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Abstract

Text-based semantic image editing assumes
the manipulation of an image using a natural
language instruction. Although recent works
are capable of generating creative and quali-
tative images, the problem is still mostly ap-
proached as a black box sensitive to generating
unexpected outputs. Therefore, we propose
a novel model to enhance the text-based con-
trol of an image editor by explicitly reasoning
about which parts of the image to alter or pre-
serve. It relies on word alignments between
a description of the original source image and
the instruction that reflects the needed updates,
and the input image. The proposed Diffusion
Masking with word Alignments (DM-Align)
allows the editing of an image in a transpar-
ent and explainable way. It is evaluated on a
subset of the BISON dataset and a self-defined
dataset dubbed Dream. When comparing to
state-of-the-art baselines, quantitative and qual-
itative results show that DM-Align has superior
performance in image editing conditioned on
language instructions, well preserves the back-
ground of the image and can better cope with
complex text instructions.

1 Introduction

Text-based semantic image editing aims to change
the content of a picture by following a text instruc-
tion while keeping the remaining visual content
untouched. The remaining visual content is from
now on referred to as “background”. Text-based
semantic image editing is usually accomplished us-
ing text-based image generation models with user-
defined image masks (Avrahami et al., 2022a,b;
Wang et al., 2022; Xie et al., 2022). Each of these
masks is an arrangement that differentiates between
the image content that is to be changed or preserved.
However, asking humans to generate masks is cum-
bersome, so we would like to edit images in a nat-
ural way solely relying on a textual description of
the image and its instruction to change it. Current

models for text-based semantic image editing that
do not rely on human-drafted image masks have dif-
ficulties in keeping the background (Couairon et al.,
2022b; Kwon and Ye, 2022; Couairon et al., 2022a;
Choi et al., 2021). Keeping the background static
is relevant, especially for crafting games or virtual
worlds built by people, where the visual content
is expected to be consistent between consecutive
frames. Finally, the complexity of the text instruc-
tions represents another problem for semantic im-
age editors. While these models can successfully
edit images based on short text instructions, they
have difficulties in manipulating an image using
longer and more elaborate ones.

To tackle the above limitations, we propose a
novel method that guides image editing using one-
to-one alignments between the words of the text
instruction that describes the source image and the
textual instruction that describes how the image
should look after the editing. Based on word align-
ments, we can implement an image editing task as
a collection of deletion, insertion and replacement
operations. Due to text-based control, the proposed
model generates good editing results even when
the text instructions are long and elaborate, while
properly preserving the background.

As presented in Figure 1, we align the words
of the text that describes the source image and the
textual instruction that describes how the image
should look after the editing, which allows us to
determine the information the user wants to keep,
or replace. Then, disjoint regions associated with
the preserved or discarded information are detected
by segmenting the image. Next, a global, rough
mask for inpainting is generated using standard dif-
fusion models. While the diffusion mask allows the
insertion of new objects of different sizes than the
replaced ones, it has the disadvantage of being too
rough. Therefore, we further refine it using again
the detected disjoint regions. To prove the effective-
ness of DM-Align, the masked content is generated
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Figure 1: The implementation of DM-Align. The aim is to update the input image described by the text instruction
c1 (“A clear sky and a ship landed on the sand") according to the text instruction ¢y (“A clear sky and a ship landed

on the ocean").

using inpainting stable diffusion (Rombach et al.,
2022).
Our contributions are summarised as follows:

1. Our novel approach reasons with the text cap-
tion of the original input image and the text
instruction that guides the changes in the im-
age, which is a natural and human-like way of
approaching the problem with a high level of
explainability.

2. By differentiating between the image content
to be changed from the content to be left un-
altered, the proposed DM-Align enhances the
text control of semantic image editing.

3. Compared with other recent models designed
for text-based semantic image editing, DM-
Align can better cope with elaborate and com-
plicated text instructions and can better retain
the background of the input image while prop-
erly implementing the text instruction.

2 Related work

Despite the aim of keeping the background as sim-
ilar as possible to the input image, numerous Al-
based semantic image editors insert unwanted alter-
ations in the image. FlexIt (Couairon et al., 2022a)
combines the input image and instruction text into
a single target point in the CLIP multimodal em-
bedding space and iteratively transforms the input
image toward this target point. In Kwon and Ye
(2022), the image editing is seen as an image trans-
lation task that relies on style, and structure losses
to guide the training of the model. Zhang and
Agrawala (2023) introduce ControlNet as a neural
network based on two diffusion models, one frozen
and one trainable. While the trainable model is

optimized to inject the textual conditionality of the
semantic editing, the frozen model preserves the
weights of the model pre-trained on large image
corpora. The output of ControlNet is gathered by
summing the outputs of the two diffusion models.
The above approaches lack an explicit delineation
of the image content to be altered. Closer to our
work is the Prompt-to-Prompt model (Hertz et al.,
2022) which connects the text prompt with differ-
ent image regions using cross-attention maps. The
image editing is then performed in the latent rep-
resentations responsible for the generation of the
images. In contrast, our work focuses on the detec-
tion and delineation of the content to be altered in
the image and is guided by the difference in textual
instructions.

To overcome the problem of unwanted alter-
ations in the image, DiffEdit (Couairon et al.,
2022b) computes an image mask as the difference
between the denoised outputs using the textual in-
struction that describes the source image and the
instruction that describes how the image should
look after the editing. However, without an explicit
alignment between the two text instructions and
the input image, DiffEdit has little control over
the regions to be replaced or preserved. While
DiffEdit internally creates the editing mask, mod-
els like SmartBrush (Xie et al., 2022), Imagen Edi-
tor (Wang et al., 2022), Blended Diffusion (Avra-
hami et al., 2022b) or Blended Latent Diffusion
(Avrahami et al., 2022a) directly edit images using
hand-crafted user-defined masks.

Due to a rough text-based control, the above
models show not only a low ability to preserve
the background but also a high sensitivity to the
complexity of the text instructions. Different from
the current models, our DM-Align model does not



treat the recognition of the visual content that re-
quires preservation or substitution as a black box.
By explicitly capturing the semantic differences be-
tween the natural language instructions, DM-Align
is able to comprehensively control the editing of
the image, which is novel and leads to better preser-
vation of the image content that needs to remain
unaltered and to superior processing of complex
text instructions.

3 Proposed model

In this section, we present our solution for semantic
image editing. We define the task and then describe
the main steps of the proposed model, which con-
sist of 1) detecting the content that needs to be
updated or kept relying on the alignment of words
of the text that describes the source image and the
textual instruction that describes how the image
should look after the editing, 2) the segmentation
of the image content to be updated or kept by cross-
modal grounding, 3) the computation of a global
diffusion mask that assures the coherence of the
updated image, 4) the refinement of the global dif-
fusion mask with the segmented image content that
will be updated or kept and 5) the inpainting of the
mask with the help of a diffusion model.

3.1 Task Definition

DM-Align aims to alter a picture described by a
source text description or instruction c; using a tar-
get text instruction co. Considering this definition,
the purpose is to adjust only the updated content
mentioned in the text instruction ¢y and leave the
remaining part of the image unchanged. Based on
this, we argue the need for a robust masking sys-
tem that clearly distinguishes between unaltered
image regions, which we call “background”, and
the regions that require adjustments.

3.2 Word alignment between the text
instructions

The alignment represents the first step of the DM-
Align model proposed to enhance the text-based
control for semantic image editing (Figure 1).
Given the two text instructions c¢; and cg, our
assumption is that the shared words should indi-
cate unaltered regions, while the substituted words
should point to the regions that require manipula-
tions. Implicitly, the most relevant words for this
analysis are nouns due to their quality of represent-
ing objects in the picture. The words are syntacti-

cally classified using the Stanford part-of-speech
tagger (Toutanova et al., 2003).

We extend the region to be edited by including
the regions of the shared words with different word
modifiers! in the two text instructions. As a re-
sult, the properties of the already existing objects
in the picture can be updated. On the contrary, if
the aligned nouns have identical modifiers (or no
modifiers) in both instructions, their regions in the
image should be unaltered. In addition, we also
consider the regions of the unaligned nouns men-
tioned in the source text instruction (deleted nouns)
as unaltered regions. Keeping the regions of the
deleted nouns is important because we assume that
in the target instruction, a user only mentions the
desired changes in the image, omitting irrelevant
content (Hurley, 2014). Editing the regions of the
deleted nouns reduces the similarity w.r.t the source
image and increases the level of randomness in the
target image since we generate new visual content
that is irrelevant to both the source image and the
target caption (Figure 7 in Appendix).

The detection of word alignments between the
two text instructions is realized with a neural semi-
Markov CRF model (Lan et al., 2021). The model
is trained to optimize the word span alignments,
where the maximum length of spans is equal to D
words (in our case D = 3). The obtained word span
alignments will then further be refined into word
alignments.

The neural semi-Markov CRF model is opti-
mized to increase the similarity between the aligned
source and target word span representations, which
are each computed with a pretrained SpanBERT
model (Joshi et al., 2020). The component that
optimizes the similarity between these represen-
tations is implemented as a feed-forward neural
network with Parametric ReLU (He et al., 2015).
To avoid alignments that are far apart in the source
and target instructions, another component controls
the Markov transitions between adjacent alignment
labels. To achieve this, it is trained to reduce the
distance between the beginning index of the cur-
rent target span and the end index of the target
span aligned to the former source span. Finally, a
Hamming distance is used to minimize the distance
between the predicted alignment and the gold align-
ment. The outputs of the above components are

'A modifier is a word or phrase that offers information
about another word mentioned in the same sentence. To keep
the editing process simple, in the current work we use only
word modifiers represented by adjectives.



fused in a final function v (a|s, t) that computes the
score of an alignment a given a source text s and
target text t. The conditional probability of span
alignment a is then computed as:
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where the set .4 denotes all possible span align-
ments between source text s and target text . The
model is trained by minimizing the negative log-
likelihood of the gold alignment ¢* from both di-
rections, that is, source to target s2¢ and target to
source t2s :

Y —logp(alyls,t) —log plajylt,s) ()

s,t,a*

The neural semi-Markov CRF model is trained on
the MultiMWA-MTRef monolingual dataset, a sub-
set of the MTReference dataset (Yao, 2014). Con-
sidering the trained model, we predict the word
alignments as follows. Given two text instructions
cl and c2, the model predicts two sets of span align-
ments a: asg; aligning cl to ¢2; and a;o, aligning
c2 to c1 The final word alignment is computed by
merging these two span alignments. Let ¢ be a
word of the source text and j be a word of the tar-
get text, if alignment a4, indicates the connection
t1— > j and alignment a9, indicates the connection
j— > 1, then the words ¢ and j become aligned.
In the end, the word alignments are represented
by a set of pairs (¢ — j), where ¢ is a word of the
instruction c1, and j is a word of the instruction co.

3.3 Segmentation of the image based on the
word alignments

The aim is to identify the regions in the image that
require changes or conservation (second step in
Figure 1). Based on the above word alignments,
we select the nouns whose regions will be edited
(non-identical aligned nouns or aligned nouns with
different modifiers in the two text instructions) and
the nouns whose regions will stay unaltered (nouns
of the source text instruction not shared with the tar-
get text instruction, identical aligned nouns). Once
these nouns are selected we use Grounded-SAM
(Charles, 2023) to detect their corresponding image
regions. Its benefit is the “open-set object detec-
tion" achieved by the object detector Grounding
DINO (Liu et al., 2023) which allows the recogni-
tion of each object in an image that is mentioned in

the language instruction. Given a noun, Grounding
DINO detects its bounding box in the image, and
SAM (Kirillov et al., 2023) determines the region
of the object inside the bounding box. The selected
regions will be used to locally refine the diffusion
masks discussed in the next section.

3.4 Diffusion mask

To ensure the coherence of the complete image
given the target language instruction and to cope
with the different sizes of an object to be replaced
and the updated object, we also use a global dif-
fusion mask. To compute the diffusion mask, we
first compute the noise estimates of the image cor-
responding to the source instruction and the noise
estimates of the image corresponding to the tar-
get instruction by running two separate denoising
processes. The noise estimates are obtained using
denoising diffusion probabilistic models (DDPM)
(Ho et al., 2020). The computation of the diffu-
sion mask represents the third step of our proposed
model (Figure 1). The denoising process does not
run over the input image but over its encoded rep-
resentation yielded by a Variational Autoencoder
(VAE) (Kingma and Welling, 2014; Rombach et al.,
2022) with Kullback-Leibler loss. Therefore, the
noise estimates do not represent the final edited
image but only an intermediate image representa-
tion with semantic information associated with the
source or target instruction. By computing the abso-
lute difference between the two noise estimates, we
indicate the content to be changed. Meanwhile, the
remaining content is irrelevant to the instructions
and should stay unaltered. The absolute difference
is rescaled between [0, 1] and binarized using a
threshold set to 0.5. Details about our implementa-
tion with DDPM are presented in Appendix A.

3.5 Refinement of the diffusion mask

The refinement of the diffusion mask represents the
fourth step of DM-Align as presented in Figure 1.
To further improve the precision of the global diffu-
sion mask, we refine it using the regions detected in
Section 3.3. More specifically, we extend the diffu-
sion mask to include the regions to be altered, and
shrink it to avoid editing over the preserved regions.
To improve control over the preserved background,
we adjust the noise variable over the forward pro-
cess of the obtained diffusion mask. The noise
variable is cancelled for the unaltered regions de-
tected in the previous step and kept unchanged for
the regions to be manipulated.



Note that both the global diffusion mask with
noise cancellation and the regions determined
through image segmentation are necessary for a
qualitative mask. The global diffusion mask facili-
tates the replacement of objects of different sizes
and gives context to the editing. On the other hand,
the insertion or deletion of different regions based
on image segmentation improves the precision of
the final mask as shown in ablation experiments in
Subsection 5.1.

Once the refined diffusion mask is computed,
we use inpainting stable diffusion (Rombach et al.,
2022) to edit the masked regions based on the
given target text caption (fifth step of DM-Align
presented in Figure 1). We also tried to replace
the inpainting stable diffusion with latent blended
diffusion (Avrahami et al., 2022a). However, the
obtained results were slightly worse, and the com-
putational time increased by 60% (details are in
Table 5 of the Appendix D).

4 Experimental setup

Baselines. We compare results obtained with
DM-Align with those of FlexIT (Couairon et al.,
2022a), DiffEdit (Couairon et al., 2022b), Control-
Net (Zhang and Agrawala, 2023) and Prompt-to-
Prompt (Hertz et al., 2022). All results are gener-
ated using an NVIDIA Tesla T4 GPU.

Datasets. While the Prompt-to-Prompt paper
is missing a quantitative evaluation, FlexIT and
DiffEdit are evaluated on a subset of the ImageNet
dataset (Deng et al., 2009) that assumes replacing
the main object of the scene with another object.
Additionally, DiffEdit is evaluated on a subset of
the BISON dataset (Hu et al., 2019) and a self-
defined collection of Imagen (Saharia et al., 2022)
pictures. The quantitative evaluation of ControlNet
is limited to only 20 sketches that are not pub-
licly available. Since the datasets that the above
works use are not publicly available, we create two
datasets, one being a subset of the BISON dataset
that we will make publicly available.

Closely following the set-up described in (Coua-
iron et al., 2022b) for creating the subset of the
BISON dataset, we use the pairs of similar im-
ages and a caption (our source instruction) that
describes one of the images in the BISON dataset?
and obtain the caption of the second image from
the COCO 2014 validation dataset (Lin et al., 2014)

The BISON dataset was created for the task of associating
an image with a descriptive caption

that functions as a target instruction. Knowing that
the BISON dataset is defined for a text-based im-
age classification task and to avoid editing images
based on completely unrelated target and source
text instructions, a similarity constraint between c;
and cg is imposed. In the current work, we rely on
ROUGE-1 (Lin, 2004) to compute the similarity
score and set the threshold to 0.7. After applying
this filter, we obtain a new dataset with 575 in-
stances. Additional results for different threshold
values are discussed in Appendix D (Tables 6-9).

BISON contains complicated and elaborated text
captions. To investigate the behaviour of the DM-
Align model and the baseline models when con-
fronted with simpler text instructions we gener-
ate a collection of 100 images using Dream by
WOMBO? that relies on the source captions as
guidance. To complete the second dataset, we spec-
ify a new text query as the target instruction for
each image-instruction pair. We further dub the
first dataset as BISON 7 and the second dataset as
Dream. When compared with BISONg 7, Dream
has a lower complexity with shorter source and
target instructions, as one can see in Figure 8, in
Appendix. The number of chunks (set of adjacent
unigrams in the two instructions aligned by the neu-
ral semi-Markov CRF model) observed between
the source and target instructions is also smaller in
Dream than in BISON 7 (Figure 8 in Appendix).

Evaluation metrics.

To evaluate our model, we use a set of metrics
that assess the similarity of the edited image to
both the input image and the target instruction. By
default, it is a trade-off between image-based and
text-based metrics as we need to find the best equi-
librium point.

Generating images close to the source image im-
proves the image-based metrics while reducing the
similarity to the target caption. On the other hand,
images close to the target instruction improve the
text-based scores but can affect the similarity to the
input picture. The equilibrium point is important
given that people tend to focus mainly on specify-
ing the desired changes in an image while omitting
the information that already exists (Hurley, 2014).
Therefore, the edited content can represent a small
region of the new image while the rest of it should
keep the content of the source image.

The similarity (or the distance) of the updated

3The code is available at https://github.com/cdgco/
dream-api
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FID| LPIPS| PWMSE| CLIPScore]

BISONgy.7  FlexIT 72.44 £0.15 0.49 +0.00 42.34 +0.02 0.88 + 0.00
DiffEdit 82.46 +0.26 0.46 £0.00  50.96 + 4.07 0.79 £+ 0.00

ControlNet 78.50 £ 0.26 0.42+£0.00 52.16 +0.78 0.77 £ 0.00
Prompt-to-Prompt - - - 0.77 £ 0.00

DM-Align 60.05 + 1.35 0.27 +0.00  34.72 4 0.55 0.78 &+ 0.00

Dream FlexIT 14756 £ 134 071 £0.00 53.49 £0.01 0.86 + 0.00
DiffEdit 12571 £1.62 071 £0.00 53.52+£084  0.77 £ 0.00

ControlNet 140.18 £ 1.87 0.72 £ 5378 £0.60  0.77 & 0.00
Prompt-to-Prompt - - - 0.78 £ 0.00

DM-Align 110.20 +0.30  0.69 £+ 0.00  50.62 + 0.25 0.78 £ 0.00

Table 1: Image-level evaluation for BISON( 7 and Dream datasets (mean and variance). Compared with the
baselines, DM-Align achieves the best image-based scores while FlexIT obtains the best similarity w.r.t the target
instruction as indicated by CLIPScore. Knowing that the CLIPScore is heavily biased for models based on the CLIP
model (as FlexIT does), and considering the image-based scores, DM-Align achieves the best trade-off between
similarities to the input image and the target instruction. The image-based metrics of Prompt-to-Prompt are not

reported as the method can not edit real images.

FID| LPIPS] PWMSE]
BISONy 7 FlexIT 5762 £0.17 022 L£000 21.63 £0.00
DiffEdit 6123 +£0.60 0204000 27234297
ControlNet  58.93 £0.87 0.19+£0.00 18.22 +2.02
DM-Align  20.17 £ 1.34  0.05+0.00 12.24 + 0.42
Dream FlexIT 113.06 = 0.04 068 £0.00 39.62 £ 0.01
DiffEdit 7282 £0.14  0.68 £0.00 39.34 £ 0.65
ControlNet ~ 88.23 £0.96  0.69 +0.00 40.04 +0.77
DM-Align  41.12£1.09  0.65 £ 0.00 36.46 = 0.00

Table 2: Background-level evaluation for BISONy 7 and
Dream datasets (mean and variance). DM-Align outper-
forms the baselines in terms of background preservation,
especially for the dataset BISON 7 that has more elab-
orate and complex captions than Dream. The results for
Prompt-to-Prompt are not mentioned since the method
can not edit real images.

image w.r.t the source image is assessed using FID
(Heusel et al., 2017), LPIPS (Zhang et al., 2018)
and the pixel-wise Mean Square Error (PWMSE).
FID relies on the difference between the distribu-
tions of the last layer of the Inception V3 model
(Szegedy et al., 2016) that separately runs over the
input and edited images. FID measures the consis-
tency and image realism of the new image w.r.t the
source image. Contrary to the quality assessment
computed by FID, LPIPS measures the perceptual
similarity by calculating the distance between lay-
ers of an arbitrary neural network that separately
runs over the input and updated images. As the
LPIPS metric, PWMSE determines the pixel leak-
age by computing the pixel-wise error between the
input and the edited images. The similarity of the
updated image w.r.t the target instruction is com-
puted in the CLIP multimodal embedding space
by the CLIPScore (Hessel et al., 2021). More de-
tails about the evaluation metrics are specified in
Appendix B.

5 Results and discussion

5.1 Quantitative analysis and ablation tests

How well can the DM-Align model edit a source
image considering the complexity of the text in-
struction? To answer the first research question,
we consider Table 1. Note that Prompt-to-Prompt
can not edit real images and therefore, we can
only report the CLIPScore. When compared with
the baselines Diffedit, ControlNet and FlexIT, the
proposed DM-Align model is especially effective
w.r.t the image-based metrics. However, this be-
haviour is more prominent for BISON 7 that con-
tains elaborate captions. Considering the Dream
dataset, DM-Align still scores better than other
baselines but with smaller LPIPS and PWMSE mar-
gins. However, despite the small margins of FID
and LPIPS for the Dream dataset, the difference is
still statistically significant w.r.t the best baseline*.

Both LPIPS and PWMSE rely on mean square
error computed either at the level of the internal
layers of an arbitrary neural network or at the pixel
level. Knowing this, we assume that it is easier for
the baselines to correctly edit the image by implic-
itly creating the correct word alignments between
short and simple source and the target instructions.
On the contrary, if the text instructions are more
elaborate, as in the case of BISON 7, results are
strongly superior compared to those obtained with
the baselines. DM-Align relies on word alignments
between source and target instructions, showing
their importance in effective image editing.

*The p-value of the Student’s t-test for LPIPS is 0.020
while the p-value for the PWMSE is 0.025. Since the p-values
are smaller than the considered significance level equal to
0.05, we reject the null hypothesis and conclude that the dif-
ference between DM-Align and the best baseline is statistically
significant.



FID| LPIPS| PWMSE| CLIPScoref
(w/0) diffusion mask 6736 £ 144 033+£0.00 34.61 £0.26 0.77 £ 0.00
(w/0) noise cancellation 6530 £0.80 0.32+0.00 3457 +0.30 0.78 + 0.00
(w/0) segmentation 76.46 020 036 £ 0.00 36.47 £+ 0.08 0.77 £ 0.00
(w/0) objects with different modifiers ~ 67.53 +0.52  0.32+0.00  34.60 4+ 0.18 0.77 £ 0.00
(w/0) non-shared objects 68.35+225 033+£0.00 3534+029 0.77 £ 0.00
DM-Align 60.05 £ 1.35 027 £0.00 3472+ 0.55 0.78 + 0.00

Table 3: Ablation tests for the BISON 7 dataset (mean and variance). The results indicate the importance of the
DM-Align components. Non-shared objects refer to the objects mentioned only in the source caption.

With regard to the text-based metrics, the CLIP-
Score indicates that FlexIT images as the closest
to the target instructions. This result is probably
explained by the FlexIT architecture which is built
on top of a CLIP model which is also used to imple-
ment the CLIPScore. This problem is highlighted
in (Poole et al., 2022). Another probable explana-
tion is that FlexIT is trained to increase the simi-
larity between the input image and the instructions.
As one can see in Figure 2, FlexIT trades off good
similarity scores for more distorted images. In
terms of CLIPScore DM-Align scores always better
than Prompt-to-Prompt and ControlNet, and better
than DiffEdit in the case of the Dream dataset.

Overall, DM-Align seems to properly preserve
the content of the input image and obtain a better
trade-off between closeness to the input picture and
target instruction than the baselines. Similar results
are observed when comparing DM-Align with base-
lines using the BISON( g and BISONj g (Tables 6
and 8 in Appendix D). BISON ¢ represents a sub-
set of BISON obtained by selecting 1437 pairs of
source and target captions with ROUGE-1 similar-
ity scores higher than 0.6. BISON g is obtained
by setting the ROUGE-1 similarity threshold to 0.8
and counts 105 instances.

How well does the DM-Align model preserve
the background? To extract the background, the
DM-Align mask obtained after adjusting the diffu-
sion mask is considered. Since Prompt-to-Prompt
can not edit real images, this analysis applies only
to the other three baselines, DiffEdit, Control-
Net and FlexIT. The first thing to observe when
analysing results presented in Table 2 is that the
FID score of the DM-Align model is reduced by
64.98% for BISONy 7 and by 63.36% for Dream
when compared with the best baseline. The LPIPS
and PWMSE scores also indicate significant mar-
gin reductions, but only for the BISONg 7. These
results are similar to the ones observed for the
BISONj ¢ and BISON g datasets (Tables 7 and
9 in Appendix D).

In the case of the Dream dataset, LPIPS and
PWMSE reported for DM-Align are slightly but
statistically significant better than the scores of
FlexIT, ControlNet and DiffEdit. As observed in
Table 1, we infer that the baselines are relatively
good at preserving the background only when the
instructions are short and simple, but DM-ALign
always shows superior results.

Ablation tests According to Table 3, the absence
of the refinement of the diffusion mask using the
regions detected with the word alignment model
and the Grounding-SAM segmentation model has
the highest negative impact over the similarity w.r.t
the input picture. As expected, a significant nega-
tive effect over the similarity with the input image
is also noticed when omitting the deleted nouns
or the nouns with different modifiers in the two
queries. Similarly, noise cancellation and espe-
cially the diffusion mask also affect the conser-
vation of the background. Including all the com-
ponents in the architecture of DM-Align mainly
facilitates the preservation of the input image and
does not result in a reduction of the CLIPScore.
Therefore, the inclusion of all these components
in the DM-Align represents the best trade-off w.r.t
the similarity to the input image and to the target
caption. The ablation tests are exemplified in the
Appendix C (Figure 3-7).

5.2 Human qualitative analysis

Some qualitative examples extracted from both
data collections are shown in Figure ??. Since
Prompt-to-Prompt does not edit real images, we
present its generated images in Figure 9 in Ap-
pendix. Without considering the compositional
differences due to the unavailability of real im-
ages, Prompt-to-Prompt generates less qualitative
images when compared with both the other three
baselines and DM-Align. Compared to DIFFEdit,
ControlNet and FlexIT, the DM-Align model bet-
ter manipulates the content of the input image and
keeps the background w.r.t the target query mostly
unchanged. While DM-Align creates semantic con-
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nections between source and target queries, and up-
dates the image content accordingly, the baselines
are limited by the complexity of the text instruc-
tions, as discussed above. While DiffEdit changes
too much the compositional structure of the image
due to the mask-wise correction, FlexIT tends to
distort the image. It trades off the minimisation
of the reconstruction loss w.r.t. to the input image
and the text instructions for possible distortions of
the new image. While ControlNet can maintain the
structure of the input image, it has difficulties in
keeping the texture or colors of the objects. We
assume the reason behind the poorer results of Con-
trolNet is the lack of a masking system.

QI Q21 Q31

FlexIt 3.77 4.12 3.83
DiffEdit 3.74 3.89 3.86
ControlNet 3.41 3.77 3.90
Prompt-to-Prompt 2.24 1.98 2.18
DM-Align 3.89 435  3.95

Table 4: Human evaluation of the quality of the editing
process based on the text instruction (Q1), the preserva-
tion of the background (Q2) and the quality of the edited
image (Q3). The results represent the average scores
reported by annotators using a 5-point Likert scale.

To confirm the above observations, we randomly
selected 100 images from the BISON(; dataset and
asked Amazon MTurk annotators to evaluate the
editing quality of the four baselines and the pro-
posed DM-Align. For each edited image, the an-
notators were asked to evaluate the overall quality
of the editing process based on the text instruction
(Q1), the preservation of the background (Q2) and
the quality of the edited image in terms of compo-
sitionality, sharpness, distortion, color and contrast
(Q3). According to the human evaluation executed
on a 5-point Likert scale, our model scores bet-
ter than all baselines (Table 4). The inter-rater
agreement is good with Cohen’s weighted kappa
between 0.65 and 0.75 for all analysed models.

Figure 2: Semantic image editing using
BISONj 7 and Dream datasets. BISON 7
dataset: (1) co. A man standing next to his
elephant on the beach. (2) co. A vase filled
with lots of colorful flowers. (3) co. A man
eating a hot dog at a crowded event. (4)
c2. A plate of fruit next to a glass of milk.
Dream dataset: (5) co. A girl throwing a
basketball. (6) co. A vase with flowers. (7)
co. A quattro formaggi pizza on a plate. (8)
c1. . An owl sitting on an iron gate.

6 Conclusion, limitations and future work

We propose a novel model DM-Align for semantic
image editing that confers to the users a natural
control over the image editing by updating the text
instructions. By automatically identifying the re-
gions to be kept or altered purely based on the text
instructions, the proposed model is not a black box.
Due to the high level of explainability, the users
can easily understand the edited result and how to
change the instructions to obtain the desired output.

The quantitative and qualitative evaluations show
the superiority of DM-Align to enhance the text-
based control of semantic image editing over ex-
isting baselines FlexIT, DiffEdit, ControlNet and
Prompt-to-Prompt. Unlike the latter models, our
approach is not limited by the complexity of the
text instructions. Due to the inclusion of one-to-one
alignments between the words of the instructions
that describe the image before and after the im-
age update, we can edit images regardless of how
complicated and elaborate the text instructions are.
Besides the low sensitivity to the complexity of
the instructions, the one-to-one word alignments al-
low us to properly conserve the background while
editing only what is strictly required by the users.

DM-Align focuses on the editing of objects men-
tioned as nouns and their adjectives. In future work,
its flexibility can be improved by editing actions in
which objects and persons are involved. As a result,
they might change position in the image without
the need to update their properties.

7 Ethics Statement

Our paper presents a new model for text-based se-
mantic editing without any ethical violation. The
data used does not imply any violation of privacy.
The potential negative social impacts from this
work are similar to any other NLP models.
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A Denoising diffusion probabilistic
models with noise cancellation

DDPMs are based on Markov chains that gradually
convert the input data into Gaussian noise during
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Unchanged region:
woman

DMSEdit output

Unchanged region:
woman

DMSEdit output

Correct

Figure 3: 1st line: Example of omitting the diffusion
mask (c1: A woman near a cat., co: A woman near a
dog.). 2nd line: The correct example of including the
diffusion mask.

DMSEdit output

Figure 4: 1st line: Example of omitting the cancellation
of the noise variable defined within the diffusion model.
(c1: A man sitting at a table holding a laptop on the
train., co: A man sitting at a table reading a book on the
train.). 2nd line: The correct example of including the
noise cancellation.

a forward process, and slowly denoise the sam-
pled data into newly desired data during a reverse
process. In each iteration ¢ of the forward pro-
cess, new data x; is sampled from the distribution
q(zex—1) = N(V/1 — Bar—1, BI), where [ is an
increasing coefficient that varies between 0 and 1
and controls the level of noise for each time step ¢.
The process is further simplified by expressing the
sampled data x; w.r.t the input data x(, as follows:

x = Jarrg + V1 — age 3)
where oy = [['_,(1 — ;) and € ~ N(0,1) rep-
resents the noise variable and is set to O over
the regions that should be preserved. The pro-
cess is executed for T iterations until 7 con-
verges to NV'(0, 1). During the reverse process, at
each time step ¢ — 1, the data is denoised from
the distribution pg(x;—_1|x¢) N(y/ai—1zg +
VI1—op_1 — af%), where o2 represents
the variance. After the definition of the two pro-
cesses, the training of DDPM relies on the varia-
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Unchanged region: sky,
ship

DMSEdit output

Diffusion Mask Changed region: sand

Figure 5: 1st line: Example of omitting the refinement
of the diffusion mask using image segmentation (c1: A
clear sky and a ship landed on the sand., ca: A clear sky
and a ship landed on the ocean.). 2nd line: The correct
example of including the refinement of the diffusion
mask with image segmentation.

Unchanged region:

Figure 6: 1st line: Example of omitting the information
about modifiers associated with the nouns shared by
both captions (c1: A woman with a red jacket., co: A
woman with a green jacket.). 2nd line: The correct ex-
ample of including the information about the modifiers.

tional lower bound as follows:

log(p(zo) > logpe(xolx1)—
Dir(q(z1.7|zo)||p(21:7]20))
=Lo— Y Lu

4

where D1, represents the Kullback—Leibler diver-
gence, Ly is the reconstruction loss, L1 shows the
proximity of x to the Gaussian noise and L; (t =
1,7 — 1) indicates the closeness between the de-
noised step p(x¢|z;4+1) and the approximated one
q(t|Te41).

As in the work of Couairon et al. (2022b), the
variance of the forward process is set to 0, mean-
ing that we rely on the denoising diffusion implicit
models (DDIM), a special case of DDMPs. Accord-
ing to DDIM models, while the forward process
becomes deterministic, the model is still trained on
the DDPM objective. We use already pre-trained
stable diffusers, which means that we are interested
to apply DDIM only in terms of sampling. In the
current implementation, we run the denoising pro-
cess of the stable diffusion model for 50 iterations.
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Unchanged region

Initial image Diffusion Mask Changed region: man motoroycle DMSEdit output

Unchanged region
motorcycle, man

Initial image

Figure 7: 1st line: Example of omitting the information
about the deleted nouns from the source caption (c;: A
motorcycle near a man., ca: A motorcycle.). 2nd line:
The correct example of including the information about
the deleted nouns.

B Evaluation Metrics

Image-based evaluation metrics:

* The FID score relies on the distribution of the
output generated by the last layer of the In-
ception V3 model (Szegedy et al. 2016). The
metric is computed by measuring the Frechet
distance between the distributions gleaned
by running the Inception V3 model over the
source and target images. Considering the
mean pq and the covariance C of the source
images and the mean po and the covariance
(5 of the target images, the FID score is com-
puted as follows:

FID = ||y — pal3 + Tr(Cy + Co—
2(C1C2)'?)
©)

* LPIPS measures the average Euclidean dis-
tance between outputs of different layers of a
neural network (AlexNet for the current study,
as suggested by Zhang et al. (2018)) obtained
by giving as input the source and the target
images. Considering !, &}, € RHAXWixC
as the intermediate [-th representations of the
AlexNet for the source and the predicted tar-
get image, respectively, the LPIPS score is
defined by:

. 2
LPIPS =} ﬁ Zh,w ||551§w; - (xQ)ézwlb
(6)

* PWMSE measures the pixel-wise mean
square error between the input and the edited
image.

Text-based evaluation metrics:



* CLIPScore measures the cosine similarity be-
tween the CLIP text embedding c.;;, and
CLIP image embedding v;;,. The metric is
computed as 2.5 * max(cos(ceip, Velip), 0)-
Following the indication of Hessel et al.
(2021), CLIP latent embedding space is com-
puted using a Vision Transformer for image
encoding and a Transformer for text encoding.

C Visualisations of the Masking
Behaviour

The next five visualizations exemplify the ablation
tests. The first row of each figure presents the ef-
fect of omitting a component of DM-Align, while
the correct behaviour is shown in the second row.
Figure 3 illustrates the effect of defining the edit-
ing mask based only on the image regions of the
keywords. Without the diffusion mask, the model
has to insert a new object in the fixed area of the re-
placed object. If we need to replace an object with
a larger one, DM-Align without diffusion might
create distorted and unnatural outputs. As we usu-
ally expect bigger dogs than cats, DM-Align with
diffusion properly replaces the cat with a slightly
bigger dog. On the contrary, the dog that replaced
the cat is distorted when diffusion is not used.

While the overall diffusion mask can give more
context for the editing and allows the insertion of
objects of different sizes, noise cancellation is an
important step used to improve the initial diffusion
mask. As shown in Figure 4, when noise cancel-
lation is used, the initial diffusion mask is better
trimmed, and the background is properly preserved.

As the diffusion mask does not have complete
control over the regions to be edited, its extension
or shrinkage based on the image regions of the
keywords is mandatory to obtain a correct mask for
editing. When the image is edited using only the
initial diffusion mask in Figure 5, both the ship and
the sand are modified, while the former is expected
to be preserved. As opposed, when the diffusion
mask is refined with image segmentation, only the
sand is replaced by the ocean.

The omission of the adjective modifiers in the
analysis of DM-Align is exemplified in Figure 6. If
the modifiers are left out, DM-Align considers the
jacket a shared noun, like the noun “woman", and
removes its regions from the diffusion mask. As a
result, DM-Align does not detect any semantical
difference between the text instructions, and the
output image is identical to the input image. On the
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other hand, if the modifiers are considered, DM-
Align can properly adjust the color of the jacket
while keeping the woman’s face unaltered.

As we are interested to make only the neces-
sary updates in the picture, while keeping the back-
ground and the regions of the deleted words un-
changed, the region assigned to the word “man"
in Figure 7 is removed from the diffusion mask.
As aresult, the corresponding region is untouched.
On the contrary, the inclusion of the region asso-
ciated with the word “man" in the diffusion mask
increases the randomness in the new image by in-
serting a store. Since the store is irrelevant, both
the similarity scores w.r.t the input image or target
instruction are reduced.

D Additional results

Table 5 presents the results of the comparison be-
tween Stable Diffusion and Blended Latent Dif-
fusion for editing the masked regions detected by
DM-Align. According to all image-based and text-
based metrics, Stable Diffusion confers more ro-
bust editing capabilities than Blended Latent Dif-
fusion and it is therefore used to implement DM-
Align. Tables 6 and 8 present the image-level eval-
uation results for BISON( g and BISONy g, while
Tables 5 and 7 present the background-level evalua-
tion for the same datasets. Based on the provided re-
sults, DM-Aling scores better than all baselines for
the image-based metrics while FLexIt still scores
better for the CLIPScore due to its architecture.



FID| LPIPS] PWMSE]  CLIPScoreT
DM-Align (Blended Latent Diffusion) _ 140.87 £0.12 _ 0.72 £ 0.00 _ 50.50 £ 043 _ 0.78 £ 0.00
DM-Align (Statble Latent Diffusion) ~ 110.20 = 0.30  0.69 &= 0.00  50.62 025  0.78 = 0.00

Table 5: Image-level evaluation of DM-Align with Stable diffusion and Blended latent diffusion for inpainting. The

results are reported for the Dream dataset (mean and variance).

FID| LPIPS| PWMSE| CLIPScoref
FlexIT 41.18 £0.07 049 £0.00 4251 £0.02 0.89 £ 0.00
DiffEdit 46.19 £031 047+£0.00 5083 +4.14 0.79 + 0.00
ControlNet 43.67 £ 0.67 047 £0.00 47.64 £2.57 0.78 + 0.00
Prompt-to-Prompt - - - 0.75 £ 0.00
DM-Align 3379 +0.12 028 +0.00  33.70 £+ 0.15 0.77 £ 0.00

Table 6: Image-level evaluation for BISONj ¢ dataset (mean and variance).

FID| LPIPS| PWMSE|
FlexIT 32304+ 011  0.224+0.00 21.49 4 0.00
DiffEdit 39.13 £0.21 022 4+0.00 24.02£0.18
DiffEdit 3422+£053 021£001 22.02+£0.09
DM-Align ~ 10.28 +0.38  0.05 + 0.00  12.45 £ 0.22

percent

0.05

0.35 1

0.25 4

percent

Table 7: Background-level evaluation for BISON ¢ dataset (mean and variance).

FID, LPIPS, PWMSE| CLIPScoret
FlexIT 11283 £0.08 049 £0.00 41.61 £ 0.028 0.88 £ 0.00
DiffEdit 14220 +£0.76  0.46 + 0.00 51.01 +4.07 0.80 &£ 0.00
ControlNet 118.56 £ 098  0.48 + 0.00 50.91 + 2.67 0.81 £ 0.00
Prompt-to-Prompt - - - 0.76 & 0.00
DM-Align 96.45 + 0.34 0.27 £ 0.00 34.70 £ 0.30 0.77 &+ 0.00

Table 8: Image-level evaluation for BISONj g dataset (mean and variance).

FID| LPIPS] PWMSE]
FlexIT 11486 £ 1.96 023 £0.00 22.40 £0.04
DiffEdit 129.05 4+ 1.37 021 4£0.00 28.51 £4.17
ControlNet ~ 124.12 £ 1.55 021 4+001 2244 +£398
DM-Align 3412209  0.0540.00 14.56 £ 0.25

Table 9: Background-level evaluation for BISON g dataset (mean and variance).

Number of words in the source caption (BISON 0.7)

7 8 9 10 11 12 13 14 15 16

0.20

0.05

0.00 -
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Number of words in the target caption (BISON 0.7)
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0.4

16 1
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Number of chunks (BISON 0.7)
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0.15

percent
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Number of words in the target caption (Dream)
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Figure 8: Statistics about BISON, 7 and Dream datasets: number of words in the source and target captions, and
number of chunks (set of adjacent unigrams in the two captions aligned by the neural semi-Markov CRF model).
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Initial Input

Figure 9: Semantic image editing using BISON 7 and Dream datasets. BISON) 7 dataset: (1) c;. A man standing
next to a baby elephant in the city. co. A man standing next to his elephant on the beach. (2) ¢;. A vase filled with
red and white flowers. cs. A vase filled with lots of colorful flowers. (3) c¢;. A young man eating a hot dog next to
a waterway. c2. A man eating a hot dog at a crowded event. (4) c;. A plate with open face sandwiches next to a
glass of milk and a laptop. c2. A plate of fruit next to a glass of milk. Dream dataset: (5) c¢;. A girl throwing a
volleyball. c,. A girl throwing a basketball. (6) c;. A pot with flowers. c. A vase with flowers. (7) ¢;. A pepperoni
pizza on a plate. co. A quattro formaggi pizza on a plate. (8) ¢;. A crow sitting on an iron gate. c. An owl sitting
on an iron gate.
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