
Symbolic Regression with a Learned Concept Library

Arya Grayeli * 1 2 Atharva Sehgal * 1 Omar Costilla-Reyes 3 Miles Cranmer 4 Swarat Chaudhuri 1

Abstract
We present a novel method for symbolic regres-
sion (SR), the task of searching for compact pro-
grammatic hypotheses that best explain a dataset.
The problem is commonly solved using genetic
algorithms; we show that we can enhance such
methods by inducing a library of abstract textual
concepts. Our algorithm, called LASR, uses zero-
shot queries to a large language model (LLM) to
discover and evolve concepts occurring in known
high-performing hypotheses. We discover new
hypotheses using a mix of standard evolutionary
steps and LLM-guided steps (obtained through
zero-shot LLM queries) conditioned on discov-
ered concepts. Once discovered, hypotheses are
used in a new round of concept abstraction and
evolution. We validate LASR on the Feynman
equations, a popular SR benchmark, as well as
a set of synthetic tasks. On these benchmarks,
LASR substantially outperforms a variety of state-
of-the-art SR approaches based on deep learning
and evolutionary algorithms.

1. Introduction
Symbolic regression (SR) (Makke & Chawla, 2024) is the
task of finding succinct programmatic hypotheses — writ-
ten in a flexible, domain-specific programming language —
that best explain a dataset. Initially proposed in the 1970s,
SR has recently emerged as a prominent approach to au-
tomated scientific discovery, with applications in domains
from astrophysics (Lemos et al., 2023; Davis & Jin, 2023)
to chemistry (Batra et al., 2021; Hernandez et al., 2019) to
medicine (Virgolin et al., 2020).

Computational complexity is a fundamental challenge in
SR, as the space of hypotheses that an SR algorithm must
search is discrete and exponential. Previous work has ap-

*Equal contribution 1UT Austin 2Foundry Technologies 3MIT
CSAIL 4University of Cambridge. Correspondence to: Atharva
Sehgal <atharvas@utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

proached this challenge using methods like genetic program-
ming (Schmidt & Lipson, 2009; Cranmer, 2023), neural-
guided search (Cranmer et al., 2020; Shah et al., 2020), deep
reinforcement learning (Petersen et al., 2019) and hybrid
algorithms (Landajuela et al., 2022). However, new tools
to enhance the scalability of SR remain a critical need for
applications in SR and scientific discovery.

In this paper, we show that abstraction and knowledge-
directed discovery can be powerful principles in building
such scaling tools in SR. State-of-the-art genetic algorithms
for SR (Cranmer, 2023) evolve pools of candidate hypothe-
ses using random mutation and crossover operations. By
contrast, a human scientist does not just randomly mutate
their explanations of data. Instead, they synthesize back-
ground knowledge and empirical observations into abstract
concepts, then use these concepts to derive new explana-
tions. We show that zero-shot queries to large language
models (LLMs) can be used to implement such a discovery
process on top of a standard SR algorithm.

Concretely, we present a new method for symbolic regres-
sion, called LASR, that discovers a library of abstract,
reusable and interpretable textual concepts and uses it to
accelerate SR. LASR alternates between three phases: (i)
concept-directed hypothesis evolution, where standard ge-
netic operations over hypotheses are interleaved with LLM-
guided mutation and crossover operations conditioned on
known library concepts; (ii) the LLM-based abstraction
of patterns in known high-performing hypotheses into new
concepts; and (iii) the LLM-directed evolution of concepts
into more succinct and general forms. Together, these three
steps form an open-ended alternating maximization loop
that combines evolutionary exploration with the exploita-
tion of the LLM’s background knowledge and in-context
learning ability.

We experimentally compare LASR on Feynman Equations
(La Cava et al., 2021) — a popular SR benchmark in which
the goal is to discover 100 equations from the Feynman Lec-
tures in Physics — against several state-of-the-art genetic
and deep learning approaches. LASR can discover 66 of
the 100 target equations, while the best existing approach
can solve 59. To address the concern that LASR’s perfor-
mance could be attributed to test set leakage, we compare
LASR with a state-of-the-art genetic approach on a suite of

1

synthetic benchmarks. We show that LASR substantially
outperforms the baseline.

In summary, the contributions of this paper are as follows:

• We pose the problem of discovering an open-ended,
reusable concept library that can accelerate solutions to
downstream SR tasks.

• We present LASR, a method for combining zero-shot
LLM queries and standard evolutionary operations
to simultaneously induce a concept library and high-
performing hypotheses. LASR’s strategy of using LLMs
to accelerate evolutionary algorithms may have future
applications in settings beyond SR.

• We offer promising experimental results, including a
demonstration that LASR outperforms state-of-the-art
algorithms in standard SR tasks and synthetic domains.

2. Problem Formulation
Symbolic Regression. We formulate symbolic regression
(SR) as a program synthesis (Chaudhuri et al., 2021) prob-
lem. The inputs to this problem include a language L of
programmatic hypotheses and a dataset D := {(xi,yi)}Ni=1

of input-output examples. The syntax of L is described
by a context-free grammar (Hopcroft et al., 2007). The
grammar allows each hypothesis π to be represented using
a set of mathematical operators (e.g., addition, multiplica-
tion, trigonometric functions) that facilitate the composition
of simpler hypotheses into more complex ones. We ab-
stractly define the fitness of a hypothesis π as the likelihood
pL(D | π) that it generates D.

In order to prevent finding non-useful solutions, we impose a
prior probability distribution pL(π) over hypotheses π that
penalizes syntactically complex hypotheses. We now pose
SR as the task of finding a hypothesis π⋆ that maximizes
the fitness while minimizing syntactic complexity. The
problem can be expressed as a maximum a posteriori (MAP)
estimation problem (Ellis et al., 2020):

π⋆ = argmax
π

pL(π|D) = argmax
π

pL(D|π)︸ ︷︷ ︸
optimization

· pL(π)︸ ︷︷ ︸
regularization

(1)

Recent work leverages large language models (LLMs) for
program synthesis (Chen et al., 2021b; Grand et al., 2023;
Li et al., 2022). Large language models (LLMs) approach
program synthesis as a token prediction problem, directly
approximating the likelihood of programs by training on
internet-scale datasets. That is,

pL(π|D) ≈ pLLM(⟨π⟩ | ⟨L⟩,desc(D)), (2)

where ⟨π⟩ and ⟨L⟩ are, respectively, textual representations
of π and a specification of the syntax of L, and the task
description desc(D) is a few-shot serialization of a subset
of the examples in D.

Symbolic Regression with Latent Concept Libraries.
Classical symbolic regression typically assumes no prior
knowledge or intuition about the problem. In contrast, hu-
man scientific discovery often leverages empirical patterns
(Wigner, 1990) and intuitions derived from previously ob-
served data. For example, recognizing a ‘power law rela-
tionship between variables’ has led to the formulation of
fundamental empirical laws across various fields, such as
the Arrhenius equation in Chemistry, the Rydberg formula
in Physics, Zipf’s law in Linguistics, and Moore’s law in
Computer Science.

We model such empirical patterns as natural-language con-
cepts drawn from a latent concept library C. We frame the
relationship between the concept library and programs as
a Hierarchical Bayesian model consisting of: (i) a prior
p(C) representing the natural distribution over concept li-
braries; (ii) a model pL(π | C) that quantifies the likelihood
of various hypotheses for a given concept library C; and
(iii) the previously mentioned fitness function pL(D | π)
for programs π. We assume that the distributions pC and
pL(π | C) can be approximated using LLMs. That is, we
can prompt an LLM to generate interesting concepts, and
we can prompt an LLM with a set of concepts to generate
token-sequence representations of hypotheses that adhere
to the concepts. Now we state the problem of symbolic
regression with latent concept learning as one of simultane-
ously inducing an optimal concept library and an optimal
programmatic hypothesis:

argmax
π,C

p(π, C|D) = argmax
π,C

p(D|π)︸ ︷︷ ︸
By execution

· p(π|C)︸ ︷︷ ︸
By LLM

· p(C)︸︷︷︸
By LLM

(3)

3. Method
LASR performs a two-stage evolution over natural-language
concepts and programmatic hypotheses. The two stages
follow an alternating maximization strategy shown in Figure
1: (1) Hypothesis evolution: We fix the set of concepts and
focus on maximizing the hypotheses’ fitness to the dataset,
and (2) Concept abstraction and evolution: We leverage the
best hypotheses found to induce a new library of concepts.

In the rest of this section, we first describe PySR, the SR al-
gorithm (Cranmer, 2023) that LASR extends. Next, we
show how to modify this algorithm into one guided by
natural-language concepts. Finally, we show how these
concepts can be naturally extracted and evolved into new
concepts. The full LASR algorithm is presented in Al-
gorithm 1 and visualized in Figure 2. LASR is built in

2

Hypothesis Evolution

Symbolic
Evolution or

Program
Populations Dataset

Best Program
per Population

Concept AbstractionConcept Evolution

LLM Specification Synthesis

“exponential
growth/decay”

“exponential
growth/decay”

LLM Concept Crossover

“Depends on
temperature”

“Boltzmann
Distribution”

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LLM
Evolution

Concept
Library

For 106 iterations

Figure 1: An overview of LASR. LASR iteratively refines a library of interpretable textual concepts which are used to
bias the search for hypotheses for scientific discovery tasks. This involves three distinct phrases: (Top) finding optimal
hypotheses within a concept-directed hypothesis evolution, (Right) leveraging the optimal hypotheses to find new concept
abstractions, and (Left) iterating on learned concepts to discover new concepts to accelerate hypothesis evolution. LASR
introduces an orthogonal direction of improvement over current symbolic regression algorithms (Cranmer, 2023) (in gray).

Julia with an additional Python interface1 and uses an open-
source, optimized framework for LLM inference (Kwon
et al., 2023).

Base Algorithm: PySR. LASR builds on PySR (Cranmer,
2023), a scalable, parallelizable genetic search algorithm
for SR. The search in PySR maintains multiple popula-
tions {Π1, . . . ,Πk} of hypotheses, with each hypothesis
represented as an expression tree. In its initialization step,
captured by a procedure INITIALIZEPOPULATIONS, PySR
creates a new expression at random to insert into a popula-
tion. After running this step, PySR runs a genetic search,
encapsulated in a procedure SRCYCLE, which evolve these
populations in parallel, simplifies and optimizes the con-
stants of the resulting hypotheses, and then migrates top-
performing hypotheses between populations.

Like other evolutionary algorithms, the search in PySR uses
symbolic mutation and crossover operations. The muta-
tion step is broken into many categories, each with distinct
weighting, to either mutate a constant, mutate an operator,
add a node (append, prepend, insert), delete a subtree of an
expression tree, simplify the tree, initialize a new tree, or
do nothing. One of these operations is randomly selected at
each call to a mutation request, and each operation executes
itself at random but within user-provided constraints. For
example, deleting a subtree is done by choosing a random

1See code at anonymous.4open.science/r/
neurips24-lasr-70BD

node to replace with a randomly-generated leaf node such as
a feature or constant. The crossover step involves swapping
random subtrees of two expressions in a population.

LLM-guided Hypothesis Evolution. LASR speeds up
PySR by injecting natural language priors into its search
procedure. To do this, we modify the INITIALIZEPOP-
ULATIONS procedure to use an LLM-augmented initial-
ization operation, and the SRCYCLE routine to use LLM-
augmented versions of its symbolic mutation and crossover
operations. The altered procedures are named LLMINIT,
LLMMUTATE, and LLMCROSSOVER, respectively. These
operations do not replace their standard genetic counter-
parts. Instead, we introduce a hyperparameter p that, with
a fixed probability, substitutes the standard genetic opera-
tion with the LLM-based operation. This enables “doping”
each population with a program that respects the language
priors, while ensuring that we do not bottleneck the local
exploration of the search space.

The LLM-guided operations follow the same base format:
they sample multiple concepts from the concept library,
concatenate these concepts with the task-specific variable
names and language operations, and append a specialized
prompt for each task. We employ zero-shot prompts (see
Appendix A.2 for more details) to avoid sampling biases. In
further detail:

• LLMINIT: The LLMINIT function takes an initial set of

3

anonymous.4open.science/r/neurips24-lasr-70BD
anonymous.4open.science/r/neurips24-lasr-70BD

Expression Search Operations
(x400 iterations)

Initialization
LLM

Initialize
Symbolic
Initialize

Crossover
LLM

Crossover
Symbolic
Crossover

Mutation
LLM

Mutation
Symbolic
Mutation

Initialization
LLM

Initialize
Symbolic
Initialize

Other Symbolic Operations
Simplify

Tree
Optimize
Constants

Concept Library Operations
(repeated x3)

User Hints
(or None)

Concept
Extraction LLM

Concept Crossover
LLM

Sample Concepts

Sim
plicity

Data Fitness

Program Populations

Pareto Frontier

Concept Library

Figure 2: A single step of LASR. LASR induces multiple hypothesis populations that are evolved using a scalable
evolutionary algorithm. Concept guidance is provided by randomly replacing symbolic operations with concept-directed
LLM operations with probability p. After each iteration, the top-performing programs are summarized into natural language
concepts, which are evolved to form new concepts that are sampled to guide the search in the next iteration.

concepts and uses them to initialize the populations for
the evolutionary search step. The initial set of concepts
can either be instantiated from an optional set of user-
provided “hints” or generated by the LLM.

• LLMMUTATE: For mutation within a population, we
sample a set of l concepts from the concept library C,
and construct a prompt that uses this set of concepts to
mutate an expression πi into πj . The prompt to the LLM
takes inspiration from the standard genetic mutation
operation, and asks it to mutate the expression given the
concepts sampled from the library.

• LLMCROSSOVER: The LLMCROSSOVER function also
samples a set of l concepts from the concept library
along with two hypotheses πi and πj to construct a
new expression πk, which reuses sub-expression trees
from the two hypotheses while respecting the sampled
concepts. Our implementation is inspired by prior work
(Romera-Paredes et al., 2024) — see Figure 4.

Concept Abstraction. After each iteration of symbolic
regression, we use a function EXTRACTPARETOFRONTIER
to collect: (i) the hypotheses, across all populations, that are
Pareto-optimal with respect to the criteria of syntactic sim-
plicity and dataset loss; (ii) the hypotheses with the worst
loss across all populations. The resulting set of hypotheses
F = {π⋆

1 ., π
⋆
a . . . π

−
1 ., π

−
b } captures the trends that were

most helpful and most detrimental to performance during
hypothesis search. Now we use the CONCEPTABSTRAC-
TION function, which uses a zero-shot prompt to extract a
natural language concept c⋆ that summarizes the positive
trends while eschewing negative trends. This concept is
subsequently added to the concept library. The prompt for
the function is presented in Figure 5.

Algorithm 1 Pseudocode for LASR. LASR takes as in-
put an optional set of user-provided hints C0, a dataset of
input-output pairs of high-dimensional data D, and four
hyperparameters: the number of iterations I , the number
of populations K, the number of steps for concept evolu-
tion M , and the mixture probability of using LLM-based or
GP-based evolutionary operators p. LASR produces two ar-
tifacts: the evolved library of concepts C and the expression
with the highest fitness score π⋆.

1: function LASR(C0,D = {(xi,yi)}Ni=1, I,K,M , p)
2: C ← INITIALIZECONTEXTLIBRARY(C0) ▷ Add (optional)

user hints to library.
3: {Π1, . . .ΠK} ← INITIALIZEPOPULATIONS(C,K)
4: for _ in range(N) do
5: for i in range(K) do
6: Πi← SRCYCLE(Πi,D, C, p) ▷ Interleaved Symbolic

+ LLM Search
7: F ← EXTRACTPARETOFRONTIER({Π1 . . .ΠK},D) ▷

Includes positive + negative programs
8: C ← C ∪ CONCEPTABSTRACTION(F , C)
9: for _ in range(M) do

10: C ← CONCEPTEVOLUTION(C)
11: π⋆ ← BESTEXPRESSION(F) ▷ Based upon both loss and

complexity
12: return C, π⋆

4

Concept Evolution. Each concept in C represents trends
that were useful at a previous state in the search process.
After adding new concepts into the library, we use a function
CONCEPTEVOLUTION to evolve the library to include new
ideas that logically follow from the ideas in the current
library. The implementation of this function follows that of
the LLMCROSSOVER operation in that we are using multiple
concepts as a reference to generate new ones, with the key
distinction that, unlike in the LLMCROSSOVER operation,
the fitness of each generated concept here is difficult to
quantify. Thus, we include all the generated responses in
the concept library. While these concepts may sometimes
be inaccurate, they increase the evolutionary algorithm’s
exploration ability.

4. Experiments
We demonstrate the effectiveness of LASR on multiple tasks
integral to scientific discovery. First, we evaluate LASR’s
performance on the Feynman Equation dataset, a widely
adopted scientific discovery benchmark, under a variety of
ablations and additional priors. Second, we measure the
effect of data leakage by evaluating LASR’s performance
on a procedurally generated synthetic dataset of challenging
equations. Finally, we evaluate LASR on a procedurally
generated dataset to ensure that its performance is not af-
fected by data leakage issues in the backbone LLM. LASR’s
main focus is to serve as a practical toolkit for scientists.
Therefore, our evaluation primarily targets slightly noisy
(‘non-toy’) environments, using exact solution rate to gauge
performance rather than statistical similarity measures like
correlation R2, which are less relevant to scientific discov-
ery applications.

4.1. Comparison against baselines in the Feynman
Equation Dataset

Dataset: The Feynman Equation dataset is a widely adopted
benchmark for scientific discovery (Udrescu & Tegmark,
2020). The dataset consists of 100 physics equations ex-
tracted from the Feynman lectures on Physics. Each equa-
tion is in the form y = f(x1, x2, . . .). The number of input
variables ranges from two to ten, and the dataset provides
100,000 samples for each equation. We compare against
publically available methods benchmarked on SRBench
(La Cava et al., 2021). SRBench is a continuously updated
benchmark which catalogs the performance of various meth-
ods on the Feynman dataset as well as other symbolic regres-
sion problems. Specifically, we compare against GPlearn,
AFP, AFP-FE, DSR, uDSR, PySR, and the original AI Feyn-
man algorithm (Schmidt & Lipson, 2010; Stephens, 2024;
Udrescu & Tegmark, 2020; Landajuela et al., 2022; Petersen
et al., 2019). Within this subset, notably, PySR represents an
ablation of our model without the LLM genetic operations

and the concept evolution (Section 3). We evaluate on a
slightly noisy version of this dataset in order to simulate ex-
perimental errors common in scientific discovery domains.
Specifically, we compare numbers against those reported in
and reproduced by SRBench with a target noise of 0.001.

Setup: We instantiate LASR using gpt-3.5-turbo-0125
(Brown et al., 2020) as the backbone LLM and calling it
with p = 0.01 for 40 iterations, and compare our results
with PySR which uses the same default hyperparameters.
For the other baselines, we use the numbers reported in SR-
Bench with one exception, uDSR (Landajuela et al., 2022),
for which we couldn’t find any benchmarking numbers. For
this method, we derive the exact solve rate from a publically
available figure (Organization).

Results: We showcase results in Table 1. We draw three
observations from this experiment. First, LASR achieves
a higher exact solve rate than all other baselines. Second,
both PySR and LASR outperform the other baselines by a
wide margin, indicating that scalable and efficient synthesis
is imperative to practical scientific discovery algorithms.
Finally, and most notably, a subset of the equations LASR
finds could not be derived with any of the previous methods.

4.2. Cascading Experiments

LASR’s performance is inherently bottlenecked by the rea-
soning capabilities of the backbone LLMs and the frequency
of their invocation in each iteration. To evaluate the effect
of the backbone LLM on LASR’s performance, we instanti-
ate a model cascade over two of LASR’s hyperparameters:
the backbone model (llama3-8b (AI@Meta, 2024), gpt-3.5-
turbo-0125) and the probability p with which we call that
model in the evolution step (p = [1%, 5%, 10%]).

Setup: Our cascade operates as a tournament. We start
LASR with the configuration that provides the least lan-
guage guidance (llama3-8b at p = 1%) and progressively
increase the value of p and then the backbone model. Each
subsequent model is only evaluated on the problems that the
previous model could not solve. We compare this against
PySR’s performance on the Feynman equation dataset. To
ensure a fair comparison, we cascade PySR using the same
procedure but find it does not solve any additional equations.

Metrics: For this experiment, we aim to evaluate the pro-
gression of different configuration towards solving equa-
tions. The quantitative metric used in the previous exper-
iment, Exact Solve, does not allow for such fine-grained
analysis. Therefore, we categorize the synthesized equa-
tions into four buckets: Exact Solve, Almost Solve, Close,
and Not Close. Exact Solve is quantitatively evaluated using
a symbolic match. An equation is tagged as ’Almost Solve’
if the dataset loss is small but the generated equation has
an extra term or lacks one term. A Close equation captures

5

GPlearn AFP AFP-FE DSR uDSR AIFeynman PySR LaSR

20/100 24/100 26/100 23/100 40/100 38/100 59/100 59 + 7/100

Table 1: Results on 100 Feynman equations from (Udrescu & Tegmark, 2020). We report exact match solve rate for all
models. LASR achieves the best exact match solve rate using the same hyperparameters as PySR (Cranmer, 2023).

the general structure of the solution (such as a square root
nested in an exponential) but not more than that, and Not
Close includes all equations that are far from the solution.

Results: Our results are presented in 2. We draw two key
observations from these results. First, LASR outperforms
PySR even with minimal concept guidance (llama3-8b at
p = 1%). Second, increasing the backbone model size
and the mixture probability significantly enhances LASR’s
performance, indicating that as the language reasoning ca-
pabilities of LLMs improve, so will our performance.

4.3. Ablation Experiments

We conduct ablations on the use of Concept Evolution, Con-
cept Crossover, variable names, and user hints. Figure 3
shows how these ablations affect performance over 40 it-
erations. We designate an equation as “solved” if, after N
iterations, the MSE of our predicted equation is less than
10−11. This metric differs from ’Exact Solved’ as defined
in the prior experiments: an equation can be ’exactly solved’
yet have an MSE higher than 10−11 due to the noise floor
in the target variables and equation can have low loss but
not be an exact match. We observe from the results that:
(1) Removing variable names results in a significant per-
formance drop, as we lose semantic meaning provided by
variables (for instance, observing θ could suggest employ-
ing trigonometric functions on θ). (2) Learning a concept
library enables faster convergence to solutions. Without the
concept library, task convergence is significantly slower and,
in higher concept guidance regimes (adjusting mixture to
p > 0.1%), this gap would expand even further.

4.4. Qualitative Analysis and User Hints

The concept library provides an interpretable window into
our evolutionary search process. To showcase the concepts
learned by LASR, we take a sample equation from the Feyn-
man dataset, the electric field of a dipole Ef = 3pd cos θ sin θ

4πϵr3

and comment on the libraries learned at various intervals.
We see rudimentary concepts emerge in the second iteration:

“The presence of basic trigonometric functions like sin in
the good expressions contributes to their quality, indicating
a connection to physical concepts such as waveforms or
periodic phenomena.”

And, in subsequent iterations, the concepts become even
more refined:

“The good mathematical expressions exhibit a balance be-
tween mathematical operations such as multiplication, divi-
sion, and trigonometric functions, which are known to have
physical interpretations and relevance in various scientific
phenomena.”

This iterative refinement of concepts helps LASR maintain
consistently good concepts for all iterations. This allows
LASR to converge to an exact match solution within 40 iter-
ations. By contrast, PySR and the concept library ablations
fail to converge on an exact match solution, returning equa-
tions that — while low-loss — involve many extra terms and
structures that aren’t in the ground truth equation. This rein-
forces our hypothesis that injecting semantic meaning into
the search process not only leads to more efficient search,
but also serves as regularization against complex equations
— as the LLM-generated concepts help filter out irrelevant
terms. A deeper qualitative analysis is explored in Appendix
A.5.

Extending LASR with Hints: A benefit of LASR is that
its search can be initialized with a set of user-specified,
natural-language “hints.” To evaluate this capability, we
generate vague hints for each equation based on variations
of the chapter title of the Feynman lecture that the equation
belongs to. We intentionally keep the hints vague to see
if knowledge about just the general field is sufficient in
improving LASR’s performance. We showcase results in
Figure 3. We observe a noticeable boost in performance
from injecting these hints, even for our weakest performing
model. These findings indicate that even minimal user input
can significantly enhance LASR’s effectiveness in scientific
discovery tasks.

4.5. Data Leakage Validation

An important consideration in using LLMs for existing SR
problems is the possibility that the LLM was exposed to the
hold-out problems in the validation set, presenting an unfair
advantage to LLMs trained on massive datasets. Intuitively,
LASR generates its own concepts which are conditioned on
suboptimal programs, which are unlikely to be within the
LLM’s memorized responses. To validate this, we generate
a dataset of 41 synthetic equations that are engineered to
deviate from common physical and mathematical structures
and have arbitrary variables. For example, one such equa-
tion is y = 0.782x3+0.536

x2ex1 (log x2−x2ecos x1) . Anecdotally, we find that
PySR struggles to solve equations with these characteris-

6

LASR (Llama3-8B) LASR (GPT-3.5)

Type of Solve PySR p = 1% p = 5% p = 10% p = 1%

Exact Solve 59/100 63/100 65/100 65/100 66/100
Almost Solve 7/100 6/100 9/100 12/100 13/100

Close 16/100 13/100 14/100 11/100 9/100
Not Close 18/100 18/100 12/100 13/100 13/100

Table 2: Evaluation results on Feynman dataset by cascading LASR’s LLM backbone (llama3-8b, gpt-3.5-turbo) and
changing the probability of calling the model (p = [0.01, 0.05, 0.10]) in the order of increasing concept guidance. LASR
outperforms PySR even with minimal concept guidance using an open-source LLM.

PySR LaSR
(Llama3-8B, 0.1%)

0.070 0.874

Table 3: Evaluation results of data leakage. We present the
test set R2 of PySR and of LASR on a synthetic Symbolic
Regression dataset. Higher R2 is better.

tics. Hence, sovling such equations hinges on the language
guidance components.

We validate that PySR cannot solve these equations in 400
iterations and run LASR with Llama3-8B at 0.1%. We then
compare our synthesized program’s test set R2 with that of
PySR’s. We justify using correlation instead of exact-match
as we are not motivated by the application of results for
scientific discovery in this experiment. Our results are sum-
marized in Table 3 and show that LASR’s concept-guided
synthesis still provides a considerable performance boost
compared to PySR – demonstrating that LASR’s perfor-
mance gains are not rooted in memorized responses and that
LASR can learn low-level mathematical structures present
in a novel synthetic domain.

5. Related Work
Symbolic Regression. The field SR started in the 1970s
(Gerwin, 1974; Langley, 1977) and has recently become a
prominent approach to AI-for-science (Makke & Chawla,
2024; Merler et al., 2024; Romera-Paredes et al., 2024).
Two algorithmic themes here are:

Non-parametric Algorithms: Most work on SR focuses on
improving search efficiency using heuristics or paralleliza-
tion. Specifically, PySR (Cranmer, 2023) builds a multi-
population evolutionary algorithm that incorporates various
preexisting heuristics (Real et al., 2019), and introduces
novel ones such as simulated annealing, an evolve-simplify-
optimize loop, and an adaptive parsimony metric. PySR
has been successfully applied to study problems in domains
such as cosmology (Davis & Jin, 2023), international eco-

nomics (Verstyuk & Douglas, 2022), and climate modeling
(Grundner et al., 2024). Our algorithm extends PySR to
enable the discovery of latent concepts.

Parametric Algorithms: Recent work on SR and program
synthesis has often used neural networks to accelerate search
(Shah et al., 2020; Romera-Paredes et al., 2024; Petersen
et al., 2019; Landajuela et al., 2022; Merler et al., 2024;
Devlin et al., 2017). The interplay between the neural and
the symbolic components in these works can be abstracted
into two categories: (1) leveraging LLMs to induce pro-
gram scaffolds (Merler et al., 2024; Romera-Paredes et al.,
2024), and (2) learning a neural policy to accelerate search
(Petersen et al., 2019; Landajuela et al., 2022; Shah et al.,
2020; Devlin et al., 2017). We highlight two methods from
the first category: Funsearch (Romera-Paredes et al., 2024)
and LLM-SR (Shojaee et al., 2024). Funsearch (Romera-
Paredes et al., 2024) uses a pretrained LLM to implement
a mutation operator on a database of executable programs
under a fixed specification to find super-optimized programs
in extremal combinatorics. LASR is a generalization of
FunSearch: while FunSearch conditions program genera-
tion on a static “specification” (analogous to our concept
library), we discover the concept library in the course of the
algorithm. As for LLM-SR (Shojaee et al., 2024), it lever-
ages a pretrained LLM for generating program sketches
(Murali et al., 2018). The sketch parameters are optimized
and cached in a database which is in turn used to generate
new sketches. Our work is an orthogonal direction of im-
provement. It is technically possible to “plug” the LLM-SR
framework into LASR and use our generated ideas to guide
the lower-level search component.

The second category includes methods like DSR (Petersen
et al., 2019), which, just like LASR, frame SR as a sequence
modeling problem. However, the search in LASR leverages
a learned concept library and the language and code biases
in LLMs, instead of relying on amortization alone.

Program Synthesis with Foundation Models. Recent
work in program synthesis models program generation as a
sequence prediction problem. Under this paradigm, the DSL

7

Iterations0

20

40

60

80

100

Eq
ua

ti
on

s
So

lv
ed

 u
nd

er
 M

SE

0 5 10 15 20 25 30 35 40
Iterations

0

20

40

60

80

100

Eq
ua

ti
on

s
So

lv
ed

 u
nd

er
 M

SE
Llama3 - 0.1%
Llama3 - 0.1% - No Concept Evol
Llama3 - 0.1% - No Vars

PySR
Llama3 - 0.1% - No Concept Crossover
Llama3 - 0.1% - Hints

Figure 3: Evaluation results for ablations/extensions of
LASR. Top: We ablate three components of LASR: Con-
cept Evolution, Concept Crossover, and variable names and
evaluate their MSE solve rate performance on the Feynman
dataset over 40 iterations. We find that each component
contributes to accelerating search at different stages in the
search process. Bottom: We find that providing LASR an
initial concept library C0 in the form of user provided hints
significantly increases the speed of solving equations.

and the input-output specification is serialized in the prompt
and a code-generation foundation model (Li et al., 2023;
Chen et al., 2021a; Brown et al., 2020) is leveraged to autore-
gressively generate candidate programs. This approach has
been used to successfully synthesize programs in many ar-
eas including spreadsheet formula prediction (Devlin et al.,
2017; Chen et al., 2021b), competitive programming (Li
et al., 2022), and visual programming (Surís et al., 2023;
Gupta & Kembhavi, 2023). LASR is similar to work in this
area in that the LLM Mutate, LLM Crossover, and LLM
Initialization functions all follow the sequence prediction
paradigm to synthesize mathematical equations, relying on
guidance from the concept library.

Program Synthesis with Library Learning. Deploying
classical program synthesizers in a new domain often neces-
sitate hand-engineering DSLs to enable scalable synthesis.

This severely limits the generality and practicality of such
methods. An emerging direction of research – called library
learning – attempts to learn the DSL and the programs si-
multaneously (Ellis et al., 2020; Bowers et al., 2023; Grand
et al., 2023; Lake et al., 2015; Wong et al., 2021; Ellis et al.,
2018; Shin et al., 2019; Zelikman et al., 2023). This is
typically framed as a hierarchical Bayesian optimization
problem over the space of programs and the space of library
functions that generate those programs. Notably, (Grand
et al., 2023) uses LLM guidance to assist in program induc-
tion and in auto-documenting learned library modules and
(Wong et al., 2021) considers learning programs under a
latent distribution over the space of natural language and
the space of the DSL. LASR shares a similar problem for-
mulation to these works, but optimizes over the space of
programs and over the space of natural language descrip-
tions of these programs.

6. Conclusion
We have presented LASR, a framework that uses zero-shot
queries to an LLM to induce abstract, reusable concepts
that can be used to accelerate SR. We have shown that
LASR outperforms state-of-the-art approaches on the stan-
dard Feynman equation task.

A key benefit of LASR is that its capabilities are ultimately
bottlenecked by those of the underlying LLM. LLMs are
rapidly gaining capability and getting cheaper, and future
versions of LASR should be able to tap into this progress.

Many directions of research remain open. First, our strat-
egy of accelerating evolutionary search with LLM-based
concept induction may be applicable beyond the SR setting.
Future research should explore such applications. Second,
while our approach here was entirely based on in-context
learning, it is worth exploring if finetuning improves the per-
formance of the LLM. Finally, we evaluated the learned
concept library exclusively on the downstream SR task.
However, the library may also be valuable in other tasks
such as clustering or explanation synthesis. Exploring these
other tasks is an attractive topic for future work.

Limitations. The current instantiation of LASR has sev-
eral limitations. First, it cannot guarantee that the concepts
it learns are correct or insightful. Even a concept that leads
to strong performance in downstream SR tasks may do so
because of quirks of the model and data, and end up mis-
leading scientists using the method in a discovery process.
Also, we do not currently have a way to ensure that the
learned concepts are mutually consistent. Finally, our eval-
uation here was constrained by our compute budgets for
LLMs and search. Whether the trends we see generalize to
higher-compute regimes remains to be seen.

8

References
AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Batra, R., Song, L., and Ramprasad, R. Emerging materials
intelligence ecosystems propelled by machine learning.
Nature Reviews Materials, 6(8):655–678, 2021.

Bowers, M., Olausson, T. X., Wong, L., Grand, G., Tenen-
baum, J. B., Ellis, K., and Solar-Lezama, A. Top-down
synthesis for library learning. Proceedings of the ACM on
Programming Languages, 7(POPL):1182–1213, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chaudhuri, S., Ellis, K., Polozov, O., Singh, R., Solar-
Lezama, A., Yue, Y., et al. Neurosymbolic programming.
Foundations and Trends® in Programming Languages, 7
(3):158–243, 2021.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, X., Maniatis, P., Singh, R., Sutton, C., Dai, H., Lin,
M., and Zhou, D. Spreadsheetcoder: Formula predic-
tion from semi-structured context. In International Con-
ference on Machine Learning, pp. 1661–1672. PMLR,
2021b.

Cranmer, M. Interpretable machine learning for science
with pysr and symbolicregression. jl. arXiv preprint
arXiv:2305.01582, 2023.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases. In
Neural Information Processing Systems, 2020.

Davis, B. L. and Jin, Z. Discovery of a planar black hole
mass scaling relation for spiral galaxies. The Astrophysi-
cal Journal Letters, 956(1):L22, 2023.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A., and Kohli, P. Robustfill: Neural program learning
under noisy I/O. In ICML, 2017.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Learning libraries of subroutines
for neurally–guided Bayesian program induction. In Ad-
vances in Neural Information Processing Systems, pp.
7805–7815, 2018.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep Bayesian program
learning. arXiv preprint arXiv:2006.08381, 2020.

Gerwin, D. Information processing, data inferences, and
scientific generalization. Behavioral Science, 19(5):314–
325, 1974.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Grundner, A., Beucler, T., Gentine, P., and Eyring, V. Data-
driven equation discovery of a cloud cover parameteriza-
tion. Journal of Advances in Modeling Earth Systems, 16
(3):e2023MS003763, 2024.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14953–14962, 2023.

Hernandez, A., Balasubramanian, A., Yuan, F., Mason,
S. A., and Mueller, T. Fast, accurate, and transferable
many-body interatomic potentials by symbolic regression.
npj Computational Materials, 5(1):112, 2019.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to automata theory, languages, and computation, 3rd
Edition. Pearson international edition. Addison-Wesley,
2007. ISBN 978-0-321-47617-3.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

La Cava, W., Orzechowski, P., Burlacu, B., de França, F. O.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. H.
Contemporary symbolic regression methods and their
relative performance. arXiv preprint arXiv:2107.14351,
2021.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Landajuela, M., Lee, C. S., Yang, J., Glatt, R., Santiago,
C. P., Aravena, I., Mundhenk, T., Mulcahy, G., and Pe-
tersen, B. K. A unified framework for deep symbolic
regression. Advances in Neural Information Processing
Systems, 35:33985–33998, 2022.

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Langley, P. Bacon: A production system that discov-
ers empirical laws. In International Joint Conference
on Artificial Intelligence, 1977. URL https://api.
semanticscholar.org/CorpusID:2320342.

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., and Battaglia, P.
Rediscovering orbital mechanics with machine learning.
Machine Learning: Science and Technology, 4(4):045002,
2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Makke, N. and Chawla, S. Interpretable scientific discovery
with symbolic regression: a review. Artificial Intelligence
Review, 57(1):2, 2024.

Merler, M., Dainese, N., and Haitsiukevich, K. In-context
symbolic regression: Leveraging language models for
function discovery. arXiv preprint arXiv:2404.19094,
2024.

Murali, V., Qi, L., Chaudhuri, S., and Jermaine, C. Neural
sketch learning for conditional program generation. ICLR,
2018.

Organization, D. S. O. Srbench sym-
bolic solution. https://github.com/
dso-org/deep-symbolic-optimization/
blob/master/images/srbench_
symbolic-solution.png. Accessed: 2024-
05-22.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. arXiv preprint
arXiv:1912.04871, 2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 33, pp. 4780–4789, 2019.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. Science, 324(5923):81–85,
2009.

Schmidt, M. D. and Lipson, H. Age-fitness pareto opti-
mization. In Annual Conference on Genetic and Evo-
lutionary Computation, 2010. URL https://api.
semanticscholar.org/CorpusID:9975416.

Shah, A., Zhan, E., Sun, J. J., Verma, A., Yue, Y., and Chaud-
huri, S. Learning differentiable programs with admissible
neural heuristics. In Advances in Neural Information
Processing Systems, 2020.

Shin, R., Allamanis, M., Brockschmidt, M., and Polozov,
O. Program synthesis and semantic parsing with learned
code idioms. In Advances in Neural Information Process-
ing Systems, pp. 10825–10835, 2019.

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
Reddy, C. K. Llm-sr: Scientific equation discovery via
programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Stephens, T. gplearn: Genetic programming in python,
with a scikit-learn inspired api, 2024. URL https://
github.com/trevorstephens/gplearn. Ac-
cessed: 2024-05-22.

Surís, D., Menon, S., and Vondrick, C. Vipergpt: Visual
inference via python execution for reasoning. arXiv
preprint arXiv:2303.08128, 2023.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Verstyuk, S. and Douglas, M. R. Machine learning the
gravity equation for international trade. Available at
SSRN 4053795, 2022.

Virgolin, M., Wang, Z., Alderliesten, T., and Bosman, P. A.
Machine learning for the prediction of pseudorealistic pe-
diatric abdominal phantoms for radiation dose reconstruc-
tion. Journal of Medical Imaging, 7(4):046501–046501,
2020.

Wigner, E. P. The unreasonable effectiveness of mathemat-
ics in the natural sciences. In Mathematics and science,
pp. 291–306. World Scientific, 1990.

Wong, C., Ellis, K. M., Tenenbaum, J., and Andreas, J.
Leveraging language to learn program abstractions and
search heuristics. In International conference on machine
learning, pp. 11193–11204. PMLR, 2021.

Zelikman, E., Huang, Q., Poesia, G., Goodman, N., and
Haber, N. Parsel: Algorithmic reasoning with language

10

https://api.semanticscholar.org/CorpusID:2320342
https://api.semanticscholar.org/CorpusID:2320342
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://api.semanticscholar.org/CorpusID:9975416
https://api.semanticscholar.org/CorpusID:9975416
https://github.com/trevorstephens/gplearn
https://github.com/trevorstephens/gplearn

models by composing decompositions. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=qd9qcbVAwQ.

11

https://openreview.net/forum?id=qd9qcbVAwQ
https://openreview.net/forum?id=qd9qcbVAwQ

A. Appendix
A.1. Broader Societal Impacts

We have presented LASR: a symbolic regression framework
that leverages concept guidance to accelerate symbolic re-
gression. We hope that LASR helps accelerate the search
for empirical laws in the broader scientific community. In
this section, we discuss the broader societal impacts and
ethical considerations of our work.

Potential for Misuse: As with other ML techniques, sym-
bolic regression can be leveraged by bad actors to inflict
societal harm. Our experiments show that LASR accelerates
the search for empirical laws from raw observations. In our
setting, we are restricted to observations about physical phe-
nomena. However, a malicious actor could misuse LASR
to find patterns in datasets that violate personal rights.

Privacy Concerns: As mentioned before, LASR enables
finding patterns in raw observations. We hope that LASR is
leveraged by scientists to explain physical phenomena. How-
ever, it is possible to use such models to learn behavioral
profiles without the active knowledge or explicit consent of
the subjects.

Bias and Fairness: LASR generates two artifacts: a hypoth-
esis that maximizes a fitness function (represented as an
equation) and a library of concepts that helped discover that
hypothesis. LASR ensures fairness and lack of bias in the
generated equation as long as the fitness function is free of
biases as well. However, we leverage foundation models to
induce our library of concepts which could be trained on
biased data which may reflect in our concept library. Fur-
thermore, we cannot directly evaluate the efficacy of the
concept library and its factual correctness. This doesn’t af-
fect equation generation – since equations are quantitatively
evaluated. However, a human analyzing the concepts LASR
learns might misinterpret trends that the model picks up on.

A.2. LLM Prompts

Note that in the prompts in Figures 4 and 5, we refer to our
hypothesis as expressions and the concepts as hypotheses
and suggestions. This prompting style was found to work
best for the LLM.

A.3. Implementation Details

A.3.1. COMPUTE USAGE

We run all experiments on a server node with 8xA100 GPUs
with 80 GB of VRAM each. However, our experiments can
be reproduced with a GPU with 16 GB of VRAM. We were
even able to run LASR on a laptop utilizing a quantized

You are a helpful assistant that recombines two mathematical expressions by following a few
provided suggestions. You will be given three suggestions and two expressions to recombine.

An expression must consist of the following variables: {{variables}}. All constants will be
represented with the symbol C. Each expression will only use these operators:
{{operators}}.

Suggestion 1: {{assump1}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Expression 1: {{expr1}}
Expression 2: {{expr2}}

Propose {{N}} expressions that would be appropriate given the suggestions and
expressions. Provide short commentary for each of your decisions. End with a JSON list that
enumerates the proposed expressions following this format:

Based on the provided suggestions and expressions, I propose the following five recombined
expressions:

1. `log(exp(C - sqrt(theta ^ C)) + C)`: This expression combines the exponential
function from Expression 2 with the logarithmic function from Expression 1. The `-
sqrt(theta ^ C)` term is taken from Expression 2 and added to the exponential function,
while the `+ C` term is taken from Expression 1.

2. `(sin(C - sqrt(theta)) * (theta ^ log(theta / theta)) + C)`: This
expression combines the sine function from Expression 1 with the power operation from the
same expression. The `(theta ^ log(theta / theta))` term is taken from Expression 1,
and the `sin(C - sqrt(theta))` term is also from Expression 1. The `+ C` term is added
at the end.

3. `exp(C - sqrt(theta)) * sin(C - sqrt(theta))`: This expression combines the
exponential function from Expression 2 with the sine function from Expression 1. Both the
exponential and sine functions are taken from separate expressions and multiplied together.

4. `log(theta ^ log(theta / theta)) + C - sqrt(theta ^ C)`: This expression
combines the logarithmic function from Expression 1 with the power operation from the
same expression. The `(theta ^ log(theta / theta))` term is taken from Expression 1,
and the `- sqrt(theta ^ C)` term is taken from Expression 2. The `+ C` term is added at
the end.

5. `(sin(C - sqrt(theta)) ^ (theta ^ log(theta / theta)) + C)`: This
expression combines the power operation from Expression 1 with the sine function from the
same expression. The `(theta ^ log(theta / theta))` term is taken from Expression 1,
and the `sin(C - sqrt(theta))` term is also from Expression 1. The `+ C` term is added
at the end.

Here is the list of proposed expressions in JSON format:

```json
["log(exp(C - sqrt(theta ^ C)) + C)",
 "(sin(C - sqrt(theta)) * (theta ^ log(theta / theta)) + C)",
 "exp(C - sqrt(theta)) * sin(C - sqrt(theta))",
 "log(theta ^ log(theta / theta)) + C - sqrt(theta ^ C)",
 "(sin(C - sqrt(theta)) ^ (theta ^ log(theta / theta)) + C)"]
```

```json
["expr1",
 "expr2",
 ...
 "expr{{N}}"
]
```

Figure 4: LLMCROSSOVER prompt with an example output.
LLMMUTATION and LLMINIT follow the same structure
but with slightly different wording and with one and no
reference expressions, respectively. Variables within double
braces are replaced with the instance specific arguments.
These prompts are available in prompts/*.txt in the
linked repository.

model hosted locally 2. Moreover, certain models are hosted
on external servers (such as gpt-3-turbo-0125) which
allows running LASR on machines without GPUs. For
this project, we chose to run llama3-8b using vLLM
(Kwon et al., 2023). However, our framework is compatible
with any LLM inference framework that allows hosting an
OpenAI compliant RESTful server. For reference, each
iteration makes around 60, 000 calls. Each call to the LLM
is just under 1000 tokens. This gives an upper bound on total
compute of 60, 000, 000 tokens per iteration if p = 100%.
Hence, running our model at p = 1% for 40 iterations would
result in just under 25M tokens for each equation.

2TheBloke/Mistral-7B-Instruct-v0.2-GGUF us-
ing llama.cpp

12

You are a helpful assistant that hypothesizes about the underlying assumptions that generated a list of
good and bad mathematical expressions in detailed ways. My ultimate goal is to discover what
assumptions generated the observed good mathematical expressions and excludes the bad
mathematical expressions. Focus more on the good expressions, their mathematical structure, and any
relation to physical concepts. Note that capital C represents an arbitrary constant.

Good Expression 1: {{gexpr1}}
Good Expression 2: {{gexpr2}}
Good Expression 3: {{gexpr3}}
Good Expression 4: {{gexpr4}}
Good Expression 5: {{gexpr5}}

Bad Expression 1: {{bexpr1}}
Bad Expression 2: {{bexpr2}}
Bad Expression 3: {{bexpr3}}
Bad Expression 4: {{bexpr4}}
Bad Expression 5: {{bexpr5}}

Propose {{N}} expressions that would be appropriate given the suggestions and expressions. Provide
short commentary for each of your decisions. End with a JSON list that enumerates the proposed
expressions following this format:

Hypothesis 1: The good expressions involve complex exponential or trigonometric functions with
nested power operations, potentially indicating a link to physical phenomena that exhibit exponential
growth or oscillatory behavior.

Hypothesis 2: The presence of sine and cosine functions in the good expressions suggests a
connection to periodic phenomena in real-world applications, such as wave functions or harmonic
oscillations.

Hypothesis 3: The inclusion of arbitrary constants in the good expressions may represent parameters
in physical models, implying that the expressions are modeling dynamic systems or relationships
between variables.

Hypothesis 4: The good expressions involve repeated application of mathematical operations (e.g.,
exponentiation, multiplication, and addition) in a layered manner, indicating a depth of complexity that
mirrors intricate physical systems or natural processes.

Hypothesis 5: The mathematical relationships within the good expressions exhibit a balance between
simplicity and complexity, suggesting that they capture fundamental principles or underlying structures
that govern physical phenomena.

Here is the list of proposed expressions in JSON format:

```json
["The good expressions involve complex exponential or trigonometric functions 
with nested power operations, potentially indicating a link to physical 
phenomena that exhibit exponential growth or oscillatory behavior.",
 "The presence of sine and cosine functions in the good expressions suggests a 
connection to periodic phenomena in real-world applications, such as wave 
functions or harmonic oscillations.",
 "The inclusion of arbitrary constants in the good expressions may represent 
parameters in physical models, implying that the expressions are modeling 
dynamic systems or relationships between variables.",
 "The good expressions involve repeated application of mathematical operations 
(e.g., exponentiation, multiplication, and addition) in a layered manner, 
indicating a depth of complexity that mirrors intricate physical systems or 
natural processes.",
 "The mathematical relationships within the good expressions exhibit a balance 
between simplicity and complexity, suggesting that they capture fundamental 
principles or underlying structures that govern physical phenomena."]
```

```json
["hyp1",
 "hyp2",
 ...
 "hyp{{N}}"
]
```

Figure 5: LLM Concept Abstraction prompt with an ex-
ample output. The LLM Concept Crossover function fol-
lows a similar structure with a modified task description for
crossover on concepts.

A.3.2. CONCEPT SAMPLING

In order to determine which concepts from the concept
library we sample for the LLM Hypothesis Evolution, we
randomly choose the top-K most recent concepts in the
library. This ensures that we use the latest concepts, which
are generally reflective of more informed hypotheses, and
thus better to use. In practice, we set K = 20. Additionally,
for Concept Evolution, we exclude the top-K most recent
concepts from being used, and rather use older concepts.
This is motivated by the desire to not have the concept
library converge on a few ideas, rather we want diversity
of thought. Our concepts are intended to be longer lasting
than the hypotheses that generated them, similar to how
observational data comes and goes, but the conclusions
from them are more persistent.

A.3.3. HYPERPARAMETERS

Figure 6 showcases the hyperparameters used for all our ex-
periments. Wherever possible, we use the default PySR pa-

rameters. Additionally, LASR introduces three new hyper-
parameters: (1) % of LLM calls, (2) List of user hints, and
(3) a dictionary of parameters pertaining to backend LLM
communication. Following other methods in SRBench, we
utilize only a subset of the necessary operators for solving
the Feynman equations, excluding special operators like
arcsin and arctan. These operators are seldom required,
and removing them speeds up the search process. We gen-
erally set the number of iterations to 40. However, certain
experiments may demand more or less iterations.

Figure 6: The PySR hyperparameters used all experiments.
Whenever possible, we use the default PySR parameters.
Other hyperparameters are in pysr_feynman.py in the
linked repository.

A.4. Dataset Details

A.4.1. FEYNMAN EQUATIONS

For the Feynman dataset, we took the equations and the
bounds at which each variable was sampled at and gener-
ated our dataset. Then, we added additional noise of 0.001
to our target variable, following the noise formula detailed
in the Appendix A.4 of (La Cava et al., 2021), as well
as additional random noise variables with arbitrary names
to force the model for proper feature selection. We then
evaluate exact matches by looking at if the predicted equa-
tion symbolically simplifies into the ground truth equation.
For the ablation graphs, we used the PySR hyperparameter
"early_stop_condition" to check if there is a "solution" after
N iterations.

A.4.2. SYNTHETIC DATASET

For the synthetic dataset, we ran a script that generates
uncommon mathematical hypotheses that satisfy our con-
straints at random. Then, we ran PySR for 400 iterations
and found all the equations that PySR performed poorly in,
i.e. MSE loss greater than 1, while having a complexity less
than 20. For these 41 remaining equations, we then com-
pared LASR and PySR after 20 iterations using the average
of their test set R2 for each hypothesis.

13

A.5. Further Qualitative Analysis

LASR generates two artifacts: the best fit program, and
the library of natural language concept that helped find that
program. These artifacts provide a unique window into the
inner workings of LASR. This section goes over a qualita-
tive study of how LASR and PySR go about discovering
Coulomb’s law F = q1q2

4πr2ϵ from data. Both methods are
able to find an answer to this equation. However, their ap-
proach to finding the best fit equation as well as the form of
the equation they discover differs significantly.

Setup: Coulomb’s law is equation #10 in the Feynman equa-
tion dataset. It describes how the force between two point
charges changes with respect to the distance between the
charges, the magnitudes of the charges, and the permittivity
of free space constant. The corresponding data for this equa-
tion has a target noise of 0.001 to simulate experimental
errors.

By analyzing the form of the equation and relationships
between variables in Coulomb’s law, we can uncover several
interesting properties: First, observe that this is an inverse
square law (The force F varies inversely with the square
of the distance r between the charged particles). Second,
notice that the F is directly proportional to the magnitude of
the charges q1 and q2. Third, observe that the resultant force
is symmetric with respect to the magnitude of the charged
particles (i.e.: The magnitude of the F doesn’t change if the
magnitude of the charged particles is swapped).

PySR Solution: PySR finds the following solution to this
equation:

F =

(((((((
q2·3.382

r

)
−
(

sin(0.017
exp(B))

exp(C)

))
/0.712

)
· q1

)
· 0.087

)
/ϵ

)
· 0.191

)
r

This equation has a complexity of 26 and achieves a loss of
2.191505×10−12 on the dataset. Obtaining a simplification
of this solution is rather painstaking.

LASR’s Solution: LASR finds the following solution to
this equation. We also present three steps of simplification:

F =
q1(

r
q2

)(
r + 1.9181636×10−5

q2

)
ϵ
· 0.07957782

=
q1(

r
q2

)(
r + 1.9181636×10−5

q2

)
ϵ
· 1

4π

(Substitute constant)

=
q1q2

r
(
r + 1.9181636×10−5

q2

)
ϵ
· 1

4π

(Simplify denominator)

≈ q1q2
r (r) ϵ

· 1

4π
(Negligible. 1.9181636×10−5

q2
≈ 0)

This equation has a complexity of 15 and achieves a much
lower loss of 4.6709058 × 10−14 on the accompanying
dataset. We can see with just three steps of simplification
how this equation might be reduced to the ground truth.

Let’s examine some essential concepts from various itera-
tions in the search process. Keep in mind that an LLM oper-
ates on tokens in each concept. Consequently, even small
relevant substrings can positively influence future LLM in-
ference calls, despite full concepts appearing verbose to
humans.

1. Iteration 2 The good mathematical expressions exhibit
a clear and coherent relationship between the vari-
ables involved, with a focus on power functions and
trigonometric functions that can be easily related to
physical concepts.

2. Iteration 6 The good mathematical expressions exhibit
a certain level of symmetry or regularity in their form,
possibly reflecting underlying patterns or relationships
between the variables and constants.

3. Iteration 24: The good mathematical expressions have
a clear and consistent structure involving the variables
q1, q2, epsilon, C, and r, with a specific pattern of
division and multiplication.

14

	Introduction
	Problem Formulation
	Method
	Experiments
	Comparison against baselines in the Feynman Equation Dataset
	Cascading Experiments
	Ablation Experiments
	Qualitative Analysis and User Hints
	Data Leakage Validation

	Related Work
	Conclusion
	Appendix
	Broader Societal Impacts
	LLM Prompts
	Implementation Details
	Compute Usage
	Concept Sampling
	Hyperparameters

	Dataset Details
	Feynman Equations
	Synthetic Dataset

	Further Qualitative Analysis

