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Abstract

Pathology image segmentation plays a pivotal role
in artificial digital pathology diagnosis and treat-
ment. Existing approaches to pathology image
segmentation are hindered by labor-intensive an-
notation processes and limited accuracy in tail-
class identification, primarily due to the long-tail
distribution inherent in gigapixel pathology im-
ages. In this work, we introduce the Laplace Dif-
fusion Model, referred to as L-Diffusion, an inno-
vative framework tailored for efficient pathology
image segmentation. L-Diffusion utilizes multi-
ple Laplace distributions, as opposed to Gaussian
distributions, to model distinct components—a
methodology supported by theoretical analysis
that significantly enhances the decomposition of
features within the feature space. A sequence
of feature maps is initially generated through a
series of diffusion steps. Following this, con-
trastive learning is employed to refine the pixel-
wise vectors derived from the feature map se-
quence. By utilizing these highly discrimina-
tive pixel-wise vectors, the segmentation mod-
ule achieves a harmonious balance of precision
and robustness with remarkable efficiency. Ex-
tensive experimental evaluations demonstrate that
L-Diffusion attains improvements of up to 7.16%,
26.74%, 16.52%, and 3.55% on tissue segmen-
tation datasets, and 20.09%, 10.67%, 14.42%,
and 10.41% on cell segmentation datasets, as
quantified by DICE, MPA, mloU, and FwloU
metrics. The source codes are available at
https://github.com/Lweihan/LDiffusion.
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Figure 1. A comparative analysis of latent feature distributions be-
tween standard diffusion (a) and L-Diffusion (b). The latent feature
distributions for individual components across various diffusion
steps are denoted by violin plots in green, yellow, and cyan color.

1. Introduction

Pathology images encompass a wealth of multi-level tis-
sue and cellular features, regarded as the “gold standard”
for cancer diagnosis. Pathologists meticulously examine
and analyze the intricate relationships between diverse tu-
mors and the characteristics of their components, including
global lesions, tissue proportions and distributions, as well
as cellular morphology (McGenity et al., 2024).

Beyond the tumor itself, the tumor microenvironment com-
prises a complex array of elements, such as surrounding
blood vessels, tissues, and cells, all of which play pivotal
roles in tumorigenesis, progression, metastasis, and treat-
ment response. Consequently, numerous researchers have
directed their efforts toward the segmentation of multi-level
features within pathology images, aiming to enhance tumor
diagnosis and microenvironment analysis. This, in turn,
facilitates a deeper understanding of the mechanisms under-
lying tumorigenesis, progression, and metastasis (Zhao et
al., 2021; Ye et al., 2023; Hosseini et al., 2024).

Consequently, researchers have devised advanced pathology
image segmentation techniques to streamline the analysis
of such intricate images. Prominent segmentation models,
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including U-Net (Ronneberger et al., 2015), DeepLab (L.-
C. Chen et al., 2017) and Transformer (Atabansi et al., 2023),
have demonstrated exceptional performance across a spec-
trum of medical image classification tasks. Prior studies
have also successfully integrated those deep learning mod-
els into pathology tissue segmentation (Ye et al., 2023) and
cell segmentation (Hayakawa et al., 2021).

Pathology images exhibit three distinct characteristics: gi-
gapixel resolution, a broad spectrum of scales, and a long-
tail distribution. The annotation of gigapixel pathology
images demands considerable time and effort from patholo-
gists (Davri et al., 2022; Mahmood et al., 2023). Addition-
ally, diverse pathological features often manifest at varying
scales within the same image, necessitating models capable
of capturing multi-scale information (Tarekegn et al., 2024).
Furthermore, the imbalance in tissue type distributions com-
plicates the extraction of features from tail categories (Ding
et al., 2022), thereby intensifying the challenges of model
training. In summary, current pathology image segmenta-
tion tasks grapple with labor-intensive annotation processes
or limited accuracy in identifying tail samples.

Motivated by the diffusion model’s exceptional ability to
model latent distributions, we introduce the Laplace Diffu-
sion Model, referred to as L-Diffusion, for efficient pathol-
ogy image segmentation in this work. In lieu of the standard
Gaussian distribution, we employ multiple Laplace distri-
butions to model distinct components. Theoretical analysis
demonstrates that the Laplace distribution is advantageous
for broadening distribution disparities.

For the input original image, L-Diffusion initially trans-
forms it into a sequence of intermediate reconstructed fea-
ture maps through 7" diffusion steps. Each reconstructed
feature map is subsequently converted into a grayscale im-
age, thereby generating a new sequence of feature maps.
Along the diffusion step axis, each pixel corresponds to a
vector v € R™ T referred to as the pixel latent vector. Fol-
lowing this, contrastive learning is employed to accentuate
the distributional disparities among pixel latent vectors of
different components.

As depicted in Fig. 1, the Laplace diffusion model, enhanced
by contrastive learning, effectively highlights the distribu-
tional divergences between distinct components while main-
taining intra-component similarity as the diffusion steps
progress. The highly differentiated pixel latent vectors,
which exhibit distinct evolutionary patterns, enable the seg-
mentation model to achieve both precision and robustness
with remarkable efficiency.

It is noteworthy that each image comprises W x H pixel
latent vectors. The abundance and diversity of pixel latent
vectors in a limited number of images suffice to capture
the distributional characteristics of different components,

thereby reducing the dependency on annotated data. The
pronounced differentiation in component distributions fur-
ther mitigates the model’s learning challenges, particularly
for tail components.

Thus, our primary contribution lies in the introduction of the
first Laplace diffusion model, offering a novel perspective
on leveraging component distributions across diffusion steps
for efficient pathology image segmentation. The devised
pixel latent vector contrastive learning mechanism enhances
the differentiation of component distributions, significantly
improving segmentation performance, especially for tail
components. A detailed theoretical analysis is provided to
substantiate the practicality of the proposed L-Diffusion. Ex-
tensive experiments demonstrate that L-Diffusion achieves
superior accuracy and robustness on par with existing works
across multiple benchmarks.

2. Preliminaries

DDPM (Ho et al., 2020) consists of two processes: the
forward diffusion process, which progressively adds noise
to the data to transform the complex data distribution into
a standard Gaussian distribution, and the counter diffusion
process, which employs a parameterized 6 neural network
to iteratively reconstruct the data from the noise. We assume
that a data x satisfies the data distribution q(-), expressed
as 29 ~ ¢(xg), then the forward and backward processes
can be expressed as follows:

q(xi|mi—1) = N (2431 = Bre—1, Bed), (1

po(wi—1]ze) = N(2i—15 po(e, 1), 00 (24, 1)),  (2)

where pg(z;—1|x:) represents the new generated data distri-
bution at ¢-th diffusion, S represents the noise intensity, 11y
and oy are the mean and variance used by the neural net-
work to predict the distribution. Although we cannot obtain
the inverted data distribution g(x;_1|z;), we can obtain the
conditional probability distribution g(x;_1 |z, x¢) for given
x¢ and z; according to Bayes’ Theorem (3) as follows:

q(zi_1|x
ook ) = a1, an) St ) G
~ 1— oy
ﬁt - 1761 'Bta
—
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where ay = 1 — B4, oy = Hle «;. From the above Eqn.
(3), we extract the coefficients related to the unknown vari-
able x;_1 and transform them into the standard format of the
probability density function of gaussian distribution. The de-
tailed derivation can be referred to Appendix (A). Therefore,
We can go further and get the Eqn. (4),
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Figure 2. The comparison between pixel value distribution of various components modeled using Gaussian and Laplace distributions. For
each diffusion step, the reconstructed image and its corresponding pixel value distribution are provided. The components modeled by
Laplace distributions exhibit greater distinguishability compared to those modeled by Gaussian distributions.

Moreover, x; can be derived from z¢ and ;. Let zp (x4, )
be the noise predicted by neural network at the ¢-th step
noise reduction. Then we can then transform Eqn. (5)
into o denoted by x; and z0(x,t) and substitute it into
Eqn. (4). We can then derive the mean of the predictive
distribution consisting of x; and ¢, expressed in Eqn. (6),
and then calculate the generated data distribution as follows:

Ty = Vauxo + V1 — - zp(we, 1), &)
1
/,Lg(l't,t) = ﬁ(xt — \/1B—_t—o_ét29(xt,t)). (6)
t

3. Laplace Distribution Differentiation

The essence of differentiated representation of data distri-
butions in diffusion model can be broadly categorized into
two scenarios. Firstly, when two categories of data possess
markedly distinct features (such as color, shape, or spatial
position) the disparity in the means of their distributions
should be substantial enough to minimize the overlap be-
tween the distributions. Secondly, in cases where no clear
distinguishing features exist between two categories, the gra-
dient of the distributions should be sufficiently pronounced
to amplify the impact of perturbations on the probabili-
ties, thereby enhancing the separation of the data. A more

detailed exposition of the influence of data distribution dif-
ferentiation in diffusion model is provided in Appendix (A).

3.1. Laplace Distribution is More Differentiated

To differentiate the data distributions of distinct regions
within the image, it is essential to select a new distribution
capable of amplifying the disparities between data distri-
butions of various categories across the entire slide, while
preserving the intrinsic distribution characteristics within
each component. Through extensive experimentation, we
have determined that the Laplace distribution fulfills these
requirements. To substantiate that this distribution is more
suitable for pathology image classification than the Gaussian
distribution (Gauss & Waterhouse, 2018), we will analyze it
from two perspectives: theoretical derivation and qualitative
comparison. Our focus lies on the gradient of the Gaus-
sian distribution Vpus(z) and the gradient of the Laplace
distribution Vp,(x), whose equations are as follows:

d 1 x? T

Vpn (z) = a(\/ﬁ%p(—ﬁ)) = —;Iw(ﬂf),
Voe(o) = f(enpl 1) = - )
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where b denotes scale parameter of Laplace distribution.

As evidenced by the preceding equation, the gradient of the
Gaussian distribution exhibits proportionality to x, whereas
the gradient of the Laplace distribution is proportional to
sign(z). When z = 0, Vpy(z) demonstrates a smooth
progression, with the gradient intensifying as x diverges
from the origin. In contrast, Vp,(x) undergoes abrupt
changes, particularly as the noise value x approaches zero,
rendering the Laplace distribution markedly more sensitive
to its response to noise. As x extends further from the origin,
the Gaussian distribution exhibits a gradual decay in its tail,
with Vps(z) diminishing in a relatively subdued manner.
Conversely, the tail of the Laplace distribution decays more
swiftly, and Vp,(z) diminishes even more precipitously
in the presence of substantial noise. Moreover, akin to the
Gaussian distribution, which perturbs the original data by
augmenting its variance, the introduction of Laplacian noise
preserves the morphological structure of the original data.
It merely alters the concentration of the noise distribution,
signifying an enhanced sensitivity to extreme values.

Furthermore, to visually demonstrate the superiority of the
Laplace distribution, we applied both Gaussian and Laplace
distributions to the inverse diffusion process of the same im-
age over 10 steps, observing the variations in pixel intensity
across different regions. In the context of a melanocytoma
histopathology patch, 10 sampling maps and their corre-
sponding pixel distributions are illustrated in Fig. 2. For the
pixel distribution maps, the X-axis represents the sample
number (starting from 0), the Y-axis denotes the pixel count
of the image, and the Z-axis indicates the range of gray
values. The gray points signify the background, the pur-
ple points represent tumor cells, and the blue points denote
apoptotic cells. It is evident that the pixel distribution under
the Gaussian model appears more uniform. In contrast, the
Laplace distribution facilitates a clearer separation of pixels
belonging to distinct categories.

4. L-Diffusion for Efficient Pathology Image
Segmentation

For the original image zy, comprising N distinct compo-
nents, we model it using NV independent Laplace distribu-
tions, denoted as qo(xo), q1(x0), ..., gn(xo). During the
diffusion process, the mean squared error (MSE) loss for
the t-th step is expressed as follows:

Larse = Eage [l — eo(ze, t)]?],

where € represents the added Laplace noise, and €g (x4, t)
denotes the predicted noise derived from the intermediate
reconstructed feature map x; using model parameters 6. For
clarity in presenting the methodology, we omit the detailed

derivation of the multiple-component Laplace distribution
modeling, which can be found in Appendix (A).

Through T diffusion steps, we obtain a sequence of inter-
mediate reconstructed feature maps [rq, r2, . . o rr),
where 7, € RW>H*3 and W and H represent the width
and height of z(, respectively. Each reconstructed feature
map 7y is subsequently transformed into a grayscale im-
age 7y = RGB2Gray(r;), forming a sequence of feature
maps [y, g, ..., 7. .., Pr], with 7y € RWV>XHX1 Along
the diffusion step axis, each pixel corresponds to a vector
v € R referred to as the pixel latent vector.

Tty e

Pixel Latent Vector Contrastive Learning. To en-
hance the distributional similarity among positive pairs
Positive(v}?, v}%) and the distributional disparities among
negative pairs Negative(v}, v}”/ ), contrastive learning is em-
ployed. The contrastive learning loss function L’Z:gT is
defined as follows:

o Positive (v}, v}l )
CRT — 2 ies n ,n ; n ,n'\’
Positive(vy, v}, ) + Negative (v}, v}")
N Kn/
Negative (v, o) = Z Zexp(sim(v,’;,vi"/)/ﬂ,
n/=1i=1

Positive(vyy, v}l ) = exp(sim(vy, v ) /T), n#n/,
where NN represents the number of components, and K,/
denotes the sampling number of vector samples for the n’-th
component.

By combining the MSE loss £j;sg and the contrastive
learning loss [Zlé’gT, the distributions of various components
in the intermediate feature maps become highly differen-
tiated, as illustrated in Fig. 1. This differentiation signifi-
cantly reduces the identification difficulty for the subsequent
segmentation module. It is important to note that the con-
trastive learning loss £18§/T is applicable only to a subset of
pathology images with available annotations.

Sequence Feature Enhanced Segmentation. Utilizing
the enhanced feature maps [}, 75, ..., 7}, ..., /] refined
through contrastive learning, the segmentation network
Fseq() generates the prediction results 3’ as follows:

Y = Foeg([F1, Py ooy Fpyen, Pp]).
The DICE loss between the predicted map 3’ and the ground
truth y is employed to train the segmentation network, de-

fined as:
!

2y
Y4y

EDice(ylv y) =1

Through the two-stage training framework combining L-
Diffusion and the segmentation network, the pathology im-
age is effectively segmented into its distinct components.
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Table 1. Quantitative tissue segmentation performance (%) comparison. Bold and underling indicate the best and second-best performance.

MODEL CRCD [ PUMA BCSS

DICE MPA wmlIoU FonU\ DICE MPA wMIoU FwloUl DICE MPA wMIoU FwloU
FASTFCN 45.23 44.68 46.11 76.20| 48.77 45.09 50.72 67.60| 45.41 51.53 46.78 71.96
U-NET++ 73.02 51.12 66.18 79.11| 78.07 53.46 66.51 82.26| 76.04 53.31 61.23 74.91
SWIN-UNET 70.08 52.22 63.27 84.11| 69.46 52.39 5540 80.42| 66.24 52.85 61.54 84.32
SAMUS 63.94 62.45 55.82 77.93| 61.24 61.29 53.92 8291 | 62.68 59.26 53.34 79.58
SAMED 70.63 50.38 58.38 78.08 | 62.56 57.39 64.48 70.74| 67.51 51.71 56.48 75.79
SAMPATH 77.54 66.70 63.65 86.28 | 84.95 57.79 66.30 83.92| 78.10 62.83 67.44 87.12
UN-SAM 75.69 66.30 62.71 83.57| 80.49 56.63 65.19 85.73 | 80.89 65.80 70.44 85.38
DEEPLABV3 73.12 58.49 49.18 82.26| 73.36 53.00 53.51 81.43| 67.75 52.76 57.83 87.62
DEEPLABV3+ 77.04 58.14 52.80 81.88 | 80.85 58.41 48.01 88.55| 86.31 56.53 50.19 84.30
DENSEASPP 76.18 67.39 60.50 77.71| 76.24 60.02 59.33 72.77| 70.88 64.53 54.68 81.35
BoNuS 75.22 71.69 64.59 80.30| 72.13 60.64 68.77 83.14| 75.07 70.19 60.31 86.73
L-DirFrusioN  82.38 80.19 80.17 86.47 | 92.11 88.03 81.62 91.77 | 89.24 82.33 83.49 91.17
Improvement +4.84 +12.80 +16.52 +0.19 | +7.16 +26.74 +15.11 +3.22 | +2.93 +17.80 +16.05 +3.55

Table 2. Quantitative evaluation of cellular segmentation performance

(%). Metric calculations are only performed on foreground cells.

MODEL CRCD [ PUMA PANNUKE

DICE MPA wmIoU FWIOU\ DICE MPA wMIoU FwloUl DICE MPA wMIoU FwloU
FASTFCN 43.04 60.25 32.86 73.41 1| 39.03 62.87 31.28 74.15| 44.51 68.73 30.58 66.52
U-NET++ 73.73 82.17 30.06 65.93| 74.02 75.34 34.68 75.17| 36.88 81.96 25.89 71.09
SWIN-UNET 46.70 27.70 31.54 86.12 | 40.05 29.89 30.94 80.47| 47.08 32.94 75.76 79.71
SAMUS 34,53 75.50 37.72 75.34| 32.26 77.10 37.52 72.04| 30.11 70.17 37.27 68.66
SAMED 70.85 61.21 3493 69.66 | 66.88 64.57 31.93 73.02| 72.60 61.33 26.59 67.95
SAMPATH 79.02 87.97 82.03 81.23| 81.62 80.79 74.50 80.68 | 72.33 82.79 38.08 80.46
UN-SAM 78.53 85.27 81.79 80.36| 79.57 74.99 68.81 79.12| 70.48 80.77 75.42 84.57
DEEPLABV3 54.65 52.12 52.54 84.93| 56.19 55.55 45.07 81.83| 53.98 60.82 52.45 82.93
DEEPLABV3+ 63.43 59.01 71.66 79.38 | 65.99 5592 75.00 82.59| 71.46 55.17 72.41 87.30
DENSEASPP 37.35 48.09 51.09 84.41| 38.90 52.33 51.47 81.66| 81.00 54.95 4546 77.54
BoNUS 75.33 68.67 60.42 79.84 | 78.44 75.49 64.53 82.14| 80.33 60.58 69.22 85.97
L-DIFFUSION  96.11 94.94 92.62 95.34 | 88.57 90.38 86.19 83.13| 94.78 93.46 90.18 92.18
Improvement +20.09 +6.97 +10.59 +10.41) +6.95 +9.59 +11.19 +0.54 | +13.78 +10.67 +14.42 +4.88

5. Experiment

Datasets and Evaluation Metrics. We employ six dis-
tinct tissue and cellular datasets to validate the multi-scale
segmentation capabilities of L-Diffusion. These datasets
encompass: a colorectal cancer histopathology dataset
provided by the Guangdong Provincial People’s Hospi-
tal (referred to as CRCD) (Ye et al., 2023), a melanoma
histopathology dataset from the PUMA challenge (referred
to as PUMA) (Schuiveling et al., 2024), a publicly ac-
cessible dataset specifically curated for tissue segmenta-
tion tasks in breast cancer pathology (referred to as BCSS)
(Amgad et al., 2019), and a publicly available dataset ded-
icated to multi-class cellular segmentation (referred to as
PanNuke) (Gamper et al., 2020). Furthermore, comprehen-

sive details regarding these datasets are provided in Table 7
of Appendix (B). The evaluation metrics comprise MPA,
DICE, mloU, and FWIoU, which collectively evaluate seg-
mentation performance from the perspectives of pixel-wise
accuracy, segmentation area, boundary precision, and class-
specific analysis. It’s noticed that the performance on cell
only considering the cells, the reason of which is that back-
ground has large proportation of whole slide image will
disturb the cells segmentation performance measurement.

Models and Parameters. L-Diffusion comprises a VAE
encoder, a Laplace Scheduler, a U-Net noise prediction mod-
ule, a DAE decoder, and a contrastive learning module. The
image is initially encoded into the latent space by the VAE,
after which it is passed to the Laplace Scheduler along with
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Figure 3. Qualitative comparison of tissue (upper row) and cellular (lower row) segmentation performance.

Table 3. The ablation study on annotation ratio.

Annotation Ratio 10% 20% 30% 50% 70% 100%
DICE 19.95 59.59 83.51 86.19 91.62 92.11

MPA 20.00 55.12 8293 85.73 87.95 83.03
mloU 1991 5496 79.86 80.02 80.54 81.62
FwloU 33.06 71.54 89.46 89.67 90.31 91.77

the time step ¢ to generate noise. This noisy representa-
tion is then processed by the U-Net to predict the noise at
step ¢, which is subsequently subtracted from the noisy im-
age to yield the latent space sampling. The resulting latent
representation is fed into the DAE to decode it back to its
original dimensions. K, is set to 100. We adopt the Con-
vNeXT (Z. Liu et al., 2022) as the segmentation network.
To Train Diffusion Model, we configure the batch size to 1,
employ the Adam optimizer with a learning rate of 1 x 1072,
and typically set the number of sampling steps to 5 ~ 15,
contingent upon the available GPU. In the contrastive learn-
ing module, the temperature 7 ranges from 0.05 ~ 0.1 to
ensure effective sharpening of the distribution without gradi-
ent explosion. In addition, to train ConvNeXT, we configure
the batch size to 32, employ the Adam optimizer with a
learning rate of 1 x 1073,

5.1. Comparison with SOTA Methods

In order to comprehensively verify the performance of the
proposed model, we compared it with a variety of existing
mainstream models including FastFCN (H. Wu et al., 2019),
U-Net++ (Zhou et al., 2018), Swin-UNet (Cao et al., 2022),
SAMUS (X. Lin et al., 2023), SAMed (K. Zhang & Liu,
2023), SAMPath (J. Zhang et al., 2023), DeepLabv3 (L.-
C. Chen, 2017), DeepLabv3+ (L.-C. Chen et al., 2018),
DenseASPP (Yang et al., 2018), UN-SAM (Z. Chen et al.,
2024) and BONUS (Y. Lin et al., 2024).

Quantitative Comparison. The quantitative results for tis-
sue and cellular segmentation are detailed in Table 1&2. L-
Diffusion demonstrates a significant enhancement on both
tissue and cell segmentation datasets. These substantial

Table 4. Qualitative ablation study results.

Contrastive Data Average Score on Tissue

Learning? Distribution DICE MPA mloU FwloU
X Gaussian 1533 1417 13.31 23.26
v Gaussian 1741 21.61 1691 29.76
% Laplace 26.02 26.81 21.41 34.26
v Laplace 85.75 83.52 81.76 89.74

gains effectively validate the efficacy of leveraging compo-
nent latent distributions for pathology image segmentation.

Qualitative Comparison. Fig. 3 presents the qualitative vi-
sualization, illustrating that L-Diffusion attains exceptional
boundary segmentation accuracy in the tissue samples de-
picted in the upper row. For cellular samples, L-Diffusion
not only achieves precise boundary segmentation but also ex-
cels in accurately identifying tail-class cells, as highlighted
by the yellow and cyan annotations. Additional visualiza-
tion results are provided in Appendix (D)-(F).

Performance for Distinct Components. The radar chart
illustrates the quantitative assessment of segmentation per-
formance across various methodologies for distinct tissue
and cellular categories. As depicted in Fig. 4, it is evident
that L-Diffusion outperforms all existing methods across
every tissue and cellular category, particularly excelling in
the segmentation of components with lower proportions.
This underscores L-Diffusion’s proficiency in addressing
long-tail distribution challenges within pathology images.

5.2. Performance Across Varied Annotation Ratios

To validate the efficiency of L-Diffusion under limited an-
notations, we conduct an ablation study using varying anno-
tation ratios on the PUMA tissue segmentation dataset. As
illustrated in Table 3, it is evident that L-Diffusion achieves
comparable performance even with only 30% of annotated
samples. However, the segmentation module necessitates a
sufficient number of annotated samples, thereby increasing
the annotation demands of L-Diffusion. In future work, we
aim to explore the minimal annotation data requirements.
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Figure 4. A quantitative evaluation of segmentation performance across diverse methodologies for distinct tissue and cellular categories.
Each axis of the radar chart represents a specific component category along with its corresponding proportion.

5.3. Ablation Study

In this section, we conduct an extensive series of ablation
studies on the critical components of L-Diffusion, including
the Laplace distribution and pixel latent vector contrastive
learning. Table 4 presents the average performance metrics
across three tissue datasets, revealing that the integration of
the Laplace distribution with contrastive learning serves as
the cornerstone of L-Diffusion for pathology image segmen-
tation. Fig. 5 illustrates that the latent feature distribution
under the “contrastive learning + Laplace distribution” con-
figuration exhibits more pronounced distinctions between
different tissue types. As the diffusion steps progress, the
data distribution within the same tissue type becomes in-
creasingly cohesive, further validating the efficacy of com-
bining contrastive learning with the Laplace distribution.

5.4. Generalization on Other Large-scale Image

To evaluate the generalization prowess of L-Diffusion
across other large-scale image datasets, we compare its
segmentation performance with several state-of-the-art
(SOTA) remote sensing image segmentation methods on the

Massachusetts-Building dataset (Mnih, 2013). The compet-
ing methods encompass U-Net (Ronneberger et al., 2015),
Uniformer (K. Li et al., 2023), UANet (J. Li et al., 2024),
and GLGF-Net (Fu et al., 2024). For a fair comparison, we
employ widely recognized metrics in the remote sensing im-
age segmentation domain, including IoU, F1, and Precision
(Pre.). As illustrated in Table 6, L-Diffusion exhibits su-
perior performance in remote sensing image segmentation,
rivaling existing methodologies. Segmentation visualization
results, detailed in Appendix (G), further demonstrate that
L-Diffusion achieves comparable segmentation accuracy,
particularly for tail-class objects such as buildings. These
experiments highlight the robust generalization and seg-
mentation capabilities of L-Diffusion on large-scale images,
especially for tail-class categories.

5.5. Comparison with Different Distributions

We investigate the influence of different noise distributions
on the average performance of diffusion models on three tis-
sue segmentation datasets, focusing on three representative
types: Cauchy (Lian et al., 2025), Student’s t (X.-F. Wang
et al., 2024), and Laplace. As shown in Table 5, the Laplace
distribution achieves the best overall performance. In con-
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Figure 5. A comparative analysis of latent feature distributions under various configurations. The latent feature distributions for individual
components across multiple diffusion steps are represented by violin plots, distinguished by green, yellow, and cyan colors.

trast, the Cauchy distribution yields a significantly lower
DICE score and FwloU score. This can be attributed to
its undefined expectation and variance, which severely hin-
ders the stability of gradient-based optimization. Student’s t
distribution demonstrates promising segmentation accuracy,
but suffers from a prohibitively high computational cost,
likely due to its more complex gradient behavior. Overall,
the Laplace distribution maintains a strong balance between
segmentation accuracy and computational efficiency.

Table 5. Comparison of different noise distributions on segmenta-
tion performance.

Distribution DICE (%) FwloU (%) Runtime (s)
Cauchy 16.25 20.33 7325
Student’s ¢ 83.17 86.50 20440
Laplace 85.75 89.80 8882

Table 6. Generalization on remote sensing image dataset.

Metric U-Net Uniformer UANet GLGF-Net L-Diffusion
ToU 68.48 73.80 76.41 75.33 80.30
Fl1 81.47 84.92 86.63 85.93 88.98
Pre. 80.09 87.60 87.94 85.03 96.52
6. Related Work

Pathology Image Segmentation plays a pivotal role in
the diagnosis and treatment of cancer, while also foster-
ing a deeper comprehension of the mechanisms underlying
tumorigenesis, progression, and metastasis. Numerous stud-
ies have utilized various segmentation models, such as U-
Net (Ronneberger et al., 2015), DeepLab (L.-C. Chen et al.,
2017) and Transformer (Atabansi et al., 2023), along with
their variants, for pathology image segmentation (Y. Wu et
al., 2022). Based on their segmentation objectives, these
studies can be broadly classified into two categories: cell
segmentation (Ciresan et al., 2012; D. Liu et al., 2019;

Hayakawa et al., 2021; Feng et al., 2021; Mahbod et al.,
2024) and tissue segmentation (Salvi et al., 2021; Musulin
etal., 2021; Ye et al., 2023). However, gigapixel pathology
images exhibit multi-scale features and long-tail compo-
nents, which result in significant annotation labor costs and
limited accuracy in identifying tail-class samples.

Contrastive Learning, a pivotal approach in self-
supervised learning, has achieved remarkable advancements
in the field of computer vision in recent years. Researchers
have extended the application of contrastive learning to
diverse domains, including natural language processing
(NLP), graph learning, and multi-modal learning (Le-Khac
et al., 2020; Hu et al., 2024). Recently, several studies have
integrated contrastive learning into diffusion models (Tian
et al., 2024; Dalva & Yanardag, 2024; Xiao et al., 2024),
utilizing it to amplify the representational distance between
different classes. In this paper, we apply contrastive learning
to enhance the distinction between pixel latent vectors of
different components modeled using Laplace distributions.

Diffusion in Medical Image Analysis. Wu et al. (J. Wu, Fu,
et al., 2024; J. Wu, Ji, et al., 2024) introduced MedSegDiff,
a diffusion model-based approach for medical image seg-
mentation. Webber et al. (Webber & Reader, 2024) utilized
diffusion models for medical image reconstruction, enabling
the production of high-quality images even in low-dose or
rapid imaging scenarios. Kazerouni et al. (Kazerouni et al.,
2023) given a comprehensive survey of diffusion models in
medical imaging. Additionally, several researchers (Oh &
Jeong, 2023; He et al., 2024; Xu et al., 2024) have extended
the application of diffusion models to pathology image gen-
eration tasks, leveraging their exceptional capability for
high-quality image synthesis.

Diffusion in Segmentation. Amit et al. (Amit et al., 2021)
pioneered the integration of diffusion models into segmen-
tation tasks, proposing the SegDiff model and exploring
the application of diffusion models to address image seg-
mentation challenges. Bogensperger et al. (Bogensperger
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et al., 2023) introduced an innovative image segmentation
approach by merging score-based models with diffusion
models. Wang et al. (M. Wang et al., 2023) developed
SegRefiner, which employs a discrete diffusion process to
iteratively refine segmentation results. Xie et al. (Xie et
al., 2024) utilized diffusion models to generate synthetic
labeled data for segmentation tasks. To the best of our
knowledge, no existing method has leveraged component
distributions across diffusion steps for segmentation as we
have accomplished.

Distribution Exploration Recent studies have explored
how different noise distributions affect diffusion model per-
formance. Hang et al. (Hang et al., 2024) show that the
Laplace distribution, with its sharp peak and heavy tails,
improves robustness to outliers. Alexia et al. (Jolicoeur-
Martineau et al., 2023) further compare Gaussian, T, and
Uniform distributions, finding that smoother distributions
lead to better image generation. However, these works
mainly focus on generation quality. In contrast, this paper is
the first to explore how sharp distributions can reshape the
latent space for segmentation tasks. We provide a detailed
theoretical analysis and show that distribution-aware design
benefits segmentation performance in diffusion models.

7. Conclusion

In this paper, we introduce L-Diffusion, an innovative frame-
work that employs Laplace distributions and contrastive
learning to advance pathology image segmentation. By
modeling distinct components using Laplace distributions,
L-Diffusion amplifies distributional divergences, facilitat-
ing precise and robust segmentation. The proposed pixel
latent vector contrastive learning mechanism diminishes the
dependency on annotated data and alleviates the learning
challenges associated with tail components. Rigorous theo-
retical analysis and comprehensive experimental evaluations
substantiate the practicality and superiority of L-Diffusion,
positioning it as a state-of-the-art solution for pathology
image segmentation. The Laplace Diffusion Model offers a
groundbreaking perspective on harnessing component distri-
butions across diffusion steps to achieve efficient pathology
image segmentation. It provides an effective tool to aid
tumor diagnosis and microenvironment analysis, fostering a
deeper understanding of tumorigenesis and progression. In
future work, we aim to explore the application of Laplace
Diffusion in an unsupervised manner to assist pathology im-
age component analysis and extend its capabilities to other
large-scale image segmentation tasks.

Ethical and Clinical Statements

This study explores the use of L-Diffusion for academic
research in tumor diagnosis and microenvironment analy-

sis. While our method demonstrates strong technical poten-
tial, we acknowledge broader ethical considerations beyond
dataset access. These include the possibility of algorithmic
bias affecting diagnostic outcomes across different patient
groups, challenges in model interpretability for clinical prac-
titioners, and concerns related to patient data privacy during
inference and deployment.

The current version of L-Diffusion is intended solely for
academic investigation and is not deployed in clinical set-
tings. Any future application in real-world scenarios should
be guided by clinical validation, domain-specific oversight,
and compliance with relevant medical and regulatory stan-
dards. We advocate for continued research into the safe, fair,
and transparent use of Al systems in healthcare.

Impact Statement

Regarding the dataset, all utilized pathology datasets are
publicly available and have undergone ethical review and
approval. Concerning the algorithm, L-Diffusion delivers
precise and robust pathology image segmentation with ex-
ceptional efficiency. Its capacity to effectively decompose
pathology images simplifies the analytical workflow, pro-
viding a potent tool for advancing tumor diagnosis and
microenvironment analysis. This progress cultivates a more
profound comprehension of the mechanisms driving tumori-
genesis and progression.
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A. Mathematical Derivations

This section provides the important mathematical derivations mentioned in Section 4. As we assume, the data distribution
satisfied by the original image z can be expressed as the following formula (7):

q(@o|p, b) Z(Jn (zolpn, bn), q(21:7|20) = Hq (zt|we—1) (N

In the above formula, N, u; and b; are the number of categories and the data distribution center and scale parameters of each
category, and ¢ and T represent the current time step and the total step number respectively.

In order to propagate the gradient backwards, we need to make the z sampled by Laplace noise differentiable through a heavy
parameter operation. It is possible to set an independent variable €, when the sampling noise z satisfies z = g + bg @ €, it
is observed that the equation still maintains randomness as a whole, and satisfies the Laplace distribution with the mean zg
and scale parameter bg. The subsequent inference stages 119 and by can be derived from U-Net with parameter 0, and the
randomness is transferred to €, making the gradient derivable.
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The above formula is ;1 plus noise z; to obtain a mathematical representation of x;, where Q(n,t) TEpresents the noise

level coefficient of class n at ¢ time steps, equivalent to 1 — 3(n,t) and satisfies &, ;) = Hle Q(n,1)- Since Laplace
distribution and Gaussian distribution have the same additivity, the formula (9) can be derived as follows:
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Substituting formula (9) into formula (8) gives the formula (10) as follows:
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Equation (11) can be obtained by substituting the above equation into Laplace distribution, and the noise adding process can
be obtained after transformation as follows:
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Figure 6. Illustration of Laplace and Gaussian distributions. The purple curve represents the Laplace distribution with means of —1 and 1,
respectively, and a scale parameter of 0.25, while the pink curve depicts the Gaussian distribution with means of —1 and 1 and a variance
of 0.5.

In the process of reverse diffusion, we still refer to formulas (3). Therefore, backward diffusion can be expressed as the

formula (12):
T

po(zo:r) = par) [ [ po(i—1l2e), po(we1lz,) = ZL (@15 po (@, 1), by (24, 1)). (12)

t=1
The formula for conditional probability P(A|B) with marginal probablhtles P(A) and P(B) can be expressed as P(A|B) =

P(;l(;)B). And then P(AN B) = P(A|B) - P(B) = P(B|A) - P(A). Therefore, we take the “perturbation” sampled

data z;_ as A, the complete Laplace noise and the original data z; as B to obtain the formula (13):
q(@e|Ze—1) - q(Ze—1)
Q(ﬂUt)
q(@|Ty—1,0) - ¢(&4—1|0)
q(xt|zo)

Because the conditional probability in formula (13) satisfies formula (12), formula (14) can be derived as follows:

Q(i't71|xt) =

q(Zp—1|Te, w0) = (13)

q(@e|T1—1, o) - ¢(F¢—1]w0)
q(e|wo)
Z ('-Tt VTt n |Te-1 = /Ama—1) %0l B |ze — \/@(n,t)x0|> . (14)
ot VBt VI=ame-n VI=amy

Before, we derived a formula (8). As a result, know z; = Zn 1( [QnnTt—1 + /1 —« nt)zl And because
/1 — @21 is always non-negative, so it is not difficult to draw z; — /a(n,t)xt_l > 0. Similarly, we can also
draw ;1 — \/Q(n,s—1)T0o = 0 and z¢y — | /Q(n 1)To > 0. Substitute the formula (14) to get formula (15) as follows:

i | — /) Te—1] N |[Te-1 = /Ama—pTol |2 = \/Fm.p ol
VBt V1= am—1 V1= Qmp ’
_ EN: (xt = /Um0 Tt—1 N Tt—1 — /Q(n,t-1)T0 L — /OQ(n, t)fU())

Q(Zp—1|ze, 20) =

)

Q(ftfl\xmxo) = —

Bn,t) VI=Qumi— V91—
N
Ql(n,t) 1 -
= — — + Ty 1+ | Clayg, x . (15)
>\ (5 + = P +[Clan )|
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The red box refers to the scale parameter of the Laplace distribution, while the blue box refers to the mean value of the
Laplace distribution. The data distribution for category n can be obtained after transformation.

In addition, since the above random variable €(; 9)(z(; +)) satisfies the Laplace distribution, it can be found by comparing Fig.
6. Laplace probability change range Ay much larger than Gaussian distribution probability change range Ay’. Observing
the red pentagrams representing intersection points of different means in the Laplace distribution and the blue pentagrams
for the Gaussian distribution, it is evident that the red pentagrams occur with lower probability.

The confusion region, highlighted as the shaded area, is smaller for the Laplace distribution. This indicates that, during
contrastive learning, the difference between positive and negative samples is greater, making it more suitable for training.
Furthermore, the yellow pentagrams representing the intersection points of both distributions reveal that the Laplace
distribution exhibits steeper gradients, signifying a greater impact of randomness.

B. Dataset and Details

In this paper, we adopt four dataset including colorectal cancer pathological image dataset CRCD (Ye et al., 2023), melanoma
pathological image dataset PUMA (Schuiveling et al., 2024), breast cancer pathology image dataset BCSS (Amgad et al.,
2019) and multi-class cellular segmentation dataset PanNuke (Gamper et al., 2020). Detailed sample number and category
number information about these four datasets is presented in Table 7.

Table 7. Dataset details. ‘#image’ stands for number of images, ‘#tissue’ denotes the annotation number of tissues, ‘#cell’ represents
annotated cells, ‘#category’ represents category number.

Dataset #image #tissue / #category  #cell / #category
CRCD (Ye et al., 2023) 1764 800/9 964 /3
PUMA (Schuiveling et al., 2024) 151 151/6 151/10
BCSS (Amgad et al., 2019) 151 151722 -
PanNuke (Gamper et al., 2020) 481 - 481/19

Table 8. Component Abbreviation Description.

Abbreviation | Full Name | Abbreviation | Full Name | Abbreviation | Full Name
ADI adipose GLA glandular secretions NSM normal stroma
ADR adrenal HED head&neck OTH others
ANG angioinvasion HIT histiocyte OuT outside roi
APO apoptosis IMM immune OVA ovarian
BAC background INF lymphocytic infiltrate PAN pancreatic
BID bile duct KID kidney PLA plasma
BLA bladder LIV liver PRO prostate
BLD blood LUN lung SKI skin adnexa
BRE breast LYM lymphocyte aggregates STO stomach
CER cervix MEL melanophage STR stroma
COL cloon MET metaplasia SUB submucosa or serosa
DCI dcis MUC mucus TES testis
END endothelium MUS muscle THY thyroid

EPI epidermis NEC necrosis TUM tumor epithelium
ESO esophagus NER nerve UND undetermined
EXC exclude NEU neutrophil UTR uterus
FAT fat NOR normal gland VES vessel
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C. Pixel Latent Vector Separation Process Visualization

To more intuitively observe the separation process of pixel latent vectors, we visualized the distribution of pixel latent
vectors for each tissue in the PUMA dataset during the training of the diffusion model with contrastive learning. For clarity
in visualization, we sampled 50 pixels and adjusted the display quantity of each category based on its proportion relative to
the total number of pixels. The separation process of pixel latent vectors is illustrated in Fig. 7. It is evident that as training
progresses, pixel latent vectors of different tissues become distinctly separated, while those of the same tissue cluster more
closely together.

Figure 7. Visualization of the pixel latent vector separation process during diffusion model training with contrastive learning. The training
spans a total of 100 epochs. After every 5 epochs, the learned pixel latent vectors are reduced to a three-dimensional space using
T-SNE(Van der Maaten & Hinton, 2008). Each tissue type is represented by a distinct color.
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D. More Tissue Segmentation Visual Results

Origin Image DeepLabv3+ SAMPath DenseASPP

Figure 8. More qualitative comparison of tissue segmentation performance. Several leading high-performance methods are selected for
visual comparison.
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E. More Cell Segmentation Visual Results
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Figure 9. More qualitative comparison of cellular segmentation performance. Several leading high-performance methods are selected for
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F. Segmentation Visualization Results on Whole Slide Images
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Figure 10. The segmentation visualization results of L-Diffusion on pathology whole slide images.
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G. Segmentation Visualization Results on Remote Sensing Images
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Figure 11. The segmentation visualization results of L-Diffusion on remote sensing images.



