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Abstract001

Anomaly detection (AD) is essential in areas002
such as fraud detection, network monitoring,003
and scientific research. However, the diver-004
sity of data modalities and the increasing num-005
ber of specialized AD libraries pose challenges006
for non-expert users who lack in-depth library-007
specific knowledge and advanced programming008
skills. To tackle this, we present AD-AGENT,009
an LLM-driven multi-agent framework that010
turns natural-language instructions into fully011
executable AD pipelines. AD-AGENT coordi-012
nates specialized agents for intent parsing, data013
preparation, library and model selection, doc-014
umentation mining, and iterative code genera-015
tion and debugging. Using a shared short-term016
workspace and a long-term cache, the agents017
integrate popular AD libraries like PyOD, Py-018
GOD, and TSLib into a unified workflow. Ex-019
periments demonstrate that AD-AGENT pro-020
duces reliable scripts and recommends com-021
petitive models across libraries. The system is022
open-sourced to support further research and023
practical applications in AD.024

1 Introduction and Related Work025

Anomaly detection (AD) plays a crucial role in026

a wide range of applications, including fraud de-027

tection (Abdallah et al., 2016), network monitor-028

ing (Sun et al., 2023), action recognition (Li et al.,029

2024b), and medical analysis (Fernando et al.,030

2021). To handle these diverse data types, the031

community has released modality-specific open-032

source libraries that package state-of-the-art mod-033

els and utilities. Although these libraries acceler-034

ate experimentation, each introduces its own data035

formats and APIs, so users must “juggle” incom-036

patible workflows before they can run even base-037

line methods. This learning overhead discourages038

adoption, especially among domain specialists who039

are not software/data engineers. The stakes are040

high: Knight Capital lost USD 440 million in 45041

minutes when an unchecked trading anomaly cas-042

Detect anomalies in cardio.mat.

[Processor] cardio.mat…

[Selector] Select PyOD-VAE…

[Info Miner] Querying doc…

[Generator] Generating code…

[Reviewer] Validating code…

[Generator] Saved code to …

Figure 1: Illustration of AD-AGENT: given a user re-
quest, the multi-agent system coordinates each stage to
generate a runnable pipeline.

caded through its systems (Heusser, 2012), and Tar- 043

get’s 2013 breach has cost more than 200 million 044

(U.S. Senate Committee on Commerce, Science, 045

and Transportation, 2014). These incidents show 046

that small gaps in an AD pipeline can cause major 047

financial or security failures, showing the need for 048

tooling that is both reliable and easy to integrate. 049

Meanwhile, large language models (LLMs) have 050

demonstrated strong capabilities in reasoning (Guo 051

et al., 2025), code generation (Liu et al., 2023), and 052

tool use (Schick et al., 2023). Recent advances in 053

agent-based systems have further enhanced the po- 054

tential of LLMs to automate complex, multi-stage 055

tasks that previously required substantial manual ef- 056

fort (Guan et al., 2023) (see extended related work 057

in Appx. A). This presents a compelling opportu- 058

nity: Can we develop a general-purpose AD plat- 059

form that leverages LLMs and existing libraries to 060

build complete detection pipelines from the natural 061

language intents of non-expert users? 062

To address this, we introduce AD-AGENT– a 063

multigent framework powered by LLMs that auto- 064

mates the construction of AD pipelines from plain 065

language instructions. It decomposes the AD work- 066

flow into specialized agents responsible for user 067

intent interpretation, data processing, library and 068

model selection, knowledge retrieval, code genera- 069

tion and verification, and optional evaluation and 070

tuning. For the memory mechanism, which is the 071
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Figure 2: Flowchart of AD-AGENT. Users input natural language instructions and data from various modalities.
AD-AGENT coordinates multiple LLM-powered agents via short-term and long-term memory to construct anomaly
detection pipelines. Solid arrows represent the default workflow; dashed arrows indicate an optional path that
bypasses web searches when algorithm information is stored in long-term memory.

key component to support agent-environment in-072

teractions (Zhang et al., 2024), we propose two073

memories. The short-term shared memory main-074

tains the context of the current session, enabling075

coordination among agents, while the long-term076

memory serves as a cache to reduce costly queries077

across repeated sessions. By combining special-078

ized agents with structured memory, AD-AGENT079

allows non-expert users to build comprehensive AD080

pipelines across multiple libraries and modalities081

using only natural language, relieving the need for082

library-specific expertise or manual programming.083

Figure 1 provides an illustration of AD-AGENT.084

A survey of prior related LLM-agent work and085

modality-specific AD libraries is provided in Ap-086

pendix A. Our contributions are as follows:087

• Unified multi-modal-library automation. We088

propose the first multi-agent framework that in-089

tegrates multiple domain-specific AD libraries,090

enabling end-to-end, cross-modality pipeline con-091

struction from natural language.092

• Modular, extensible, and long-lifecycle design.093

Loosely coupled agents for reasoning, retrieval,094

and generation enable AD-AGENT to easily in-095

corporate new libraries and tasks with minimal096

changes, supporting a long-lasting ecosystem.097

• Accessible to non-experts. AD-AGENT con-098

verts natural language instructions into exe-099

cutable scripts and supports diverse data types,100

enabling non-expert users without programming101

skills or specialized knowledge to start easily.102

• Open-source release. We release AD-AGENT103

at https://anonymous.4open.science/r/104

AD-AGENT-7D26 to provide the community with105

a practical, extensible platform for LLM-driven106

AD research and real-world applications.107

2 Methodology 108

We present AD-AGENT, a multi-agent framework 109

that automates AD across diverse modalities and 110

use cases. By integrating established AD libraries – 111

PyOD for multivariate data, PyGOD for graph data, 112

and TSLib for time series – AD-AGENT supports 113

a broad range of models and enables end-to-end 114

automation from user instruction to script. 115

2.1 Agents 116

We decompose the detection workflow into multi- 117

ple subtasks, with each stage handled by a special- 118

ized LLM-powered agent, as illustrated in Fig. 2. 119

Processor. Datasets in practice come in diverse 120

formats (e.g., .csv, .mat, or even natural language), 121

and detection tasks may vary from supervised se- 122

tups to zero-shot scenarios. The Processor agent 123

serves as the entry point of the system, using LLMs 124

to interpret inputs, infer key attributes (e.g., modal- 125

ity, supervision type), and extract user-specified 126

constraints. It organizes this information into a 127

structured format that guides downstream agents. 128

Selector. Building on the Processor’s output, the 129

Selector agent determines which AD library best 130

aligns with the inferred data modality and task re- 131

quirements. If the user does not specify a model, 132

the Selector recommends one from the chosen li- 133

brary. Inspired by recent advances in LLM-based 134

model selection (Qin et al., 2025; Chen et al., 2024; 135

Yang et al., 2024), it leverages the LLM’s knowl- 136

edge of models to provide context-aware sugges- 137

tions tailored to the dataset and task. 138

Info Miner. Understanding how to apply a model 139

often requires consulting multiple documentation 140

sources, which can be time-consuming and chal- 141

lenging, especially for non-experts. The Info 142

Miner agent performs this background research 143
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autonomously. It integrates “Web Search" func-144

tion from OpenAI (OpenAI, 2025b) to learn from145

and summarize relevant documents, code examples,146

and online tutorials. The output includes model de-147

scriptions, instructions, and parameter definitions148

for later code generation.149

Code Generator & Reviewer. These two agents150

collaborate to produce reliable detection scripts.151

The Generator composes code based on user in-152

structions and knowledge from the Info Miner. To153

ensure correctness, the Reviewer validates the code154

through a dry run using LLM-generated synthetic155

samples, aiming to quickly catch any execution er-156

rors. If issues are detected, the two agents enter a157

feedback loop, iteratively refining the code until a158

valid and executable pipeline is achieved.159

Evaluator & Optimizer. These two agents pro-160

vide optional extensions for performance evalua-161

tion and hyperparameter tuning. The Evaluator162

runs the pipeline and summarizes detection results163

when ground truth labels are available for the tar-164

get dataset. The Optimizer, inspired by Liu et al.165

(2025), performs LLM-powered hyperparameter166

tuning based on the provided training dataset. They167

operate in a feedback loop, iterating between pa-168

rameter updates and performance assessment.169

2.2 Agent Collaboration and Workflow170

AD-AGENT facilitates collaboration through two171

memory structures: a shared short-term memory172

and a persistent long-term memory.173

The short-term memory serves as the central174

workspace where agents read and write task-related175

content. It stores the user input, the processed176

dataset, selected models, and parameter configura-177

tions. This enables agents to operate independently178

while remaining context-aware.179

The long-term memory caches model informa-180

tion retrieved by Info Miner. Since mining from181

web sources is often time-consuming and resource-182

intensive, the system first checks this cache for re-183

cent summaries before initiating a new web search.184

It is refreshed periodically (e.g., weekly), allow-185

ing the system to benefit from up-to-date resources186

while avoiding redundant queries.187

As shown in Fig. 2, the system begins with the188

Processor, which interprets the user’s input and pre-189

pares the data. Based on this context, the Selector190

determines the appropriate library and, if unspec-191

ified by the user, recommends a suitable model.192

The Info Miner then gathers relevant model de-193

tails, consulting either the long-term memory or194

Table 1: Pipeline generation performance by library,
showing success rate (code runs without error), aver-
age latency, LLM token usage (input/output), and per-
pipeline billing cost in US dollars. The time spent in
Reviewer is related to the complexity of models, which
explains the increase in TSLib.

Libraries Success Rate (%) Time (s) In/Out Tokens Cost (US $)

PyOD 100.0 24.0 3,272/667 0.015

PyGOD 91.1 19.6 3,143/673 0.015

TSLib 90.0 125.2 2,680/561 0.012

the web. With this knowledge, the Code Gener- 195

ator and Reviewer collaboratively assemble and 196

verify the detection pipeline iteratively until the 197

code is valid. Users may then choose to enable the 198

Evaluator and Optimizer for optional performance 199

assessment and hyperparameter tuning. 200

This collaborative agent framework allows AD- 201

AGENT to flexibly support multiple data types, in- 202

cluding new libraries, adapt to varying input for- 203

mats, and deliver usable outputs with minimal user 204

effort. Each agent contributes a specialized capa- 205

bility, with LLMs enabling reasoning, adaptation, 206

and coordination across the workflow. 207

3 Experiments 208

We evaluate AD-AGENT on reliability and effi- 209

ciency in constructing executable AD pipelines 210

from natural language instructions, the quality of 211

model selection, and the effectiveness of long-term 212

memory. See Appx. B.2 for the use case discussion 213

and Appx. B.3 for improvements by Optimize. 214

Datasets and Models. We select datasets and 215

models for each library from their corresponding 216

benchmarks: Chen et al. (2024) for PyOD, Liu et al. 217

(2022) for PyGOD, and Wu et al. (2023) for TSLib. 218

See details in Appx. B.1. 219

3.1 Pipeline Generation 220

We first assess whether AD-AGENT can success- 221

fully generate runnable pipelines across datasets 222

and models in each supported library. We use 223

GPT-4o (OpenAI, 2024) to build all agents in our 224

study. Table 1 presents the success rate, indicating 225

whether the generated code runs without errors, the 226

average generation time, and the average LLM to- 227

ken usage across different dataset–model pairs. We 228

also use Llama 3.1 70B instruct (Dubey et al., 2024) 229

as an open-source representative in Appx. B.5. 230

AD-AGENT demonstrates high reliability in pro- 231

ducing valid pipelines across modalities, with low 232

latency and manageable cost. We provide a com- 233

plete example run in Appx. C for reference. 234
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Figure 3: Model selection results for PyOD and Py-
GOD. We display the average AUROC of models rec-
ommended by querying the reasoning LLM three times
(duplicates allowed). “Best Performance” marks the
highest performance achieved by any available model
for each dataset, while “Average Baseline” denotes the
mean performance across all available models.

Correction Discussion. The feedback loop be-235

tween the Code Generator and Reviewer often au-236

tomatically corrects errors that occur during the ini-237

tial code generation process. The most frequently238

fixed issues include missing or incorrectly assigned239

parameters and incorrect model import names. For240

example, when the Generator omits a required argu-241

ment such as n_features for DeepSVDD, the Re-242

viewer detects the resulting TypeError, references243

the correct constructor signature via the Info Miner,244

and amends the script accordingly. These correc-245

tion cases demonstrate the practical benefit of the246

collaborative agent loop, allowing AD-AGENT to247

recover from common errors and increasing the248

pipeline success rate without user intervention.249

Failure Discussion. While AD-AGENT demon-250

strates high overall reliability, a few recurring fail-251

ure modes remain. Some failures arise from un-252

addressed internal data constraints. For instance,253

GAAN in PyGOD expects binary targets for its254

loss function, but the pipeline sometimes provides255

values outside the valid range. This highlights the256

need for improved data validation and type check-257

ing within both the Processor and Generator.258

Additionally, some errors stem from library in-259

consistencies or incorrect functions, such as failed260

imports of DOMINAT in PyGOD, which is there-261

fore excluded from the experiments, or input-size262

mismatches for Pyraformer in TSLib with certain263

datasets. While these are external, they underscore264

the need for AD-AGENT to integrate version check-265

ing and more robust fallback mechanisms.266

3.2 Model Selection267

We employ o4-mini (OpenAI, 2025a) to recom-268

mend AD models when the user leaves it unspec-269

ified. For each dataset, we query the LLM three270

times and compute the mean AUROC of selected271

Table 2: Average Web Search latency. Long-term mem-
ory lookups complete instantly and are omitted.

Libraries PyOD PyGOD TSLib

Time (s) 10.6 12.0 10.8

models. Figure 3 compares the results in PyOD and 272

PyGOD against two baselines: (i) the best result 273

from any available model, indicating the upper per- 274

formance limit; and (ii) the average performance 275

of all available models, representing random selec- 276

tion. See more details and results in Appx. B.4. 277

The LLM’s recommendations substantially ex- 278

ceed the average baseline and closely track the best 279

performance in most datasets. This demonstrates 280

that the Selector agent can harness LLM reason- 281

ing to choose proper models, simplifying model 282

selection for non-expert users. 283

3.3 Long-term Memory Efficiency 284

To quantify the benefit of long-term memory, we 285

compare the Info Miner’s lookup latency and cost 286

when using Web Search versus cached summaries. 287

A typical Web Search takes about 10 seconds, as 288

shown in Table 2, and costs 0.035 (US $) per call. 289

In contrast, retrieving the same information from 290

long-term memory is almost instantaneous and in- 291

curs no additional cost. This highlights the effi- 292

ciency of long-term memory. 293

4 Conclusion 294

In this work, we introduced AD-AGENT, an LLM- 295

powered multi-agent framework that automates 296

end-to-end AD across multivariate, graph, and time- 297

series data. By decomposing the workflow into 298

specialized agents and coordinating them through 299

short-term and long-term memory, AD-AGENT 300

turns natural language instructions into runnable 301

detection pipelines. Our experiments demonstrate 302

high success rates of the system, accurate model 303

recommendations, and substantial reductions in 304

lookup latency and cost via long-term caching. The 305

system is released for further research. 306

Future Directions. We plan to: (i) broaden AD- 307

AGENT by continually adding new libraries and 308

adapting other data modalities; (ii) support con- 309

versational interactions so users can iteratively re- 310

fine pipelines; (iii) provide a secure, cloud-based 311

workspace with pre-configured environments to 312

simplify setup; (iv) introduce cost-aware planning 313

that balances performance and LLM API bud- 314

gets; and (v) envision a global, community-driven 315

ecosystem where stakeholders collaborate on open- 316

source tools for AD. 317
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Limitations318

Despite its flexibility and automation, AD-AGENT319

has several limitations. The system depends on320

the accuracy and currency of both the underly-321

ing LLMs and external libraries; breaking changes322

or undocumented features may lead to pipeline323

failures. Also, not all model or data-specific con-324

straints can be automatically detected, which may325

result in occasional misconfigurations or runtime er-326

rors. Furthermore, AD-AGENT has been validated327

primarily on standard benchmarks, and its effective-328

ness and robustness for specialized or proprietary329

datasets need further systematic investigation.330

Ethics Statement331

This work adheres to established ethical standards332

in both research and software development. All ex-333

periments are conducted on public datasets, with no334

personally identifiable or sensitive information pro-335

cessed or disclosed. AD-AGENT is under the BSD336

2-clause License, ensuring transparency and repro-337

ducibility. The system is designed to assist non-338

expert users in building AD pipelines. Addition-339

ally, ChatGPT was used exclusively to make minor340

grammatical improvements to the manuscript.341
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Appendix: AD-AGENT: A Multi-agent509

Framework for End-to-end Anomaly510

Detection511

A Related Works512

LLM-based multi-agent systems have emerged as513

a powerful paradigm for solving complex tasks514

through role specialization, planning, and tool515

use (Guo et al., 2024; Li et al., 2023).516

These systems have been successfully applied to517

domains such as software engineering (Liu et al.,518

2024a), scientific discovery (Liu et al., 2024c),519

faithfulness evaluation (Koupaee et al., 2025), and520

social simulations (Li et al., 2024a). In the con-521

text of AD, Audit-LLM (Song et al., 2024) targets522

insider threat detection through multi-agent coor-523

dination, and Argos (Gu et al., 2025) uses LLM524

agents to generate interpretable anomaly rules for525

time-series monitoring. While effective, these sys-526

tems are domain-specific and fixed in scope.527

In parallel, several open-source libraries have528

been developed across different data modalities.529

Popular libraries such as PyOD (Chen et al., 2024),530

PyGOD (Liu et al., 2024b), and TSLib (Wang et al.,531

2024) provide strong support for AD on multivari-532

ate, graph, and time series data, respectively. While533

each library is effective within its domain, they dif-534

fer in requirements and design. These inconsisten-535

cies make integration across libraries non-trivial.536

AD-AGENT unifies multiple AD libraries within537

an LLM-driven multi-agent framework.538

B Experiments Details539

B.1 Datasets and Models540

As mentioned in § 3, we adopt datasets and models541

for each library from corresponding benchmarks.542

B.1.1 PyOD543

Following PyOD 2 (Chen et al., 2024), we evalu-544

ated AD-AGENT on 17 widely used datasets orig-545

inally from ADBench (Han et al., 2022), includ-546

ing arrhythmia, cardio, glass, ionosphere, letter,547

lympho, mnist, musk, optdigits, pendigits, pima,548

satellite, satimage-2, shuttle, vertebral, vowels, and549

WBC. For each dataset, we consider 10 models:550

ALAD, AnoGAN, AE, AE1SVM, DeepSVDD, De-551

vNet, LUNAR, MO-GAAL, SO-GAAL, and VAE.552

See more details in Chen et al. (2024).553

B.1.2 PyGOD554

Following PyGOD (Liu et al., 2024b), we evalu-555

ated AD-AGENT on 5 real datasets originally from556

Table 3: Detection Performance before and after Opti-
mizer. Better results are highlighted in bold.

Models AUROC(before→ after) AUPRC(before→ after)

AE 0.7875 → 0.8732 0.4191 → 0.4959

ALAD 0.5861 → 0.6103 0.1454 → 0.1624

AnoGAN 0.8820 → 0.9438 0.6050 → 0.7034

AE1SVM 0.9450 → 0.9779 0.6748 → 0.8388

DeepSVDD 0.9259 → 0.9757 0.6370 → 0.8046

DevNet 0.0323 → 0.0323 0.0585 → 0.0585

LUNAR 0.5254 → 0.7941 0.1736 → 0.4462

MO-GAAL 0.5300 → 0.6200 0.1900 → 0.2000

SO-GAAL 0.6687 → 0.7724 0.3512 → 0.4283

VAE 0.9800 → 0.9800 0.8300 → 0.8300

BOND (Liu et al., 2022), including books, disney, 557

enron, reddit, weibo. For each dataset, we con- 558

sider 9 models: AdONE, ANOMALOUS, Anoma- 559

lyDAE, CONAD, DONE, GAAN, GUIDE, Radar, 560

and SCAN. See more details in Liu et al. (2022). 561

B.1.3 TSLib 562

Wu et al. (2023) presents a benchmark study 563

for TSLib (Wang et al., 2024). Following their 564

approach, we evaluated AD-AGENT on 5 real- 565

world datasets from Wu et al. (2023), including 566

MSL, PSM, SMAP, SMD, and SWaT. For each 567

dataset, we consider 10 models: Autoformer, DLin- 568

ear, ETSformer, FEDformer, Informer, LightTS, 569

Pyraformer, Reformer, TimesNet, and Transformer. 570

See more details in Wu et al. (2023). 571

B.2 Use Cases Discussion 572

Our framework supports two common use cases 573

frequently encountered in academic research and 574

real-world deployments. 575

In research or benchmarking settings, users usu- 576

ally have access to a train/test split and ground-truth 577

anomaly labels for the test set. AD-AGENT ingests 578

the training data, builds the model, and reports met- 579

rics such as AUROC or F1 on the held-out test set if 580

the user enables the Evaluator. Then the Optimizer 581

can further refine hyperparameters by running an 582

inner loop on the training data and passing a possi- 583

bly better configuration back to the main pipeline 584

before the final evaluation. This mirrors the evalu- 585

ation protocol adopted by major AD benchmarks 586

such as ADBench (Han et al., 2022). 587

In many production scenarios, only one raw, un- 588

labeled dataset is available, and the goal is to iden- 589

tify anomalies directly within this set (Bouman 590

et al., 2024). In this case, AD-AGENT detects 591
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Figure 4: Model selection results for TSLib. We dis-
play the average F1-score of models recommended by
querying the reasoning LLM three times (duplicates
allowed). “Best Performance” marks the highest per-
formance achieved by any available model for each
dataset, while “Average Baseline” denotes the mean
performance across all available models.

anomalies on the provided data in a single pass; the592

Evaluator and Optimizer remain inactive unless the593

user later supplies labels or a separate tuning set.594

B.3 Optimizer Improvement595

To demonstrate the impact of Optimizer, we eval-596

uated it on the dataset “cardio” within PyOD. As597

shown in Table 3, Optimizer consistently improved598

detection quality. These results indicate that the599

Optimizer agent can automatically refine hyper-600

parameters to produce significantly stronger AD601

pipelines without human intervention.602

B.4 Additional Result of Model Selection603

Figure 4 shows the model selection results in TSLib.604

LLM recommendation outperforms the average605

baseline in all datasets.606

B.5 Open-source LLM Results607

We select Llama 3.1 70B instruct (Dubey et al.,608

2024) as a representative of open-source LLMs.609

However, the performance is not promising: (i)610

open-source LLMs struggle to follow complex611

commands accurately, often producing inconsistent612

JSON formatting and failing to execute arguments613

correctly. (ii) Their limited abilities also hinder614

them from correcting invalid code in Reviewer.615

Open-source or smaller LLM-based agents still616

lag behind closed-source or larger models in han-617

dling complex tasks (SHEN et al., 2025). This is618

a universal challenge for LLM agents. However,619

AD-AGENT is designed to ensure that even when620

using a powerful LLM like GPT-4o, the cost re-621

mains highly affordable.622

C Example Run 623

Table 4 presents an actual session of AD-AGENT. 624

In this example, a user requests to run VAE on the 625

“cardio.mat” dataset via a simple natural language 626

command: “Run VAE on cardio.mat.” The sys- 627

tem interprets the user’s intent, processes the data, 628

selects the appropriate library, retrieves model in- 629

formation, and automatically generates a runnable 630

Python script. This example demonstrates the 631

seamless collaboration between agents in AD- 632

AGENT, showing how a single natural language 633

instruction can be transformed into a ready-to-run 634

AD pipeline with minimal user effort. 635

D Prompt Summary 636

AD-AGENT drives training-free LLM agents 637

purely through carefully crafted prompts. Each 638

prompt specifies the sub-task, enforces JSON 639

blocks for inputs and outputs, and restricts the 640

agent to a library-specific API surface, ensur- 641

ing that downstream modules can trust the re- 642

sponse without additional validation. Across all 643

agents, we employ three core prompt engineering 644

techniques: chain-of-thought reasoning to elicit 645

step-by-step planning (Wei et al., 2022), strict 646

JSON-formatted outputs for deterministic parsing, 647

and a self-revision loop in which the Reviewer in- 648

jects error traces into the LLM to correct code. The 649

tables tables 5 to 9 present the raw prompts that 650

implement these patterns for each agent. 651
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=== [Main] Starting full pipeline ===
=== [Processor] Processing user input ===
Enter command (e.g., ‘Run IForest on glass_train.mat and glass_test.mat’):
User: Run VAE on cardio.mat
Experiment Configuration:

Algorithm: [‘VAE’]
Training Dataset: ./data/cardio.mat
Testing Dataset:
Parameters:

=== [Processor] User input processing complete
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
=== [Selector] Processing user input ===
=== [Selector] Selecting package & algorithm ===
Package name: pyod
{more content is omitted...}
=== [Selector] Selection complete ===
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
=== [Info Miner] Querying documentation for VAE ===
The Variational Autoencoder (VAE) in PyOD is {more content is omitted...}
**Initialization Function (‘__init__’):**
The ‘__init__’ method initializes the VAE model with {more content is omitted...}
**Parameters:**
- ‘contamination’:

- **Type**: float in (0., 0.5)
- **Default**: 0.1
- **Description**: The proportion of outliers{more content is omitted...}

- ‘encoder_neuron_list’:
{more content is omitted...}
**Attributes:**
- ‘model’:

- **Type**: torch.nn.Module
- **Description**: The underlying VAE model.

{more content is omitted...}
**Python Dictionary of ‘__init__’ Parameters with Default Values:**
{

‘contamination”: 0.1,
“encoder_neuron_list”: [128, 64, 32],
{more content is omitted...}

}
[Cache Updated] Stored new documentation for VAE
=== [Info Miner] Documentation retrieved for VAE ===
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
=== [Code Generator] Generating code for VAE ===
=== [Code Reviewer] Validating for VAE ===
=== [Code Reviewer] Validation completed for VAE ===
=== [Code Generator] Saved code to ./generated_scripts/VAE_cardio.py ===
{more content is omitted...}

Table 4: A real example of AD-AGENT. The user provides a single natural language instruction (highlighted in
green), and the system automatically parses the command, retrieves model metadata, and generates an executable
Python script. Portions of the printed text are omitted ({more content is omitted...}) for brevity.
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=== [Processor] Extraction prompt ===
Extract the algorithm, dataset_train, dataset_test, and optional parameters
from the above conversation
and return them in Python dictionary (JSON) format.
If any item is missing, return an empty object.
User input follows format ‘Run XXX on TRAIN_DATA and TEST_DATA with XXX’ where
‘with XXX’ and ‘TEST_DATA’ are optional.

For example: if the user says ‘Run IForest on ./data/train.mat and
./data/test.mat with contamination=0.1’
you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: ‘./data/train.mat’, ‘dataset_test’:
‘./data/test.mat’, ‘parameters’: {‘contamination’: 0.1} }

If user says ‘Run IForest on ./data/train.mat and ./data/test.mat’
you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: ‘./data/train.mat’, ‘dataset_test’:
‘./data/test.mat’, ‘parameters’: {} }

If user says ‘Run IForest’
you should return
{‘algorithm’: [‘IForest’], ‘dataset_train’: None, ‘dataset_test’: None,
‘parameters’: {} }

If user says ‘./data/train.mat and ./data/test.mat’
you should return
{‘algorithm’: [], ‘dataset_train’: ‘./data/train.mat’, ‘dataset_test’:
‘./data/test.mat’, ‘parameters’: {} }

IMPORTANT: DO NOT ASSUME ALGORITHM NAME OR PARAMETERS NAME.
IMPORTANT: Algorithm should always be an array.
IMPORTANT: IF USER WANTS TO RUN ALL ALGORITHMS, return ‘algorithm’ as [‘all’].

Table 5: Raw extraction prompt used by the Processor agent. The prompt instructs the LLM to extract algorithm
names, dataset paths, and optional parameters from free-form user inputs, returning a structured Python dictionary.
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=== [InfoMiner] Unified web-search prompt ===
You are a machine-learning expert and will assist me with researching a specific
use
of a deep-learning model in ‘{library_name}’.

Here is the official document you should refer to:
‘{doc_url}’

I want to run ‘{algorithm_name}’. What is the initialisation function, its
parameters,
and its attributes? Briefly return the relevant documentation content.

Then extract ***all parameters*** of the __init__ method for the
‘{algorithm_name}’ class, along with their default values if available, and
return
a valid Python dictionary string in the following format:

{
‘param1’: default_value1,
‘param2’: default_value2,
...

}

If any default value is an object or function (e.g. ‘MinMaxScaler()’), wrap it
in quotes so the string remains valid for ast.literal_eval.

Table 6: Raw prompt template used by the InfoMiner agent. At runtime, the placeholders {library_name} and
{doc_url} are filled according to their official documentation.
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=== [CodeGen] PyOD labeled prompt (raw) ===
You are an expert Python developer with deep experience in anomaly detection libraries. Your
task is to:

1. Use the provided official documentation content for {algorithm} to understand how to use the
specified algorithm class, including initialization, training, and prediction methods.
2. Write only executable Python code for anomaly detection using PyOD and do not include any
explanations or descriptions.
3. Base your code strictly on the following official documentation excerpt:

— BEGIN DOCUMENTATION —
{algorithm_doc}
— END DOCUMENTATION —

4. The code should:
(1) import sys, os and include command ‘sys.path.append(os.path.abspath(os.path.join(os.path.
dirname(__file__), ‘..’)))’ in the head
(2) import DataLoader using following command ‘from data_loader.data_loader import DataLoader’
after (1)
(3) Initialize DataLoader using statement

dataloader_train = DataLoader(filepath = {data_path_train}, store_script=True, store_path =
‘train_data_loader.py’)

dataloader_test = DataLoader(filepath = {data_path_test}, store_script=True, store_path =
‘test_data_loader.py’)
(4) Use the statement

X_train, y_train = dataloader_train.load_data(split_data=False)
X_test, y_test = dataloader_train.load_data(split_data=False)

to generate variables X_train, y_train, X_test, y_test;
(5) Initialize the specified algorithm {algorithm} using variable ‘model’, strictly following
the provided documentation and train the model with X_train
(6) Determine whether the following parameters {parameters} apply to this initialization
function and, if so, add their values to the function.
(7) Use ‘.decision_scores_’ on X_train for training outlier scores

Use ‘.decision_function(X_test)’ for test outlier scores
Calculate AUROC (Area Under the Receiver Operating Characteristic Curve) and AUPRC (Area

Under the Precision-Recall Curve) based on given data
(8) Using variables to record the AUROC & AUPRC and print them out in following format:

AUROC: \s*(\d+.\d+)
AUPRC: \s*(\d+.\d+)

(9) Using variables to record prediction failed data and print these points out with true label
in following format:

‘Failed prediction at point [xx,xx,xx...] with true label xx’ Use ‘.tolist()’ to convert
point to be an array.

IMPORTANT:
- Strictly follow steps (2)-(8) to load the data from {data_path_train} & {data_path_test}.
- Do NOT input optional or incorrect parameters.

Table 7: Raw prompt used by the CodeGenerator agent for PyOD (labeled setting). The LLM generates executable
code for training and evaluating anomaly detectors using the given documentation and dataset paths.
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=== [Reviewer] Unit-test prompt ===
You will receive a Python script for {package_name} that trains an
anomaly-detection model with real datasets.

— BEGIN CODE —
{code}
— END CODE —

TASK:
1. Replace **all data-loading operations** (DataLoader, torch.load, np.load,
pandas.read*, etc.)
with code that creates SMALL synthetic data directly in the script:

• For PyOD:...
• For PyGOD:...
• For tslib:...

2. Keep the variable names and the rest of the logic unchanged.
3. Output runnable Python **code only** (no explanations, no markdown).

Table 8: This prompt directs the Reviewer agent to transform a full training script into a self-contained unit test. It
instructs the LLM to replace all external data-loading operations with specific, library-aware code snippets that
generate small synthetic datasets on the fly.
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=== [Optimizer] ReAct prompt ===
You are an expert Python engineer specialising in anomaly-detection libraries.

Current implementation
———————-
{code}

Current parameters
——————
{parameter}

Current output
————–
{std_output}

Authoritative documentation
—————————
{algorithm_doc}

You have access to a single tool:
“‘execute_code(params: Dict[str, Any]) -> str’” which runs the script with the
supplied **new** parameters and returns the console output.

Follow the **ReAct** loop **STRICTLY** – each response must be Either:

1. A pair of lines:
Thought: <reasoning>
Action: ‘execute_code({‘param’: value, ...})’

2. A single line starting with ‘Final:’ when you determined the final answer.

IMPORTANT:
1. Do not input ‘default’ in the parameters, use the default values from the
code.

Table 9: Raw ReAct (Yao et al., 2023) prompt used by the Optimizer agent. The prompt guides parameter tuning
via strict reasoning-action loops. All content is passed to the LLM exactly as shown.
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