha et al., 2021;
Rame et al., 2022). We also include model averaging (MA) variants of ERM and MixFilter which average
checkpoints collected during a single fine-tuning process. Recently, Zhang & Bottou (2024) demonstrated
that employing a significantly large dropout rate on the penultimate layer during fine-tuning markedly
enhances the performance of deep neural networks, achieving results comparable to ensemble-based methods,
particularly in out-of-distribution scenarios. In their study, they employ SGD optimizer as opposed to Adam
with twice as many iterations per dataset compared to the DomainBed default configuration. We re-run
their experiments under the same conditions and configurations, reporting the results as the "Large Dropout"
method in Table 1. For each domain within a dataset, we first fine-tune 16 models using a grid search to find

6



Under review as submission to TMLR

Method #Train #Inf PACS VLCS OfficeHome TerraInc DomainNet Avg.
CORAL (Sun & Saenko, 2016) 1 1 87.40±0.67 80.01±0.52 71.23±0.34 50.61±1.48 47.33±0.29 67.32±0.66
Large Dropout (Zhang & Bottou, 2024) 1 1 87.14±0.62 79.31±0.43 70.66±0.38 52.27±1.55 47.36±0.17 67.35±0.63
ERM (Vapnik, 1991) 1 1 87.66±0.71 79.64±0.43 70.46±0.70 52.62±2.33 48.48±0.48 67.77±0.93
ERM (MA) (Arpit et al., 2022) 1 1 88.25±0.38 79.86±0.32 71.97±0.16 54.59±0.85 49.05±0.06 68.47±0.35
ENS (Lakshminarayanan et al., 2017) 18 18 89.05 80.03 71.77 54.10 49.11 68.80
DiWA (Rame et al., 2022) 18 1 89.21 79.83 71.74 55.68 48.40 68.96
MixFilter 1 1 87.94±0.87 79.40±0.39 72.14±0.30 58.42±0.66 47.69±0.26 69.12±0.50
MixFilter (MA) 1 1 88.25±0.22 79.50±0.23 72.66±0.24 58.49±0.56 48.89±0.05 69.56±0.26

Table 1: Out-of-domain accuracy on five DG benchmarks from DomainBed. We show the number of models
required for each method during training and inference. Average accuracy and standard error are reported
from three trials. Results Per domain are shown in Appendix C.

Figure 2: Comparison of MixFilter with Mixout on domains within the OfficeHome dataset, with ERM
included as a reference. The figures illustrate out-of-domain accuracy across varying drop/mix probabilities
for each method. We exclude SpatialDropout from the figure since it consistently underperformed relative
to the ERM baseline and diverged when the drop probability exceeded 0.1. Mixout occasionally surpassed
ERM performance but still did not match the performance of MixFilter across all tested domains.

the best hyperparameters for ERM, and then search for the optimal choice of parameter for each method.
To evaluate ensemble-based methods, we use all of the 16 models in the hyperparameter search as the
model pools. After hyperparameters tuning, we run each method on 2 more seeds and report the average
performance.

4.1 Main Results

Table 1 presents a comparative analysis of MixFilter’s performance against several other methods across five
DG benchmarks for a classification task. Detailed results for each dataset and domain are available in the
Appendix. The table shows that MixFilter, along with its moving average variant, often matches the perfor-
mance of ensemble-based methods. Notably, on the TerraIncognita dataset, MixFilter achieves a significant
performance lead over other baselines, all without the need for multiple training runs. TerraIncognita is
recognized within the DomainBed benchmark suite for its challenging nature, featuring both covariate and
label shifts. This superior performance suggests that MixFilter is adept at handling complex distribution
shifts, showcasing its robustness and reliability in varied conditions.

4.2 Ablations Studies

In this section, experiments are performed on the OfficeHome dataset to gain a deeper understanding of the
functionality and effectiveness of MixFilter. Unless stated otherwise, the experimental setups are consistent
with those described in Section 4.

Comparison with Dropout variants. To evaluate the effectiveness of MixFilter, we compared it against
SpatialDropout and Mixout applying to all convolutional layers within the network. Our findings are illus-
trated in Figure 2, which presents the performance across all domains of the OfficeHome dataset. These
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Figure 3: The optimal placement of MixFilter for the OfficeHome dataset. To assess the benefits across
various levels of representation for DG tasks, we apply MixFilter to early, late, and all convolutional layers.
Utilizing MixFilter across all convolutional layers not only yields superior performance compared to other
configurations but also eliminates the need for additional hyper-parameters, reducing the overall complexity
of the approach.

MA wdecay(Wpre) LP-FT ERM MixFilter
69.59 71.80

✓ 71.61 72.30
✓ 69.62 71.54

✓ 69.68 71.06
✓ ✓ ✓ 71.81 72.39

Table 2: Impact of various fine-tuning techniques on MixFilter and ERM. MA refers to model averaging and
LP-FT is a two-stage fine-tuning where linear probing initializes the classifier head for the full fine-tuning
stage. The last two columns show the out-of-domain accuracy of each method on the OfficeHome dataset
across all domains. Unlike ERM, these techniques generally do not enhance MixFilter’s performance, except
for MA. The improvement in MA can likely be attributed to its more stable optimization process.

comparisons are conducted using the optimal hyper-parameters for ERM, as discussed in Section 4, and
a varying probability for dropping or mixing, ranging from 0.1 to 0.9 in increments of 0.1. We omitted
SpatialDropout from the figure because its performance consistently falls below the ERM baseline across all
domains. Additionally, increasing the drop rate beyond 0.1 leads to training instability, frequently resulting
in model divergence. Mixout, when applied with an appropriate mixing probability, surpasses the baseline
performance. However, despite these enhancements, MixFilter consistently outperformed Mixout, delivering
superior results across all domains.

Regarding the optimal mix rate, Mixout and MixFilter both benefit from higher mixing rates. However,
Mixout, which lacks a structured approach in its masking process, does not gain as much advantage from
increased mixing rates compared to MixFilter. Additionally, applying a mixing rate exceeding 0.8 tends to
disable large portions of the network during the backward pass, leading to undertraining.

Comparison with popular fine-tuning techniques. Table 2 highlights the impact of MixFilter when
combined with various fine-tuning techniques that use representations learned by pre-trained models to
enhance the ability of fine-tuned models. It also compares this setup with the same for the ERM baseline.
Notable fine-tuning techniques include (LP-FT) which involves tuning only the classifier head before fine-
tuning the entire network (Kumar et al., 2022), Model Averaging (MA), which averages weights during
training to improve robustness (Cha et al., 2021; Arpit et al., 2022), and weight decay directed toward the
pre-trained model’s parameters, referred to as wdecay (Wpre) in the table (Xuhong et al., 2018).
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Sampling A C P R Avg.
Bernoulli 71.06 54.20 79.99 83.30 72.14
Gaussian 71.15 53.35 80.02 83.41 71.98

Table 3: Comparison of out-of-domain accuracy with Bernoulli and Gaussian distribution for sampling the
mixing probability across domains from the OfficeHome dataset.

Method A C P R Avg.
Weight Space 71.06 54.20 79.99 83.30 72.14
Activation Space 70.91 54.38 79.95 83.59 72.20

Table 4: Comparison of out-domain accuracy with activation and weight space MixFilter across domains
from OfficeHome dataset.

Previous studies (Kumar et al., 2022; Noci et al., 2024) show that using a smaller learning rate for the classifier
head or tuning it separately can enhance OOD performance. This approach is beneficial because, during fine-
tuning, it prevents the lower layers of the neural network from changing too much, thus preserving the quality
of the pre-trained features. Contrary to this, we observe that LP-FT does not enhance the performance of
MixFilter compared to ERM. We believe this is because MixFilter inherently mitigates feature distortion
by effectively freezing a significant portion of the pre-trained features during each iteration, allowing for
controlled and focused fine-tuning of the classifier head.

Penalizes deviations from the pre-trained weights using weight decay, is a widely-used technique to boost
performance in transfer learning (Miceli Barone et al., 2017; Kirkpatrick et al., 2017). However, following the
same virtue as in (Lee et al., 2019), MixFilter can be interpreted as applying an adaptive L2-penalty towards
the pre-trained weights. Table 2 illustrates that while applying wdecay (Wpre) improves the performance of
ERM, it still falls short compared to the effectiveness of MixFilter. We attribute this to the static nature
of wdecay(Wpre), where the fixed penalty coefficient may be too rigid. In contrast, MixFilter’s adaptive
approach allows for a more nuanced adjustment, effectively balancing the preservation of pre-trained weights
with the need for fine-tuning.

Finally, averaging model checkpoints along the optimization trajectory is a well-established technique to
mitigate stochastic optimization noise and enhance training efficiency. This approach generally smooths out
fluctuations, leading to more stable and robust performance (Polyak & Juditsky, 1992; Izmailov et al., 2018).
In our experiments, we observe that applying MA complements MixFilter effectively.

Multiplicative Gaussian Noise. MixFilter operates by mixing pre-trained and fine-tuned weights ac-
cording to Bernoulli-distributed random variables, where each variable is 1 with probability p and 0 otherwise.
This approach can be generalized by using other distributions, such as the Gaussian distribution, to generate
the mixing variables. When applying Gaussian distribution, the method effectively perturbs the weights of
the pre-trained and fine-tuned models with Gaussian noise, having a zero mean and a standard deviation
equal to the weights’ magnitude. This introduces variability in the weight mixing process, potentially en-
hancing the robustness of the model. Table 3 shows that while Gaussian sampling slightly outperforms in
certain domains, on average, it is less effective compared to Bernoulli sampling.

Comparison with activation space MixFilter. While activation-based Dropout offers benefits such as
greater flexibility in the masking strategy and the ability to apply masks on a per-sample basis rather than
per mini-batch, its efficiency is limited to scenarios where activations are replaced with zeros. In contrast
to weight space Dropout, leveraging pre-trained knowledge with activation-based Dropout necessitates an
additional forward pass using pre-trained weights to obtain the corresponding feature maps. We set aside this
computational overhead for this ablation study to directly compare the two approaches. As shown in Table
4, the advantage of activation-based MixFilter is marginal when compared to weight-based alternatives.
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Optimal placement of MixFilter. In this experiment, we explore the optimal placement of MixFilter
within the ResNet architecture. In deep neural networks, earlier layers capture more general features, while
deeper layers focus on task-specific features. To determine which features are more crucial for DG, we apply
MixFilter to convolutional layers at three different levels, referred to in Figure 3 as early layers, late layers,
and across all layers.

Figure 3 shows that applying MixFilter across all convolutional layers outperforms applying it selectively.
This superior performance can be attributed to the diverse characteristics of different domains. Although
MixFilter on early layers generally yields better results than on late layers, certain domains, like "Real" which
closely resembles the pre-trained dataset, benefit more from MixFilter applied to late layers. By employing
MixFilter on all convolutional layers, we eliminate the need for nuanced, dataset-specific configurations,
leading to more consistent and robust performance across varied data. It is important to note that while
specific combinations of layer placements might surpass our default approach, they would introduce additional
hyperparameters, complicating the tuning process—a complexity we aim to avoid.

5 Limitations

Although our design for MixFilter primarily drew inspiration from Dropout mechanisms in the activation
space, several successful Dropout operations exist in the depth space of neural networks. Techniques like
StochasticDepth (Huang et al., 2016) and DropPath (Larsson et al., 2016) have provided better results
compared to Standard Dropout, particularly in ultra-deep neural networks. In this paper, we have not
explored these methods as integrating them efficiently with pre-training is not trivial and requires further
investigation.

Previous works have (Zoph et al., 2018; Ghiasi et al., 2018) shown that using a curriculum-based Dropout
approach can enhance final performance. Specifically, starting with a low drop rate and gradually increasing
it throughout training yields better results. While a fixed schedule has proven effective in our work, we believe
that developing a tailored curriculum could further benefit DG tasks. Tasks that deviate significantly from
the pre-training dataset might require a warm-up phase before regularization is applied. We plan to explore
this in future work.

6 Conclusion

In DG benchmarks, ensemble-based methods consistently outperform non-ensemble approaches. This per-
formance disparity is largely due to the richer and more robust representations that ensembles generate.
They capitalize on pre-trained models and the stochastic nature of training to enhance generalization across
different domains. However, these gains come with a cost: realizing the full potential of ensemble methods
typically necessitates training multiple models, each with varying initializations and hyperparameters. This
increased computational demand can be a significant consideration in the training of such models. In this
study, we introduce MixFilter to yield the same performance of ensemble-based models without the need
for multiple-model training. MixFilter makes changes to the Standard Dropout mechanism according to
three core principles. First, recognizing the critical role of pre-trained knowledge in DG, MixFilter enhances
Dropout by integrating this information during the masking process. Second, it adapts the masking strategy
of Standard Dropout to better exploit the convolutional structure. Finally, unlike Standard Dropout which
operates in the activation space, MixFilter optimizes computational efficiency by operating in the weight
space. Through extensive ablation studies, we validate our design decisions and empirically demonstrate that
MixFilter performs comparably with ensemble-based approaches on the DomainBed benchmark, all without
introducing additional inference or training overhead.
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A Appendix

Here, we give additional information to reproduce our work. we provide implementation details and detailed
results in Table 1 in the main manuscript.

B Implementation details

Hyperparameter Search Space

batch size 32
learning rate {1e-5, 3e-5, 5e-5}
ResNet dropout {0.0, 0.1, 0.5}
weight decay {1e-4, 1e-6}
MixFilter mixrate {0.6, 0.7, 0.8, 0.9}

Table 5: Hyperparameters used for all methods in and their respective distributions for grid search.
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The evaluation protocol by Gulrajani & Lopez-Paz (2020) is computationally too expensive, therefore we
use the reduced search space from Cha et al. (2021) for the common hyperparameters. Table 5 summarizes
the hyperparameter search space. We use the same search space for all datasets. To further reduce the
hyperparameter search, we find the optimal one for ERM and then use those to find the best one for each
method.

B.1 Datasets

PACS: Li et al. (2017) is a 7-way object classification task with 4 domains: art, cartoon, photo, and sketch,
with 9, 991 samples.

VLCS: Fang et al. (2013) is a 5-way classification task from 4 domains: Caltech101, LabelMe, SUN09, and
VOC2007. There are 10, 729 samples. This dataset mostly contains real photos. The distribution shifts are
subtle and simulate real-life scenarios well.

OfficeHome: Venkateswara et al. (2017) is a 65-way classification task depicting everyday objects from 4
domains: art, clipart, product, and real, with a total of 15, 588 samples.

TerraIncognita: Beery et al. (2018) is a 10-way classification problem of animals in wildlife cameras, where
the 4 domains are different locations, L100, L38, L43, L46. There are 24, 788 samples. This represents a
realistic use case where generalization is indeed critical.

DomainNet: Peng et al. (2019) is a 345-way object classification task from 6 domains: clipart, infograph,
painting, quickdraw, real, and sketch. With a total of 586, 575 samples, it is larger than most of the other
evaluated datasets in both samples and classes.

C Full Results

In this section, we show detailed results of Table 1 of the main manuscript. Tables 6, 7, 8, 9 10 show full results
on PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet datasets, respectively. The provided tables
summarize the obtained out-of-distribution accuracy for every domain within the five datasets. Standard
deviations are reported with different seeds when possible. To guarantee the comparability of the results,
we followed the same experimental setting as in DomainBed (Gulrajani & Lopez-Paz, 2020).
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Method #Train #Inf A C P S Avg.
Large Dropout 1 1 87.78±1.31 82.68±0.28 98.43±0.15 79.66±0.75 87.14±0.62
ERM 1 1 90.81±0.87 81.68±0.78 98.68±0.26 79.45±0.94 87.66±0.71
CORAL 1 1 89.36±0.76 80.44±0.99 98.58±0.11 81.23±0.82 87.40±0.67
ERM (MA) 1 1 91.68±0.21 82.84±0.20 98.90±0.07 79.57±1.04 88.25±0.38
ENS 18 18 90.85 83.53 98.88 82.95 89.05
DiWA 18 1 92.01 84.01 99.18 81.65 89.21
MixFilter 1 1 89.57±1.23 83.96±0.91 98.85±0.07 79.38±1.26 87.94±0.87
MixFilter (MA) 1 1 91.07±0.14 83.46±0.18 99.15±0.04 79.32±0.50 88.25±0.22

Table 6: Out-of-domain accuracies (%) on PACS.

Method #Train #Inf C L S V Avg.
Large Dropout 1 1 97.76±0.46 64.82±0.35 74.41±0.38 80.25±0.54 79.31±0.43
ERM 1 1 98.06±0.15 64.28±0.49 76.72±0.48 79.48±0.60 79.64±0.43
CORAL 1 1 98.82±0.10 64.94±0.69 76.83±0.77 79.46±0.52 80.01±0.52
DiWA 18 1 98.06 63.67 76.96 89.64 79.83
ERM (MA) 1 1 98.09±0.13 64.11±0.35 77.58±0.28 79.66±0.52 79.86±0.32
ENS 18 18 98.06 64.89 76.28 80.90 80.03
MixFilter 1 1 98.20±0.10 65.68±0.12 73.88±0.55 79.85±0.80 79.40±0.39
MixFilter (MA) 1 1 98.50±0.07 62.85±0.15 74.74±0.16 81.93±0.54 79.50±0.23

Table 7: Out-of-domain accuracies (%) on VLCS.

Method #Train #Inf A C P R Avg.
ERM 1 1 68.95±1.16 52.13±0.67 78.61±0.48 82.14±0.49 70.46±0.70
CORAL 1 1 70.08±0.50 53.20±0.39 78.95±0.29 82.69±0.18 71.23±0.34
Large Dropout 1 1 68.64±0.74 53.30±0.30 78.13±0.43 82.56±0.05 70.66±0.38
DiWA 18 1 70.55 53.64 79.76 83.02 71.74
ENS 18 18 69.77 54.04 79.95 83.33 71.77
ERM (MA) 1 1 71.27±0.24 53.67±0.02 79.50±0.30 83.43±0.10 71.97±0.16

MixFilter 1 1 71.06±0.68 54.20±0.35 79.99±0.11 83.30±0.06 72.14±0.30
MixFilter (MA) 1 1 72.47±0.24 54.81±0.29 79.74±0.24 83.62±0.17 72.66±0.24

Table 8: Out-of-domain accuracies (%) on OfficeHome.

Method #Train #Inf L100 L38 L43 L46 Avg.
ERM 1 1 59.53±2.79 48.93±1.79 61.87±1.57 40.13±3.17 52.62±2.33
CORAL 1 1 58.21±1.94 47.59±1.62 57.65±0.51 38.98±1.84 50.61±1.48
Large Dropout 1 1 61.31±2.79 47.65±1.99 60.71±0.64 39.41±0.77 52.27±1.55
ENS 18 18 63.67 46.44 63.48 42.83 54.10
ERM (MA) 1 1 61.46±1.53 50.10±0.96 63.58±0.29 43.23±0.63 54.59±0.85
DiWA 18 1 62.98 50.44 62.47 46.85 55.68
MixFilter 1 1 65.53±0.49 56.93±1.32 64.27±0.21 46.95±0.64 58.42±0.66
MixFilter (MA) 1 1 63.82±0.50 58.84±0.81 63.70±0.20 47.61±0.73 58.49±0.56

Table 9: Out-of-domain accuracies (%) on TerraIncognita.
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Method #Train #Inf clip info paint quick real sketch Avg.
ERM 1 1 67.09±0.10 25.58±0.32 56.21±0.97 14.85±0.32 69.56±0.52 57.61±0.62 48.48±0.48
CORAL 1 1 66.89±0.20 24.43±0.20 54.50±0.26 13.82±0.27 68.34±0.31 56.02±0.48 47.33±0.29
Large Dropout 1 1 67.04±0.10 25.14±0.28 54.48±0.11 13.37±0.26 68.22±0.15 55.90±0.12 47.36±0.17
DiWA 18 1 66.69 25.15 56.73 14.66 70.40 56.79 48.40
ERM (MA) 1 1 66.99±0.02 26.03±0.05 57.57±0.14 15.16±0.07 70.19±0.06 58.34±0.04 49.05±0.06
ENS 18 18 68.66 25.39 56.99 14.58 71.28 57.74 49.11
MixFilter 1 1 66.78±0.30 24.26±0.21 54.90±0.26 14.24±0.28 69.13±0.18 56.84±0.36 47.69±0.26
MixFilter (MA) 1 1 66.44±0.05 25.86±0.06 57.51±0.08 15.15±0.08 70.04±0.02 58.36±0.03 48.89±0.05

Table 10: Out-of-domain accuracies (%) on DomainNet.
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