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Abstract

Nonparametric estimates of the distance between
two distributions such as the Maximum Mean Dis-
crepancy (MMD) are often used in machine learn-
ing applications. However, the majority of existing
literature assumes that error-free samples from the
two distributions of interest are available.We re-
lax this assumption and study the estimation of
the MMD under ϵ-contamination, where a possi-
bly non-random ϵ proportion of one distribution
is erroneously grouped with the other. We show
that under ϵ-contamination, the typical estimate of
the MMD is unreliable. Instead, we study partial
identification of the MMD, and characterize sharp
upper and lower bounds that contain the true, un-
known MMD. We propose a method to estimate
these bounds, and show that it gives estimates that
converge to the sharpest possible bounds on the
MMD as sample size increases, with a convergence
rate that is faster than alternative approaches. Us-
ing three datasets, we empirically validate that our
approach is superior to the alternatives: it gives
tight bounds with a low false coverage rate.

1 INTRODUCTION

Many machine learning methods rely on comparing dis-
tances between distributions, with applications ranging from
single cell sequencing [Schiebinger et al., 2019] to causal
inference [Johansson et al., 2016]. The Maximum Mean
Discrepancy (MMD) [Gretton et al., 2012] has emerged
as a particularly useful nonparametric notion of distance
between distributions. It has been widely used in robust
predictive and reinforcement learning [Kumar et al., 2019,
Makar et al., 2022, Li et al., 2017, Oneto et al., 2020, Veitch
et al., 2021, Goldstein et al., 2022], fairness applications
[Prost et al., 2019, Madras et al., 2018, Makar and D’Amour,

2022, Louizos et al., 2015] and distributionally robust opti-
mization [Staib and Jegelka, 2019, Kirschner et al., 2020]
among others. Despite its importance and widespread use,
the majority of existing work using the MMD assumes that
observed samples are measured without error. As we show
in this work, if this assumption does not hold, the typical
MMD estimate is unreliable.

Here, we study the estimation of the MMD where one of the
samples observed is measured with error. Specifically, we
consider ϵ-contamination, where a possibly non-random
ϵ proportion of one of the two variables is erroneously
grouped with the other. This mismeasurement mechanism
arises in many important applications. One example of this
setting arises from the fairness literature. For example, in set-
tings where we wish to assess if a model gives different pre-
dictions across different race groups. Here ϵ-contamination
arises if some non-random ϵ proportion of one race group
is incorrectly grouped with the other. Beyond fairness, ϵ-
contamination arises – for example – when trying to identify
if there are biomarkers for Myocardial Infarction (MI). In
this setting, we can use the MMD to detect differences in
genome sequences between healthy individuals and patients
with myocardial MI. Detecting differences between the two
groups is complicated due to undiagnosed “silent” MI cases.
These silent MI cases represent ϵ-contamination that occurs
non-randomly: women’s MI cases are more likely to go
undiagnosed compared to men [Merz, 2011].

In this paper, we show that the typical MMD estimates are
unreliable when the data is collected with ϵ-contamination.
Instead, we resort to a partial identification approach, where
we estimate upper and lower bounds on the MMD. We char-
acterize upper and lower bounds that are credible, mean-
ing that they contain the true unknown MMD, and sharp,
meaning they cannot be made tighter without additional as-
sumptions. Importantly, these bounds are identifiable using
the observed contaminated data and an estimate of ϵ. We
develop an estimation approach to compute the upper and
lower bounds and analyze its behavior in finite samples. Our
analysis shows that our approach gives estimates that con-
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verge to the sharpest possible upper and lower bounds as the
sample size increases at a rate faster than the alternatives.

Our contributions are summarized as follows: (1) We
show that under ϵ-contamination the typical estimates of the
MMD are unreliable, (2) We characterize sharp upper and
lower bounds on the unknown MMD that are identifiable
using only the observed contaminated data, and an estimate
of ϵ, (3) We propose an estimation approach to compute the
upper and lower bounds and analyze its behavior in finite
samples showing that its convergence to the true upper and
lower bounds depends on the sample size and the value of
ϵ, (4) We apply our approach to 3 datasets showing that it
achieves a superior performance compared to alternative
approaches, (5) We analyze the sensitivity of our approach
to incorrect values of ϵ and give practical guidance on what
to do if the true value of ϵ is unknown.

Related work. Most existing work on the MMD focuses
on establishing statistically and computationally efficient
estimators of the difference between two distributions un-
der the assumption that the observed samples are error-free
[Gretton et al., 2012, 2009, Schrab et al., Domingo-Enrich
et al., 2023]. However, to our knowledge, the only exist-
ing work that tackles the challenge of measurement error
is in the context of survival analysis, where the measure-
ment error model arises from the classical right-censoring
of the data [Fernández and Rivera, 2021]. By contrast, we
study a different measurement error mechanism and suggest
methods for partial identification of the MMD.

In the fairness literature, where comparisons between out-
comes of different groups is important, Kallus et al. [2022]
consider measurement error in the sensitive attribute. They
consider a setting where we only have access to an im-
perfect proxy of the protected class membership and show
that typical fairness metrics such as demographic parity and
equalized odds are not identifiable. Similar to our work, they
develop methods for partial identification of these metrics.
A key difference between Kallus et al. [2022] and our work
is that the former focuses on comparing a single moment
(the mean) of two distributions whereas our work allows
a more rigorous comparison of infinitely many moments
of two distributions. We also stress that while the methods
presented here could be used in a fairness context, they are
more widely applicable to any setting where we wish to
compare two distributions.

2 PRELIMINARIES

Our goal is to measure the distance between two dis-
tributions PX and PY . However, instead of observing
X = {xi}ni ∼ PX , Y = {yi}ni ∼ PY , we observe ϵ-
contaminated X ′ and Y ′, where a possibly non-random ϵ
proportion of one of the two variables is incorrectly grouped
with the other for 0 < ϵ < 1. Without loss of generality,

we assume that the two samples have the same size = n
and that an ϵ-proportion of X is incorrectly grouped with Y .
Specifically, let C∗ = {c∗i }mi , with m = ⌊ϵn⌋ be the unob-
served subset of X that is grouped with Y . We can express
the distributions over the observed samples in relation to the
true distributions and the unknown contaminated samples
as follows:

PY ′ = (1− α)PY + αPC∗

PX′ = (1 + α̃)PX − α̃PC∗ ,

where α = ϵ/(1 + ϵ) and α̃ = ϵ/(1− ϵ). We do not make
any additional assumptions about PC∗ . Importantly, we do
not assume that the contamination is random, meaning we
do not assume that PC∗ = PX′ = PX .

We assume that the value of ϵ is known a priori, or can be
empirically estimated from other data sources. However, in
section 5.5, we conduct a sensitivity analysis to examine the
performance of our approach and others under violations of
this assumption. We use EPA

[A] to denote the expectation
of A according to the distribution PA(A), A ∪B to denote
the union of the set A and B, and A \ B to denote the
difference between the two sets A and B. We use #(A) to
denote the cardinality of the set A. We use X ′ and Y ′ to
denote the support of X ′ and Y ′ respectively.

We focus on the MMD as a measure of distance between
distributions [Gretton et al., 2012]:

Definition 1 For Z ∼ PZ , Z ′ ∼ PZ′ , F such that F :
Z → R, and k : Z × Z → R with k being a positive
definite kernel matrix, the MMD is defined as

MMD(F , PZ , PZ′) = supf∈F
(
EPZ

f(Z)− EPZ′ f(Z
′)
)
,

and the witness function f∗ is defined as the function at-
taining the supremum in expression above, with f∗(t) =
EPZ

[k(Z, t)]− EPZ′ [k(Z
′, t)], up to a normalization con-

stant.

When F is set to be a general reproducing kernel Hilbert
space (RKHS), the MMD defines a metric on probability
distributions, and is equal to zero if and only if PZ = PZ′ .
Throughout, we fix F to be the RKHS with ∥f∥F ≤ 1
for all f ∈ F and drop F from the MMD arguments to
simplify notation. We use k(z, z′) to denote the reproducing
kernel of F , and assume that 0 ≤ k(x′, y′) ≤ κ for all
x′, y′ ∈ X ′,Y ′.

Gretton et al. [2012], showed that when there is no measure-
ment error, the following empirical estimate of the MMD is
unbiased:

M̂MD(X,Y ) =
1

n(n− 1)

∑
i,j ̸=i

k(xi, xj) (1)

+
1

n(n− 1)

∑
i,j ̸=i

k(yi, yj)−
2

n2

∑
i,j

k(xi, yi). (2)



As we show in the appendix section E, in the ϵ-
contamination setting, M̂MD is not guaranteed to be an
unbiased estimate, meaning M̂MD(X ′, Y ′) might not con-
verge to MMD(PX′ , PY ′). So instead we study partial iden-
tifiability of MMD(PX , PY ). Meaning, our goal is to es-
timate credible and informative lower and upper bounds
on the unknown MMD(PX , PY ). For those bounds to be
informative, they should be sharp, meaning they cannot be
made tighter without any additional assumptions.

3 THEORY

Our goal is to estimate upper and lower bounds that reflect
our uncertainty in the MMD due to measurement error.

To proceed with our analysis, it is helpful to parameterize
the MMD as function of the contaminated samples C. With
some abuse of notation, for an arbitrary distribution PC , we
have that:

MMD(PC , PX′ , PY ′) = sup
f∈F

[
(1− ϵ)EPX′ f(X

′)

− (1 + ϵ)EPY ′ f(Y
′) + 2ϵEPC

f(C)
]
, (3)

with MMD(PX , PY ) = MMD(PC∗ , PX′ , PY ′). Our first
result characterizes the sharpest possible bounds that can be
attained without additional assumptions.

Proposition 1 Let (Y ′,Ω) be a measurable space with
Y ′ ∈ Y ′ and let P be all the probability distributions
on (Y ′,Ω). Define P(α) to be all the possible proba-
bility distributions over the unknown C∗, i.e., P(α) =
{(PY ′(Y ′) − (1 − α)φ)/α : φ ∈ P}, then the following
bounds are sharp:

inf
PC∈P(α)

MMD(PC , PX′ , PY ′) ≤ MMD(PC∗ , PX′ , PY ′)

≤ sup
PC∈P(α)

MMD(PC , PX′ , PY ′),

The proofs for proposition 1 and all other statements are
presented in the appendix. The intuition for proposition 1 is
simple: without any additional assumptions, C∗ can take on
any values in Y ′, and hence its corresponding distribution
can be any distribution consistent with the observed data
(i.e., any distribution ∈ P(α)). This means that the sharpest
possible upper (lower) bound must be defined with respect to
distributions over PC that maximize (minimize) the MMD.

We use PC to denote the distribution that maximizes the
third term in proposition 1 and define PC similarly. Proposi-
tion 1 gives us a recipe for constructing empirical bounds
on the true MMD(PC∗ , PX′ , PY ′). To get an estimate of
the upper bound, we need to identify the values of C that
render X ′ ∪ C and Y ′ \ C most dissimilar. For a lower
bound, we need to identify values of C that render X ′ ∪ C
and Y ′ \ C most similar. Unless otherwise noted, we will

focus on the analysis of the upper bound of the MMD since
the arguments for the lower bound are nearly identical.

We further expand the empirical version of equation 3 to
isolate the terms that depend on C, which gives us the em-
pirical objective to optimize. First, we define a weighted
version of the empirical witness function,

ψ(C,X ′, Y ′) :=
(1− ϵ)

n

∑
i

∑
j

k(x′i, cj)

− (1 + ϵ)

n

∑
i

∑
j

k(y′i, cj)

+
ϵ

n

∑
i

∑
j ̸=i

k(ci, cj).

As we show in Lemma A1, in order to estimate
MMD(PC , PX′ , PY ′), we first need to identify Ĉ:

Ĉ = argmax
C∈Y ′,#(C)=m

ψ(C,X ′, Y ′). (4)

Note that optimizing ψ under a cardinality constraint in this
manner is an NP-hard optimization problem. Instead, we
analyze approximation strategies in two regimes: when ϵ
can take on any value in [0,1] and when ϵ is sufficiently
close to 0. Our analysis relies on analyzing the stability of
the estimation algorithms [Bousquet and Elisseeff, 2002].

Approximation strategy for ϵ ∈ [0, 1]. For any value
of ϵ, we can directly maximize equation 4. Noting that:
maxC ψ(C ∈ Y ′, X ′, Y ′) ≤ maxC ψ(C ∈ Y ′, X ′, Y ′),
we can utilize, for example, iterative optimization algo-
rithms to estimate an approximate Ĉ. Specifically,

Ĉ◦ = argmax
C∈Y′,#(C)=m

ψ(C,X ′, Y ′). (5)

The difference between equation 4 and 5 is that 5 can return
any value for Ĉ◦ ∈ Y ′, whereas 4 requires that Ĉ◦ ∈ Y ′.

While many iterative optimization algorithms can be used
to optimize equation 5, we follow Jitkrittum et al. [2016]
in using Quasi-Newton methods such as the L-BFGS-B
algorithm [Byrd et al., 1995]. For this reason we refer to
this iterative optimization approach as the Quasi-Newton
optimization QNO approach. We stress that our analysis
holds for any valid optimization approach.

In proposition 2, we study how fast the estimate based on
Ĉ◦ converges to the true upper bound.



Proposition 2 For MMD(PC , PX′ , PY ′) as defined in
proposition 1, Ĉ◦ as defined in equation 5, with 0 ≤
k(x′, y′) ≤ κ for all x′, y′ ∈ X ′,Y ′, we have that:

PX′,Y ′

{
|MMD(PC ,PX′ , PY ′)− M̂MD(Ĉ◦, X

′, Y ′)|

> b0 + ε

}
≤ 2 exp

(
−ε2n
b1

)
,

for b0 = 4
√
κ(n−1/2 + ϵm) and b1 = 2κ((1− ϵ)(1− ϵ+

ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2).

The proposition shows that the rate of convergence of the
empirical MMD defined with respect to Ĉ◦ to the sharp
upper bound depends on the sample size, the value of ϵ and
the size of the contaminated set m. As ϵ decreases, the esti-
mated M̂MD(Ĉ◦, X

′, Y ′) converges faster to its population
counterpart MMD(PC , PX′ , PY ′). At ϵ = 0, we recover
the convergence rate of the uncontaminated M̂MD (Gretton
et al. [2012], theorem 7). As expected, as the sample size
increases, the estimate gets closer to its population coun-
terpart. However, the ϵm term in the denominator of the
exponent means that the rate of convergence depends unfa-
vorably on the size of the contaminated sample. The next
section addresses this.

Approximation strategy for a sufficiently small ϵ. This
approach relies on the fact that for a fixed n, and as ϵ→ 0
the third term in equation 4 vanishes.

Specifically for ϵ ≈ 0:

ψ(C,X ′, Y ′) ≈ (1− ϵ)

n

∑
i

∑
j

k(x′i, cj)−

(1 + ϵ)

n

∑
i

∑
j

k(y′i, cj) =
1

m

∑
i

f̂ ′(ci). (6)

where f̂ ′ is a weighted version of the empirical estimate of
the witness function definted with respect to the observed
contaminated samples.

This means that for ϵ close to 0, maximizing ψ is equiva-
lent to computing the value of the witness function for every
sample in Y ′, and then taking the subset with the highest val-
ues to be the estimate of Ĉ. Consider the following estimate
of Ĉ:

Ĉγ̂ = {y′ : f̂ ′(y′) ≥ γ̂} with γ̂ = q(f̂ ′(Y ′), 1− α), (7)

where q(f̂ ′(Y ′), 1− α) is defined as the 1− α quantile of
f̂ ′(Y ′). That is, q(f̂ ′(Y ′), 1 − α) = inf{f̂ ′(y′) ∈ f̂ ′(Y ′) :

(1 − α) < CDF(f̂ ′(y′))}. Equation 7 describes taking the
y′ samples with weighted witness function values in the top
1− α quantile as the candidates for contaminated samples.
Next, we show that Ĉγ̂ is a valid estimate of C.

Proposition 3 Let Cγ be the solution to equation 7 as n→
∞. For a sufficiently small ϵ, we have that PCγ = PC ,
where PC is defined as the distribution that maximizes the
third term in proposition 1.

While the full proof is stated in the appendix, we find it
helpful to highlight the key insight behind proposition 3.
The key insight here is that the distribution over Cγ stochas-
tically dominates any other distribution over Y ′ with respect
to the transformation f ′(Y ′). Meaning, there exists no other
distribution over a subset of Y ′ with measure α that can give
a larger EC [f

′(C)] than ECγ [f
′(Cγ)]. We note in passing

that this construction extends the classical seminal work by
Horowitz and Manski [1995] on estimation of population
means using contaminated data to nonparametric estimation
of distances between distributions. We refer to this approach
as the stochastic dominance (SD) approach.

It remains to show that the estimate of the MMD defined
with respect to Ĉγ̂ as estimated using a finite sample con-
verges to the true upper bound. We do that in the following
proposition.

Proposition 4 For MMD(PC , PX′ , PY ′) as defined in
proposition 1, Ĉγ̂ as defined in equation 7 and κ such that
0 ≤ k(x, y) ≤ κ for all x, y ∈ X . Then as for a sufficiently
small ϵ:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X

′, Y ′)|

> b0 + ε

}
≤ 2 exp

(
−ε2n
b1

)
for b0 = 4(κ/n)

1/2(1 + ϵ) and b1 = 2κ
(
(1 − ϵ)3 + (1 +

ϵ)(1 + 3ϵ)2
)
.

Proposition 4 shows that unlike QNO, SD avoids the un-
favorable dependence on m leading to faster convergence.
Similar to proposition 2, at ϵ = 0, we recover the conver-
gence rate of the uncontaminated M̂MD.

The key advantage of SD over QNO is that it reduces the
problem of estimating Ĉ to estimating the quantile of the
univariate distribution, Pf ′(Y ′), which is a single scalar. By
contrast, the iterative optimization-based approach needs to
identify an m× d matrix, with d being the dimension of the
data. While helpful, the SD approach is limited by the fact
that it is a valid approximation only for ϵ sufficiently close
to 0. Next, we present our main approach that extends the
SD approach making it valid for any value of ϵ.

4 APPROACH

In this section, we describe our main approach to estimating
tight and credible upper and lower bounds on the MMD.



Algorithm 1 Our approach (S-SD) for estimating upper
bounds
Input: X ′, Y ′, ϵ, S
Ĉ := {}, α(s) = ϵ/(ϵ+ S)
for s = 1 . . . S do

X(s) = X ′ ∪ Ĉ, Y (s) = Y ′ \ Ĉ
Compute f̂ (s)(Y (s)) as per equation 8
γ̂(1−ϵ) = q(f̂ (s)(Y (s)), 1− α(s))

Ĉs = {y(s) : f̂ (s)(y(s)) ≥ γ̂(1−ϵ)}
Ĉ := Ĉ ∪ Ĉs

return M̂MD(Ĉ,X ′, Y ′)

Algorithm 2 Our approach (S-SD) for estimating lower
bounds
Input: X ′, Y ′, ϵ, S
Ĉ := {}, α(s) = ϵ/(ϵ+ S)
for s = 1 . . . S do

X(s) = X ′ ∪ Ĉ, Y (s) = Y ′ \ Ĉ
Compute f̂ (s)(Y (s)) as per equation 8
γ̂ϵ = q(f̂ (s)(Y (s)), α(s))

Ĉs = {y(s) : f̂ (s)(y(s)) ≤ γ̂ϵ}

Ĉ := Ĉ ∪ Ĉs

return M̂MD(Ĉ,X ′, Y ′)

Unless otherwise noted, we describe the estimation proce-
dure for constructing the upper bound since the lower bound
is nearly identical. Our strategy hinges on identifying Ĉ,
an m-sized subset of Y ′ which, when removed from Y ′

and added to X ′, would render Y ′ most dissimilar to X ′,
giving us a valid estimate of the the upper bound on the
unknown M̂MD(C∗, X ′, Y ′). Estimating Ĉ allows us to es-
timate M̂MD(Ĉ,X ′, Y ′) in a straightforward manner: we
can simply substitute Ĉ for C in the empirical version of
equation 3.

Our main approach builds upon the SD approach stud-
ied in section 3 by addressing its main limitation: that it
gives a valid estimate of Ĉγ̂ only for ϵ sufficiently close
to 0. Our approach overcomes this limitation by dividing
the task of estimating Ĉγ̂ into multiple, easier tasks each
with an effective ϵ(s) that is smaller than the true ϵ. Specif-
ically, we divide the estimation process into S steps, in
each step we estimate Ĉ(s)

γ̂(s) , for ϵ(s) = ϵ/S. Dividing
the estimation into S steps, with each step having ϵ/S-
contamination means that each step of the estimation pro-
cess will have an effective ϵ that is close enough to 0 mak-
ing equation 7 a valid approximation, and overcoming the
main limitation of SD. In the step s of our algorithm, we
calculate Ĉ(s)

γ̂(s) = {y′ ∈ Ŷ (s) : f̂ (s)(Ŷ (s)) ≥ γ̂(s)}, for

γ̂(s) = q(f̂ (s)(Ŷ (s)), 1− α(s)) for α(s) = ϵ(s)/(1 + ϵ(s)),
where

f̂ (s)(Ŷ (s)) =
(
1− ϵ

S

) 1

n

∑
i

∑
j

k(x̂
(s)
i , ŷ

(s)
j )

−
(
1 +

ϵ

S

) 1

n

∑
i

∑
j

k(ŷ
(s)
i , ŷ

(s)
j ), (8)

with Ŷ (s) = Y ′\{Ĉ(1)

γ̂(1) , Ĉ
(2)

γ̂(2) , . . . Ĉ
(s−1)

γ̂(s−1)}, and X̂(s−1) =

X ′ ∪ {Ĉ(1)

γ̂(1) , Ĉ
(2)

γ̂(2) , . . . Ĉ
(s−1)

γ̂(s−1)}.

We refer to our Stepwise Stochastic Dominance based ap-
proach as S-SD. We summarize our procedure for estimating
the upper and lower bounds in algorithms 1 and 2 respec-

tively. We use Ĉ to denote the counterpart of Ĉ defined with
respect to the lower bound.

We note that S is a user-specified parameter that takes
on values between 0 and m. In section 5.5 we give
practical guidance on how to set S. Code for our ap-
proach and the experiments in section 5 is available on
github.com/mymakar/mmd_uncertainty.

5 EXPERIMENTS

In this section, we (1) analyze the credibility and tightness of
our approach and baselines under varying data dimensions,
varying sample sizes, and varying values of ϵ. In addition, (2)
we examine the computational efficiency of our approach
as it compares to baselines. Finally, (3) we examine the
sensitivity of our approach to misspecification of ϵ and under
varying number of steps S.

To analyze the credibility and the tightness of the bounds es-
timated using our approach, we compute the False Coverage
Rate (FCR) and Mean Interval Width (MIW). For L draws
of X ′, Y ′ each of size (1 − ϵ)n and (1 + ϵ)n respectively,
the FCR and the MIW are defined as follows:

FCR = 1− 1

L

∑
i

1{M̂MD(Ĉ,X ′
i, Y

′
i )

≤ M̂MD(C∗, X ′
i, Y

′
i ) ≤ M̂MD(Ĉ,X ′

i, Y
′
i )},

MIW =
1

L

∑
i

|M̂MD(Ĉ,X ′, Y ′)− M̂MD(Ĉ,X ′, Y ′)|

Ablations. We study the following ablations of our ap-
proach: (1) SD: For S = 1, S-SD becomes the same as
SD. The performance of SD compared to S-SD highlights
the importance of splitting the estimation procedure into S
steps. (2) Stepwise-QNO (S-QNO): Follows the same steps
outlined in algorithm 1, however, instead of estimating Ĉ(s)

γ̂

and Ĉ(s)
γ̂ as a subroutine, it estimates Ĉ(s)

◦ and Ĉ(s)
◦ follow-

ing equation 4 using the L-BFGS-B optimization algorithm.

https://github.com/mymakar/mmd_uncertainty


MIMIC (N = 100, d = 2) FOREST (N = 100, d = 54) BIO (N = 72, d = 7128)

Approach FCR MIW FCR MIW FCR MIW

S-SD (Ours) 0.0± (0.0) 0.137± (0.008) 0.0± (0.0) 0.088± (0.003) 0.1± (0.03) 0.075± (0.001)
S-QNO 0.08± (0.067) 0.119± (0.006) 0.02± (0.02) 0.084± (0.004) 1.0± (0.0) 0.059± (0.001)
QNO 0.58± (0.069) 0.13± (0.006) 0.62± (0.069) 0.033± (0.006) 1.0± (0.0) 0.037± (0.001)
SD 0.64± (0.068) 0.082± (0.01) 0.9± (0.042) 0.027± (0.005) 0.13± (0.034) 0.069± (0.001)
SM 0.66± (0.067) 0.08± (0.01) 0.9± (0.042) 0.026± (0.004) 0.82± (0.038) 0.037± (0.001)
Bootstrap 0.94± (0.034) 0.048± (0.002) 0.4± (0.069) 0.034± (0.001) 0.25± (0.043) 0.036± (0.001)

Table 1: MIW and FCR for all datasets at ϵ = 0.2. Numbers in bold correspond to lowest FCR with smallest MIW. Standard
errors (in parentheses) computed by averaging over 100 trials. Results show that our approach performs better than all other
approaches when the sample size is small and the dimension is large. In easier settings, our performs comparably to S-QNO.

In each step s, this approach gives an estimate for an m/S
subset of candidate contaminated samples. This ablation
study highlights the importance of using the SD approach
as a subroutine. (3) QNO: Similar to S-QNO with S = 1.

Baselines. In addition to our main approach and the abla-
tions, we investigate the following baselines: (1) Submodu-
lar optimization (SM): based on the approach suggested in
Kim et al. [2016]. It estimates Ĉ by converting equation 4
into a submodular function by adding a submodular regu-
larizer. Specifically, it greedily selects samples which max-
imise the function, maxm f̂ ′(C) + log det k(C,C), where
f̂ ′(C) is the witness function defined with respect toX ′ and
Y ′, and log det k(C,C) is the log-determinant regularizer.
(2) Bootstrap: a simple bootstrapping approach, which con-
structs bounds by resampling both observed groups with
replacement and computing the MMD multiple times. The
upper and lower bounds are then defined as the (1− α)-th
and α quantiles respectively over the distribution of resam-
pled MMD values. The bootstrap estimates are centered
around the typical MMD estimate (equation 1), and hence
they show how it behaves under ϵ-contamination 1.

For our approach, baselines and ablations, we fix the ker-
nel to be the radial basis kernel (RBF) and use the median
heuristic on the contaminated samples to determine band-
width. Unless otherwise noted, we set the number of steps
S for S-SD and S-QNO to be S = min(m, 10); we take
this minimum for when the total number of contaminated
samples is less than the total number of steps. We examine
the performance of different values of S in section 5.5.

Setup. Since the true value of the contaminated samples C∗

is unobserved in real datasets, we resort to semi-simulated
data where X,Y represent real data, but the contaminated
samples are simulated. We examine the performance of our
approach, ablations and baselines in two settings. First, is the
nonrandom contamination setting. In this setting, we pick
the data points that maximize the difference between the two
distributions to be the true contaminated samples. Specif-

1In the appendix, we explicitly show how the typical estimate
of the MMD behaves with varying ϵ

ically, we simulate contamination by randomly sampling
C∗, a set of size m from the min (2m,n) samples in X
with the largest witness function values, where the witness
function here is defined with respect to the uncontaminated
X,Y . We then create the observed samples X ′ = X \ C∗

and Y ′ = Y ∪ C∗. Second, is the random contamination
setting, where C∗ is sampled at random from X . Since the
nonrandom contamination setting is more challenging, we
present the results from that setting in the main text. Results
from the random contamination setting are presented in the
appendix. We define N = #(X) +#(Y ), the total number
of samples, and consider 3 tasks corresponding to 3 datasets:

1. FOREST: A publicly available dataset containing mea-
surements of 54 cartographic variables such as elevation and
slope [Blackard, 1998]. We consider the task of measuring
the distance between the distribution over cartographic prop-
erties of two forest types: Lodgepole Pine and Spruce-Fir.
We simulate ϵ contamination by flipping an ϵ proportion
of Lodgepole Pine (n = 283, 301) labels to Spruce-Fir
(n = 211, 840).

2. MIMIC: A publicly available chest radiographs and
corresponding clinical data with over 377,000 chest X-ray
images and radiology reports [Johnson et al., 2019a,b, Gold-
berger et al., 2000]. Here, we consider the task of mea-
suring the distance between pneumonia predictions across
two race groups – a common task in the fairness liter-
ature. In this setting, the sensitive attribute is measured
with ϵ-contamination. We use 60% of the data for training
the model, 20% for validation, and the remaining 20% for
MMD estimation. We use the training and validation data
to fine tune a Densenet-121 [Huang et al., 2016] that was
pretrained on Imagenet [Deng et al., 2009]. After training
the model, we obtain the 2-dimensional logit predictions
of the 20% of the data held out for MMD estimation, and
simulate ϵ-contamination by changing an ϵ proportion of
Black (n = 3897) patients to White (n = 11293).

3. BIO: Unlike the 2-dimensional MIMIC data and 54-
dimensional FOREST data, in the third task we examine a
more extreme case of high dimensional data with few sam-
ples. We use publicly available leukemia gene expression



20 50 100 250 500 1000 2000
Sample Size

0.025

0.050

0.075

0.100

0.125

M
IW

20 50 100 250 500 1000 2000
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

F
C

R

S-SD (Ours) S-QNO QNO SD SM Bootstrap

0.01 0.05 0.1 0.2 0.3 0.4 0.5
Epsilon

0.0

0.1

0.2

0.3

0.4

M
IW

0.01 0.05 0.1 0.2 0.3 0.4 0.5
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

F
C

R

S-SD (Ours) S-QNO QNO SD SM Bootstrap

Figure 1: Top: Results on FOREST fixing ϵ = 0.2 and increasing sample size from N = 20 to N = 2000. Bars indicate the
SE of the FCR and MIW across all trials. As sample size increases, MIW decreases for all methods, with S-SD providing
intervals with the lowest FCR for all sample sizes. Bottom: The MIW and FCR for each approach is shown as the intensity
of ϵ-contamination varies from ϵ = 0.01 to ϵ = 0.5 in FOREST (N = 100, d = 54). Bars indicate the SE of the FCR and
MIW across all trials. As ϵ increases, S-SD reports tight and credible intervals for all values of ϵ.

dataset (BIO) [Golub et al., 1999], which has 7128 measure-
ments of gene expressions from DNA microarrays for 72
samples. The 72 samples are divided into binary groups of
leukemia cancer cell types, acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML), and we conduct
the ϵ contamination by flipping ϵ of the ALL (n = 47) to
AML (n = 25).

5.1 PERFORMANCE UNDER DIFFERENT DATA
DIMENSIONS

In this section, we examine the effect of varying dimen-
sion. To do so, we compute the FCR and MIW of bounds
estimated on MIMIC (N = 100, d = 2), FOREST (N =
100, d = 54), and BIO (N = 72, d = 7128) in table 1. We
focus on the small sample regime as it is much more chal-
lenging. To get estimates for the standard error (SE) around
the MIW and FCR, we repeat the experiment 100 times on
100 samples picked without replacement for MIMIC and
FOREST. For BIO, we create 100 bootstrap samples. We
fix ϵ = 0.2, simulate contamination in 100 random samples,
and calculate the upper and lower bounds for each approach.

The results in table 1 show that in all settings our approach
gives the tightest (smallest MIW) and most credible (low-
est FCR) estimates, while SD, QNO and S-QNO return
bounds with a higher FCR. In settings where the dimen-
sions are small, S-QNO performs significantly better than

QNO. However, both perform poorly when the dimension,
d is large. Such a finding makes sense: the stepwise algo-
rithm reduces the dependence on the sample size, however
the performance of both QNO and S-QNO appears to have
some irreducible dependence on the dimension. This is not
surprising, in BIO, for example, S-QNO is solving an op-
timization problem over an m/S × 7128 parameter space,
whereas S-SD is required to estimate the (1−α)/S quantile
of a univariate distribution (that is the distribution over the
values of the witness function). In this setting where ϵ = 0.2,
equation 7 is a poor approximation of equation 4, which
explains the poor performance of SD. At ϵ = 0.2 the typi-
cal estimate of the MMD (equation 1) is unreliable. Being
centered around the typical estimate, Bootstrap is expected
to give unreliable bounds. SM also performs poorly since it
is designed to find few samples that explain the difference
between the two corrupted distributions.

Overall, S-SD remains robust even in high dimensions,
while other approaches do not. In the appendix, we repeat
this experiment with N = 2000 for MIMIC and FOREST.
The results are largely consistent with the findings presented
here. However, as N increases, the estimates for S-QNO in
small dimensions become more comparable to S-SD.

For brevity, we present results on the FOREST dataset in
the main text but include the similar analyses on MIMIC
and BIO in the appendix.



5.2 PERFORMANCE UNDER DIFFERENT
SAMPLE SIZES

We study the effect of increasing sample size. Fixing ϵ =
0.2, we vary the sample size from N = 20 to N = 2000 by
sampling from the FOREST dataset. For each sample size,
we sample 100 times and compute the mean FCR and MIW
and their corresponding standard errors. We plot the results
for the MIW in figure 1 (top, left) and the FCR in figure 1
(top, right). The results show that the FCR for our approach,
S-QNO and QNO decreases as the sample size increases
revealing that these estimates are consistent. However, our
approach gives the lowest FCR even in very small samples.
In larger samples, S-QNO performs comparably to our ap-
proach. SD, SM and the bootstrap method all return overly
conservative estimates that do not contain the true MMD.

5.3 PERFORMANCE UNDER DIFFERENT
VALUES OF ϵ

We investigate the effect of increasing contamination from
ϵ = 0.01 to ϵ = 0.9. Similar to section 5.1, we focus on the
small sample regime by fixing N to be 100. We present the
results here up to ϵ = 0.5, and the rest in the appendix.

Figure 1 (bottom) shows that for small values of ϵ, QNO and
S-QNO perform poorly, giving high FCR. S-QNO resolves
some of the issues by dividing the optimization into several
steps, but still underperforms compared to our approach.
SD gives a biased estimate of the bound for ϵ significantly
higher than 0, as expected. Bootstrap gives valid bounds
with low FCR only with near negligable values of ϵ, where
the typical MMD estimate is approximately valid.

The previous three experiments show that S-SD consistently
gives credible and tight estimates of the upper and lower
bounds on the value of the true MMD. Next, we examine
the sensitivity of S-SD to the number of steps S.

5.4 COMPUTATIONAL EFFICIENCY

Next, we examine the computational efficiency of our ap-
proach as compared to baselines. Using the Forest dataset,
with n = 2000, we vary the value of ϵ and measure the
time in seconds that is required for each model to compute
the upper and lower bounds. We repeat the experiment 100
times and report mean time and standard errors.

The results, shown in figure 2, indicate that our basic (non-
stepwise) approach is the fastest, and particularly it is faster
than the non-stepwise QNO approach while our main ap-
proach S-SD is faster than its counterpart, S-QNO. Impor-
tantly, the plot implies that increasing the value of ϵ has a
negligible effect on the computational time of SD and our
main approach S-SD.
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Figure 2: Computational efficiency: x-axis shows the value
of ϵ, y-axis shows the wall clock time in seconds. Our basic
(non-stepwise) approach

5.5 SENSITIVITY ANALYSES

Sensitivity to incorrect values of ϵ. Next, we examine the
sensitivity of S-SD and other methods to incorrect values of
ϵ. To do so, we fix the true value of ϵ to be 0.1 but sweep ϵ̃,
the value given to each of the models, from 0.01 to 0.5. This
means that the assumption of known/correct level of noise
is only satisfied when ϵ̃ = ϵ = 0.1. Similar to section 5.1,
we focus on the small sample regime by fixing N to be 100.
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Figure 3: Sensitivity to incorrect values of ϵ. True value of ϵ
is 0.1. Models are given ϵ̃ values shown on the x-axis

Figure 3 shows the value of ϵ̃ on the x-axis and the corre-
sponding FCR on the y-axis. In the appendix, we present
a plot with the corrsponding mean interval widths for each
level of ϵ̃. The results show that only our two approaches (S-
SD and S-QNO) achieve an FCR of 0 whenever ϵ̃ ≥ ϵ. This
suggests a practical guideline: when in doubt, users should
err on the side of a higher ϵ estimate with the trade-off of
wider intervals (as reported in the appendix). Other methods
do not give such a guarantee: they consistently give overly
conservative intervals with poor coverage.

Sensivity to the number of steps. We examine the sensitiv-
ity of S-SD to the number of steps S. To do so, we sample



S-SD (Ours)

No. of Steps FCR MIW

2 0.21± (0.091) 0.082± (0.001)
3 0.13± (0.034) 0.079± (0.001)
5 0.0± (0.0) 0.088± (0.001)
10 0.0± (0.0) 0.08± (0.001)
20 0.0± (0.0) 0.091± (0.001)
50 0.0± (0.0) 0.091± (0.001)

Table 2: Varying number of steps for S-SD in FOREST
(N = 2000, d = 54) with ϵ = 0.2. Standard errors (in
parentheses) over 100 trials. Results imply that setting S to
be large gives lower FCR.

n = 2000 from FOREST, vary the value of S, and examine
the performance of our main approach, S-SD. We repeat
the experiment 100 times using 100 different samples from
FOREST, each of size 2000 to compute the standard errors
around the FCR and MIW.

Table 2 shows the results. The results imply that we can get
bound estimates that give a FCR of zero even with a very
few number of steps. The MIW increase slightly and starts
to plateau as the number of steps increases. This implies that
a reasonable choice of S to ensure a low FCR would be the
largest possible value which does not lead to a computation-
ally prohibitive number of iterations. Recall that there is a
natural upper bound on S = m. In the appendix, we repeat
this experiment for S-QNO showing similar robustness.

6 CONCLUSION

We studied the problem of comparing two distributions
when the data is collected with some measurement error.
Specifically, we showed that typical estimates of kernel
based distances are unreliable when the data is measured
with some ϵ contamination, where an ϵ proportion of one
sample is erroneously included with the other. We showed
both empirically and theoretically that a straightforward
optimization approach to measuring uncertainty has an un-
favorable dependence on the size of the contaminated set.
Instead, we proposed a stepwise approach to estimate cred-
ible and tight upper and lower bounds and showed that it
converges faster than alternatives to the true upper and lower
bounds. Empirically, we showed that our approach outper-
forms all baselines. Looking beyond this work, it would
be interesting to study other commonly occurring measure-
ment error mechanisms and study their effect on measuring
the MMD and other related estimates such as the Hilbert
Schmidt independence criterion.

Extensions of this work. While beyond the scope of this
work, it might be interesting to understand how our sug-
gested approaches can be used in the context of hypothesis

testing, where the goal is to formally test if the two distri-
butions are similar. We note that such a test can be done by
combining approaches for hypothesis testing using “interval
test statistics” (see Kreinovich et al. [2008] for a summary)
with approaches for acquiring empirical estimates of the
MMD under the null distribution Gretton et al. [2009].

We also note that extending our approach to settings where
both variables are contaminated is likely a trivial extension
of our work. Specifically, it might be appropriate to conduct
an iterative procedure where we find Ĉx: the samples ob-
served in Y ′ that are truly sampled from PX and then find
Ĉy the samples observed in X ′ that are truly sampled from
PY iteratively until meeting some convergence criteria.
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A PROOF FOR PROPOSITION 1

Proposition A1 (Restated Proposition 1 in the main text) Let (Y ′,Ω) be a measurable space with Y ′ ∈ Y ′ and let P be
all the probability distributions on (Y ′,Ω). Define P(α) to be all the possible probability distributions over the unknown
C∗, i.e., P(α) = {(PY ′(Y ′)− (1− α)φ)/α : φ ∈ P}, then the following bounds are sharp:

inf
PC∈P(α)

MMD(PC , PX′ , PY ′) ≤ MMD(PC∗ , PX′ , PY ′) ≤ sup
PC∈P(α)

MMD(PC , PX′ , PY ′),

Proof. Consider the upper bound, supPC∈P(α) MMD(PC , PX′ , PY ′), and let PC =
arg supPC∈P(α) MMD(PC , PX′ , PY ′). Note that without additional assumptions, it is possible that PC∗ = PC . In
this case, the upper bound holds with equality. I.e., MMD(PC∗ , PX′ , PY ′) = supPC∈P(α) MMD(PC , PX′ , PY ′). Hence
the upper bound is sharp. A similar argument can be constructed to show that the lower bound is sharp.

B PROOF FOR PROPOSITION 2

Before proceeding to the main proof, we restate the following definition from Gretton et al. [2012].

Definition A1 (Restated definition 30 in Gretton et al. [2012]) . Let F be the unit ball in an RKHS, with kernel bounded
according to 0 ≤ k(x, y) ≤ κ. Let Z be an i.i.d. sample of size n drawn according to a probability measure PZ and let σi
be i.i.d and take values in {−1, 1} with equal probability and σ = {σi}ni=1. We define the Rademacher average:

Rn(F , Z) = Eσ sup
f∈F

∣∣∣ 1
n

∑
i

f(zi)
∣∣∣ ≤ (κ

n

)1/2

Proposition A2 (Restated Proposition 2 in the main text) For MMD(PC , PX′ , PY ′) as defined in proposition 1, Ĉ◦ as
defined in equation 5, with #(Ĉ◦) = m, 0 ≤ k(x′, y′) ≤ κ for all x′, y′ ∈ X ′,Y ′, we have that:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉ◦, X

′, Y ′)| > b0 + ε

}
≤ 2 exp

(
−ε2n
b1

)
,

for b0 = 4
√
κ(n−1/2 + ϵm) and b1 = 2κ((1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2)

Proof. Define ĉ◦i such that Ĉ◦ = {ĉ◦i }mi=1 and consider the absolute difference term:

|MMD(PC , PX′ , PY ′)− M̂MD(Ĉ◦, X
′, Y ′)|

=

∣∣∣∣ sup
f∈F

[
(1− ϵ)EPX′ f(X

′)− (1 + ϵ)EPY ′ f(Y
′) + 2ϵECf(C)

]
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− sup
f∈F

[ (1− ϵ)

n

∑
i

f(x′i)−
(1 + ϵ)

n

∑
i

f(y′i) +
2ϵ

n

∑
i

f(ĉ◦i )
]∣∣∣∣

≤ sup
f∈F

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)−
2ϵ

n

∑
i

f(ĉ◦i ))
∣∣∣

:= ∆(X ′, Y ′, PX′ , PY ′)

We will next attempt to bound the difference between ∆D(PX′ , PY ′ , X ′, Y ′) and its expectation by applying McDiarmid’s
inequality. To do so, we first need to verify that ∆D(PX′ , PY ′ , X ′, Y ′) satisfies the bounded difference property. We do so in
two steps. In the first step, we consider the case where we replace one of the X ′ samples. Specifically, we consider the data
DX′

πj = {X ′
πj , Y

′}, where X ′
πj = {x′1, x′2, . . . , x′i−1, x

′
j , x

′
i+1, . . . x

′
(1−ϵ)n}. Let C̃◦ denote the estimate of Ĉ according to

equation 5 using DX′

πj rather than D. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DX′
j
(PX′ , PY ′ , X ′

πj , Y
′)|

≤ sup
f

∣∣∣ (1− ϵ)

n
(
∑
i

f(x′i)− f(x′i) + f(x′j))−
(1 + ϵ)

n

∑
i

f(y′i)

+
2ϵ

n

∑
i

f(c̃◦i )−
(1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)−
2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ sup
f

∣∣∣ (1− ϵ)

n
(−f(x′i) + f(x′j)) +

2ϵ

n

∑
i

f(c̃◦i )−
2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ (1− ϵ)

n
(sup

f
|f(x′i)|+ sup

f
|f(x′j)|) +

2ϵ

n
sup
f
(
∑
i

f(c̃◦i )−
∑
i

f(ĉ◦i ))

≤ (1− ϵ)

n
(2
√
κ) +

2ϵ

n
(m

√
κ) =

2
√
k

n
(1− ϵ+ ϵm) (9)

Second, we consider the case where we replace one of the Y ′ samples. Specifically, we consider the data DY ′

πj = {X ′, Y ′
πj},

where Y ′
πj = {y′1, y′2, . . . , y′i−1, y

′
j , y

′
i+1, . . . y

′
(1+ϵ)n}. In that case, by a similar construction to the previous case, we have

that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DY ′
j
(PX′ , PY ′ , X ′, Y ′

πj)| ≤
2
√
k

n
(1 + ϵ+ ϵm) (10)

Combining the results from equations 9 and 10, we can apply McDiarmid with denominator:

(1− ϵ)n
(2√k

n
(1− ϵ+ ϵm)

)2

+ (1 + ϵ)n
(2√k

n
(1 + ϵ+ ϵm)

)2

=
4κ

n

(
(1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2

)
.

I.e.,:

PX′,Y ′

{
∆D(PX′ , PY ′ , X ′, Y ′)− EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
> ε

}
≤ 2 exp

(
−ε2n
b1

)
, (11)

where b1 = 2κ((1− ϵ)(1− ϵ+ ϵm)2 + (1 + ϵ)(1 + ϵ+ ϵm)2).

It remains to control EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
. To do so we use the β-stability property and symmetrization Van

Der Vaart et al. [1996]. We note that the β-stability of the hypothesis is a direct consequence of the boundedness of k(., .) by
κ. Let X• and Y • be i.i.d samples of sizes (1− ϵ)n and (1 + ϵ)n respectively, we have that:

EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]



= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)−
2ϵ

n

∑
i

f(ĉ◦i ))
∣∣∣

= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EX•

(
1

n

∑
i

f(x•i )

)
− 1− ϵ

n

∑
i

f(x′i)− (1 + ϵ)EY •

(
1

n
f(y•i )

)
+

1 + ϵ

n

∑
i

f(y′i)

+ 2ϵEX•,Y •

(
1

n
f(ċ◦i )

)
− 2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f

∣∣∣1− ϵ

n

∑
i

f(x•i )−
1− ϵ

n

∑
i

f(x′i)−
1 + ϵ

n

∑
i

f(y•i ) +
1 + ϵ

n

∑
i

f(y′i)

+
2ϵ

n

∑
i

f(ċ◦i )−
2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y • sup
f

∣∣∣1− ϵ

n

∑
i

f(x•i )−
1− ϵ

n

∑
i

f(x′i)−
1 + ϵ

n

∑
i

f(y•i ) +
1 + ϵ

n

∑
i

f(y′i)
∣∣∣

+ EX′,Y ′,X•,Y • sup
f

∣∣∣2ϵ
n

∑
i

f(ċ◦i )−
2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ EX′,Y ′,X•,Y •,σ′,σ• sup
f

∣∣∣1− ϵ

n

∑
i

σ′
i(f(x

•
i )− f(x′i)) +

1 + ϵ

n

∑
i

σ•
i (f(y

•
i )− f(y′i))

∣∣∣
+ sup

X′,Y ′,X•,Y •

∣∣∣2ϵ
n

∑
i

f(ċ◦i )−
2ϵ

n

∑
i

f(ĉ◦i )
∣∣∣

≤ EX′,X•,σ sup
f

∣∣∣∣1− ϵ

n

∑
i

σ′
i(f(x

•
i )− f(x′i))

∣∣∣+ EY ′,Y •,σ sup
f

∣∣∣1 + ϵ

n

∑
i

σ•
i (f(y

•
i )− f(y′i))

∣∣∣
+

2ϵ

n
sup

X′,Y ′,X•,Y •

∣∣∣∑
i

f(ċ◦i )−
∑
i

f(ĉ◦i )
∣∣∣

≤ 2[(1− ϵ)Rn(F , X ′) + (1 + ϵ)Rn(F , Y ′)] + 2ϵm
√
κ]

≤ 2[(1− ϵ)(κ/n)1/2 + (1 + ϵ)(κ/n)1/2 + 2ϵmκ1/2]

≤ 4
√
κ(n−1/2 + ϵm).

Substituting 4
√
κ(n−1/2 + ϵm) for EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
in equation 11 gives the desired result.

C PROOF FOR PROPOSITION 3

Before stating the main proof, we begin by outlining the following definition, and lemmas.

Definition A2 Random variable Z has first-order stochastic dominance (or stochastic dominance for short) over random
variable Z ′ if for any outcome t, Z gives at least as high a probability of receiving at least t as does Z ′, and for some t, Z
gives a higher probability of receiving at least t.

Lemma A1 Let (Y ′,Ω) be a measurable space with Y ′ ∈ Y ′, and let P be all the probability distributions on (Y ′,Ω). For
P(α) = {(PY ′(Y ′)− (1− α)φ)/α : φ ∈ P}. We have that

arg supPC∈P(α)MMD(PC , PX′ , PY ′) = arg supPC∈P(α)EPC
[f̃ ′(C)],

where

f̃ ′(C) = (1− ϵ)EPX′ [k(C,X
′)]− (1 + ϵ)EPY ′ [k(C, Y

′)] + ϵEPC
k(C,C) (12)

Proof. The proof is a straight forward derivation from the definition of the MMD and the witness function. We present the
derivation below, with all supPC

to be understood as supPC∈P(α). We use X̃ to denote X ′ ∪ C and Ỹ to denote Y ′ \ C for
an arbitrary C.



arg supPC

[
MMD(PC , PX′ , PY ′)

]
= arg supPC

[
sup
f∈F

[
EP

X̃
[f(X̃)]− EPỸ

[f(Ỹ )]
]]

= arg supPC

[
EP

X̃
[k(X̃, X̃)]− EP

X̃
EPỸ

[k(X̃, Ỹ )]− EP
X̃
EPỸ

[k(X̃, Ỹ )] + EPỸ
[k(Ỹ , Ỹ )]

]
= arg supPC

[
(1− ϵ)2EPX′ [k(X

′, X ′)] + (1 + ϵ)2EPy′ [k(y
′, y′)]

− 2(1 + ϵ)(1− ϵ)EPX′EPY ′ [k(X
′, Y ′)] + 4ϵ

(
(1− ϵ)EPC

EPX′ [k(C,X
′)]

− (1 + ϵ)EPC
EPY ′ [k(C, Y

′)] + EPC
EPC

[k(C,C)]
]

= arg supPC

[
EPC

[
(1− ϵ)EPX′ [k(C,X

′)]− (1 + ϵ)EPY ′ [k(C, Y
′)] + EPC

[k(C,C)]
]]

= arg supPC

[
f̃ ′(C)],

which completes the proof.

Note that the empirical version of equation 12 corresponds to equation 4 in the main text.

Corollary A1 Under the same conditions as Lemma A1, and for a sufficiently small ϵ, we have that

arg supPC∈P(α)MMD(PC , PX′ , PY ′) ⪅ arg supPC∈P(α)EPC
[f ′(C)],

where

f ′(C) = (1− ϵ)EPX′ [k(C,X
′)]− (1 + ϵ)EPY ′ [k(C, Y

′)]

Proof. The proof directly follows from Lemma A1 and the fact that for a sufficiently small ϵ, we have that f ′(C) ≈ f̃ ′(C).

Proposition A3 (Restated proposition 3 from the main text) Let Cγ be the solution to equation 7 as n → ∞. For a
sufficiently small ϵ, we have that PCγ = PC , where PC is defined as the distribution that maximizes the third term in
proposition 1.

Proof. Recall that:

PY ′(Y ′) = (1− α)PY (Y ) + αPC∗(C∗),

and note that the kernel k is a measurable mapping, hence f ′ is also a measurable mapping. This implies that f ′(Y ′) is
measurable with respect to Y ′ and we can express the distribution over f ′(Y ′). Letting QY ′ := PY ′(f ′(Y ′)), QY :=
PY (f

′(Y )), and QC∗ := PC∗(f(C∗)), we have that:

QY ′(Y ′) = (1− α)QY (Y ) + αQC∗(C∗).

Using the notation QY ′ [−∞, t] to denote the cumulative distribution function (CDF) of QY ′(Y ′) from values −∞ to t, we
can write the CDF over Cγ as the CDF of a truncated distribution, which gives us the following:

QCγ
[−∞, t] =

{
0 if t < γ(
QY ′ [−∞, t]− (1− α)

)
/α if t ≥ γ.

Consider the following distribution:

φ0[−∞, t] =

{
QY ′ [−∞, t]/(1− α) if t < γ

1 if t ≥ γ.



Note that:

(1− α)φ0[−∞, t] + αQCγ
[−∞, t] = QY ′ [−∞, 1]

which means that QCγ
∈ P(α). Next we will make the argument that QCγ

stochastically dominates all other distributions
in P(α). Note that for any φ1, if t < γ

QCγ
[−∞, t]− φ1[−∞, t] = 0− φ1[−∞, t] ≤ 0.

However, suppose that there exists some φ1 ∈ P(α), and that it stochastically dominates QCγ
. I.e., for t ≥ γ:

φ1[−∞, t] < QCγ [−∞, t]

⇒ φ1[−∞, t] <
(
QY ′ [−∞, t]− (1− α)

)
/α

⇒ αφ1[−∞, t] < QY ′ [−∞, t]− (1− α),

Hence we have that (1−α)φ+αφ1 < QY ′ [−∞, 1] for all φ ∈ P , which implies that φ1 ̸∈ P(α), which is a contradiction.

This shows that QCγ [−∞, t] stochastically dominates all distributions in P(α), which means that:

EQCγ
[f ′(Cγ)] > EQC

[f ′(C)]

⇒ EPCγ
[f ′(Cγ)] > EPC

[f ′(C)]

for all PC ̸= PCγ
. Since EPC

[f ′(C)] > EPC
[f ′(C)] for all PC ̸= PC , and by Corollary A1, we have that EPCγ

[f ′(Cγ)] =

EPC
[f ′(C)], which completes the proof.

D PROOF FOR PROPOSITION 4

Proposition A4 (Restated proposition 4 in main text) For MMD(PC , PX′ , PY ′) as defined in proposition 1, Ĉγ̂ as de-
fined in equation 7 and κ such that 0 ≤ k(x, y) ≤ κ for all x, y ∈ X . Then as for a sufficiently small ϵ:

PX′,Y ′

{
|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X

′, Y ′)| > b0 + ε

}
≤ 2 exp

(
−ε2n
b1

)
for b0 = 4(κ/n)

1/2(1 + ϵ) and b1 = 2κ
(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)
Proof. Consider the absolute difference term

|MMD(PC , PX′ , PY ′)− M̂MD(Ĉγ̂ , X
′, Y ′)|

=

∣∣∣∣ sup
f

[
(1− ϵ)EPX′ f(X

′)− (1 + ϵ)EPY ′ f(Y
′) + 2ϵECf(C)

]
− sup

f

[ (1− ϵ)

n

∑
i

f(x′i)−
(1 + ϵ)

n

∑
i

f(y′i) +
2ϵ

n

∑
i

f(ĉγ̂i )
]∣∣∣∣

≤ sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)−
2ϵ

n

∑
i

f(ĉγ̂i )
∣∣∣

= sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)−
2ϵ

n

∑
i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

:= ∆D(PX′ , PY ′ , X ′, Y ′)



We will next attempt to bound the difference between ∆D(PX′ , PY ′ , X ′, Y ′) and its expectation by applying McDiarmid’s
inequality. To do so, we first need to verify that ∆D(PX′ , PY ′ , X ′, Y ′) satisfies the bounded difference property. We do so
in two steps. In the first step, we consider the case where we replace one of the X ′ samples. Specifically, we consider the
data DX′

πj = {X ′
πj , Y

′}, where X ′
πj = {x′1, x′2, . . . , x′i−1, x

′
j , x

′
i+1, . . . x

′
(1−ϵ)n}. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DX′
j
(PX′ , PY ′ , X ′

πj , Y
′)|

= sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ̃}f(y′i) +
1− ϵ

n
(f(x′j)− f(x′i))

∣∣∣
≤ sup

f,γ

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ}f(y′i) +
1− ϵ

n
(f(x′j)− f(x′i))

∣∣∣
≤ 1− ϵ

n
sup
f

∣∣∣(f(x′i)− f(x′j))
∣∣∣

≤ 1− ϵ

n

(
sup
f

|(f(x′i)|+ sup
f

|f(x′j))|
)

≤ 2(1− ϵ)

n

√
κ (13)

Second, we consider the case where we replace one of the Y ′ samples. Specifically, we consider the data DY ′

πj = {X ′, Y ′
πj},

where Y ′
πj = {y′1, y′2, . . . , y′i−1, y

′
j , y

′
i+1, . . . y

′
(1+ϵ)n}. In that case, we have that:

|∆D(PX′ , PY ′ , X ′, Y ′)−∆DY ′
j
(PX′ , PY ′ , X ′, Y ′

πj)|

≤ sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

− sup
f

∣∣∣(1− ϵ)EPX′ f(X
′)− (1 + ϵ)EPY ′ f(Y

′) + 2ϵECf(C)

− (1− ϵ)

n

∑
i

f(x′i) +
(1 + ϵ)

n

∑
i

f(y′i)− 2ϵ
1

n

∑
i

1{f(y′i) ≥ γ̃}f(y′i)

− 1 + ϵ

n
(f(y′i)− f(y′j)) +

2ϵ

n
(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))

∣∣∣
= sup

f

∣∣∣− 1 + ϵ

n
(f(y′i)− f(y′j)) +

2ϵ

n
(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))

∣∣∣
≤ 1 + ϵ

n
sup
f

∣∣∣(f(y′i)− f(y′j))
∣∣∣+ 2ϵ

n
sup
f

∣∣∣(1{f(y′i) ≥ γ̂}f(y′i)− 1{f(y′j) ≥ γ̃}f(y′j))
∣∣∣



≤ 1 + ϵ

n
sup
f

∣∣∣(f(y′i)− f(y′j))
∣∣∣+ 2ϵ

n
sup
f

|f(y′i)− f(y′j)
∣∣∣

≤ 1 + ϵ

n

(
sup
f

|(f(y′i)|+ sup
f

|f(y′j))|
)
+

2ϵ

n

(
sup
f

|f(y′i)|+ sup
f

|f(y′j)|
)

≤ 2(1 + ϵ)

n

√
κ+

4ϵ

n

√
κ =

2
√
κ

n
(1 + 3ϵ) (14)

Combining the results from equations 13 and 14, we get that we can apply McDiarmid with the following denominator:

(1− ϵ)n
(2(1− ϵ)

n

√
κ
)2

+ (1 + ϵ)n
(2√κ

n
(1 + 3ϵ)

)2

=
4κ

n

(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)
,

to obtain

PX′,Y ′

{
∆D(PX′ , PY ′ , X ′, Y ′)− EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
> ε

}
(15)

≤ 2 exp

(
−ε2n

2κ
(
(1− ϵ)3 + (1 + ϵ)(1 + 3ϵ)2

)). (16)

Next, we seek to control the expectation, EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
. To do so we use symmetrization Van Der Vaart

et al. [1996]. Let X• and Y • be i.i.d samples of sizes (1− ϵ)n and (1 + ϵ)n respectively, we have that:

EX′,Y ′

[
∆D(PX′ , PY ′ , X ′, Y ′)

]
= EX′,Y ′ sup

f

∣∣∣(1− ϵ)EPX′ f(X
′)− 1− ϵ

n

∑
i

f(x′i)− (1 + ϵ)EPY ′ f(Y
′) +

1 + ϵ

n

∑
i

f(y′i)

+ 2ϵECf(C)−
2ϵ

n

∑
i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣

= EX′,Y ′ sup
f

∣∣∣(1− ϵ)EX•

(
1

n

∑
i

f(x•i )

)
− 1− ϵ

n

∑
i

f(x′i)

− (1 + ϵ)EY •

(
1

n
f(y•i )

)
+

1 + ϵ

n

∑
i

f(y′i)

+ 2ϵEY •

(
1

n
1{f(y•i ) ≥ γ•}f(y•i )

)
− 2ϵ

n

∑
i

1{f(y′i) ≥ γ̂}f(y′i)
∣∣∣
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Substituting 4
(
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(1 + ϵ) in equation 15 yields the desired result.

E ADDITIONAL RESULTS FROM THE NONRANDOM CONTAMINATION SETTING

We show results presenting the typical estimate of the MMD assuming no contamination. We also reproduce the main
results in sections 4 in the MIMIC setting. We additionally include the same experiment as in table 1 for N = 2000.

Figure 4 illustrates the that the typical estimate of the MMD (equation 1) is unreliable, especially as ϵ increases. It also
demonstrates the upper and lower bounds of S-SD as simulated epsilon contamination increases; S-SD bounds contain the
true value of the MMD at all values of ϵ.
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Figure 4: An illustration of how the typical estimate of the MMD is unreliable especially as ϵ increases. In addition, this
result matches our intuition from the Bootstrap method; as ϵ increases, the two groups become increasingly mixed and more
similar, and the MMD approaches 0.

Table 3 shows the same results as those presented in table 1 with N = 2000 instead of N = 100. The results show that, as
seen in figure 1 (top), the performance of QNO and S-QNO improves as sample size increases, while S-SD continues to
have tight and informative bounds.



Table 3: MIW and FCR for MIMIC and FOREST at ϵ = 0.2.

MIMIC (n = 2000, d = 2) FOREST (n = 2000, d = 54)

Approach FCR MIW FCR MIW

S-SD (Ours) 0.0± (0.0) 0.251± (0.008) 0.0± (0.0) 0.128± (0.007)
S-QNO 0.0± (0.0) 0.25± (0.006) 0.0± (0.0) 0.134± (0.007)
QNO 0.0± (0.0) 0.227± (0.006) 0.32± (0.066) 0.107± (0.01)
SD 0.02± (0.02) 0.23± (0.009) 0.46± (0.07) 0.087± (0.009)
SM 0.02± (0.02) 0.217± (0.008) 0.46± (0.07) 0.081± (0.008)
Bootstrap 0.3± (0.065) 0.091± (0.004) 0.46± (0.07) 0.042± (0.003)

E.1 ADDITIONAL RESULTS USING MIMIC DATA

Figures 5 and 6 are similar to figure 1 in the main text, but instead of performing the analysis on the FOREST data, we
perform the analysis on the MIMIC data. The results are largely consistent with the analysis in the main text: our approach
outperforms others in that it gives the lowest FCR for every sample size and every value of ϵ.
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Figure 5: The same experiment as in figure 1 (top), but run in the MIMIC (n = 100, d = 2) setting.
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Figure 6: The same experiment as in figure 1 (bottom), but run in the MIMIC (n = 100, d = 2) setting.



E.2 ADDITIONAL RESULTS USING BIO DATA

Figure 7 is similar to figure 1 (bottom) in the main text, but instead of performing the analysis on the FOREST data, we
perform the analysis on the BIO data. We note that due to the limited sample size of the BIO data, we are unable to create
figure 1 (top) for the BIO data. S-SD gives the lowest FCR for every value of ϵ. As in 1, QNO and S-QNO have a irreducible
dependence on the dimension size of the data. QNO fails to contain the value of the true MMD at all ϵ ≥ 0.01. S-QNO
performs poorly until larger values of epsilon, where the step approximation becomes effective; this is because at small
sample sizes, the set of corrupted samples is small, and the approximation cannot be divided into many steps.
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Figure 7: The same experiment as in figure 1 (bottom), but run in the BIO (n = 72, d = 7128) setting.

E.3 STEP SIZE SENSITIVITY

Table 4 shows that similar to S-SD, S-QNO gives bound estimates with FCR of zero even for a few number of steps.
Conclusions from the main text regarding setting the step size for S-SD hold for S-QNO as well.

S-QNO

Number of Steps FCR MIW

2 0.05± (0.023) 0.067± (0.001)
3 0.0± (0.0) 0.066± (0.001)
5 0.0± (0.0) 0.075± (0.0)
10 0.0± (0.0) 0.091± (0.001)
20 0.0± (0.0) 0.087± (0.001)
50 0.0± (0.0) 0.091± (0.001)

Table 4: Varying number of steps for S-QNO in FOREST (n = 2000, d = 54) with ϵ = 0.2. Standard errors (shown in
parentheses) represent the SE for the FCR and MIW for each method over 100 trials. In each trial, we sample 2000 data
points without replacement and simulate ϵ-contamination, and then compute the bounds for S-QNO at each number of steps
on the same sample.

F EXPERIMENTAL RESULTS FROM THE RANDOM CONTAMINATION SETTING

We present the same experiments as in table 1 and figure 1 on FOREST (n = 100, d = 54) when the set of contaminations
C∗ is a random sample of X of size ⌊ϵn⌋, rather than the ⌊ϵn⌋ samples in X with the largest witness function values as
described in section 5. The results in table ?? and figure 8 are consistent with the results in the main text and show that for
all ϵ, S-SD gives the most credible bounds with the tightest MIW. Figure 9 shows that FCR and MIW decrease for S-SD,
S-QNO, and QNO as sample size increases in FOREST.



MIMIC (n = 100, d = 2) FOREST (n = 100, d = 54) BIO (n = 72, d = 7128)

Approach FCR MIW FCR MIW FCR MIW

S-SD (Ours) 0.0± (0.0) 0.258± (0.002) 0.0± (0.0) 0.107± (0.002) 0.07± (0.026) 0.08± (0.001)
S-QNO 0.0± (0.0) 0.258± (0.002) 0.0± (0.0) 0.114± (0.002) 1.0± (0.0) 0.056± (0.001)
QNO 0.0± (0.0) 0.247± (0.002) 0.4± (0.069) 0.051± (0.002) 1.0± (0.0) 0.038± (0.001)
SD 0.0± (0.0) 0.24± (0.002) 0.92± (0.038) 0.064± (0.003) 0.15± (0.036) 0.074± (0.001)
SM 0.0± (0.0) 0.225± (0.002) 0.92± (0.038) 0.06± (0.003) 0.42± (0.049) 0.05± (0.002)
Bootstrap 1.0± (0.0) 0.02± (0.0) 0.6± (0.069) 0.005± (0.0) 0.85± (0.036) 0.036± (0.001)

Table 5: 100 Samples random contaminations
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Figure 8: The MIW and FCR for each approach is shown as the sample size increases when ϵ = 0.2 in FOREST
(n = 100, d = 54). Bars indicate the SE of the FCR and MIW across all trials.
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Figure 9: The MIW and FCR for each approach is shown as the intensity of random ϵ-contamination varies from ϵ = 0.01
to ϵ = 0.9 in FOREST (n = 100, d = 54). Bars indicate the SE of the FCR and MIW across all trials.

G ADDITIONAL SENSITIVITY ANALYSIS RESULTS

Figure 10 shows ϵ̃, the incorrect value of ϵ, on the x-axis and its corresponding mean interval width (MIW) on the y-axis.
The results show that the mean interval width increases – as expected – for our two main approaches (S-SD and S-QNO) but
not for the other approaches. The latter give overly conservative estimates with high FCR at high values of ϵ̃.
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Figure 10: Sensitivity to incorrect values of ϵ. True value of ϵ is 0.1. Models are given ϵ̃ values shown on the x-axis, mean
interval width (MIW) on the y-axis
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