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Abstract

Text-based semantic image editing assumes001
the manipulation of an image using a natural002
language instruction. Although recent works003
are capable of generating creative and quali-004
tative images, the problem is still mostly ap-005
proached as a black box sensitive to generating006
unexpected outputs. Therefore, we propose007
a novel model to enhance the text-based con-008
trol of an image editor by explicitly reasoning009
about which parts of the image to alter or pre-010
serve. It relies on word alignments between011
a description of the original source image and012
the instruction that reflects the needed updates,013
and the input image. The proposed Diffusion014
Masking with word Alignments (DM-Align)015
allows the editing of an image in a transpar-016
ent and explainable way. It is evaluated on a017
subset of the BISON dataset and a self-defined018
dataset dubbed Dream. When comparing to019
state-of-the-art baselines, quantitative and qual-020
itative results show that DM-Align has superior021
performance in image editing conditioned on022
language instructions, well preserves the back-023
ground of the image and can better cope with024
complex text instructions.025

1 Introduction026

Text-based semantic image editing aims to change027

the content of a picture by following a text instruc-028

tion while keeping the remaining visual content029

untouched. The remaining visual content is from030

now on referred to as “background". Text-based031

semantic image editing is usually accomplished us-032

ing text-based image generation models with user-033

defined image masks (Avrahami et al., 2022a,b;034

Wang et al., 2022; Xie et al., 2022). Each of these035

masks is an arrangement that differentiates between036

the image content that is to be changed or preserved.037

However, asking humans to generate masks is cum-038

bersome, so we would like to edit images in a nat-039

ural way solely relying on a textual description of040

the image and its instruction to change it. Current041

models for text-based semantic image editing that 042

do not rely on human-drafted image masks have dif- 043

ficulties in keeping the background (Couairon et al., 044

2022b; Kwon and Ye, 2022; Couairon et al., 2022a; 045

Choi et al., 2021). Keeping the background static 046

is relevant, especially for crafting games or virtual 047

worlds built by people, where the visual content 048

is expected to be consistent between consecutive 049

frames. Finally, the complexity of the text instruc- 050

tions represents another problem for semantic im- 051

age editors. While these models can successfully 052

edit images based on short text instructions, they 053

have difficulties in manipulating an image using 054

longer and more elaborate ones. 055

To tackle the above limitations, we propose a 056

novel method that guides image editing using one- 057

to-one alignments between the words of the text 058

instruction that describes the source image and the 059

textual instruction that describes how the image 060

should look after the editing. Based on word align- 061

ments, we can implement an image editing task as 062

a collection of deletion, insertion and replacement 063

operations. Due to text-based control, the proposed 064

model generates good editing results even when 065

the text instructions are long and elaborate, while 066

properly preserving the background. 067

As presented in Figure 1, we align the words 068

of the text that describes the source image and the 069

textual instruction that describes how the image 070

should look after the editing, which allows us to 071

determine the information the user wants to keep, 072

or replace. Then, disjoint regions associated with 073

the preserved or discarded information are detected 074

by segmenting the image. Next, a global, rough 075

mask for inpainting is generated using standard dif- 076

fusion models. While the diffusion mask allows the 077

insertion of new objects of different sizes than the 078

replaced ones, it has the disadvantage of being too 079

rough. Therefore, we further refine it using again 080

the detected disjoint regions. To prove the effective- 081

ness of DM-Align, the masked content is generated 082
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Figure 1: The implementation of DM-Align. The aim is to update the input image described by the text instruction
c1 (“A clear sky and a ship landed on the sand") according to the text instruction c2 (“A clear sky and a ship landed
on the ocean").

using inpainting stable diffusion (Rombach et al.,083

2022).084

Our contributions are summarised as follows:085

1. Our novel approach reasons with the text cap-086

tion of the original input image and the text087

instruction that guides the changes in the im-088

age, which is a natural and human-like way of089

approaching the problem with a high level of090

explainability.091

2. By differentiating between the image content092

to be changed from the content to be left un-093

altered, the proposed DM-Align enhances the094

text control of semantic image editing.095

3. Compared with other recent models designed096

for text-based semantic image editing, DM-097

Align can better cope with elaborate and com-098

plicated text instructions and can better retain099

the background of the input image while prop-100

erly implementing the text instruction.101

2 Related work102

Despite the aim of keeping the background as sim-103

ilar as possible to the input image, numerous AI-104

based semantic image editors insert unwanted alter-105

ations in the image. FlexIt (Couairon et al., 2022a)106

combines the input image and instruction text into107

a single target point in the CLIP multimodal em-108

bedding space and iteratively transforms the input109

image toward this target point. In Kwon and Ye110

(2022), the image editing is seen as an image trans-111

lation task that relies on style, and structure losses112

to guide the training of the model. Zhang and113

Agrawala (2023) introduce ControlNet as a neural114

network based on two diffusion models, one frozen115

and one trainable. While the trainable model is116

optimized to inject the textual conditionality of the 117

semantic editing, the frozen model preserves the 118

weights of the model pre-trained on large image 119

corpora. The output of ControlNet is gathered by 120

summing the outputs of the two diffusion models. 121

The above approaches lack an explicit delineation 122

of the image content to be altered. Closer to our 123

work is the Prompt-to-Prompt model (Hertz et al., 124

2022) which connects the text prompt with differ- 125

ent image regions using cross-attention maps. The 126

image editing is then performed in the latent rep- 127

resentations responsible for the generation of the 128

images. In contrast, our work focuses on the detec- 129

tion and delineation of the content to be altered in 130

the image and is guided by the difference in textual 131

instructions. 132

To overcome the problem of unwanted alter- 133

ations in the image, DiffEdit (Couairon et al., 134

2022b) computes an image mask as the difference 135

between the denoised outputs using the textual in- 136

struction that describes the source image and the 137

instruction that describes how the image should 138

look after the editing. However, without an explicit 139

alignment between the two text instructions and 140

the input image, DiffEdit has little control over 141

the regions to be replaced or preserved. While 142

DiffEdit internally creates the editing mask, mod- 143

els like SmartBrush (Xie et al., 2022), Imagen Edi- 144

tor (Wang et al., 2022), Blended Diffusion (Avra- 145

hami et al., 2022b) or Blended Latent Diffusion 146

(Avrahami et al., 2022a) directly edit images using 147

hand-crafted user-defined masks. 148

Due to a rough text-based control, the above 149

models show not only a low ability to preserve 150

the background but also a high sensitivity to the 151

complexity of the text instructions. Different from 152

the current models, our DM-Align model does not 153
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treat the recognition of the visual content that re-154

quires preservation or substitution as a black box.155

By explicitly capturing the semantic differences be-156

tween the natural language instructions, DM-Align157

is able to comprehensively control the editing of158

the image, which is novel and leads to better preser-159

vation of the image content that needs to remain160

unaltered and to superior processing of complex161

text instructions.162

3 Proposed model163

In this section, we present our solution for semantic164

image editing. We define the task and then describe165

the main steps of the proposed model, which con-166

sist of 1) detecting the content that needs to be167

updated or kept relying on the alignment of words168

of the text that describes the source image and the169

textual instruction that describes how the image170

should look after the editing, 2) the segmentation171

of the image content to be updated or kept by cross-172

modal grounding, 3) the computation of a global173

diffusion mask that assures the coherence of the174

updated image, 4) the refinement of the global dif-175

fusion mask with the segmented image content that176

will be updated or kept and 5) the inpainting of the177

mask with the help of a diffusion model.178

3.1 Task Definition179

DM-Align aims to alter a picture described by a180

source text description or instruction c1 using a tar-181

get text instruction c2. Considering this definition,182

the purpose is to adjust only the updated content183

mentioned in the text instruction c2 and leave the184

remaining part of the image unchanged. Based on185

this, we argue the need for a robust masking sys-186

tem that clearly distinguishes between unaltered187

image regions, which we call “background", and188

the regions that require adjustments.189

3.2 Word alignment between the text190

instructions191

The alignment represents the first step of the DM-192

Align model proposed to enhance the text-based193

control for semantic image editing (Figure 1).194

Given the two text instructions c1 and c2, our195

assumption is that the shared words should indi-196

cate unaltered regions, while the substituted words197

should point to the regions that require manipula-198

tions. Implicitly, the most relevant words for this199

analysis are nouns due to their quality of represent-200

ing objects in the picture. The words are syntacti-201

cally classified using the Stanford part-of-speech 202

tagger (Toutanova et al., 2003). 203

We extend the region to be edited by including 204

the regions of the shared words with different word 205

modifiers1 in the two text instructions. As a re- 206

sult, the properties of the already existing objects 207

in the picture can be updated. On the contrary, if 208

the aligned nouns have identical modifiers (or no 209

modifiers) in both instructions, their regions in the 210

image should be unaltered. In addition, we also 211

consider the regions of the unaligned nouns men- 212

tioned in the source text instruction (deleted nouns) 213

as unaltered regions. Keeping the regions of the 214

deleted nouns is important because we assume that 215

in the target instruction, a user only mentions the 216

desired changes in the image, omitting irrelevant 217

content (Hurley, 2014). Editing the regions of the 218

deleted nouns reduces the similarity w.r.t the source 219

image and increases the level of randomness in the 220

target image since we generate new visual content 221

that is irrelevant to both the source image and the 222

target caption (Figure 7 in Appendix). 223

The detection of word alignments between the 224

two text instructions is realized with a neural semi- 225

Markov CRF model (Lan et al., 2021). The model 226

is trained to optimize the word span alignments, 227

where the maximum length of spans is equal to D 228

words (in our case D = 3). The obtained word span 229

alignments will then further be refined into word 230

alignments. 231

The neural semi-Markov CRF model is opti- 232

mized to increase the similarity between the aligned 233

source and target word span representations, which 234

are each computed with a pretrained SpanBERT 235

model (Joshi et al., 2020). The component that 236

optimizes the similarity between these represen- 237

tations is implemented as a feed-forward neural 238

network with Parametric ReLU (He et al., 2015). 239

To avoid alignments that are far apart in the source 240

and target instructions, another component controls 241

the Markov transitions between adjacent alignment 242

labels. To achieve this, it is trained to reduce the 243

distance between the beginning index of the cur- 244

rent target span and the end index of the target 245

span aligned to the former source span. Finally, a 246

Hamming distance is used to minimize the distance 247

between the predicted alignment and the gold align- 248

ment. The outputs of the above components are 249

1A modifier is a word or phrase that offers information
about another word mentioned in the same sentence. To keep
the editing process simple, in the current work we use only
word modifiers represented by adjectives.
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fused in a final function ψ(a|s, t) that computes the250

score of an alignment a given a source text s and251

target text t. The conditional probability of span252

alignment a is then computed as:253

p(a|s, t) = eψ(a|s,t)∑
a′∈A e

ψ(a′|s,t) (1)254

where the set A denotes all possible span align-255

ments between source text s and target text t. The256

model is trained by minimizing the negative log-257

likelihood of the gold alignment a∗ from both di-258

rections, that is, source to target s2t and target to259

source t2s :260

∑
s,t,a∗

−log p(a∗s2t|s, t)− log p(a∗t2s|t, s) (2)261

The neural semi-Markov CRF model is trained on262

the MultiMWA-MTRef monolingual dataset, a sub-263

set of the MTReference dataset (Yao, 2014). Con-264

sidering the trained model, we predict the word265

alignments as follows. Given two text instructions266

c1 and c2, the model predicts two sets of span align-267

ments a: as2t aligning c1 to c2; and at2s aligning268

c2 to c1 The final word alignment is computed by269

merging these two span alignments. Let i be a270

word of the source text and j be a word of the tar-271

get text, if alignment as2t indicates the connection272

i− > j and alignment at2s indicates the connection273

j− > i, then the words i and j become aligned.274

In the end, the word alignments are represented275

by a set of pairs (i − j), where i is a word of the276

instruction c1, and j is a word of the instruction c2.277

3.3 Segmentation of the image based on the278

word alignments279

The aim is to identify the regions in the image that280

require changes or conservation (second step in281

Figure 1). Based on the above word alignments,282

we select the nouns whose regions will be edited283

(non-identical aligned nouns or aligned nouns with284

different modifiers in the two text instructions) and285

the nouns whose regions will stay unaltered (nouns286

of the source text instruction not shared with the tar-287

get text instruction, identical aligned nouns). Once288

these nouns are selected we use Grounded-SAM289

(Charles, 2023) to detect their corresponding image290

regions. Its benefit is the “open-set object detec-291

tion" achieved by the object detector Grounding292

DINO (Liu et al., 2023) which allows the recogni-293

tion of each object in an image that is mentioned in294

the language instruction. Given a noun, Grounding 295

DINO detects its bounding box in the image, and 296

SAM (Kirillov et al., 2023) determines the region 297

of the object inside the bounding box. The selected 298

regions will be used to locally refine the diffusion 299

masks discussed in the next section. 300

3.4 Diffusion mask 301

To ensure the coherence of the complete image 302

given the target language instruction and to cope 303

with the different sizes of an object to be replaced 304

and the updated object, we also use a global dif- 305

fusion mask. To compute the diffusion mask, we 306

first compute the noise estimates of the image cor- 307

responding to the source instruction and the noise 308

estimates of the image corresponding to the tar- 309

get instruction by running two separate denoising 310

processes. The noise estimates are obtained using 311

denoising diffusion probabilistic models (DDPM) 312

(Ho et al., 2020). The computation of the diffu- 313

sion mask represents the third step of our proposed 314

model (Figure 1). The denoising process does not 315

run over the input image but over its encoded rep- 316

resentation yielded by a Variational Autoencoder 317

(VAE) (Kingma and Welling, 2014; Rombach et al., 318

2022) with Kullback-Leibler loss. Therefore, the 319

noise estimates do not represent the final edited 320

image but only an intermediate image representa- 321

tion with semantic information associated with the 322

source or target instruction. By computing the abso- 323

lute difference between the two noise estimates, we 324

indicate the content to be changed. Meanwhile, the 325

remaining content is irrelevant to the instructions 326

and should stay unaltered. The absolute difference 327

is rescaled between [0, 1] and binarized using a 328

threshold set to 0.5. Details about our implementa- 329

tion with DDPM are presented in Appendix A. 330

3.5 Refinement of the diffusion mask 331

The refinement of the diffusion mask represents the 332

fourth step of DM-Align as presented in Figure 1. 333

To further improve the precision of the global diffu- 334

sion mask, we refine it using the regions detected in 335

Section 3.3. More specifically, we extend the diffu- 336

sion mask to include the regions to be altered, and 337

shrink it to avoid editing over the preserved regions. 338

To improve control over the preserved background, 339

we adjust the noise variable over the forward pro- 340

cess of the obtained diffusion mask. The noise 341

variable is cancelled for the unaltered regions de- 342

tected in the previous step and kept unchanged for 343

the regions to be manipulated. 344
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Note that both the global diffusion mask with345

noise cancellation and the regions determined346

through image segmentation are necessary for a347

qualitative mask. The global diffusion mask facili-348

tates the replacement of objects of different sizes349

and gives context to the editing. On the other hand,350

the insertion or deletion of different regions based351

on image segmentation improves the precision of352

the final mask as shown in ablation experiments in353

Subsection 5.1.354

Once the refined diffusion mask is computed,355

we use inpainting stable diffusion (Rombach et al.,356

2022) to edit the masked regions based on the357

given target text caption (fifth step of DM-Align358

presented in Figure 1). We also tried to replace359

the inpainting stable diffusion with latent blended360

diffusion (Avrahami et al., 2022a). However, the361

obtained results were slightly worse, and the com-362

putational time increased by 60% (details are in363

Table 5 of the Appendix D).364

4 Experimental setup365

Baselines. We compare results obtained with366

DM-Align with those of FlexIT (Couairon et al.,367

2022a), DiffEdit (Couairon et al., 2022b), Control-368

Net (Zhang and Agrawala, 2023) and Prompt-to-369

Prompt (Hertz et al., 2022). All results are gener-370

ated using an NVIDIA Tesla T4 GPU.371

Datasets. While the Prompt-to-Prompt paper372

is missing a quantitative evaluation, FlexIT and373

DiffEdit are evaluated on a subset of the ImageNet374

dataset (Deng et al., 2009) that assumes replacing375

the main object of the scene with another object.376

Additionally, DiffEdit is evaluated on a subset of377

the BISON dataset (Hu et al., 2019) and a self-378

defined collection of Imagen (Saharia et al., 2022)379

pictures. The quantitative evaluation of ControlNet380

is limited to only 20 sketches that are not pub-381

licly available. Since the datasets that the above382

works use are not publicly available, we create two383

datasets, one being a subset of the BISON dataset384

that we will make publicly available.385

Closely following the set-up described in (Coua-386

iron et al., 2022b) for creating the subset of the387

BISON dataset, we use the pairs of similar im-388

ages and a caption (our source instruction) that389

describes one of the images in the BISON dataset2390

and obtain the caption of the second image from391

the COCO 2014 validation dataset (Lin et al., 2014)392

2The BISON dataset was created for the task of associating
an image with a descriptive caption

that functions as a target instruction. Knowing that 393

the BISON dataset is defined for a text-based im- 394

age classification task and to avoid editing images 395

based on completely unrelated target and source 396

text instructions, a similarity constraint between c1 397

and c2 is imposed. In the current work, we rely on 398

ROUGE-1 (Lin, 2004) to compute the similarity 399

score and set the threshold to 0.7. After applying 400

this filter, we obtain a new dataset with 575 in- 401

stances. Additional results for different threshold 402

values are discussed in Appendix D (Tables 6-9). 403

BISON contains complicated and elaborated text 404

captions. To investigate the behaviour of the DM- 405

Align model and the baseline models when con- 406

fronted with simpler text instructions we gener- 407

ate a collection of 100 images using Dream by 408

WOMBO3 that relies on the source captions as 409

guidance. To complete the second dataset, we spec- 410

ify a new text query as the target instruction for 411

each image-instruction pair. We further dub the 412

first dataset as BISON0.7 and the second dataset as 413

Dream. When compared with BISON0.7, Dream 414

has a lower complexity with shorter source and 415

target instructions, as one can see in Figure 8, in 416

Appendix. The number of chunks (set of adjacent 417

unigrams in the two instructions aligned by the neu- 418

ral semi-Markov CRF model) observed between 419

the source and target instructions is also smaller in 420

Dream than in BISON0.7 (Figure 8 in Appendix). 421

Evaluation metrics. 422

To evaluate our model, we use a set of metrics 423

that assess the similarity of the edited image to 424

both the input image and the target instruction. By 425

default, it is a trade-off between image-based and 426

text-based metrics as we need to find the best equi- 427

librium point. 428

Generating images close to the source image im- 429

proves the image-based metrics while reducing the 430

similarity to the target caption. On the other hand, 431

images close to the target instruction improve the 432

text-based scores but can affect the similarity to the 433

input picture. The equilibrium point is important 434

given that people tend to focus mainly on specify- 435

ing the desired changes in an image while omitting 436

the information that already exists (Hurley, 2014). 437

Therefore, the edited content can represent a small 438

region of the new image while the rest of it should 439

keep the content of the source image. 440

The similarity (or the distance) of the updated 441

3The code is available at https://github.com/cdgco/
dream-api
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FID↓ LPIPS↓ PWMSE↓ CLIPScore↑
BISON0.7 FlexIT 72.44 ± 0.15 0.49 ± 0.00 42.34 ± 0.02 0.88 ± 0.00

DiffEdit 82.46 ± 0.26 0.46 ± 0.00 50.96 ± 4.07 0.79 ± 0.00
ControlNet 78.50 ± 0.26 0.42 ± 0.00 52.16 ± 0.78 0.77 ± 0.00
Prompt-to-Prompt - - - 0.77 ± 0.00
DM-Align 60.05 ± 1.35 0.27 ± 0.00 34.72 ± 0.55 0.78 ± 0.00

Dream FlexIT 147.56 ± 1.34 0.71 ± 0.00 53.49 ± 0.01 0.86 ± 0.00
DiffEdit 125.71 ± 1.62 0.71 ± 0.00 53.52 ± 0.84 0.77 ± 0.00
ControlNet 140.18 ± 1.87 0.72 ± 53.78 ± 0.60 0.77 ± 0.00
Prompt-to-Prompt - - - 0.78 ± 0.00
DM-Align 110.20 ± 0.30 0.69 ± 0.00 50.62 ± 0.25 0.78 ± 0.00

Table 1: Image-level evaluation for BISON0.7 and Dream datasets (mean and variance). Compared with the
baselines, DM-Align achieves the best image-based scores while FlexIT obtains the best similarity w.r.t the target
instruction as indicated by CLIPScore. Knowing that the CLIPScore is heavily biased for models based on the CLIP
model (as FlexIT does), and considering the image-based scores, DM-Align achieves the best trade-off between
similarities to the input image and the target instruction. The image-based metrics of Prompt-to-Prompt are not
reported as the method can not edit real images.

FID↓ LPIPS↓ PWMSE↓
BISON0.7 FlexIT 57.62 ± 0.17 0.22 ± 0.00 21.63 ± 0.00

DiffEdit 61.23 ± 0.60 0.20 ± 0.00 27.23 ± 2.97
ControlNet 58.93 ± 0.87 0.19 ± 0.00 18.22 ± 2.02
DM-Align 20.17 ± 1.34 0.05 ± 0.00 12.24 ± 0.42

Dream FlexIT 113.06 ± 0.04 0.68 ± 0.00 39.62 ± 0.01
DiffEdit 72.82 ± 0.14 0.68 ± 0.00 39.34 ± 0.65
ControlNet 88.23 ± 0.96 0.69 ± 0.00 40.04 ± 0.77
DM-Align 41.12 ± 1.09 0.65 ± 0.00 36.46 ± 0.00

Table 2: Background-level evaluation for BISON0.7 and
Dream datasets (mean and variance). DM-Align outper-
forms the baselines in terms of background preservation,
especially for the dataset BISON0.7 that has more elab-
orate and complex captions than Dream. The results for
Prompt-to-Prompt are not mentioned since the method
can not edit real images.

image w.r.t the source image is assessed using FID442

(Heusel et al., 2017), LPIPS (Zhang et al., 2018)443

and the pixel-wise Mean Square Error (PWMSE).444

FID relies on the difference between the distribu-445

tions of the last layer of the Inception V3 model446

(Szegedy et al., 2016) that separately runs over the447

input and edited images. FID measures the consis-448

tency and image realism of the new image w.r.t the449

source image. Contrary to the quality assessment450

computed by FID, LPIPS measures the perceptual451

similarity by calculating the distance between lay-452

ers of an arbitrary neural network that separately453

runs over the input and updated images. As the454

LPIPS metric, PWMSE determines the pixel leak-455

age by computing the pixel-wise error between the456

input and the edited images. The similarity of the457

updated image w.r.t the target instruction is com-458

puted in the CLIP multimodal embedding space459

by the CLIPScore (Hessel et al., 2021). More de-460

tails about the evaluation metrics are specified in461

Appendix B.462

5 Results and discussion 463

5.1 Quantitative analysis and ablation tests 464

How well can the DM-Align model edit a source 465

image considering the complexity of the text in- 466

struction? To answer the first research question, 467

we consider Table 1. Note that Prompt-to-Prompt 468

can not edit real images and therefore, we can 469

only report the CLIPScore. When compared with 470

the baselines Diffedit, ControlNet and FlexIT, the 471

proposed DM-Align model is especially effective 472

w.r.t the image-based metrics. However, this be- 473

haviour is more prominent for BISON0.7 that con- 474

tains elaborate captions. Considering the Dream 475

dataset, DM-Align still scores better than other 476

baselines but with smaller LPIPS and PWMSE mar- 477

gins. However, despite the small margins of FID 478

and LPIPS for the Dream dataset, the difference is 479

still statistically significant w.r.t the best baseline4. 480

Both LPIPS and PWMSE rely on mean square 481

error computed either at the level of the internal 482

layers of an arbitrary neural network or at the pixel 483

level. Knowing this, we assume that it is easier for 484

the baselines to correctly edit the image by implic- 485

itly creating the correct word alignments between 486

short and simple source and the target instructions. 487

On the contrary, if the text instructions are more 488

elaborate, as in the case of BISON0.7, results are 489

strongly superior compared to those obtained with 490

the baselines. DM-Align relies on word alignments 491

between source and target instructions, showing 492

their importance in effective image editing. 493

4The p-value of the Student’s t-test for LPIPS is 0.020
while the p-value for the PWMSE is 0.025. Since the p-values
are smaller than the considered significance level equal to
0.05, we reject the null hypothesis and conclude that the dif-
ference between DM-Align and the best baseline is statistically
significant.
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FID↓ LPIPS↓ PWMSE↓ CLIPScore↑
(w/o) diffusion mask 67.36 ± 1.44 0.33 ± 0.00 34.61 ± 0.26 0.77 ± 0.00
(w/o) noise cancellation 65.30 ± 0.80 0.32 ± 0.00 34.57 ± 0.30 0.78 ± 0.00
(w/o) segmentation 76.46 ± 0.20 0.36 ± 0.00 36.47 ± 0.08 0.77 ± 0.00
(w/o) objects with different modifiers 67.53 ± 0.52 0.32 ± 0.00 34.60 ± 0.18 0.77 ± 0.00
(w/o) non-shared objects 68.35 ± 2.25 0.33 ± 0.00 35.34 ± 0.29 0.77 ± 0.00
DM-Align 60.05 ± 1.35 0.27 ± 0.00 34.72 ± 0.55 0.78 ± 0.00

Table 3: Ablation tests for the BISON0.7 dataset (mean and variance). The results indicate the importance of the
DM-Align components. Non-shared objects refer to the objects mentioned only in the source caption.

With regard to the text-based metrics, the CLIP-494

Score indicates that FlexIT images as the closest495

to the target instructions. This result is probably496

explained by the FlexIT architecture which is built497

on top of a CLIP model which is also used to imple-498

ment the CLIPScore. This problem is highlighted499

in (Poole et al., 2022). Another probable explana-500

tion is that FlexIT is trained to increase the simi-501

larity between the input image and the instructions.502

As one can see in Figure 2, FlexIT trades off good503

similarity scores for more distorted images. In504

terms of CLIPScore DM-Align scores always better505

than Prompt-to-Prompt and ControlNet, and better506

than DiffEdit in the case of the Dream dataset.507

Overall, DM-Align seems to properly preserve508

the content of the input image and obtain a better509

trade-off between closeness to the input picture and510

target instruction than the baselines. Similar results511

are observed when comparing DM-Align with base-512

lines using the BISON0.6 and BISON0.8 (Tables 6513

and 8 in Appendix D). BISON0.6 represents a sub-514

set of BISON obtained by selecting 1437 pairs of515

source and target captions with ROUGE-1 similar-516

ity scores higher than 0.6. BISON0.8 is obtained517

by setting the ROUGE-1 similarity threshold to 0.8518

and counts 105 instances.519

How well does the DM-Align model preserve520

the background? To extract the background, the521

DM-Align mask obtained after adjusting the diffu-522

sion mask is considered. Since Prompt-to-Prompt523

can not edit real images, this analysis applies only524

to the other three baselines, DiffEdit, Control-525

Net and FlexIT. The first thing to observe when526

analysing results presented in Table 2 is that the527

FID score of the DM-Align model is reduced by528

64.98% for BISON0.7 and by 63.36% for Dream529

when compared with the best baseline. The LPIPS530

and PWMSE scores also indicate significant mar-531

gin reductions, but only for the BISON0.7. These532

results are similar to the ones observed for the533

BISON0.6 and BISON0.8 datasets (Tables 7 and534

9 in Appendix D).535

In the case of the Dream dataset, LPIPS and 536

PWMSE reported for DM-Align are slightly but 537

statistically significant better than the scores of 538

FlexIT, ControlNet and DiffEdit. As observed in 539

Table 1, we infer that the baselines are relatively 540

good at preserving the background only when the 541

instructions are short and simple, but DM-ALign 542

always shows superior results. 543

Ablation tests According to Table 3, the absence 544

of the refinement of the diffusion mask using the 545

regions detected with the word alignment model 546

and the Grounding-SAM segmentation model has 547

the highest negative impact over the similarity w.r.t 548

the input picture. As expected, a significant nega- 549

tive effect over the similarity with the input image 550

is also noticed when omitting the deleted nouns 551

or the nouns with different modifiers in the two 552

queries. Similarly, noise cancellation and espe- 553

cially the diffusion mask also affect the conser- 554

vation of the background. Including all the com- 555

ponents in the architecture of DM-Align mainly 556

facilitates the preservation of the input image and 557

does not result in a reduction of the CLIPScore. 558

Therefore, the inclusion of all these components 559

in the DM-Align represents the best trade-off w.r.t 560

the similarity to the input image and to the target 561

caption. The ablation tests are exemplified in the 562

Appendix C (Figure 3-7). 563

5.2 Human qualitative analysis 564

Some qualitative examples extracted from both 565

data collections are shown in Figure ??. Since 566

Prompt-to-Prompt does not edit real images, we 567

present its generated images in Figure 9 in Ap- 568

pendix. Without considering the compositional 569

differences due to the unavailability of real im- 570

ages, Prompt-to-Prompt generates less qualitative 571

images when compared with both the other three 572

baselines and DM-Align. Compared to DIFFEdit, 573

ControlNet and FlexIT, the DM-Align model bet- 574

ter manipulates the content of the input image and 575

keeps the background w.r.t the target query mostly 576

unchanged. While DM-Align creates semantic con- 577
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Figure 2: Semantic image editing using
BISON0.7 and Dream datasets. BISON0.7

dataset: (1) c2. A man standing next to his
elephant on the beach. (2) c2. A vase filled
with lots of colorful flowers. (3) c2. A man
eating a hot dog at a crowded event. (4)
c2. A plate of fruit next to a glass of milk.
Dream dataset: (5) c2. A girl throwing a
basketball. (6) c2. A vase with flowers. (7)
c2. A quattro formaggi pizza on a plate. (8)
c1. c2. An owl sitting on an iron gate.

nections between source and target queries, and up-578

dates the image content accordingly, the baselines579

are limited by the complexity of the text instruc-580

tions, as discussed above. While DiffEdit changes581

too much the compositional structure of the image582

due to the mask-wise correction, FlexIT tends to583

distort the image. It trades off the minimisation584

of the reconstruction loss w.r.t. to the input image585

and the text instructions for possible distortions of586

the new image. While ControlNet can maintain the587

structure of the input image, it has difficulties in588

keeping the texture or colors of the objects. We589

assume the reason behind the poorer results of Con-590

trolNet is the lack of a masking system.591

Q1↑ Q2↑ Q3↑
FlexIt 3.77 4.12 3.83
DiffEdit 3.74 3.89 3.86
ControlNet 3.41 3.77 3.90
Prompt-to-Prompt 2.24 1.98 2.18
DM-Align 3.89 4.35 3.95

Table 4: Human evaluation of the quality of the editing
process based on the text instruction (Q1), the preserva-
tion of the background (Q2) and the quality of the edited
image (Q3). The results represent the average scores
reported by annotators using a 5-point Likert scale.

To confirm the above observations, we randomly592

selected 100 images from the BISON07 dataset and593

asked Amazon MTurk annotators to evaluate the594

editing quality of the four baselines and the pro-595

posed DM-Align. For each edited image, the an-596

notators were asked to evaluate the overall quality597

of the editing process based on the text instruction598

(Q1), the preservation of the background (Q2) and599

the quality of the edited image in terms of compo-600

sitionality, sharpness, distortion, color and contrast601

(Q3). According to the human evaluation executed602

on a 5-point Likert scale, our model scores bet-603

ter than all baselines (Table 4). The inter-rater604

agreement is good with Cohen’s weighted kappa κ605

between 0.65 and 0.75 for all analysed models.606

6 Conclusion, limitations and future work 607

We propose a novel model DM-Align for semantic 608

image editing that confers to the users a natural 609

control over the image editing by updating the text 610

instructions. By automatically identifying the re- 611

gions to be kept or altered purely based on the text 612

instructions, the proposed model is not a black box. 613

Due to the high level of explainability, the users 614

can easily understand the edited result and how to 615

change the instructions to obtain the desired output. 616

The quantitative and qualitative evaluations show 617

the superiority of DM-Align to enhance the text- 618

based control of semantic image editing over ex- 619

isting baselines FlexIT, DiffEdit, ControlNet and 620

Prompt-to-Prompt. Unlike the latter models, our 621

approach is not limited by the complexity of the 622

text instructions. Due to the inclusion of one-to-one 623

alignments between the words of the instructions 624

that describe the image before and after the im- 625

age update, we can edit images regardless of how 626

complicated and elaborate the text instructions are. 627

Besides the low sensitivity to the complexity of 628

the instructions, the one-to-one word alignments al- 629

low us to properly conserve the background while 630

editing only what is strictly required by the users. 631

DM-Align focuses on the editing of objects men- 632

tioned as nouns and their adjectives. In future work, 633

its flexibility can be improved by editing actions in 634

which objects and persons are involved. As a result, 635

they might change position in the image without 636

the need to update their properties. 637

7 Ethics Statement 638

Our paper presents a new model for text-based se- 639

mantic editing without any ethical violation. The 640

data used does not imply any violation of privacy. 641

The potential negative social impacts from this 642

work are similar to any other NLP models. 643
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A Denoising diffusion probabilistic799

models with noise cancellation800

DDPMs are based on Markov chains that gradually801

convert the input data into Gaussian noise during802

Figure 3: 1st line: Example of omitting the diffusion
mask (c1: A woman near a cat., c2: A woman near a
dog.). 2nd line: The correct example of including the
diffusion mask.

Figure 4: 1st line: Example of omitting the cancellation
of the noise variable defined within the diffusion model.
(c1: A man sitting at a table holding a laptop on the
train., c2: A man sitting at a table reading a book on the
train.). 2nd line: The correct example of including the
noise cancellation.

a forward process, and slowly denoise the sam- 803

pled data into newly desired data during a reverse 804

process. In each iteration t of the forward pro- 805

cess, new data xt is sampled from the distribution 806

q(xt|xt−1) = N (
√
1− βxt−1, βI ), where βt is an 807

increasing coefficient that varies between 0 and 1 808

and controls the level of noise for each time step t. 809

The process is further simplified by expressing the 810

sampled data xt w.r.t the input data x0, as follows: 811

xt =
√
αtx0 +

√
1− αtϵ (3) 812

where αt =
∏t
i=0(1 − βi) and ϵ ∼ N (0, 1) rep- 813

resents the noise variable and is set to 0 over 814

the regions that should be preserved. The pro- 815

cess is executed for T iterations until xT con- 816

verges to N (0, 1). During the reverse process, at 817

each time step t − 1, the data is denoised from 818

the distribution pθ(xt−1|xt) = N (
√
αt−1x0 + 819√

1− αt−1 − σ2t
xt−

√
αtx0√

1−αt
), where σ2 represents 820

the variance. After the definition of the two pro- 821

cesses, the training of DDPM relies on the varia- 822
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Figure 5: 1st line: Example of omitting the refinement
of the diffusion mask using image segmentation (c1: A
clear sky and a ship landed on the sand., c2: A clear sky
and a ship landed on the ocean.). 2nd line: The correct
example of including the refinement of the diffusion
mask with image segmentation.

Figure 6: 1st line: Example of omitting the information
about modifiers associated with the nouns shared by
both captions (c1: A woman with a red jacket., c2: A
woman with a green jacket.). 2nd line: The correct ex-
ample of including the information about the modifiers.

tional lower bound as follows:823

log(p(x0) ≥ logpθ(x0|x1)−
DKL(q(x1:T |x0)||p(x1:T |x0))
= L0 −

∑T
t=1 Lt

(4)824

where DKL represents the Kullback–Leibler diver-825

gence, L0 is the reconstruction loss, LT shows the826

proximity of xT to the Gaussian noise and Lt (t =827

1, T − 1) indicates the closeness between the de-828

noised step p(xt|xt+1) and the approximated one829

q(xt|xt+1).830

As in the work of Couairon et al. (2022b), the831

variance of the forward process is set to 0, mean-832

ing that we rely on the denoising diffusion implicit833

models (DDIM), a special case of DDMPs. Accord-834

ing to DDIM models, while the forward process835

becomes deterministic, the model is still trained on836

the DDPM objective. We use already pre-trained837

stable diffusers, which means that we are interested838

to apply DDIM only in terms of sampling. In the839

current implementation, we run the denoising pro-840

cess of the stable diffusion model for 50 iterations.841

Figure 7: 1st line: Example of omitting the information
about the deleted nouns from the source caption (c1: A
motorcycle near a man., c2: A motorcycle.). 2nd line:
The correct example of including the information about
the deleted nouns.

B Evaluation Metrics 842

Image-based evaluation metrics: 843

• The FID score relies on the distribution of the 844

output generated by the last layer of the In- 845

ception V3 model (Szegedy et al. 2016). The 846

metric is computed by measuring the Frechet 847

distance between the distributions gleaned 848

by running the Inception V3 model over the 849

source and target images. Considering the 850

mean µ1 and the covariance C1 of the source 851

images and the mean µ2 and the covariance 852

C2 of the target images, the FID score is com- 853

puted as follows: 854

FID = ∥µ1 − µ2∥22 + Tr(C1 + C2−
2(C1C2)

1/2)
(5) 855

• LPIPS measures the average Euclidean dis- 856

tance between outputs of different layers of a 857

neural network (AlexNet for the current study, 858

as suggested by Zhang et al. (2018)) obtained 859

by giving as input the source and the target 860

images. Considering xl1, x̂
l
2 ∈ RHl×Wl×Cl 861

as the intermediate l-th representations of the 862

AlexNet for the source and the predicted tar- 863

get image, respectively, the LPIPS score is 864

defined by: 865

LPIPS =
∑

l
1

HlWl

∑
h,w ∥x1lhw − (x̂2)

l
hw∥

2

2
(6) 866

• PWMSE measures the pixel-wise mean 867

square error between the input and the edited 868

image. 869

Text-based evaluation metrics: 870
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• CLIPScore measures the cosine similarity be-871

tween the CLIP text embedding cclip and872

CLIP image embedding vclip. The metric is873

computed as 2.5 ∗ max(cos(cclip, vclip), 0).874

Following the indication of Hessel et al.875

(2021), CLIP latent embedding space is com-876

puted using a Vision Transformer for image877

encoding and a Transformer for text encoding.878

C Visualisations of the Masking879

Behaviour880

The next five visualizations exemplify the ablation881

tests. The first row of each figure presents the ef-882

fect of omitting a component of DM-Align, while883

the correct behaviour is shown in the second row.884

Figure 3 illustrates the effect of defining the edit-885

ing mask based only on the image regions of the886

keywords. Without the diffusion mask, the model887

has to insert a new object in the fixed area of the re-888

placed object. If we need to replace an object with889

a larger one, DM-Align without diffusion might890

create distorted and unnatural outputs. As we usu-891

ally expect bigger dogs than cats, DM-Align with892

diffusion properly replaces the cat with a slightly893

bigger dog. On the contrary, the dog that replaced894

the cat is distorted when diffusion is not used.895

While the overall diffusion mask can give more896

context for the editing and allows the insertion of897

objects of different sizes, noise cancellation is an898

important step used to improve the initial diffusion899

mask. As shown in Figure 4, when noise cancel-900

lation is used, the initial diffusion mask is better901

trimmed, and the background is properly preserved.902

As the diffusion mask does not have complete903

control over the regions to be edited, its extension904

or shrinkage based on the image regions of the905

keywords is mandatory to obtain a correct mask for906

editing. When the image is edited using only the907

initial diffusion mask in Figure 5, both the ship and908

the sand are modified, while the former is expected909

to be preserved. As opposed, when the diffusion910

mask is refined with image segmentation, only the911

sand is replaced by the ocean.912

The omission of the adjective modifiers in the913

analysis of DM-Align is exemplified in Figure 6. If914

the modifiers are left out, DM-Align considers the915

jacket a shared noun, like the noun “woman", and916

removes its regions from the diffusion mask. As a917

result, DM-Align does not detect any semantical918

difference between the text instructions, and the919

output image is identical to the input image. On the920

other hand, if the modifiers are considered, DM- 921

Align can properly adjust the color of the jacket 922

while keeping the woman’s face unaltered. 923

As we are interested to make only the neces- 924

sary updates in the picture, while keeping the back- 925

ground and the regions of the deleted words un- 926

changed, the region assigned to the word “man" 927

in Figure 7 is removed from the diffusion mask. 928

As a result, the corresponding region is untouched. 929

On the contrary, the inclusion of the region asso- 930

ciated with the word “man" in the diffusion mask 931

increases the randomness in the new image by in- 932

serting a store. Since the store is irrelevant, both 933

the similarity scores w.r.t the input image or target 934

instruction are reduced. 935

D Additional results 936

Table 5 presents the results of the comparison be- 937

tween Stable Diffusion and Blended Latent Dif- 938

fusion for editing the masked regions detected by 939

DM-Align. According to all image-based and text- 940

based metrics, Stable Diffusion confers more ro- 941

bust editing capabilities than Blended Latent Dif- 942

fusion and it is therefore used to implement DM- 943

Align. Tables 6 and 8 present the image-level eval- 944

uation results for BISON0.6 and BISON0.8, while 945

Tables 5 and 7 present the background-level evalua- 946

tion for the same datasets. Based on the provided re- 947

sults, DM-Aling scores better than all baselines for 948

the image-based metrics while FLexIt still scores 949

better for the CLIPScore due to its architecture. 950
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FID↓ LPIPS↓ PWMSE↓ CLIPScore↑
DM-Align (Blended Latent Diffusion) 140.87 ± 0.12 0.72 ± 0.00 50.50 ± 0.43 0.78 ± 0.00
DM-Align (Statble Latent Diffusion) 110.20 ± 0.30 0.69 ± 0.00 50.62 ± 0.25 0.78 ± 0.00

Table 5: Image-level evaluation of DM-Align with Stable diffusion and Blended latent diffusion for inpainting. The
results are reported for the Dream dataset (mean and variance).

FID↓ LPIPS↓ PWMSE↓ CLIPScore↑
FlexIT 41.18 ± 0.07 0.49 ± 0.00 42.51 ± 0.02 0.89 ± 0.00
DiffEdit 46.19 ± 0.31 0.47 ± 0.00 50.83 ± 4.14 0.79 ± 0.00
ControlNet 43.67 ± 0.67 0.47 ± 0.00 47.64 ± 2.57 0.78 ± 0.00
Prompt-to-Prompt - - - 0.75 ± 0.00
DM-Align 33.79 ± 0.12 0.28 ± 0.00 33.70 ± 0.15 0.77 ± 0.00

Table 6: Image-level evaluation for BISON0.6 dataset (mean and variance).

FID↓ LPIPS↓ PWMSE↓
FlexIT 32.30 ± 0.11 0.22 ± 0.00 21.49 ± 0.00
DiffEdit 39.13 ± 0.21 0.22 ± 0.00 24.02 ± 0.18
DiffEdit 34.22 ± 0.53 0.21 ± 0.01 22.02 ± 0.09
DM-Align 10.28 ± 0.38 0.05 ± 0.00 12.45 ± 0.22

Table 7: Background-level evaluation for BISON0.6 dataset (mean and variance).

FID↓ LPIPS↓ PWMSE↓ CLIPScore↑
FlexIT 112.83 ± 0.08 0.49 ± 0.00 41.61 ± 0.028 0.88 ± 0.00
DiffEdit 142.20 ± 0.76 0.46 ± 0.00 51.01 ± 4.07 0.80 ± 0.00
ControlNet 118.56 ± 0.98 0.48 ± 0.00 50.91 ± 2.67 0.81 ± 0.00
Prompt-to-Prompt - - - 0.76 ± 0.00
DM-Align 96.45 ± 0.34 0.27 ± 0.00 34.70 ± 0.30 0.77 ± 0.00

Table 8: Image-level evaluation for BISON0.8 dataset (mean and variance).

FID↓ LPIPS↓ PWMSE↓
FlexIT 114.86 ± 1.96 0.23 ± 0.00 22.40 ± 0.04
DiffEdit 129.05 ± 1.37 0.21 ± 0.00 28.51 ± 4.17
ControlNet 124.12 ± 1.55 0.21 ± 0.01 22.44 ± 3.98
DM-Align 34.12 ± 2.09 0.05 ± 0.00 14.56 ± 0.25

Table 9: Background-level evaluation for BISON0.8 dataset (mean and variance).

Figure 8: Statistics about BISON0.7 and Dream datasets: number of words in the source and target captions, and
number of chunks (set of adjacent unigrams in the two captions aligned by the neural semi-Markov CRF model).
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Figure 9: Semantic image editing using BISON0.7 and Dream datasets. BISON0.7 dataset: (1) c1. A man standing
next to a baby elephant in the city. c2. A man standing next to his elephant on the beach. (2) c1. A vase filled with
red and white flowers. c2. A vase filled with lots of colorful flowers. (3) c1. A young man eating a hot dog next to
a waterway. c2. A man eating a hot dog at a crowded event. (4) c1. A plate with open face sandwiches next to a
glass of milk and a laptop. c2. A plate of fruit next to a glass of milk. Dream dataset: (5) c1. A girl throwing a
volleyball. c2. A girl throwing a basketball. (6) c1. A pot with flowers. c2. A vase with flowers. (7) c1. A pepperoni
pizza on a plate. c2. A quattro formaggi pizza on a plate. (8) c1. A crow sitting on an iron gate. c2. An owl sitting
on an iron gate.
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