
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Symbolic Regression with a Learned Concept Library

Anonymous Authors1

Abstract
We present a novel method for symbolic regres-
sion (SR), the task of searching for compact pro-
grammatic hypotheses that best explain a dataset.
The problem is commonly solved using genetic
algorithms; we show that we can enhance such
methods by inducing a library of abstract textual
concepts. Our algorithm, called LASR, uses zero-
shot queries to a large language model (LLM) to
discover and evolve concepts occurring in known
high-performing hypotheses. We discover new
hypotheses using a mix of standard evolutionary
steps and LLM-guided steps (obtained through
zero-shot LLM queries) conditioned on discov-
ered concepts. Once discovered, hypotheses are
used in a new round of concept abstraction and
evolution. We validate LASR on the Feynman
equations, a popular SR benchmark, as well as
a set of synthetic tasks. On these benchmarks,
LASR substantially outperforms a variety of state-
of-the-art SR approaches based on deep learning
and evolutionary algorithms.

1. Introduction
Symbolic regression (SR) (Makke & Chawla, 2024) is the
task of finding succinct programmatic hypotheses — writ-
ten in a flexible, domain-specific programming language —
that best explain a dataset. Initially proposed in the 1970s,
SR has recently emerged as a prominent approach to au-
tomated scientific discovery, with applications in domains
from astrophysics (Lemos et al., 2023; Davis & Jin, 2023)
to chemistry (Batra et al., 2021; Hernandez et al., 2019) to
medicine (Virgolin et al., 2020).

Computational complexity is a fundamental challenge in
SR, as the space of hypotheses that an SR algorithm must
search is discrete and exponential. Previous work has ap-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML), AI for Science workshop. Do not
distribute.

proached this challenge using methods like genetic program-
ming (Schmidt & Lipson, 2009; Cranmer, 2023), neural-
guided search (Cranmer et al., 2020; Shah et al., 2020), deep
reinforcement learning (Petersen et al., 2019) and hybrid
algorithms (Landajuela et al., 2022). However, new tools
to enhance the scalability of SR remain a critical need for
applications in SR and scientific discovery.

In this paper, we show that abstraction and knowledge-
directed discovery can be powerful principles in building
such scaling tools in SR. State-of-the-art genetic algorithms
for SR (Cranmer, 2023) evolve pools of candidate hypothe-
ses using random mutation and crossover operations. By
contrast, a human scientist does not just randomly mutate
their explanations of data. Instead, they synthesize back-
ground knowledge and empirical observations into abstract
concepts, then use these concepts to derive new explana-
tions. We show that zero-shot queries to large language
models (LLMs) can be used to implement such a discovery
process on top of a standard SR algorithm.

Concretely, we present a new method for symbolic regres-
sion, called LASR, that discovers a library of abstract,
reusable and interpretable textual concepts and uses it to
accelerate SR. LASR alternates between three phases: (i)
concept-directed hypothesis evolution, where standard ge-
netic operations over hypotheses are interleaved with LLM-
guided mutation and crossover operations conditioned on
known library concepts; (ii) the LLM-based abstraction
of patterns in known high-performing hypotheses into new
concepts; and (iii) the LLM-directed evolution of concepts
into more succinct and general forms. Together, these three
steps form an open-ended alternating maximization loop
that combines evolutionary exploration with the exploita-
tion of the LLM’s background knowledge and in-context
learning ability.

We experimentally compare LASR on Feynman Equations
(La Cava et al., 2021) — a popular SR benchmark in which
the goal is to discover 100 equations from the Feynman Lec-
tures in Physics — against several state-of-the-art genetic
and deep learning approaches. LASR can discover 66 of
the 100 target equations, while the best existing approach
can solve 59. To address the concern that LASR’s perfor-
mance could be attributed to test set leakage, we compare
LASR with a state-of-the-art genetic approach on a suite of

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

synthetic benchmarks. We show that LASR substantially
outperforms the baseline.

In summary, the contributions of this paper are as follows:

• We pose the problem of discovering an open-ended,
reusable concept library that can accelerate solutions to
downstream SR tasks.

• We present LASR, a method for combining zero-shot
LLM queries and standard evolutionary operations
to simultaneously induce a concept library and high-
performing hypotheses. LASR’s strategy of using LLMs
to accelerate evolutionary algorithms may have future
applications in settings beyond SR.

• We offer promising experimental results, including a
demonstration that LASR outperforms state-of-the-art
algorithms in standard SR tasks and synthetic domains.

2. Problem Formulation
Symbolic Regression. We formulate symbolic regression
(SR) as a program synthesis (Chaudhuri et al., 2021) prob-
lem. The inputs to this problem include a language L of
programmatic hypotheses and a dataset D := {(xi,yi)}Ni=1

of input-output examples. The syntax of L is described
by a context-free grammar (Hopcroft et al., 2007). The
grammar allows each hypothesis π to be represented using
a set of mathematical operators (e.g., addition, multiplica-
tion, trigonometric functions) that facilitate the composition
of simpler hypotheses into more complex ones. We ab-
stractly define the fitness of a hypothesis π as the likelihood
pL(D | π) that it generates D.

In order to prevent finding non-useful solutions, we impose a
prior probability distribution pL(π) over hypotheses π that
penalizes syntactically complex hypotheses. We now pose
SR as the task of finding a hypothesis π⋆ that maximizes
the fitness while minimizing syntactic complexity. The
problem can be expressed as a maximum a posteriori (MAP)
estimation problem (Ellis et al., 2020):

π⋆ = argmax
π

pL(π|D) = argmax
π

pL(D|π)︸ ︷︷ ︸
optimization

· pL(π)︸ ︷︷ ︸
regularization

(1)

Recent work leverages large language models (LLMs) for
program synthesis (Li et al., 2022; Chen et al., 2021b).
Large language models (LLMs) approach program synthesis
as a token prediction problem, directly approximating the
likelihood of programs by training on internet-scale datasets.
That is,

pL(π|D) ≈ pLLM(⟨π⟩ | ⟨L⟩,desc(D)), (2)

where ⟨π⟩ and ⟨L⟩ are, respectively, textual representations
of π and a specification of the syntax of L, and the task
description desc(D) is a few-shot serialization of a subset
of the examples in D.

Symbolic Regression with Latent Concept Libraries.
Classical symbolic regression typically assumes no prior
knowledge or intuition about the problem. In contrast, hu-
man scientific discovery often leverages empirical patterns
(Wigner, 1990) and intuitions derived from previously ob-
served data. For example, recognizing a ‘power law rela-
tionship between variables’ has led to the formulation of
fundamental empirical laws across various fields, such as
the Arrhenius equation in Chemistry, the Rydberg formula
in Physics, Zipf’s law in Linguistics, and Moore’s law in
Computer Science.

We model such empirical patterns as natural-language con-
cepts drawn from a latent concept library C. We frame the
relationship between the concept library and programs as
a Hierarchical Bayesian model consisting of: (i) a prior
p(C) representing the natural distribution over concept li-
braries; (ii) a model pL(π | C) that quantifies the likelihood
of various hypotheses for a given concept library C; and
(iii) the previously mentioned fitness function pL(D | π)
for programs π. We assume that the distributions pC and
pL(π | C) can be approximated using LLMs. That is, we
can prompt an LLM to generate interesting concepts, and
we can prompt an LLM with a set of concepts to generate
token-sequence representations of hypotheses that adhere
to the concepts. Now we state the problem of symbolic
regression with latent concept learning as one of simultane-
ously inducing an optimal concept library and an optimal
programmatic hypothesis:

argmax
π,C

p(π, C|D) = argmax
π,C

p(D|π)︸ ︷︷ ︸
By execution

· p(π|C)︸ ︷︷ ︸
By LLM

· p(C)︸︷︷︸
By LLM

(3)

3. Method
LASR performs a two-stage evolution over natural-language
concepts and programmatic hypotheses. The two stages
follow an alternating maximization strategy shown in Figure
1: (1) Hypothesis evolution: We fix the set of concepts and
focus on maximizing the hypotheses’ fitness to the dataset,
and (2) Concept abstraction and evolution: We leverage the
best hypotheses found to induce a new library of concepts.

In the rest of this section, we first describe PySR, the SR al-
gorithm (Cranmer, 2023) that LASR extends. Next, we
show how to modify this algorithm into one guided by
natural-language concepts. Finally, we show how these
concepts can be naturally extracted and evolved into new
concepts. The full LASR algorithm is presented in Algo-
rithm 1 and visualized in Figure 2. LASR is built in Julia

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Hypothesis Evolution

Symbolic
Evolution or

Program
Populations Dataset

Best Program
per Population

Concept AbstractionConcept Evolution

LLM Specification Synthesis

“exponential
growth/decay”

“exponential
growth/decay”

LLM Concept Crossover

“Depends on
temperature”

“Boltzmann
Distribution”

Concept Library

Hypothesis
Evolution

Concept
Abstraction

Concept
Evolution

LLM
Evolution

Concept
Library

For 106 iterations

Figure 1: An overview of LASR. LASR iteratively refines a library of interpretable textual concepts which are used to
bias the search for hypotheses for scientific discovery tasks. This involves three distinct phrases: (Top) finding optimal
hypotheses within a concept-directed hypothesis evolution, (Right) leveraging the optimal hypotheses to find new concept
abstractions, and (Left) iterating on learned concepts to discover new concepts to accelerate hypothesis evolution. LASR
introduces an orthogonal direction of improvement over current symbolic regression algorithms (Cranmer, 2023) (in gray).

Algorithm 1 Pseudocode for LASR. LASR takes as in-
put an optional set of user-provided hints C0, a dataset of
input-output pairs of high-dimensional data D, and four
hyperparameters: the number of iterations I , the number
of populations K, the number of steps for concept evolu-
tion M , and the mixture probability of using LLM-based or
GP-based evolutionary operators p. LASR produces two ar-
tifacts: the evolved library of concepts C and the expression
with the highest fitness score π⋆.

1: function LASR(C0,D = {(xi,yi)}Ni=1, I,K,M , p)
2: C ← INITIALIZECONTEXTLIBRARY(C0) ▷ Add (optional)

user hints to library.
3: {Π1, . . .ΠK} ← INITIALIZEPOPULATIONS(C,K)
4: for _ in range(N) do
5: for i in range(K) do
6: Πi← SRCYCLE(Πi,D, C, p) ▷ Interleaved Symbolic

+ LLM Search
7: F ← EXTRACTPARETOFRONTIER({Π1 . . .ΠK},D) ▷

Includes positive + negative programs
8: C ← C ∪ CONCEPTABSTRACTION(F , C)
9: for _ in range(M) do

10: C ← CONCEPTEVOLUTION(C)
11: π⋆ ← BESTEXPRESSION(F) ▷ Based upon both loss and

complexity
12: return C, π⋆

with an additional Python interface 1 and uses an open-
source, optimized framework for LLM inference (Kwon
et al., 2023).

Base Algorithm: PySR. LASR builds on PySR (Cranmer,
2023), a scalable, parallelizable genetic search algorithm
for SR. The search in PySR maintains multiple popula-
tions {Π1, . . . ,Πk} of hypotheses, with each hypothesis
represented as an expression tree. In its initialization step,
captured by a procedure INITIALIZEPOPULATIONS, PySR
creates a new expression at random to insert into a popula-
tion. After running this step, PySR runs a genetic search,
encapsulated in a procedure SRCYCLE, which evolve these
populations in parallel, simplifies and optimizes the con-
stants of the resulting hypotheses, and then migrates top-
performing hypotheses between populations.

Like other evolutionary algorithms, the search in PySR uses
symbolic mutation and crossover operations. The muta-
tion step is broken into many categories, each with distinct
weighting, to either mutate a constant, mutate an operator,
add a node (append, prepend, insert), delete a subtree of an
expression tree, simplify the tree, initialize a new tree, or
do nothing. One of these operations is randomly selected at
each call to a mutation request, and each operation executes
itself at random but within user-provided constraints. For
example, deleting a subtree is done by choosing a random
node to replace with a randomly-generated leaf node such as

1See code at anonymous.4open.science/r/neurips24-lasr-70BD

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Expression Search Operations
(x400 iterations)

Initialization
LLM

Initialize
Symbolic
Initialize

Crossover
LLM

Crossover
Symbolic
Crossover

Mutation
LLM

Mutation
Symbolic
Mutation

Initialization
LLM

Initialize
Symbolic
Initialize

Other Symbolic Operations
Simplify

Tree
Optimize
Constants

Concept Library Operations
(repeated x3)

User Hints
(or None)

Concept
Extraction LLM

Concept Crossover
LLM

Sample Concepts

Sim
plicity

Data Fitness

Program Populations

Pareto Frontier

Concept Library

Figure 2: A single step of LASR. LASR induces multiple hypothesis populations that are evolved using a scalable
evolutionary algorithm. Concept guidance is provided by randomly replacing symbolic operations with concept-directed
LLM operations with probability p. After each iteration, the top-performing programs are summarized into natural language
concepts, which are evolved to form new concepts that are sampled to guide the search in the next iteration.

a feature or constant. The crossover step involves swapping
random subtrees of two expressions in a population.

LLM-guided Hypothesis Evolution. LASR speeds up
PySR by injecting natural language priors into its search
procedure. To do this, we modify the INITIALIZEPOP-
ULATIONS procedure to use an LLM-augmented initial-
ization operation, and the SRCYCLE routine to use LLM-
augmented versions of its symbolic mutation and crossover
operations. The altered procedures are named LLMINIT,
LLMMUTATE, and LLMCROSSOVER, respectively. These
operations do not replace their standard genetic counter-
parts. Instead, we introduce a hyperparameter p that, with
a fixed probability, substitutes the standard genetic opera-
tion with the LLM-based operation. This enables “doping”
each population with a program that respects the language
priors, while ensuring that we do not bottleneck the local
exploration of the search space.

The LLM-guided operations follow the same base format:
they sample multiple concepts from the concept library,
concatenate these concepts with the task-specific variable
names and language operations, and append a specialized
prompt for each task. We employ zero-shot prompts (see
Appendix A.2 for more details) to avoid sampling biases. In
further detail:

• LLMINIT: The LLMINIT function takes an initial set of
concepts and uses them to initialize the populations for
the evolutionary search step. The initial set of concepts
can either be instantiated from an optional set of user-
provided “hints” or generated by the LLM.

• LLMMUTATE: For mutation within a population, we
sample a set of l concepts from the concept library C,

and construct a prompt that uses this set of concepts to
mutate an expression πi into πj . The prompt to the LLM
takes inspiration from the standard genetic mutation
operation, and asks it to mutate the expression given the
concepts sampled from the library.

• LLMCROSSOVER: The LLMCROSSOVER function also
samples a set of l concepts from the concept library
along with two hypotheses πi and πj to construct a
new expression πk, which reuses sub-expression trees
from the two hypotheses while respecting the sampled
concepts. Our implementation is inspired by prior work
(Romera-Paredes et al., 2024) — see Figure 4.

Concept Abstraction. After each iteration of symbolic
regression, we use a function EXTRACTPARETOFRONTIER
to collect: (i) the hypotheses, across all populations, that are
Pareto-optimal with respect to the criteria of syntactic sim-
plicity and dataset loss; (ii) the hypotheses with the worst
loss across all populations. The resulting set of hypotheses
F = {π⋆

1 ., π
⋆
a . . . π

−
1 ., π

−
b } captures the trends that were

most helpful and most detrimental to performance during
hypothesis search. Now we use the CONCEPTABSTRAC-
TION function, which uses a zero-shot prompt to extract a
natural language concept c⋆ that summarizes the positive
trends while eschewing negative trends. This concept is
subsequently added to the concept library. The prompt for
the function is presented in Figure 5.

Concept Evolution. Each concept in C represents trends
that were useful at a previous state in the search process.
After adding new concepts into the library, we use a function
CONCEPTEVOLUTION to evolve the library to include new
ideas that logically follow from the ideas in the current

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

library. The implementation of this function follows that of
the LLMCROSSOVER operation in that we are using multiple
concepts as a reference to generate new ones, with the key
distinction that, unlike in the LLMCROSSOVER operation,
the fitness of each generated concept here is difficult to
quantify. Thus, we include all the generated responses in
the concept library. While these concepts may sometimes
be inaccurate, they increase the evolutionary algorithm’s
exploration ability.

4. Experiments
We demonstrate the effectiveness of LASR on multiple tasks
integral to scientific discovery. First, we evaluate LASR’s
performance on the Feynman Equation dataset, a widely
adopted scientific discovery benchmark, under a variety of
ablations and additional priors. Second, we measure the
effect of data leakage by evaluating LASR’s performance
on a procedurally generated synthetic dataset of challenging
equations. Finally, we evaluate LASR on a procedurally
generated dataset to ensure that its performance is not af-
fected by data leakage issues in the backbone LLM. LASR’s
main focus is to serve as a practical toolkit for scientists.
Therefore, our evaluation primarily targets slightly noisy
(‘non-toy’) environments, using exact solution rate to gauge
performance rather than statistical similarity measures like
correlation R2, which are less relevant to scientific discov-
ery applications.

4.1. Comparison against baselines in the Feynman
Equation Dataset

Dataset: The Feynman Equation dataset is a widely adopted
benchmark for scientific discovery (Udrescu & Tegmark,
2020). The dataset consists of 100 physics equations ex-
tracted from the Feynman lectures on Physics. Each equa-
tion is in the form y = f(x1, x2, . . .). The number of input
variables ranges from two to ten, and the dataset provides
100,000 samples for each equation. We compare against
publically available methods benchmarked on SRBench
(La Cava et al., 2021). SRBench is a continuously updated
benchmark which catalogs the performance of various meth-
ods on the Feynman dataset as well as other symbolic regres-
sion problems. Specifically, we compare against GPlearn,
AFP, AFP-FE, DSR, uDSR, PySR, and the original AI Feyn-
man algorithm (Schmidt & Lipson, 2010; Stephens, 2024;
Udrescu & Tegmark, 2020; Landajuela et al., 2022; Petersen
et al., 2019). Within this subset, notably, PySR represents an
ablation of our model without the LLM genetic operations
and the concept evolution (Section 3). We evaluate on a
slightly noisy version of this dataset in order to simulate ex-
perimental errors common in scientific discovery domains.
Specifically, we compare numbers against those reported in
and reproduced by SRBench with a target noise of 0.001.

Setup: We instantiate LASR using
gpt-3.5-turbo-0125 (Brown et al., 2020) as
the backbone LLM and calling it with p = 0.01 for 40
iterations, and compare our results with PySR which
uses the same default hyperparameters. For the other
baselines, we use the numbers reported in SRBench with
one exception being uDSR (Landajuela et al., 2022), for
which we couldn’t find any benchmarking numbers. For
this method, we derive the exact solve rate from a publically
available figure (Organization).

Results: We showcase results in Table 1. We draw three
observations from this experiment. First, LASR achieves
a higher exact solve rate than all other baselines. Second,
both PySR and LASR outperform the other baselines by a
wide margin, indicating that scalable and efficient synthesis
is imperative to practical scientific discovery algorithms.
Finally, and most notably, a subset of the equations LASR
finds could not be derived with any of the previous methods.

4.2. Cascading Experiments

LASR’s performance is inherently bottlenecked by the rea-
soning capabilities of the backbone LLMs and the frequency
of their invocation in each iteration. To evaluate the ef-
fect of the backbone LLM on LASR’s performance, we
instantiate a model cascade over two of LASR’s hyperpa-
rameters: the backbone model (llama3-8b (AI@Meta,
2024), gpt-3.5-turbo-0125) and the probability p
with which we call that model in the evolution step (p =
[1%, 5%, 10%]).

Setup: Our cascade operates as a tournament. We start
LASR with the configuration that provides the least lan-
guage guidance (llama3-8b at p = 1%) and progres-
sively increase the value of p and then the backbone model.
Each subsequent model is only evaluated on the problems
that the previous model could not solve. We compare
this against PySR’s performance on the Feynman equation
dataset. To ensure a fair comparison, we cascade PySR
using the same procedure but find it does not solve any
additional equations.

Metrics: For this experiment, we aim to evaluate the pro-
gression of different configuration towards solving equa-
tions. The quantitative metric used in the previous exper-
iment, Exact Solve, does not allow for such fine-grained
analysis. Therefore, we categorize the synthesized equa-
tions into four buckets: Exact Solve, Almost Solve, Close,
and Not Close. Exact Solve is quantitatively evaluated using
a symbolic match. An equation is tagged as ’Almost Solve’
if the dataset loss is small but the generated equation has
an extra term or lacks one term. A Close equation captures
the general structure of the solution (such as a square root
nested in an exponential) but not more than that, and Not
Close includes all equations that are far from the solution.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

GPlearn AFP AFP-FE DSR uDSR AIFeynman PySR LaSR

20/100 24/100 26/100 23/100 40/100 38/100 59/100 59 + 7/100

Table 1: Results on 100 Feynman equations from (Udrescu & Tegmark, 2020). We report exact match solve rate for all
models. LASR achieves the best exact match solve rate using the same hyperparameters as PySR (Cranmer, 2023).

LASR (Llama3-8B) LASR (GPT-3.5)

Type of Solve PySR p = 1% p = 5% p = 10% p = 1%

Exact Solve 59/100 63/100 65/100 65/100 66/100
Almost Solve 7/100 6/100 9/100 12/100 13/100

Close 16/100 13/100 14/100 11/100 9/100
Not Close 18/100 18/100 12/100 13/100 13/100

Table 2: Evaluation results on Feynman dataset by cascading LASR’s LLM backbone (llama3-8b, gpt-3.5-turbo) and
changing the probability of calling the model (p = [0.01, 0.05, 0.10]) in the order of increasing concept guidance. LASR
outperforms PySR even with minimal concept guidance using an open-source LLM.

Results: Our results are presented in 2. We draw two key
observations from these results. First, LASR outperforms
PySR even with minimal concept guidance (llama3-8b
at p = 1%). Second, LASR’s increasing the backbone
model size and the mixture probability significantly en-
hances LASR’s performance, indicating that as the language
reasoning capabilities of LLMs improve, so will our perfor-
mance.

4.3. Ablation Experiments

We conduct ablations on the use of Concept Evolution, Con-
cept Crossover, variable names, and user hints. Figure 3
shows how these ablations affect performance over 40 it-
erations. We designate an equation as “solved” if, after N
iterations, the MSE of our predicted equation is less than
10−11. This metric differs from ’Exact Solved’ as defined
in the prior experiments: an equation can be ’exactly solved’
yet have an MSE higher than 10−11 due to the noise floor
in the target variables and equation can have low loss but
not be an exact match. We observe from the results that:
(1) Removing variable names results in a significant per-
formance drop, as we lose semantic meaning provided by
variables (for instance, observing θ could suggest employ-
ing trigonometric functions on θ). (2) Learning a concept
library enables faster convergence to solutions. Without the
concept library, task convergence is significantly slower and,
in higher concept guidance regimes (adjusting mixture to
p > 0.1%), this gap would expand even further.

4.4. Qualitative Analysis and User Hints

The concept library provides an interpretable window into
our evolutionary search process. To showcase the concepts

learned by LASR, we take a sample equation from the Feyn-
man dataset, the electric field of a dipole Ef = 3pd cos θ sin θ

4πϵr3

and comment on the libraries learned at various intervals.
We see rudimentary concepts emerge in the second iteration:

“The presence of basic trigonometric functions like sin in
the good expressions contributes to their quality, indicating
a connection to physical concepts such as waveforms or
periodic phenomena.”

And, in subsequent iterations, the concepts become even
more refined:

“The good mathematical expressions exhibit a balance be-
tween mathematical operations such as multiplication, divi-
sion, and trigonometric functions, which are known to have
physical interpretations and relevance in various scientific
phenomena.”

This iterative refinement of concepts helps LASR maintain
consistently good concepts for all iterations. This allows
LASR to converge to an exact match solution within 40 iter-
ations. By contrast, PySR and the concept library ablations
fail to converge on an exact match solution, returning equa-
tions that — while low-loss — involve many extra terms and
structures that aren’t in the ground truth equation. This rein-
forces our hypothesis that injecting semantic meaning into
the search process not only leads to more efficient search,
but also serves as regularization against complex equations
— as the LLM-generated concepts help filter out irrelevant
terms. A deeper qualitative analysis is explored in Appendix
A.5.

Extending LASR with Hints: A benefit of LASR is that
its search can be initialized with a set of user-specified,
natural-language “hints.” To evaluate this capability, we

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Iterations0

20

40

60

80

100

Eq
ua

ti
on

s
So

lv
ed

 u
nd

er
 M

SE

0 5 10 15 20 25 30 35 40
Iterations

0

20

40

60

80

100

Eq
ua

ti
on

s
So

lv
ed

 u
nd

er
 M

SE
Llama3 - 0.1%
Llama3 - 0.1% - No Concept Evol
Llama3 - 0.1% - No Vars

PySR
Llama3 - 0.1% - No Concept Crossover
Llama3 - 0.1% - Hints

Figure 3: Evaluation results for ablations/extensions of
LASR. Left: We ablate three components of LASR: Con-
cept Evolution, Concept Crossover, and variable names and
evaluate their MSE solve rate performance on the Feynman
dataset over 40 iterations. We find that each component
contributes to accelerating search at different stages in the
search process. Right: We extend LASR by providing an
initial concept library C0 in the form of user provided hints.
We find that natural language hints significantly increases
the speed of solving equations.

generate vague hints for each equation based on variations
of the chapter title of the Feynman lecture that the equation
belongs to. We intentionally keep the hints vague to see
if knowledge about just the general field is sufficient in
improving LASR’s performance. We showcase results in
Figure 3. We observe a noticeable boost in performance
from injecting these hints, even for our weakest performing
model. These findings indicate that even minimal user input
can significantly enhance LASR’s effectiveness in scientific
discovery tasks.

4.5. Data Leakage Validation

An important consideration in using LLMs for existing SR
problems is the possibility that the LLM was exposed to the
hold-out problems in the validation set, presenting an unfair

PySR LaSR
(Llama3-8B, 0.1%)

0.070 0.874

Table 3: Evaluation results of data leakage. We present the
test set R2 of PySR and of LASR on a synthetic Symbolic
Regression dataset. Higher R2 is better.

advantage to LLMs trained on massive datasets. Intuitively,
LASR generates its own concepts which are conditioned on
suboptimal programs, which are unlikely to be within the
LLM’s memorized responses. To validate this, we generate
a dataset of 41 synthetic equations that are engineered to
deviate from common physical and mathematical structures
and have arbitrary variables. For example, one such equation
is y = 0.782x3+0.536

x2ex1 (log x2−x2ecos x1) .

We validate that PySR cannot solve these equations in 400
iterations and run LASR with Llama3-8B at 0.1%. We then
compare our synthesized program’s test set R2 with that of
PySR’s. We justify using correlation instead of exact-match
as we are not motivated by the application of results for
scientific discovery in this experiment. Our results are sum-
marized in Table 3 and show that LASR’s concept-guided
synthesis still provides a considerable performance boost
compared to PySR – demonstrating that LASR’s perfor-
mance gains are not rooted in memorized responses and that
LASR can learn low-level mathematical structures present
in a novel synthetic domain.

5. Related Work
Symbolic Regression. The field SR started in the 1970s
(Gerwin, 1974; Langley, 1977) and has recently become a
prominent approach to AI-for-science (Makke & Chawla,
2024; Merler et al., 2024; Romera-Paredes et al., 2024).
Two algorithmic themes here are:

Non-parametric Algorithms: Most work on SR focuses on
improving search efficiency using heuristics or paralleliza-
tion. Specifically, PySR (Cranmer, 2023) builds a multi-
population evolutionary algorithm that incorporates various
preexisting heuristics (Real et al., 2019), and introduces
novel ones such as simulated annealing, an evolve-simplify-
optimize loop, and an adaptive parsimony metric. PySR
has been successfully applied to study problems in domains
such as cosmology (Davis & Jin, 2023), international eco-
nomics (Verstyuk & Douglas, 2022), and climate modeling
(Grundner et al., 2024). Our algorithm extends PySR to
enable the discovery of latent concepts.

Parametric Algorithms: Recent work on SR and program
synthesis has often used neural networks to accelerate search

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

(Shah et al., 2020; Romera-Paredes et al., 2024; Petersen
et al., 2019; Landajuela et al., 2022; Merler et al., 2024;
Devlin et al., 2017). The interplay between the neural and
the symbolic components in these works can be abstracted
into two categories: (1) leveraging LLMs to induce program
scaffolds (Merler et al., 2024; Romera-Paredes et al., 2024),
and (2) learning a neural policy to accelerate search (Pe-
tersen et al., 2019; Landajuela et al., 2022; Shah et al., 2020;
Devlin et al., 2017). We highlight two methods from the
first category: Funsearch (Romera-Paredes et al., 2024) and
LLM-SR (Merler et al., 2024). Funsearch (Romera-Paredes
et al., 2024) uses a pretrained LLM to implement a mutation
operator on a database of executable programs under a fixed
specification to find super-optimized programs in extremal
combinatorics. LASR is a generalization of FunSearch:
while FunSearch conditions program generation on a static
“specification” (analogous to our concept library), we dis-
cover the concept library in the course of the algorithm.
As for LLM-SR (Merler et al., 2024), it leverages a pre-
trained LLM for generating program sketches (Murali et al.,
2018). The sketch parameters are optimized and cached in
a database which is in turn used to generate new sketches.
Our work is an orthogonal direction of improvement. It is
technically possible to “plug” the LLM-SR framework into
LASR and use our generated ideas to guide the lower-level
search component.

The second category includes methods like DSR (Petersen
et al., 2019), which, just like LASR, frames SR as a se-
quence modeling problem. However, the search in LASR
leverages a learned concept library and the language and
code biases in LLMs, instead of relying on amortization
alone.

Program Synthesis with Foundation Models. Recent
work in program synthesis models program generation as a
sequence prediction problem. Under this paradigm, the DSL
and the input-output specification is serialized in the prompt
and a code-generation foundation model (Li et al., 2023;
Chen et al., 2021a; Brown et al., 2020) is leveraged to autore-
gressively generate candidate programs. This approach has
been used to successfully synthesize programs in many ar-
eas including spreadsheet formula prediction (Devlin et al.,
2017; Chen et al., 2021b), competitive programming (Li
et al., 2022), and visual programming (Surís et al., 2023;
Gupta & Kembhavi, 2023). LASR is similar to work in this
area in that the LLM Mutate, LLM Crossover, and LLM
Initialization functions all follow the sequence prediction
paradigm to synthesize mathematical equations, relying on
guidance from the concept library.

Program Synthesis with Library Learning. Deploying
classical program synthesizers in a new domain often neces-
sitate hand-engineering DSLs to enable scalable synthesis.

This severely limits the generality and practicality of such
methods. An emerging direction of research – called library
learning – attempts to learn the DSL and the programs si-
multaneously (Ellis et al., 2020; Bowers et al., 2023; Grand
et al., 2023; Lake et al., 2015; Wong et al., 2021; Ellis et al.,
2018; Shin et al., 2019). This is typically framed as a hierar-
chical Bayesian optimization problem over the space of pro-
grams and the space of library functions that generate those
programs. Notably, (Grand et al., 2023) uses LLM guid-
ance to assist in program induction and in auto-documenting
learned library modules and (Wong et al., 2021) considers
learning programs under a latent distribution over the space
of natural language and the space of the DSL. LASR shares
a similar problem formulation to these works, but optimizes
over the space of programs and over the space of natural
language descriptions of these programs.

6. Conclusion
We have presented LASR, a framework that uses zero-shot
queries to an LLM to induce abstract, reusable concepts
that can be used to accelerate SR. We have shown that
LASR outperforms state-of-the-art approaches on the stan-
dard Feynman equation task.

A key benefit of LASR is that its capabilities are ultimately
bottlenecked by those of the underlying LLM. LLMs are
rapidly gaining capability and getting cheaper, and future
versions of LASR should be able to tap into this progress.

Many directions of research remain open. First, our strat-
egy of accelerating evolutionary search with LLM-based
concept induction may be applicable beyond the SR setting.
Future research should explore such applications. Second,
while our approach here was entirely based on in-context
learning, it is worth exploring if finetuning improves the per-
formance of the LLM. Finally, we evaluated the learned
concept library exclusively on the downstream SR task.
However, the library may also be valuable in other tasks
such as clustering or explanation synthesis. Exploring these
other tasks is an attractive topic for future work.

Limitations. The current instantiation of LASR has sev-
eral limitations. First, it cannot guarantee that the concepts
it learns are correct or insightful. Even a concept that leads
to strong performance in downstream SR tasks may do so
because of quirks of the model and data, and end up mis-
leading scientists using the method in a discovery process.
Also, we do not currently have a way to ensure that the
learned concepts are mutually consistent. Finally, our eval-
uation here was constrained by our compute budgets for
LLMs and search. Whether the trends we see generalize to
higher-compute regimes remains to be seen.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

References
AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Batra, R., Song, L., and Ramprasad, R. Emerging materials
intelligence ecosystems propelled by machine learning.
Nature Reviews Materials, 6(8):655–678, 2021.

Bowers, M., Olausson, T. X., Wong, L., Grand, G., Tenen-
baum, J. B., Ellis, K., and Solar-Lezama, A. Top-down
synthesis for library learning. Proceedings of the ACM on
Programming Languages, 7(POPL):1182–1213, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chaudhuri, S., Ellis, K., Polozov, O., Singh, R., Solar-
Lezama, A., Yue, Y., et al. Neurosymbolic programming.
Foundations and Trends® in Programming Languages, 7
(3):158–243, 2021.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, X., Maniatis, P., Singh, R., Sutton, C., Dai, H., Lin,
M., and Zhou, D. Spreadsheetcoder: Formula predic-
tion from semi-structured context. In International Con-
ference on Machine Learning, pp. 1661–1672. PMLR,
2021b.

Cranmer, M. Interpretable machine learning for science
with pysr and symbolicregression. jl. arXiv preprint
arXiv:2305.01582, 2023.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases. In
Neural Information Processing Systems, 2020.

Davis, B. L. and Jin, Z. Discovery of a planar black hole
mass scaling relation for spiral galaxies. The Astrophysi-
cal Journal Letters, 956(1):L22, 2023.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A., and Kohli, P. Robustfill: Neural program learning
under noisy I/O. In ICML, 2017.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Learning libraries of subroutines
for neurally–guided Bayesian program induction. In Ad-
vances in Neural Information Processing Systems, pp.
7805–7815, 2018.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep Bayesian program
learning. arXiv preprint arXiv:2006.08381, 2020.

Gerwin, D. Information processing, data inferences, and
scientific generalization. Behavioral Science, 19(5):314–
325, 1974.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Grundner, A., Beucler, T., Gentine, P., and Eyring, V. Data-
driven equation discovery of a cloud cover parameteriza-
tion. Journal of Advances in Modeling Earth Systems, 16
(3):e2023MS003763, 2024.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14953–14962, 2023.

Hernandez, A., Balasubramanian, A., Yuan, F., Mason,
S. A., and Mueller, T. Fast, accurate, and transferable
many-body interatomic potentials by symbolic regression.
npj Computational Materials, 5(1):112, 2019.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to automata theory, languages, and computation, 3rd
Edition. Pearson international edition. Addison-Wesley,
2007. ISBN 978-0-321-47617-3.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

La Cava, W., Orzechowski, P., Burlacu, B., de França, F. O.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. H.
Contemporary symbolic regression methods and their
relative performance. arXiv preprint arXiv:2107.14351,
2021.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Landajuela, M., Lee, C. S., Yang, J., Glatt, R., Santiago,
C. P., Aravena, I., Mundhenk, T., Mulcahy, G., and Pe-
tersen, B. K. A unified framework for deep symbolic
regression. Advances in Neural Information Processing
Systems, 35:33985–33998, 2022.

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Langley, P. Bacon: A production system that discov-
ers empirical laws. In International Joint Conference
on Artificial Intelligence, 1977. URL https://api.
semanticscholar.org/CorpusID:2320342.

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., and Battaglia, P.
Rediscovering orbital mechanics with machine learning.
Machine Learning: Science and Technology, 4(4):045002,
2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Makke, N. and Chawla, S. Interpretable scientific discovery
with symbolic regression: a review. Artificial Intelligence
Review, 57(1):2, 2024.

Merler, M., Dainese, N., and Haitsiukevich, K. In-context
symbolic regression: Leveraging language models for
function discovery. arXiv preprint arXiv:2404.19094,
2024.

Murali, V., Qi, L., Chaudhuri, S., and Jermaine, C. Neural
sketch learning for conditional program generation. ICLR,
2018.

Organization, D. S. O. Srbench sym-
bolic solution. https://github.com/
dso-org/deep-symbolic-optimization/
blob/master/images/srbench_
symbolic-solution.png. Accessed: 2024-
05-22.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. arXiv preprint
arXiv:1912.04871, 2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 33, pp. 4780–4789, 2019.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. Science, 324(5923):81–85,
2009.

Schmidt, M. D. and Lipson, H. Age-fitness pareto opti-
mization. In Annual Conference on Genetic and Evo-
lutionary Computation, 2010. URL https://api.
semanticscholar.org/CorpusID:9975416.

Shah, A., Zhan, E., Sun, J. J., Verma, A., Yue, Y., and Chaud-
huri, S. Learning differentiable programs with admissible
neural heuristics. In Advances in Neural Information
Processing Systems, 2020.

Shin, R., Allamanis, M., Brockschmidt, M., and Polozov,
O. Program synthesis and semantic parsing with learned
code idioms. In Advances in Neural Information Process-
ing Systems, pp. 10825–10835, 2019.

Stephens, T. gplearn: Genetic programming in python,
with a scikit-learn inspired api, 2024. URL https://
github.com/trevorstephens/gplearn. Ac-
cessed: 2024-05-22.

Surís, D., Menon, S., and Vondrick, C. Vipergpt: Visual
inference via python execution for reasoning. arXiv
preprint arXiv:2303.08128, 2023.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Verstyuk, S. and Douglas, M. R. Machine learning the
gravity equation for international trade. Available at
SSRN 4053795, 2022.

Virgolin, M., Wang, Z., Alderliesten, T., and Bosman, P. A.
Machine learning for the prediction of pseudorealistic pe-
diatric abdominal phantoms for radiation dose reconstruc-
tion. Journal of Medical Imaging, 7(4):046501–046501,
2020.

Wigner, E. P. The unreasonable effectiveness of mathemat-
ics in the natural sciences. In Mathematics and science,
pp. 291–306. World Scientific, 1990.

Wong, C., Ellis, K. M., Tenenbaum, J., and Andreas, J.
Leveraging language to learn program abstractions and
search heuristics. In International conference on machine
learning, pp. 11193–11204. PMLR, 2021.

10

https://api.semanticscholar.org/CorpusID:2320342
https://api.semanticscholar.org/CorpusID:2320342
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://github.com/dso-org/deep-symbolic-optimization/blob/master/images/srbench_symbolic-solution.png
https://api.semanticscholar.org/CorpusID:9975416
https://api.semanticscholar.org/CorpusID:9975416
https://github.com/trevorstephens/gplearn
https://github.com/trevorstephens/gplearn

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Appendix
A.1. Broader Societal Impacts

We have presented LASR: a symbolic regression framework
that leverages concept guidance to accelerate symbolic re-
gression. We hope that LASR helps accelerate the search
for empirical laws in the broader scientific community. In
this section, we discuss the broader societal impacts and
ethical considerations of our work.

Potential for Misuse: As with other ML techniques, sym-
bolic regression can be leveraged by bad actors to inflict
societal harm. Our experiments show that LASR accelerates
the search for empirical laws from raw observations. In our
setting, we are restricted to observations about physical phe-
nomena. However, a malicious actor could misuse LASR
to find patterns in datasets that violate personal rights.

Privacy Concerns: As mentioned before, LASR enables
finding patterns in raw observations. We hope that LASR is
leveraged by scientists to explain physical phenomena. How-
ever, it is possible to use such models to learn behavioral
profiles without the active knowledge or explicit consent of
the subjects.

Bias and Fairness: LASR generates two artifacts: a hypoth-
esis that maximizes a fitness function (represented as an
equation) and a library of concepts that helped discover that
hypothesis. LASR ensures fairness and lack of bias in the
generated equation as long as the fitness function is free of
biases as well. However, we leverage foundation models to
induce our library of concepts which could be trained on
biased data which may reflect in our concept library. Fur-
thermore, we cannot directly evaluate the efficacy of the
concept library and its factual correctness. This doesn’t af-
fect equation generation – since equations are quantitatively
evaluated. However, a human analyzing the concepts LASR
learns might misinterpret trends that the model picks up on.

A.2. LLM Prompts

Note that in the prompts in Figures 4 and 5, we refer to our
hypothesis as expressions and the concepts as hypotheses
and suggestions. This prompting style was found to work
best for the LLM.

A.3. Implementation Details

A.3.1. COMPUTE USED

We run all experiments on a server node with 8xA100 GPUs
with 80BG of VRAM each. However, our experiments can
be reproduced with a GPU with 16 GB of VRAM. We were
even able to run LASR on a laptop utilizing a quantized

Figure 4: LLM Hypothesis Crossover prompt with an ex-
ample output. Mutation and Initialization follow the same
structure but with slightly different wordings and with one
and no reference expressions, respectively. These prompts
are available in prompts/*.txt in the linked repository.

System
Prompt

Sampled
Expressions

Formatting
Specification

LLM
Explanations

JSON
Output

Legend

System User Assistant

Figure 5: LLM Concept Abstraction prompt with an exam-
ple output. Concept evolution follows a similar structure
but instead of abstracting on expressions, it is a crossover
on concepts.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

model hosted locally 2. Calls to Llama3 were done using
vLLM. For reference, each iteration makes around 60K calls.
Each call to the LLM is just under 1K tokens. This gives an
upper bound on total compute of 60M tokens per iteration if
p = 1. For example, running our model at p = 0.01 for 40
iterations would result in just under 25M tokens generated
for each equation.

A.3.2. CONCEPT SAMPLING

In order to determine which concepts from the concept
library we sample for the LLM Hypothesis Evolution, we
randomly choose the top-K most recent concepts in the
library. This ensures that we use the latest concepts, which
are generally reflective of more informed hypotheses, and
thus better to use. In practice, we set K = 20. Additionally
for Concept Evolution, we exclude the top-K most recent
concepts from being used, and rather use older concepts.
This is motivated by the desire to not have the concept
library converge on a few ideas, rather we want diversity
of thought. Our concepts are intended to be longer lasting
than the hypotheses that generated them, similar to how
observational data comes and goes but the conclusions from
them are more persistent.

A.3.3. HYPERPARAMETERS

For our experiment, we used the following PySR hyperpa-
rameters in Figure 6. Notice that a few of the Feynman
equations cannot be solved with this operator set since some
contain an operator such as arcsin. We chose to not include
the full DSL to speed up our search process as it only made a
difference for 3 equations. For the number of iterations, this
was generally 40 but sometimes changed, such as for the
synthetic dataset experiments. LASR had additonal hyper-
parameters, namely % of LLM calls, user hints, and other
details to determine which LLM to call, how to call it, and
at what frequency.

A.4. Dataset Details

A.4.1. FEYNMAN EQUATIONS

For the Feynman dataset, we took the equations and the
bounds at which each variable was sampled at and gen-
erated our dataset. Then, we adding additional noise of
0.001 to our target variable, following the noise formula de-
tailed in the Appendix A.4 of (La Cava et al., 2021), as well
as additional random noise variables with arbitrary names
to force the model for proper feature selection. We then
evaluate exact matches by looking at if the predicted equa-
tion symbolically simplifies into the ground truth equation.
For the ablation graphs, we used the PySR hyperparameter

2TheBloke/Mistral-7B-Instruct-v0.2-GGUF us-
ing llama.cpp

Figure 6: PySR hyperparameters used. Most of these are
the default at the time of writing. This file is labelled
pysr_feynman.py in the linked repository.

"early_stop_condition" to check if there is a "solution" after
N iterations.

A.4.2. SYNTHETIC DATASET

For the synthetic dataset, we ran a script that generates
uncommon mathematical hypotheses that satisfy our con-
straints at random. Then, we ran PySR for 400 iterations
and found all the equations that PySR performed poorly in,
i.e. MSE loss greater than 1, while having a complexity less
than 20. For these 41 remaining equations, we then com-
pared LASR and PySR after 20 iterations using the average
of their test set R2 for each hypothesis.

A.5. Further Qualitative Analysis

LASR generates two artifacts: the best fit program, and
the library of natural language concept that helped find that
program. These artifacts provide a unique window into the
inner workings of LASR. This section goes over a qualita-
tive study of how LASR and PySR go about discovering
Coulomb’s law F = q1q2

4πr2ϵ from data. Both methods are
able to find an answer to this equation. However, their ap-
proach to finding the best fit equation as well as the form of
the equation they discover differs significantly.

Setup: Coulomb’s law is equation #10 in the Feynman
equation dataset. It describes how the force between two
point charges changes with respect to the distance between
the charges, the magnitudes of the charges, and the permit-
tivity of free space constant. There are many interesting
properties that we can learn about this equation from just
analysing its form and the relationship between variables:
First, observe that this is an inverse square law (The force
F varies inversely with the square of the distance r be-
tween the charged particles). Second, notice that the F is
directly proportional to the magnitude of the charges q1 and

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

q2. Third, observe that the resultant force is is symmetric
with respect to the magnitude of the charged particles (ie:
The magnitude of the F doesn’t change if the magnitude of
the charged particles is swapped). Also, the corresponding
data for this equation has a target noise of 0.001 to simulate
experimental errors.

PySR Solution: PySR finds the following solution to this
equation:

F =

(((((((
q2·3.382

r

)
−
(

sin(0.017
exp(B))

exp(C)

))
/0.712

)
· q1

)
· 0.087

)
/ϵ

)
· 0.191

)
r

This equation has a complexity of 26 and achieves a loss of
2.191505E − 12 on the dataset. Obtaining a simplification
of this solution is rather painstaking.

LASR’s Solution: LASR finds the following solution to
this equation. We also present three steps of simplification:

F =
q1(

r
q2

)(
r + 1.9181636×10−5

q2

)
ϵ
· 0.07957782

=
q1(

r
q2

)(
r + 1.9181636×10−5

q2

)
ϵ
· 1

4π

(Substitute constant)

=
q1q2

r
(
r + 1.9181636×10−5

q2

)
ϵ
· 1

4π

(Simplify denominator)

≈ q1q2
r (r) ϵ

· 1

4π
(Negligible)

This equation has a complexity of 15 and achieves a much
lower loss of 4.6709058E − 14 on the accompanying
dataset. We can see with just two steps of simplification
how this equation might be reduced to the ground truth, as
1.9181636×10−5

q2
≈ 0.

Let’s look some accompanying concepts that appear at vari-
ous iterations in the search procedure. Note that subsequent
generations pay attention to tokens in the ideas. Hence, even
small relevant parts of the generated ideas can positively
bias future generations.

1. Iteration 2 The good mathematical expressions exhibit
a clear and coherent relationship between the vari-
ables involved, with a focus on power functions and
trigonometric functions that can be easily related to
physical concepts.

2. Iteration 6 The good mathematical expressions exhibit
a certain level of symmetry or regularity in their form,

possibly reflecting underlying patterns or relationships
between the variables and constants.

3. Iteration 24: The good mathematical expressions have
a clear and consistent structure involving the variables
q1, q2, epsilon, C, and r, with a specific pattern of
division and multiplication.

13

	Introduction
	Problem Formulation
	Method
	Experiments
	Comparison against baselines in the Feynman Equation Dataset
	Cascading Experiments
	Ablation Experiments
	Qualitative Analysis and User Hints
	Data Leakage Validation

	Related Work
	Conclusion
	Appendix
	Broader Societal Impacts
	LLM Prompts
	Implementation Details
	Compute Used
	Concept Sampling
	Hyperparameters

	Dataset Details
	Feynman Equations
	Synthetic Dataset

	Further Qualitative Analysis

