Under review as a conference paper at ICLR 2025

TwO ARE BETTER THAN ONE: CONTEXT WINDOW
EXTENSION WITH MULTI-GRAINED SELF-INJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The limited context window of contemporary large language models (LLMs) re-
mains a huge barrier to their broader application across various domains. While con-
tinual pre-training on long-context data is a straightforward and effective solution,
it incurs substantial costs in terms of data acquisition and computational resources.
To alleviate this issue, we propose SharedLLM, a novel approach grounded in the
design philosophy of multi-grained context compression and query-aware infor-
mation retrieval. SharedLLM is composed of two short-context LLMs such as
LLaMA-2, termed upper model and lower model. The lower model functions as a
compressor while the upper model acts as a decoder. The upper model receives
compressed, multi-grained context information from the lower model and performs
context-aware modeling on the running text. Information transfer between the
compressor and decoder occurs only at the lowest layers to refrain from long
forward paths in the lower model and redundant cross-attention modules in the
upper model. Based on this architecture, we introduce a specialized tree-style data
structure to efficiently encode, store and retrieve multi-grained contextual infor-
mation for text chunks. This structure, combined with a search algorithm, enables
rapid encoding and retrieval of relevant information from various levels of the tree
based on the input query. This entire process, wherein the sender and receiver are
derived from the same LLM layer, is referred to as self-injection. In our evaluation
on long-context modeling and understanding tasks, SharedLLM achieves superior
or comparable results to several strong baselines, striking an effective balance
between efficiency and performance. Meanwhile, with the aforementioned design
choices, SharedLLM can greatly reduce memory consumption, and demonstrates
substantial speed-ups over other advanced baselines (2x over streaming, 3 X over
encoder-decoder architectures). The core code of our implementation along with
training and evaluation is available in appendix and supplementary.

1 INTRODUCTION

Since the release of GPT-3 (Brown, 2020), the rapid advancement of large language models
(LLMs) (Chowdhery et al., 2022; Achiam et al., 2023; Touvron et al., 2023a;b; Dubey et al., 2024)
has revolutionized the NLP research community and transformed various workflows. Pretrained on
trillions of tokens, LLMs exhibit remarkable abilities, such as completing unfinished text or code and
following human instructions to perform designated tasks after minimal supervised fine-tuning (Wei
et al., 2021; Chung et al., 2024).

Despite their impressive capabilities, several factors limit their broader application. One major
constraint is the context window size (Hsieh et al., 2024), which refers to the maximum number of
tokens an LLM can process smoothly in a single input. The length of context window is typically set
during pretraining—for example, LLaMA and LLaMA-2 have context windows of 2,048 and 4,096
tokens, respectively. When input text exceeds this limit, LLMs may exhibit erratic behavior during
inference. Unfortunately, due to GPU memory constraints, high training costs, and the scarcity of
long-context training data, LLMs are often pretrained with relatively short context windows. This
limitation severely restricts their use in many daily tasks of large context lengths, such as long
document summarization and information retrieval, where much longer windows are needed.

Under review as a conference paper at ICLR 2025

Many researchers endeavour to extending the context window of LLMs while minimizing the time,
memory, and training costs during both training and inference. One approach involves post-pretraining
LLMs on long-context corpora using hundreds of GPUs (TogetherAl, 2023; Xiong et al., 2024).
Another line of work explores position interpolation (Chen et al., 2023; Peng et al., 2023), which
rescales the RoPE (Rotary Position Embedding) frequency and attention scores. While this method
is canonical, it still requires long-context continual pretraining. For example, YaRN (Peng et al.,
2023) extends LLaMA’s context length to 128K tokens by continuing pretraining on 64K-token
sequences using full attention. The combination of parameter-efficient fine-tuning (PEFT) and
sparse attention (Chen et al., 2024) accelerates tuning but faces challenges with extrapolation. Other
approaches like streaming-style architectures (Xiao et al., 2024b; Zhang et al., 2024a; Yen et al.,
2024), maintain a constant-sized memory that operates as a sliding window. While this design
significantly reduces memory usage, its specialized attention pattern causes incompatibility with high-
performance attention implementations like FlashAttention (Dao et al., 2022; Dao, 2023), potentially
leading to slower inference speeds. Context compression techniques are also widely explored (Zhang
et al., 2024a; Yen et al., 2024). Although they offer high parallelism, improving speed, they tend to
consume significant memory, greatly limiting their real applications.

To strike a balance between efficiency and performance, we propose SharedLLM in this pa-
per. SharedLLM features a lightweight hierarchical architecture that consists of one upper model and
one lower model. Both models are initialized from the same off-the-shelf checkpoint of a short-
context LLM, either in full or in part. Since there is no disparity in the hidden space between the
two submodules, SharedLLM can be trained from scratch without extra stages for hidden-space
alignment. The lower model compresses past context information into multi-grained representations.
Through layer-wise connections between the lower and upper model, the compressed information
can be passed to the upper model for context-aware language modeling.

For better organization and utilization of this multi-grained information, we further propose a
dedicated data structure, dubbed context tree. The trees operate in parallel, with each tree handling
an independent text chunk split from the longer raw input. The tree nodes contain token sequences
of varying lengths, which are encoded and downsampled by the lower model to obtain a set of
meaningful representations. The sequence corresponding to each node is split from its parent, making
it a subsequence of all its ancestors. Meanwhile, we set the compression ratio proportional to the
sequence length. As a result, the nodes at higher levels have longer sequence and larger compression
ratio, which express more coarse-grained information after encoding, as opposed to nodes at lower
levels. We further develop an algorithm for dynamic construction and search on the tree given the
task-specific query. The algorithm accelerates the information gathering process by identifying the
most relevant text segments and encoding them as fine-grained representations, while converting less
relevant parts into coarse-grained representations in a depth-first manner. In the information injection
stage, since the obtained context trees are ordered, we define a rule to assign chunk-level position ids
for these encoded keys from the lower model, as well as the queries from the upper model. With these
unique chunk-level ids, queries can perceive the relative position of trees to generate high-quality
output.

With these design principles, SharedLLM presents extraordinary performance on down-stream tasks
with high efficiency. Specifically, on language modeling tasks, trained on text of up to 8K tokens, our
model demonstrates excellent extrapolation capabilities when tackling sequences up to 128K-token
length. On other long-context instruction-following tasks with input lengths ranging from thousands
to millions of tokens, SharedLLM delivers promising results comparable to several strong baselines.
In terms of system indicators, all experiments with a maximum length of over 200K can be conducted
on a single A800 80G GPU. SharedLLM delivers several times the speed of all baselines while
maintaining relatively low memory consumption.

2 RELATED WORK

Long-context Language Models. There are two prevalent routines to build LLMs that are capable
of processing extremely long text: directly pretraining on large corpus of targeted context length from
scratch (Touvron et al., 2023a; Dubey et al., 2024; Jiang et al., 2023; GLM et al., 2024) or adapting
short context-window LLMs to longer context lengths via combined various techniques (Tworkowski
et al., 2024). The former approach consumes tremendous data and computational resources, while

Under review as a conference paper at ICLR 2025

the latter allows for more convenience and flexibility for researchers and developers to explore
potential optimization to the default settings (Fu et al., 2024). The core idea behind these adaptations
is to mimic short input scenarios (i.e., length within the model’s text window) when the input
length exceeds window size. Attention map manipulation is the most common approach for this
goal, which can be realized via positional encoding (PE) rescaling, such as ALiBi (Press et al.,
2021), positional interpolation (PI) (Chen et al., 2023) and YaRN (Peng et al., 2023), or positional
index rearranging (Xiao et al., 2024b; Ding et al., 2023; An et al., 2024; He et al., 2024). Both
directly or indirectly adjust attention scores to be similar as the short-input scenarios so that the
model can handily deal with. Another line of works compress past tokens sequentially into dense
representations (Chevalier et al., 2023; Zhang et al., 2024a) as input at the next step or store them in
an external retrievable memory (Wu et al., 2022; Xiao et al., 2024a) to reduce the input lengths. Yen
et al. (2024) utilizes small model such as ROBERTa (Liu, 2019) for context encoding to boost speed
and enable higher parallelism. However, this heterogeneous architecture necessitates meticulous
task design for the extra pretraining and warmup stages to stabilize the fine-tuning process. In
contrast to these works, our method directly tunes off-the-shelf models to compress context into
structural representations for query-aware retrieval. Powered by efficient architecture design and a
fast-forwarding mechanism, the whole procedure can be fully paralleled online without excessive
memory usage, which greatly cuts down the latency during inference time.

Efficient Methods for Long-context Modeling. In vanilla self-attention, the space and time
complexity grows quadratically (O(L?)) with the input sequence length L, which can cause out-of-
memory (OOM) issues on GPU clusters. A straightforward solution is to add parameter efficient
fine-tuning (PEFT) modules (Chen et al., 2024; Zhang et al., 2024a;b) to shrink the size of gradient
tensors during backward propagation. Many works strive to reduce the memory footprint of attention
computation to enhance computational efficiency. Longformer (Beltagy et al., 2020) introduces a
hybrid attention pattern to capture local and global semantic features concurrently. Katharopoulos
et al. (2020) designs linearized attention that merely demands O(L) space to accomplish attention
computation. FlashAttention (Dao et al., 2022; Dao, 2023) and PagedAttention (Kwon et al.,
2023) maximize the memory efficiency from system’s perspective. More recently, Xiao et al.
(2024b) discovers the “attention sink” phenomenon and proposes streaming-llm to address high
perplexity issue in generation under window-attention. Our work basically follows the efficient
design principle in three aspects: 1) lightweight architecture through lower layer self-injection; 2)
compact structural representations via structural information extraction and compression; 3) efficient
construction and retrieval algorithm based on the proposed context tree structure.

3 METHOD

In this section, we first introduce the overall architecture of our proposed SharedLLM in Sec. 3.1,
and then elaborate on its two main components, lower model and upper model in Sec. 3.2 and 3.3.

3.1 OVERVIEW

As illustrated in Figure 1, SharedLLM adopts a hierarchical architecture, akin but not identical to
classical encoder-decoder models. The lower model, or the “compressor”, breaks down the long input
context X into smaller chunks that can be processed within limited GPU memory. It then uses the
same LLLM model to compress each context chunk into compact and structured representations in
parallel. The upper model, or the “decoder”, takes the rear part of the input text (the running context,
such as questions) as input, then integrates the compressed information from the lower model, and
finally predicts future tokens in an auto-regressive manner.

The lower and upper models are connected via shared key-value (KV) states and cross-attention
modules between corresponding layers. To enable efficient and effective information retrieval and
integration, the context information processed by the lower model is organized into a binary tree,
referred to as the context tree, which stores multi-grained information at different levels. This
structure allows the upper model to leverage its processed running text to efficiently retrieve relevant
information from the binary tree based on a depth-first search algorithm. The retrieved information
is then integrated with the input through cross-attention, enabling the model to answer questions or
perform language modeling.

Under review as a conference paper at ICLR 2025

Context Tree Extracted KV KV Outputs: XXX
Ixd I'xd
ay 1
— Encode_ « /[Self-attention]
i A oy — r -
a : S
9 2 - —_— 3 } Layers
a
@fé 2% 200 mm— [seratenion)
Compress -
P F |
.{ Tree Cross-attention]E
/[3 7 / P ! i ' | Layer M
2o [Layer M H [Self-attention] i
T) T L] T p————_
’ jp— —
t T | :{ Tree Cross-attention]:
Layer 1 [Layer 1 } | i ' | FLayer 1
— [self-attention |
H H U
i
[1] [7] | RunningText/Query|
Chunk 1 Subsequences Chunk n Subsequences

Lower Model (single model with chunk parallelism) Upper Model

Figure 1: Overview of SharedLLM. The architecture resembles general encoder-decoder architecture
like TS (Raffel et al., 2020), but the interaction occurs at the first M layers between lower and upper
model through shared key-values which are encoded and compressed from the text chunk into a
sequence of trees (top-left). The arrows mark the paths where the KVs from lower model’s layers are
dispatched to the upper model’s corresponding layers, which is the core step of self-injection.

In the following, we elaborate on the lower and upper model. To begin with, we first define some
notations to enhance clarity and readability. Let X = {x1, o, ..., z7} represent the entire input
sequence, where 1" denotes the sequence length. In comply with previous setting (Yen et al., 2024),
we split these tokens into two continuous parts: X = concat([X¢; Xp|), where the past context
X and the running text X p serve as inputs to the lower and upper models, respectively. Moreover,
the past context X is further divided into n smaller and non-overlapping chunks denoted by
C1,Cs, ..., Cy, namely, where C; UCy U ... UC,, = X¢ and C; N C; = 0,Vi # j. The chunk
size is controlled to fit within the lower model’s context window—e.g., 4,096 tokens for LLaMA-2-
7B (Touvron et al., 2023b)—allowing the lower model to fully utilize its encoding capacity.

3.2 LOWER MODEL

(0 PreservedNode @) Discarded Node

The lower model is a small pretrained LLM, imple-
—» Selected/Unselected

mented as the first M shallow layers of LLaMA-2. It SelectedNode — | ohch
independently encodes and compresses each past con-

text chunk C; from the set of chunks {C;}? , and con- ;

structs a context tree that stores multi-grained informa- _ /\

tion across various levels. The encoding for all chunks)

{C;}1_, is fully paralleled to boost the speed. Below, /N\
we detail the context tree structure and its efficiency- a0
enhanced query-dependent dynamic construction, and A

the tree search process. % % % % () () %; %

Context Tree. The motivation to build the context tree Figure 2: An running example of our tree
is intuitive and problem-driven. Given a text chunk C; (depth=3). The digits mark the step indices
and a task-specific query, the task-related information is in the split-and-search procedure.

often distributed unevenly across the chunk of text. For

instance, to summarize a given passage, one should pay more attention to the topic sentences, collect
messages from them and rephrase to produce the answer, rather than focuses much on narrative
details. Whereas in the task of passkey finding, detailed relations are more important than theme

Under review as a conference paper at ICLR 2025

paragraphs. To this end, we aim for the contextual representations to capture fine-grained details
for the relevant portions of the text, while encoding only coarse-grained information for the less
relevant parts. The tree structure is the best fit to simulate this process: the spltting of nodes resembles
splitting larger text chunks into smaller ones, from which we can get more fine-grained information.

In the context tree, its root node contains the entire chunk C; = {5, ...,z } where z,, (s <p < t)
denotes a token, s and ¢ are the start and end index of that chunk; and each other node consists of a
sub-sequence of the chunk C;. Then we introduce how to build the child nodes from a parent node.
Specifically, for any non-leaf node that contains [tokens {zy41, ..., T4}, at training phase, we split
it into two sub-sequences for constructing its left child and right child as:

Cparent - {(Eu+k}§c:17 Cleft = {xu+k}l]i:17 Cright = {xu+k}§g:b+1~ (1)

Here we adopt a random splitting by setting b = | — €] and € ~ A/(0, 0%) where o is a predefined
hyperparameter, since random lengths can slightly improve the performance as concluded in Zhang
et al. (2024a). At test time, the noise € is fixed to zero. One can continue this process until arriving
at the limited tree depth. Next, building upon this static tree, we construct a more efficient query-
dependent dynamic tree.

Query-Dependent Dynamic Tree Construction and Search. A task-specific query is typically
highly relevant to certain tree nodes while being less relevant to others. For highly relevant nodes,
further expansion is necessary to extract fine-grained information. However, for less relevant nodes,
expansion is unnecessary. Thus, instead of constructing an entire static context tree as aforementioned,
we build a query-dependent dynamic tree that expands only the relevant nodes, as shown in Figure 2,
significantly saving both GPU memory and time.

Starting from the root node, we perform a depth-first splitting and search process. Each node sequence
is first split into two subsequences according to Eq. (1). We then use a non-parametric policy 7
to decide the next selected node based on the two subsequences, Tie¢ and x,igne, and a query
sequence y:

W((wleftv mright)a y) — left or rightv (2)

Here the policy 7 determines whether the left or right child of the node will be selected. The
unselected sibling node is marked as “preserved” and will not be expanded further. Note, the root
node is always selected to ensure expansion. For policy T, it is task-specific. Specifically, regarding
language modeling task, since there are no explicit queries (i.e., y = @), we simply set 7 to be
deterministic:

F((wleftaccright)ay) = right. 3)

For instruction-following tasks, such as question-answering, where queries like questions are available,
7 selects the node with higher similarity to the query in the hidden space:

ﬂ((mleft7mright)7y) = argmax (Sim(hm¢,hy)), 4)
¢e{left,right}

where sim(-, -) represents the cosine similarity between two vectors. The hidden vector h at the last
position of a sequence is embedded by either the lower or upper model. Specifically, this involves
a short forward pass through one self-attention layer in the lower model for h,, and the upper
model for hy. Once the selected node is determined, the process continues with that node, repeating
the procedure until reaching leaf nodes. At this point, both the left and right child are marked as
“preserved”.

For each preserved node, we feed its associated context into the lower model to obtain a collection of
key-value (KV) states from all M layers, denoted as S = {K, V}, where K, V € RM*!xd represent
the key and value states for all M layers. Here, [is the sequence length, and d is the hidden dimension.
Next, we perform a uniform downsampling along the length dimension to retain only a portion of
the KV states, resulting in S’ = {K’, V'}, where K', V' € RMxU'xd and ' is the downsampled
length. The compression ratio « for the node is defined as o« = [/lI’. For the context tree, we
apply a constant compression ratio «,, for all preserved nodes at level w, but the ratio diminishes
progressively from top to bottom, i.e., a, > auy11. In our implementation, we set o,y = 20 41.
Specific value of o, can be found in Appendix A.1. This approach creates coarse-to-fine distribution
of semantic information from top to down: nodes at higher levels possess longer subsequences and

Under review as a conference paper at ICLR 2025

are compressed with a higher compression ratio, corresponding to more coarse-grained information,
while on the contrary, nodes closer to the bottom stores fine-grained information.

The overall compression ratio /3 of a tree is defined as the ratio of the chunk length |C| to the total
length of the compressed KV states:

- lenw o |C|
B Zl;unw B Zl;unw
i

where n,, is the number of preserved nodes at level w, and [;, is the compressed length of each
preserved node at level w. For the convenience of parallel processing, we set 3 same for all n context
trees. Experimental results in Section 4 demonstrate that this compression ratio can reach as high as
8, significantly improving efficiency.

B &)

3.3 UPPER MODEL

The upper model mainly inherits from the LLaMA architecture, which consists of IV (32 for LLaMA-
2-7B) self-attention layers with slight modifications. As illustrated in Figure 1, for each one of the
M shallow layers, we add a cross-attention module on the top of the vanilla self-attention layer for
information fusion.

Position-aware Cross-attention on the Context Tree. In Section 3.2, we can obtain a sequence
of tree-structural representations S’ = {S1, ..., S} } for n chunks {C;}?_, where S, = {K}, V!}
stands for the representations of chunk C;. Since the sequence of chunk keys K = {K/; ..., K/ } is
produced from ordered chunks {C1, ..., Cy, }, their positional information should be aware at chunk
level by the query. We assign the following chunk-level positional indices to Q and K:

Pq ={n,n,..,n}, Px={0,0,..,0,1,1,....,1,n—1,n—1,..,n—1}. 6)
——— ——— ——
| Xpl| [C1l/B |C2|/B [Cnl/B

Here we view the upper model’s query Q as one chunk and endow with the largest positional index,
because Q) is encoded from X p which is behind all context chunks X in the raw input sequence X.
We will show in Section 4.4 that this setting also facilitates chunk-level extrapolation and answer text
production in downstream tasks.

We then conduct cross attention between the query QQ and concatenated KVs to integrate their carried
context information into running context for more coherent language modeling:

O = cross_attn(Q, concat ([Kj;...; K}]), concat([Vi;...; VL])). (7)

Training We use the standard language modeling loss during training, which maximizes the log
probability of the ground-truth tokens in the target sequences X, conditioned on the context X ¢
and all preceding tokens z; from X p:

L=— > logP(x|Xc;aer). (8)

T+ € Xtar

For language modeling data, X, = Xp, i.e., the target tokens are all tokens in X p, excluding the
first token. For instruction-following data, X p includes both the instruction Xj,y and the annotated
response X,es. In this case, we set Xy, = Xies, meaning that we optimize only for the response
tokens, while the instruction text is masked during loss calculation.

4 EXPERIMENTS

4.1 SETUP

Initialization We initialize the upper model with LLaMA-2-7B in language modeling and LLaMA-
2-Chat-7B in supervised fine-tuning (SFT), in consistent with previous works (Chen et al., 2024;
Yen et al., 2024; Zhang et al., 2024a). The lower model is initialized with the weights of bottom M
layers from the same checkpoint as the upper model, where we set M = 4 in language modeling and
M = 16 in SFT.

Under review as a conference paper at ICLR 2025

Table 1: Perplexity of models trained on mixed dataset. “OOM” means out-of-memory exception
raised during inference. Excessively large perplexities (> 10?) are hidden with a dash (“-”).

Model ‘ PG19 ‘ ProofPile ‘ CodeParrot

4K 16K 32K 100K | 4K 16K 32K 100K | 4K 16K 32K 100K
StreamingLLM 921 925 924 932 |347 351 350 355 | 255 260 254 256
AutoCompressor 11.80 - - OOM | 4.55 - - OOM | 347 - - OOM
LongAlpaca-16K 996 9.83 - OOM | 3.82 3.37 - OOM | 2.81 2.54 - OOM
LongLlama 9.06 8.83 OOM OOM | 261 241 OOM OOM | 195 190 OOM OOM
LongChat-32K 947 885 881 OOM | 307 270 265 OOM |236 216 213 OOM

Activation Beacon 921 834 827 850 | 347 334 332 331 | 255 243 241 2.62
SharedLLM 898 815 796 824 | 336 324 321 319 | 233 225 225 236

Table 2: Perplexity of models trained on downsampled RedPajama. LLaMA-2-32K and YaRN-2-
128K have seen sequence as long as up to 32K and 64K tokens respectively at training time, while
CEPE and SharedLLM are trained on 8K-token sequences. t: results run on the reproduced model
following original paper and the released code. Notations share the same meanings with the last table.

Model Arxiv PG19 ProofPile

ode 4K 8K 32K 128K | 4K 8K 32K 128K | 4K 8K 32K 128K
LLaMA-2-7B (4K) | 2.60 - - OOM | 6.49 - - OOM | 228 - - OOM
Books3 involved in training
LLaMA-2-32K 260 251 232 OOM | 6.61 650 697 OOM | 246 222 227 OOM
YaRN-2-128K 313 296 234 OOM | 6.15 6.02 632 OOM |270 247 241 OOM
CEPE 2.86 2.84 234 291 | 6.60 624 6.66 599 |222 233 226 223
Books3 not involved in training
CEPE' 3.03 3.02 251 297 |6.69 640 6.80 6.10 | 238 243 245 239
SharedLLM 299 297 246 291 | 659 631 672 6.00 | 236 237 241 246

Dataset For language modeling, we follow Yen et al. (2024) to prepare the training data by sampling
a subset of 20B (1%) tokens from RedPajama’s all 7 domains (Together, 2023). Due to the copyright
issue, the books3 subset in Books domain (books3 + PG19) is unavailable and thus excluded from
our training set, yet we do not renormalize sampling probability across domains. As a result, the
proportion of PG19 increases in the final dataset compared with the default setting in Touvron et al.
(2023b). The sampled texts are truncated to 8,192 tokens for training. In SFT, we follow Zhang et al.
(20242) to use the same mixed dataset composed of downsampled RedPajama and LongAlpaca (Chen
et al., 2024), where the input length is filtered to range between 1200 to 8192 tokens, following Zhang
et al. (2024a).

Training We train SharedLLM on an 8 x A800 GPU machine. The batch size is set to 1 per GPU
with gradient accumulation of 16 steps (global batch size is 128) for language modeling and 1 step
(global batch size is 8) for SFT. Zero Redundancy Optimizer (ZeRO) stage 3 from DeepSpeed without
offload is enabled in both training to distribute the memory allocation among GPUs. The cross-
attention layers remain fully tunable, while we opt to train upper model’s top N — M self-attention
layers in language modeling as post-injection aggregation for faster convergence. No parameter
efficient fine-tuning (PEFT) techniques, such as LoRA, are applied during both training, as PEFT
seriously slows down model’s convergence (Chen et al., 2024), which actually requires longer tuning
time than partial parameter fine-tuning to reach the optimum. We adopt AdamW optimizer with the
starting learning rate 1e~® and cosine scheduler during training. The chunk size is set to 1,024 for
langauge modeling or 512 in SFT, with tree height ~ = 3 and compression ratio 5 = 8. For other
configurations and hyperparameters, please refer to Appendix A.l for more details.

4.2 MAIN RESULTS

Language Modeling. We first evaluate our models on the language modeling task with sequence
lengths ranging from 4K to 128K using a single A800 80GB GPU. The evaluation covers four

Under review as a conference paper at ICLR 2025

datasets: ArXiv, PG19 (Rae et al., 2020), ProofPile (Azerbayev et al., 2024), and CodeParrot Tunstall
et al. (2022) under two settings that utilize different training datasets. Under each setting we test on
three out of the four datasets, respectively. The results are posted on Table 1 and 2. All perplexity
values in these tables are averaged over 100 examples except for the 128K length, on which we
test only 10 examples due to the data scarcity (Yen et al., 2024; Zhang et al., 2024a). For the
experiments on encoder-decoder and hierarchical models at 4K length, the input is divided by half
(2K/2K) and fed separately into their two submodules. The results show that our model owns strong
extrapolation capability—it avoids perplexity explosion even tested on 128K-token length although
it only has seen up to 8K-token sequences during training. In Table 1, SharedLLM outperforms
other baselines trained on mixed dataset 3-10%. In Table 2, for models trained on RedPajama, the
perplexity without books3 (bottom) gets a bit worse than those including books3 in the training set,
showing the major contribution to language modeling by books3, consistency with the discovery
claimed in Yen et al. (2024). Notably, SharedLLM outperforms CEPE in nearly all cases except 128K
context length on ProofPile, showcasing the effectiveness of structural self-injection mechanism.
Between the two settings, the improvement over Activation-Beacon is more pronounced than over
CEPE, because CEPE experiences an additional pretraining stage to adapt the RoOBERTa encoder to
the RedPajama corpus and a warmup stage to align the hidden space between encoder and decoder.
In contrast, SharedLLM can directly be finetuned from publicly available off-the-shelf checkpoints,
which saves a great amount of training efforts.

Long-context Understanding Benchmarks. We continue to test the supervised fine-tuned ve-
rion of SharedLLM on many downstream tasks from InfiniBench (Zhang et al., 2024¢) and Long-
Bench (Bai et al., 2023). Both benchmarks consist of a variety of long-context tasks established from
raw and synthetic datasets.

On InfiniBench, we are interested in the fol-

lowing two tasks: Math.Find asks a model Taple 3: Evaluation of different methods

to retrieve a special value specified in the on Math.Find and En.MC from InfiniBench.
prompt (e.g., minimum, maximum, medium,

etc.), which examlneslboth t.h.e precise retrieval Method | MathFind EnMC

and query understanding abilities of the model. -

En.MC instructs a model to collect key informa- LM-Infinite 571 30.57

tion from a extremely long passage and choose Streamingl. LM 6.00 32.31
InfLLM 11.14 31.44

the correct answer from many candidate options.
We compare SharedLLM with advanced base- SharedLLM | 13.58 33.65
lines capable of extremely long inputs, as shown
in Table 3. SharedLLM surpasses these strong
baselines on both tasks (2.44 points or 21.9% on Math.Find, 1.34 points or 4.1% on En.MC over
state-of-the-arts), showing excellent capabilities in tackling extremely long input.

For LongBench, We report the categorical scores on all 14 English tasks in 5 categories, including
single-document QA (SD-QA), multi-document QA (MD-QA), summarization (Summ.), few-shot
learning (FS) and code-completion (Code), as shown in Table 4. SharedLLM outperforms or matches
other advanced instruction-tuned long-context baselines across all five categories. Particularly, we
notice that MD-QA. We note that truncation from the middle could reduce the difficulty of some tasks
and improve the performance (Zhang et al., 2024a), especially on decoder-only models, as relevant
information for many tasks is located at the beginning or end of the entire text rather than the middle
part.

4.3 TIME AND MEMORY EFFICIENCY

Apart from strong performance on downstream tasks, SharedLLM demonstrates high computational
efficiency in terms of both speed and GPU memory utilization. We compare these metrics produced
by SharedLLM against other representative models from the model classes of streaming (Zhang
et al., 2024a), encoder-decoder (Yen et al., 2024) and vanilla Peng et al. (2023) architectures that
have shown competitive performance in prior evaluations. The results are visualized in Figure 3.
YaRN (Peng et al., 2023), which exploits the same fully attention as vanilla auto-regressive LLaMA,
has O(L?) time and space complexity. The squared complexity makes it the only model that triggers
out-of-memory exception at 128K length. Activation Beacon (Zhang et al., 2024a), which adopts

Under review as a conference paper at ICLR 2025

Table 4: Evaluation of different methods on LongBench. Text samples are truncated to the test
length from middle before generation in some models. We particularly highlight these values in “Test
Length” column, as well as model’s training length (“Train Length”). Models in the upper rows
follow the conventional “pretrain+finetuned” paradigm while models in the bottom rows are directly
trained on mixed dataset without continual pretraining to extend the context window in advance.

Method | Train Length | TestLength | SD-QA MD-QA Summ. FS Code
Llama-2-7B-Chat 4K 4K 24.90 22.60 24.70 60.00 48.10
StreamingLLM 4K 4K 21.47 22.22 2220 50.05 48.00
LongAlpaca-16K 16K 16K 28.70 28.10 27.80 63.70 56.00
YaRN-128K 64K 32K 24.03 24.11 19.82 60.00 62.73
Activation Beacon 8K 16K 28.27 28.44 25.15 61.00 57.75
SharedLLM 8K 32K 28.15 30.93 24.28 63.50 57.95
Memory (GB) Inference Time (s)
7 oom
80 /‘:' 150 -
60 1 ,’/
4 100 |
1!
40 4 T
L7 RIS * 50
‘,-” + s—y—-— ! *
20 h : = 3 r A
aK 8k 16K 32k 128K 0 aK gk 16K 32K 128K
—%=- YaRN CEPE —&— Activation Beacon --#- SharedLLM (Ours)

Figure 3: Comparison of memory usage (left) and total inference time on 100 examples (right)
between SharedLLM and other recent baselines. The data is collected by running a tiny experiment
on 100 examples in corresponding lengths. “OOM” means out-of-memory exception triggered during
test time.

the streaming processing paradigm, maintains a minimum constant memory O([) under different
input lengths L, where [is the sliding window length. However, Activation Beacon is incompatible
with FlashAttention (Dao, 2023) also due to its specialized attention paradigm, which causes a sharp
increment in inference time as input size grows. CEPE can process past context chunks in parallel,
but these chunks must be passed through all its encoder layers (24-layer RoBERTa in CEPE) and
layer-wise linear projections to obtain the final hidden states for cross-attention, leading to even
slower inference speed than non-parallel Activation Beacon. In contrast, SharedLLM avoids such
redundancy through shallow-layer compression and injection, which exhibits significant speed-up
and limited memory consumption.

4.4 ABLATION STUDIES

We consider the following ablative settings to verify the rationale of the design considerations
in SharedLLM: 1) tree depth; 2) compression ratio; 3) the collection of context information injection
layers; 4) other configurations, including the effect from retrieval policy 7 (only for instruction-
following task), the noise in node splitting, and the addition of chunk-level positional indices during
cross-attention.

The results are displayed in Table 5, from which we find that both tree depth and compression ratio
should be set appropriately to achieve near-optimal performance. For example, SharedLLM performs
best when the tree height is 3. If the height is too small, i.e., the tree is undersplit and the chunk
size is excessively large so that only coarse-grained context information is retained while task-
related fine-grained information is not explicit, or too large, i.e., the tree is oversplit and the leaves
carry fragmented information which can hardly provide valuable clues for task solving, performance

Under review as a conference paper at ICLR 2025

Table 5: Ablative Studies on different configurations of structural information injection. The best
values in each category and settings consistent with our defaults are highlighted in bold.

Item | Configuration | Arxiv (32K) | MD-QA
2 2.51 30.15
Tree Height 3 2.46 30.93
4 2.57 29.47
1 243 30.55
Compression Ratio 8 g %ig gggg
16 2.52 29.81
Continuous Bottom 2.46 30.93
Injection Layers Continuous Top 2.61 28.66
Interleaving 2.57 29.15
Default 2.46 30.93
. w/o retrieval - 29.27
Other Settings w/o noise 2.51 30.08
w/o chunk-level pid 249 29.81

degrades accordingly. A similar trend can be viewed on global compression ratio 5. While abandoning
downsampling KV (5 = 1) may bring decline in perplexity, its query-aware information retrieval
ability deteriorates. In terms of injection layer selection, our implementation, which is refer to
as continuous bottom, injects the context information in the bottom M layers. In contrary, Continuous
top injects context information at the topmost M layers (from layer N — M + 1 to layer N).
Interleaving applies cross-attention at regular intervals, such as layer 4, 8, 12, 16... Among these
configurations, SharedLLM wins over continuous top and interleaving on both tasks, indicating the
correctness of injection layer selection in SharedLLM.

For other settings, as shown in the bottom rows, removing either of them causes performance drop
compared to the default setting, which reveals the contributions of the three design considerations
to model’s performance. Among these items, the query-aware information retrieval is the core
component for the context-tree so that the performance on MD-QA drops mostly after removing
it from the network. The sequential order is similarly important and should be perceived during
cross-attention to organize the answer accordingly.

Besides the effect on task performance, we also perform more experiments to explore how these
configurations impact speed and memory in Appendix C.

5 CONCLUSION

In this work, we present SharedLLM, which leverages a self-injection mechanism to adapt a pair of
short-context LLMs for efficient long-context modeling. By integrating the operations of context
compression and key information retrieval into a dedicated binary-tree structure, SharedLLM excels in
language modeling and various downstream instruction-following tasks, while maintaining excellent
memory and time efficiency. Besides, SharedLLM is directly trained from off-the-shelf LLMs,
eliminating the need for additional feature alignment steps and making implementation easier. We
hope this learning paradigm can be generalized to other short-context LLMs, offering a scalable
approach for a context-window extension to an arbitrary length.

Limitations. While SharedLLM demonstrates superior performance on both language modeling
and long-context benchmarks, as well as high efficiency in terms of time and memory, there are still
some limitations. First, although this work strikes a relatively good balance between efficiency and
performance at the model architecture level, further improvements could be achieved by optimizing
at the system and hardware levels. Second, while a simple and effective retrieval mechanism is
implemented in this work, more advanced retrieval techniques, such as BM25 (Robertson et al.,
2009) and Graph-RAG (Edge et al., 2024), were not explored and may further enhance performance.
We aim to pursue these improvements in future research.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023. 1

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. In Forty-first International Conference
on Machine Learning, 2024. 3

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024. 8

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023. 8

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020. 3

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 1

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595,2023. 2,3

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024. 2,3, 6,7, 15

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqgi Chen. Adapting language models
to compress contexts. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 3829-3846, 2023. 3

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arxiv 2022. arXiv preprint arXiv:2204.02311, 10, 2022.
1

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1-53, 2024. 1

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023. 2, 3,9

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Proceedings of the 35th Neural Information
Processing Systems Conference (NeurlPS), 2022. 2, 3

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023. 3

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783,2024. 1,2

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024. 10

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024. 3

11

Under review as a conference paper at ICLR 2025

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu,
Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models
from glm-130b to glm-4 all tools, 2024. 2

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia
Yang, and Di He. Two stones hit one bird: Bilevel positional encoding for better length extrapolation.
In Forty-first International Conference on Machine Learning, 2024. 3

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What'’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024. 1

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. 2

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156-5165. PMLR, 2020. 3

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023. 3

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019. 3

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023. 2,3, 8

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021. 3

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In International Conference on
Learning Representations, 2020. 8

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020. 4

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009. 10

Together. Redpajama: An open source recipe to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/RedPajama-Data. 7

TogetherAl. Llama-2-7b-32k-instruct - and fine-tuning for llama-2 models with together api, 2023.
URL https://www.together.ai/blog/llama-2-7b-32k-instruct. 2

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023a. 1,2

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b. 1,4,7, 15

12

https://github.com/togethercomputer/RedPajama-Data
https://www.together.ai/blog/llama-2-7b-32k-instruct

Under review as a conference paper at ICLR 2025

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural language processing with transform-
ers. ” O’Reilly Media, Inc.”, 2022. 8

Szymon Tworkowski, Konrad Staniszewski, Mikotaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Mitos. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024. 2

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021. 1

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-
formers. In International Conference on Learning Representations, 2022. 3

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for understanding
extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617, 2024a. 3

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024b. 2, 3

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4643—4663, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
https://aclanthology.org/2024.naacl-long.260. 2

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2588-2610, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-1long.142.2,3,4,6,7,8, 15

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from 4k
to 400k: Extending Ilm’s context with activation beacon. arXiv preprint arXiv:2401.03462, 2024a.
2,3,5,6,7,8,15

Peitian Zhang, Ninglu Shao, Zheng Liu, Shitao Xiao, Hongjin Qian, Qiwei Ye, and Zhicheng Dou.
Extending llama-3’s context ten-fold overnight, 2024b. 3

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. coBench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262—-15277, Bangkok, Thailand, August 2024c. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.814. 8

13

https://aclanthology.org/2024.naacl-long.260
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.814

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 TRAINING CONFIGURATIONS

We list more training configurations that are not specified in the main text in Table 6. The sequential
values of « are level-wise compression ratio, from level 1 to level 3.

Table 6: Configurations for training on both tasks.

Item \ Language Modeling \ Supervised Fine-tuning
training epoch 1 2
warmup ratio 0.01 0.001
o /5 1/10
chunk size 1024 512
e 1/16,1/8,1/4
AdamW (1, 32) 0.9, 0.999

A.2 ONLINE SPLIT-AND-SEARCH ALGORITHM

We provide the pseudo code for the online split-and-search algorithm introduced in Section 3.2, from
the splitting of root node till collecting all key-value states for all preserved nodes and all M layers.
The code snippet in the entire model.py file can be found in the supplementary material.

Algorithm 1: Pseudocode of dynamic Construction-and-Search.

N: number of trees; L: chunk size

depth: tree depth; chunk_ids: the entire input ids for chunk in shape (N, L)
gamma: a hyper-parameter to adjust the variance of the gaussian sampling
selected_input_ids = chunk_ids

selected_length = chunk_ids.shape[-1]

all_kvs = []

for 1 in range (depth):
sample lengths of left and right child
if 1 < depth - 1:
half_length = last_length // 2
sigma = half_length / gamma
delta = random.randn(l) * sigma
1_left, 1_right = half_length - int(delta), half_length + int (delta)

split the node into > children

left_input_ids, right_input_ids = input_ids[:1_left], input_ids[-1_right:]

query_aware is a flag indicating if the selected nodes are determined on query

if query_aware:
short forward (l-layer) to get representation vectors for the query and two nodes
h_g = upper_model (query, 1)
h_left, h_right = lower_model (left_input_ids, 1), lower_model (right_input_ids, 1)
selected = argmax(sim(h_qg, h_left), sim(h_g, h_right)

else:
selected = 1 # deterministic example, can change to 0 or random selection
selected_input_ids = [left_input_ids, right_input_ids] [selected]
selected_length = [1_left, 1_right] [selected]
preserved_input_ids = [left_input_ids, right_input_ids] [l - selected]
else:

preserved_input_ids = cat (last_input_ids.chunk (2, -1), 0)

cur_level_kvs = lower_model (preserved_input_ids) .past_key_values
cur_level_kvs = downsample (cur_level_ kvs)
all_kvs.append(cur_level_kvs)

cat: concatenation; chunk: split into the specified number of chunks

14

Under review as a conference paper at ICLR 2025

A.3 DATASET STATISTICS

Downsampled Redpajama. We follow Yen et al. (2024) and Touvron et al. (2023b) to prepare our
training set. The proportions of data regarding seven domains in the resulted training set are listed in
Table 7.

Table 7: Dataset composition in our downsampled Redpajama (20B) tokens.

Domain | Proportion (%)
Arxiv 2.5
Books (w/o S3) 4.5
Cc4 15.0
CommonCrawl 67.0
Github 4.5
StackExchange 2.0
Wikipedia 4.5

Mixed Dataset in SFT. This dataset is directly picked from Zhang et al. (2024a), which is a mixture
of RedPajama and LongAlpaca (Chen et al., 2024). We follow Zhang et al. (2024a) to only filter
samples whose lengths range from 1K to 8K. The distribution of samples in terms of lengths is below.

Table 8: Proportion of samples within each length interval.

Length | <2K 2~4K 4~6K 6~8K
Proportion | 47% 29% 8% 16%

B MORE EXPERIMENTS

B.1 RESULTS ON OTHER BASE LLMS

For LongBench, We report the results of SharedLLM that uses LLaMA-3-8B to initialize both lower
and upper models, as shown in Table 9. Similar as the outcome using LLaMA-2-Chat-7B in Table 4,
SharedLLM enhances all categorical performance on LongBench.

Model | SD-QA | MD-QA | Summ. | FS | Code
LLaMA-3-8B 15.12 7.95 26.13 68.75 | 56.04
SharedLLM 22.31 13.58 27.05 | 70.52 | 62.60

Table 9: Results on LongBench using LLaMA-3-8B as backbone LLM.

B.2 PASSKEY RETRIEVAL

We further assess the retrieval capability of SharedLLM on passkey retrieval task, as known as
needle-in-haystack (NIAH). Following the settings in Yen et al. (2024), we train a new version of
SharedLLM that can perform accurate passkey retrieval from the haystacks of surrounded nonsense.
We follow the examples in Chen et al. (2024) to set up the single key-value pair test cases. The
results averaged on 10 random generated NIAH test samples are shown in Table 10. Both CEPE and
SharedLLM distilled on 4K length can retrieve needles from much longer haystacks.

15

Under review as a conference paper at ICLR 2025

Method | 4K | 8K | 16K | 32K

CEPE 100 | 100 | 90 40
SharedLLM | 100 | 100 | 100 | 60

Table 10: Needle-in-hay-stack on distilled version of SharedLLM.

C OVERHEAD ANALYSIS

In section 4.3, we have explained the outstanding efficiency of our model by comparing the memory
usage and inference speed with other competitors. In this section, we give a more comprehensive
analysis towards the inherent factors that may impact model’s efficiency, including compression ratio
B, tree height h, the number of shared layers M and the retrieval-based policy which requires an
additional short forward pass.

Table 11: Inference time under various M with constant ~ = 3 and 5 = 8. Our default setting is
highlighted in bold.

M |1 2 4 8 16

Time (s) 6.78 935 11.81 16.81 2585
Memory (GB) | 21.04 21.50 22.39 24.08 27.82

We rerun our experiments to measure the forward time and memory cost from language modeling
on 8K tokens, adjusting one variable at a time while keeping others at their default values. The
results are shown in Table 11, 12 and 13. Among these factors, the number of injection layers, M,
has the most significant impact on both speed and memory: both memory and latency grows as M
increases. As an opposite, compression ratio 3 and tree height h produces nuances effect on both
metrics. For example, if we decreases [from 64 to 1 (preserve all KVs), the inference time increases
by 6.7% while memory increases by 3%. A similar trend is observed on experiments with tree height
h. We speculate that the reason behind these outcomes are partly from the internal optimization in
FlashAttention, which efficiently computes attention blockwisely. When the configuration meets its
requirement for block size and hidden dimension (e.g., length is divisible by 256),

Table 12: Inference time under various 3 with constant A = 3 and M = 4. Our default setting is
highlighted in bold. For 8 € {1, 2}, we are not able to set levelwise compression ratios and thus we
set the compression ratio same as the [for every level of the tree.

B | 64 32 16 8 4 2 1

Time (s) 11.68 11.73 11.78 11.81 11.87 12.04 12.47
Memory (GB) | 22.20 2220 2220 2239 2240 2235 2297

We further investigate the potential overhead caused by the extra short forward path query-aware
splitting-and-search algorithm. As shown in Table 14, we observe it incurs around 15% overhead in
both time and space. We believe this type of overhead can be further eliminated with more careful
optimization to the implementation details.

16

Under review as a conference paper at ICLR 2025

Table 13: Inference time under various i with constant 5 = 8 and M = 4. Our default setting is
highlighted in bold.

h 1 2 3 4

Time (s) 11.16 1155 11.81 11.86
Memory (GB) | 19.72 2242 2239 2241

Table 14: Comparison of time and memory consumption when query-based retrieval is incorporat-
ed/not incorporated in SharedLLM. h, M and [are fixed at the default values.

Setting | Time | Memory

w/o query-aware retrieval | 11.81 22.39
w query-aware retrieval | 13.18 25.44

17

	Introduction
	Related Work
	Method
	Overview
	Lower Model
	Upper Model

	Experiments
	Setup
	Main Results
	Time and Memory Efficiency
	Ablation Studies

	Conclusion
	Implementation Details
	Training Configurations
	Online Split-and-Search Algorithm
	Dataset Statistics

	More Experiments
	Results on Other Base LLMs
	Passkey Retrieval

	Overhead Analysis

