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ABSTRACT

Recently, multimodal large language models (MLLMs) have garnered widespread
attention due to their ability to perceive and understand multimodal signals. How-
ever, their large parameter sizes and substantial computational demands severely
hinder their practical deployment and application. While quantization is an effec-
tive way to reduce model size and inference latency, its application to MLLMs
remains underexplored. In this paper, we conduct an in-depth analysis of MLLMs
quantization and identify several challenges: slow inference speed of the visual
tokens, distributional differences across modalities, and visual outlier clipping
degrades performance. To address these challenges, we propose MQuant, a quanti-
zation framework tailored for MLLMs. Specifically, 1) we design Modality-specific
Quantization (MSQ) and Attention-Invariant Flexible Switching (AIFS) to support
per-tensor static quantization and facilitate efficient inference. 2) we introduce an
unified LayerNorm-to-RMSNorm transformation, achieving seamless integration
of the MLLM vision encoder with Hadamard rotation. 3) we propose Rotation
Magnitude Suppression (RMS) to mitigate outliers introduced by Hadamard rota-
tion. Experiments conducted on five mainstream MLLMs demonstrate the superior
performance and broad applicability of MQuant. For example, it maintains around
98% of the floating-point accuracy under the W4A8 setting. To the best of our
knowledge, MQuant is the first quantization solution for MLLMs, paving the way
for future advancements in their application.

1 INTRODUCTION

Recently, large language models (LLMs) such as GPT (Brown et al., 2020) and the LLaMA se-
ries (Touvron et al., 2023a;b; Dubey et al., 2024) have shown remarkable success across various
domains, but they often struggle when handling non-textual data. Multimodal large language models
(MLLMs) (Reid et al., 2024; Achiam et al., 2023b; Wang et al., 2023) overcome this by incorporating
various modalities such as images and video, enabling a comprehensive understanding of diverse data
types. However, the vast number of parameters and substantial computational demands due to the
processing of multimodal inputs, which severely hinders their practical application. This is especially
true in resource-constrained and privacy-sensitive environments.

Quantization is an effective technique for compressing and accelerating neural networks by converting
high-precision values (e.g., FP32) to low-precision values (e.g., INT8), significantly reduces memory
usage and inference latency. While quantization has been widely applied to LLMs (Yuan et al.,
2023a; Shao et al., 2023), its application to MLLMs is essential but remains relatively under-explored.

When quantizing MLLMs, it is essential to consider the differences in inference efficiency that arise
from their multi-modal nature. A typical difference is the Time to First Token (TTFT) in MLLMs
increases significantly with the resolution and aspect ratio of input images or videos. As shown
in Fig 1(a), in models such as Qwen2-VL (Wang et al., 2024), the number of prefill visual tokens
grows as image resolution increases (detailed figure in Fig. 7). This rapid expansion in token count
exacerbates the inference latency, particularly in per-token dynamic quantization, which requires
separate processing for each token, such as memory access and scale computation. As a result, the
TTFT in MLLMs increases drastically, severely impacting overall inference latency. Moreover, in
higher-demand scenarios such as video-based tasks and multi-image dialogues, the accumulation of
visual tokens becomes even more pronounced, further exacerbating the increase in TTFT.
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Figure 1: (a) The number of prefill visual tokens across different MLLMs as the image splits or
resolution increases. (b) The activation values of visual tokens range from −20 to 10, whereas textual
tokens are centered around 0, with only a few having absolute magnitudes exceeding 0.5.

One intuitive approach to address this issue is to employ per-tensor static quantization for prefill
multimodal tokens, which eliminates the need for token-wise scale computation. While this approach
achieves up to 66% acceleration across all LLM linear layers (Fig. 4), it still results in a serious
accuracy degradation. We investigate the root causes and identify the following key challenges
in MLLM quantization:❶ Balancing efficiency and accuracy when adopting per-tensor static
quantization for multi-modal tokens. In MLLMs, input multi-modal tokens include visual and
textual with distinct value distributions. Unlike per-token dynamic quantization, which can adaptively
compute token-wise scales in an online manner, static quantization applies few scale factors across the
mixed multi-modal tokens in an offline manner, leading to a difficult trade-off between efficiency and
accuracy. ❷ The data distribution of visual and textual tokens exhibits significant differences.
Unlike LLMs, which solely handle textual features, MLLMs face the challenge of processing
input with distinct distributions across multiple modalities. As shown in Fig 1 (b), the activation
distributions between visual and textual tokens reveal substantial numerical discrepancies. Joint
quantization of these tokens may cause the larger values of visual tokens to overshadow the smaller
textual values, resulting in a loss of textual information. Therefore, MLLMs require modality-
specific approaches to account for the heterogeneous nature of visual and textual token distributions.

Table 1: Results of the Qwen-VL on
TextVQA using different clipping ranges
for visual and textual tokens. Activations
are quantized using per-tensor static setting.

Clip Range Bits (W/A) Visual Tokens Textual Tokens

- BF16 / BF16 61.40
(0-0.99999) BF16 / INT16 18.92 (↓42.48) 60.09 (↓1.31)
(0-1.0) BF16 / INT16 61.2 (↓0.20) 61.25 (↓0.15)

❸ Clipping outliers in visual tokens leads to perfor-
mance degradation. As shown in the Tab. 1, applying
a stricter clipping range causes a large drop in accuracy
for visual tokens, while textual tokens exhibit only a
minor decrease. In contrast, using a full clipping range
slightly mitigates the performance drop for visual to-
kens. This indicates that careful handling of outliers
in visual tokens is crucial—indiscriminate clipping of
outliers leads to severe accuracy loss.

To this end, we propose MQuant, an accurate and efficient post-training quantization (PTQ) solution
specifically designed for multimodal large language models (MLLMs). First, to reduce the TTFT
while maintaining accuracy, we introduce Modality-Specific Quantization (MSQ), which handles
the distinct distribution differences between visual and textual tokens. For further acceleration,
we design an Attention-Invariant Flexible Switching (AIFS) scheme. AIFS transforms mixed
multimodal tokens into unified, modality-decoupled tokens without the need for dynamic position
vectors, maintaining computational equivalence and memory efficiency by avoiding the overhead
associated with dynamic processing. Second, based on the computation invariance (Ashkboos et al.,
2024a), we further develop a Post-LN + Rotate scheme to extend and accommodate various MLLMs
architecture, enabling seamless integration with rotation to smooth outliers. Third, we reveal the
weight outliers caused by the online Hadamard rotations through theoretical analysis and propose
Rotation Magnitude Suppression (RMS) to mitigate them, further improving quantization accuracy.

We evaluate MQuant on various datasets and five mainstream MLLMs, including InternVL (Chen
et al., 2024a), Qwen-VL (Bai et al., 2023b), MiniCPM-V (Yao et al., 2024), CogVLM2 (Hong et al.,
2024) and Qwen2-VL (Wang et al., 2024). The results demonstrate that MQuant achieves less than
1% accuracy loss on all MLLMs under the W4A8 setting, highlighting its superior performance and
wide applicability. We publish the code, hoping to provide new insights and advance the deployment
and application of MLLMs. Our main contributions are summarized as follows:
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• We present the first comprehensive analysis of quantization issues in MLLMs, unveiling the
root causes of performance collapse and identifying inference speed bottlenecks as well as
the quantization challenges posed by modality differences.

• We design Modality-specific Quantization (MSQ) and Attention-Invariant Flexible Switch-
ing (AIFS) to support static quantization. Besides, we propose a Post-LN + Rotate scheme
tailored to accommodate various MLLMs.

• We analyze the root issues of weight outliers caused by online rotation, and propose Rotation
Magnitude Suppression (RMS) to effectively mitigate it.

• We propose MQuant, to the best of our knowledge, the first PTQ solution for MLLMs.

2 RELATED WORK

Multimodal Large Language Models. The rapid advancement of LLMs has spurred significant
progress in MLLMs. Flamingo (Alayrac et al., 2022) pioneered connecting pre-trained visual
encoders to LLMs, demonstrating strong generalization across visual-language tasks. Following the
emergence of ChatGPT Achiam et al. (2023a), numerous open-source models based on pre-trained
LLMs like LLaMA (Touvron et al., 2023a) and its variants (Touvron et al., 2023b; Zheng et al., 2024)
have been proposed (Li et al., 2023; Huang et al., 2024; Zhu et al., 2023; Liu et al., 2024). Subsequent
efforts like Qwen-VL (Bai et al., 2023b), InternVL (Chen et al., 2024b), and CogVLMV2 Hong et al.
(2024) enhanced MLLMs from perspectives such as high-resolution input and larger-scale training
data. However, the substantial parameters of MLLMs lead to high computational costs, limiting
broader application. Recently, smaller MLLMs like Mini-Gemini (Li et al., 2024), MobileVLM Chu
et al. (2023; 2024), and MiniCPM-V (Yao et al., 2024) have emerged. Despite these developments,
dedicated quantization methods for MLLMs to further reduce memory usage and accelerate inference
remain under-explored.

Post-Training Quantization for LLMs. Existing post-training quantization (PTQ) methods for
LLMs are categorized into weight-only and weight-activation quantization (Zhao et al., 2023; Yuan
et al., 2024). Weight-only methods like GPTQ (Frantar et al., 2022), QuIP (Chee et al., 2024), and
AWQ (Lin et al., 2023) achieve high compression rates but offer limited inference acceleration. In con-
trast, weight-activation quantization methods (Xiao et al., 2022; Wei et al., 2022; Yuan et al., 2023b;
Zhang et al., 2024) quantize both weights and activations, improving memory usage and latency. The
main challenge is activation outliers causing quantization errors. Techniques like SmoothQuant (Xiao
et al., 2022) shift quantization difficulty from activations to weights, while OmniQuant (Shao et al.,
2023) optimizes performance by training quantization parameters. SliceGPT (Ashkboos et al., 2024a)
reduces memory demands by designing a Pre-LN + Rotate Scheme for LLMs sparsification based on
computational invariance. They achieve this by adding a linear layer in the residual connection (see
Appendix A.14). Unlike SliceGPT, we further develop a Post-LN + Rotate scheme to accommodate
more vision encoder and extends its applicability to various MLLMs. This enhancement broadens the
the LayerNorm + Rotate approach, making it suitable for both Pre-LN and Post-LN configurations
across various MLLMs. Recently, Quarot (Ashkboos et al., 2024b) introduces rotations to eliminate
outliers; however, this solution is not applicable to MLLMs due to inherent modality differences.

3 PRILIMINARY

3.1 MLLM ARCHITECTURE

The existing MLLM framework (Bai et al., 2023b; Chen et al., 2024b) consists of three primary
modules: a vision encoder E for processing visual inputs and feature extraction, a visual-language
projector P that serves as a bridge to align the two modalities and a large language model (LLM )
that handles the multi-modal tokens and performs reasoning.

Vision Encoder Taking the input image or video Xv as input, Existing vision encoders typically
adhere to the Vision Transformer (ViT) (Dosovitskiy, 2021) architecture, such as CLIP (Radford
et al., 2021), OpenCLIP (Ilharco et al., 2021) and SigLIP (Zhai et al., 2023). the vision encoder
compresses the original vision information into more compact patch features Fv, which can be
formulated as:

Fv = E(Xv) (1)

Vision-Language Projector The task of the vision-language projector P is to map the visual patch
features Fv into the textual feature space:

Ev = P (Fv) (2)
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Large Language Model The pre-trained large language model serves as the core component of
MLLMs, endowing the framework with exceptional capabilities, such as zero-shot generalization,
instruction following, and in-context learning.
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Typically, a text tokenizer is integrated with the LLM, mapping text
prompts Xt to the text tokens Et. The text tokens Et and the visual
tokens Ev are then concatenated to form the input for LLMs, which
outputs the final response sequence Oa in an autoregressive manner:

LLM(Oa|Ev,Et) =

l∏
i=1

LLM(yi|Ev,Et, y<i) (3)

where l denotes the length of Oa. The parameter sizes of large lan-
guage models (LLMs) range from 3 billion to tens of billions. Com-
monly used open-source LLMs include the Llama series (Touvron
et al., 2023a;b), Qwen (Bai et al., 2023a), InternLM (Cai et al., 2024),
MiniCPM (Hu et al., 2024), ChatGLM (GLM et al., 2024).

3.2 TRANSFORMER AND QUANTIZATION

Transformer networks (Vaswani et al., 2017) have proven highly
effective across a wide range of tasks, including language modeling
and visual perception. A transformer consists of multiple layers, each containing a multi-head self-
attention (MHSA) block followed by a feed-forward network (FFN) block, with a pre-normalization
or post-normalization layer between them. The details of whole Transformer are in Appendix A.15.

Attention Block in MLLMs Given an input prompt, the generation process of LLMs can be
broadly categorized into two distinct phases: the prefill phase, which computes and stores the KV
cache for input tokens, and the decoding phase, where new tokens are generated through a next-token-
prediction scheme. Given input data X after LayerNorm (LN), and an attention block with its weight
matrices Wq , Wk and Wv , attention scores is A, the prefill phase is formulated as:

Q = XWq, K = XWk, V = XWv (4)

A = Softmax

(
QKT

√
D

)
, O = AV (5)

Quantization Quantization maps high-precision value into discrete levels, we adopt uniform
quantization (Jacob et al., 2018) in our study. Given a floating-point (FP) tensor x (weights or
activations), it can be uniformly quantized to b-bits in signed quantization as follows:

x̂ = QU (x, b) = (clamp(⌊x
s
⌉+ z, qmin, qmax)− z) · s, s =

max(|x|)
2b−1 − 1

(6)

where ⌊·⌉ is the rounding-to-nearest operator, and the function clamp(·) clips values outside the
integer range [qmin, qmax]. z is zero-point. s denotes the quantization scale factor, which reflects
the proportional relationship between FP values and integers. [qmin, qmax] is the quantization
range determined by the bit-width b. Generally, when we quantize the network’s weight with 4-bit
and activations with 8-bit, called it as W4A8. We can calculate s offline using the activations
from calibration samples, known as static quantization. We can also use the runtime statistics of
activations to get s, referred to as dynamic quantization. More details are in Appendix A.11.

4 METHODOLOGY

In this section, we present MQuant, a post-training quantization solution specifically designed for
MLLMs. In Sec. 4.1, we describe modality-specific quantization (MSQ) and attention-invariant
flexible switching (AIFS). In Sec. 4.2, we introduce the Post LayerNorm-to-RMSNorm transforma-
tion. In Sec. 4.3, we identify the weight outliers caused by the online Hadamard rotations and state
Rotation Magnitude Suppression (RMS). We provide the detailed MQuant algorithm for FP MLLMs
in Appendix A.5 Algorithm 1.

4.1 MODALITY-SPECIFIC QUANTIZATION AND ATTENTION-INVARIANT FLEXIBLE
SWITCHING

As discussed in Sec 1, increasing the resolution of input images or videos significantly raises the
number of visual tokens (Fig 1 (a)), resulting in a sharp increase in inference latency for traditional
per-token dynamic quantization methods. Although static per-tensor quantization is more efficient, it
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degrades performance compared to per-token dynamic quantization. Given the substantial differences
between visual and textual tokens (Fig 1 (b)), we propose modality-specific quantization (MSQ) to
address the heterogeneous nature of their distributions. However, the interleaved arrangement of
input tokens complicates the efficient implementation of MSQ. To address this, we further introduce
the attention-invariant flexible switching (AIFS) scheme, which reorganizes tokens by placing all
image tokens before text tokens. This preserves the attention equivalence while eliminating the
input-dependent dynamic position overhead, thus improving computational efficiency.

Modality-Specific Quantization. As shown in Figure 2, our proposed modality-specific quantiza-
tion (MSQ) apply different static per-tensor scaling factors to visual and textual tokens respectively.
For an input sequence E of length L containing mixed text and visual multimodal tokens. Here,
without loss of generality, we define E = {et1, ..., evm, ..., evn, ..., e

t
L) ∈ (Ev,Et)}, where m and n

denote the start and end indices of the visual tokens. Then, we have:

E =

st: textual scale︷ ︸︸ ︷
(et1, ..., e

t
m−1,

sv : visual scale︷ ︸︸ ︷
evm, ..., evn

st: textual scale︷ ︸︸ ︷
etn+1, ..., e

t
L) (7)

MSQ effectively addresses the substantial distributional differences between visual and textual tokens
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Figure 2: The depiction of modality-specific quantization
(MSQ) and attention-invariant flexible switching (AIFS).

by applying distinct per-tensor scales
factor for each modality. This separa-
tion not only captures the unique dis-
tribution of each modality but also pre-
vents the significant time increase asso-
ciated with token number, which grows
as image and video resolutions increase.
More discussions about differences be-
tween MSQ and per-tensor static and
per-token dynamic quantization are in
Appendix A.11, highlighting its advan-
tages.

Attention-Invariant Flexible Switch-
ing. Due to the interleaved and non-
fixed positions of visual and textual to-
kens in the input sequence, directly applying MSQ introduces extra and irregular data process and
memory operation (e.g., slice, concat, pad), which reduces the computational efficiency of all the
GEMM-based1 layers including QK and FC. To address this issue, we propose the attention-invariant
flexible switching (AIFS) scheme. AIFS rearranges the visual tokens to the front of the sequence and
places the textual tokens at the end, while simultaneously adjusting the causal mask in the attention
mechanism. This rearrangement preserves the computational consistency of both image and text
tokens, enhancing computational efficiency. As shown in Figure 2, regardless of the input order of
visual and textual tokens, the AIFS scheme consistently reorganizes the tokens in this manner.

Incorporating the AIFS scheme necessitates an adaptation of the naive causal attention. Causal
attention, also known as masked self-attention (Vaswani et al., 2017), is a fundamental structure in
LLMs and MLLMs due to its auto-regressive properties. It ensures that each token can only attend to
or be influenced by previous tokens, preventing any influence from future tokens. The naive casual
mask for token sequence E can be formulated as follows:

A = Softmax

(
QKT

√
D

+Mi,j

)
,Mi,j =

{
0 if j ≤ i

−∞ if j > i
(8)

After reordering token in AIFS, it is essential to maintain the causal relationships for the unified
modality-decoupled token sequence Eu =

{
evm, ..., evn, e

t
1, ..., e

t
m−1, ..., e

t
n+1, ..., e

t
L ∈ (Ev,Et)

}
.

Consequently, the corresponding causal mask is modified, resulting in a unified causal mask:

Mu
i,j =



0 if one of the following conditions is met:
(i ≤ (n−m), j ≤ i or (n−m) < j ≤ n)

or ((n−m) < i ≤ n, (n−m) < j ≤ i)

or (i > n, j ≤ i)

−∞ otherwise

(9)

1GEMM (General Matrix Multiplication) is a common operation in linear algebra for matrix multiplication.
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This unified causal mask preserves the inherent causal relationships among tokens, ensuring numerical
equivalence during attention computations even after token reordering. Additionally, we apply
corresponding changes to the position embeddings to ensure that they align with the new token
indices after AIFS. This adjustment is crucial for maintaining the computation equivalence of the
attention computations, as it ensures that the position information accurately reflects the revised
ordering of the tokens. More details can be found in the Appendix A.

Furthermore, MSQ can be naturally integrated with AIFS to form a per-modality static quantization
approach. Extensive experiments demonstrate three key advantages brought by MSQ and AIFS: (1)
Computational Equivalence and Strong Compatibility, which can achieve SOTA quantization
performance across 5 MLLMs (Table 2). (2) Reduced Inference Latency, achieving the speed of
the per-tensor static quantization (Table 4). (3) Enhanced Memory and Computational Efficiency,
achieving up to 24.7% speedup and 152.9% memory savings (Table 10.)

4.2 POST LAYERNORM-TO-RMSNORM TRANSFORMATION

LN
RMSNorm

Linear1

Linear2

MHSA/

GELU

Linear1

MHSA/

GELU

Recenter

(a) Post-LN (b) Post-RMSN

μ=0μ≠0

XkXk

×N ×N

Linear2

Xk+1 Xk+1

Figure 3: Post-LN to RM-
SNorm.

Unlike the common Pre-LN structure in LLMs, MLLMs incorpo-
rate both Pre-LN and Post-LN structure in their vision encoder.
As discussed in Sec 2, SliceGPT only designed a Pre-LN + Rotate
Scheme for LLMs. we further develop a Post-LN + Rotate scheme
to accommodate a wider range of vision encoders, enabling our
MQuant to be applicable to various MLLMs in both Pre-LN and
Post-LN configurations. The difference of LN style from 5 main-
stream MLLMs are in Appendix 9. Here, we present how to
transform post-LN into RMSNorm layer while ensuring compu-
tational invariance. Due to the recentering operation, LN exhibits
invariance to shifts, such that LN(Xk−a1) = LN(Xk),∀a ∈ R.
Therefore, as shown in Figure 3. we can replace LN as RMSNorm
layer through adjusting the weights A2 and bias b2 of the the
linear ℓ2 as follows:

Â2 = A2 −
1

D
11TA2, b̂2 = b2 − µ(b2)1, (10)

Eq10 is the recenter operation in Figure 3 (b). Therefore, based on Eq10, the Post-LN can
be replaced with an RMSNorm with the same arithmetic functionality and Xk+1 = Xk +
RMSNorm(ℓ2(g(ℓ1(Xk)))). Ultimately, we establish the equivalence of Post-LN and Post-
RMSNorm Transformers. Now that every LN in MLLMs vision encoder has been converted to
RMSNorm, where we can seamlessly integrate any orthogonal matrices for handling weights and
activation outliers, while ensuring that the model’s output remains arithmetically equivalent.
4.3 ROTATION MAGNITUDE SUPPRESSION

Theoretical Analysis of Hadamard Transformation on Weight Quantization. (Chee et al.,
2024; Tseng et al., 2024) introduced incoherence (Eq. 11) to measure quantization difficulty. Lower
incoherence means easier quantization. They also showed that applying a Hadamard transform to
weights and activations effectively reduces incoherence. Quarot (Ashkboos et al., 2024b) employs
offline Hadamard transforms on weights and activations, along with partial online Hadamard trans-
forms, as shown in Figure 4(a). While Quarot achieves state-of-the-art quantization results for LLMs,
it does not meet expectations for MLLMs, as demonstrated in Table 2.

|Wij | = |e⊤i Wej | ≤ µ
∥W∥F√

mn
. (11)

To address this, we analyze the incoherence of weight input channels before and after transformation,
since per-channel quantization isn’t applicable to input channels. For a weight matrix Wℓ2 , according
to (Eq. 11), we can compute an incoherence coefficient µℓ2 satisfying: max(|Wℓ2 |) = µℓ2

∥Wℓ2
∥F√

mn
.

Since the Hadamard transform preserves the Frobenius norm, ∥HWℓ2∥F = ∥Wℓ2∥F . Let the
incoherence coefficient of the transformed weight HWℓ2 be µHℓ2 . Then,

µHℓ2

µℓ2

=
max(|HWℓ2 |)
max(|Wℓ2 |)

. (12)

For Hadamard transform matrices, the elements in the first row and first column are all
√

1
n , and

the sums of the other rows and columns are zero. For the first input channel after transformation,
it always holds that HWℓ20j =

∑n
r=1

1√
n
wrj =

√
n · mean(w:,j). For the other input channels

6
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Figure 4: (a) The pipeline of Quarot, (b) transformed weights outliers.

after transformation, as-
suming the weights follow
a normal distribution with
mean µ and variance σ2,
the maximum value be-
fore transformation is µ+
σ
√
2 lnn, and the maxi-

mum value after transfor-
mation is σ

√
2 lnn. From

the above equations, it is
evident that only the first
transformed input channel
may cause the maximum
value to increase. There-
fore, when
√
n·mean(w:,j) > max

i
wij

(13)
, the Hadamard transform

will degrade the weight quantization performance. In Figure 4 (b), we show a weight from MLLMs
identified using Equation 13, and its transformed distribution matches our derivations.

X

×

M

din

HWl2

dout

din

X1 ×
W2

X × W1

OutFP16

W4A8 GEMM(1) Compute scale 𝑠𝑥 and 𝑠𝑤1

(2) Quantize:

FP16

𝐶𝑙𝑎𝑚𝑝 Rou𝑛𝑑 Τ𝑋 𝑠𝑥 = 𝑋𝐼8

(3) W4A8 Matmul: 𝑋𝐼8 @𝑊1𝐼4 = 𝑂𝑢𝑡1𝐼32

(4) Dequantize:𝑂𝑢𝑡1𝐼32 ∗ 𝑠𝑥 ∗ s𝑤1
= 𝑂𝑢𝑡1𝐹16

W4A8 GEMV
(1) Compute scale 𝑠𝑥1 and 𝑠𝑤2

(2) Quantize:

(3) W4A8 Matmul: 𝑋1𝐼8 @𝑊2𝐼4 = 𝑂𝑢𝑡2𝐼32

(4) Dequantize: 𝑂𝑢𝑡2𝐼32 ∗ 𝑠𝑥1 ∗ s𝑤2
= 𝑂𝑢𝑡2𝐹16

FP16

𝐶𝑙𝑎𝑚𝑝 Rou𝑛𝑑 ൗ𝑊1
𝑠𝑤1 = 𝑊1𝐼4

𝐶𝑙𝑎𝑚𝑝 𝑅𝑜𝑢𝑛𝑑 Τ𝑋1
𝑠𝑥1 = 𝑋1𝐼8

𝐶𝑙𝑎𝑚𝑝 𝑅𝑜𝑢𝑛𝑑 ൗ𝑊2
𝑠𝑤2 = 𝑊2𝐼4

Figure 5: Schematic of RMS.

Rotation Magnitude Suppression
for Weight Outliers. To address
the weight outliers introduced by the
Hadamard transformation, we propose
rotation magnitude suppression RMS
mechanism. As shown in Figure 5,
we present the quantization process
for W4A8 setting. Since outliers only
appear in the first row of the input
channel weights, we separate this
channel weights and the corresponding
activations for the GEMV kernels. For
the remaining weights, we perform a
GEMM kernels with the original activation
values. To ensure computational equiv-
alence, we set the separated positional
weights to 0. Finally, we add the results
of the separated operations to obtain the
output. RMS is a plug-and-play module with minimal overhead and, when combined with Quarot or
other Hadamard-based transformations, significantly enhances quantization performance. Algorithm
2 outlines the specific procedure.

5 EXPERIMENTS

Models and Datasets. We evaluate our MQUANT on five MLLMs: InternVL2-8B (Chen et al.,
2024a), Qwen-VL-Chat-9.6B (Bai et al., 2023b), MiniCPM-V 2.6-8B (Yao et al., 2024), Qwen2-
VL-7B (Wang et al., 2024), and GLM-4V-9B (Hong et al., 2024). Evaluations are conducted on
four benchmarks covering OCR and general question answering: TextVQA (Singh et al., 2019),
DocVQA (Mathew et al., 2021), OCRBench (Liu et al., 2023), and MME (Fu et al., 2023), which
assesses perception and cognition across 14 subtasks. These MLLMs’ details are in Appendix A.9.

Baselines and Implementation Details. We test W8A8 and W4A8 quantization settings for both
visual encoders and LLMs, comparing RTN, SmoothQuant (Xiao et al., 2022), and Quarot (Ashkboos
et al., 2024b). Notably, we apply static per-tensor activation quantization for both components,
unlike the dynamic per-token quantization typically used in existing MLLMs. The calibration dataset
consists of 256 randomly selected samples from the corresponding benchmark training sets (Singh
et al., 2019; Mathew et al., 2021; Liu et al., 2023). The batch size for latency evaluation is 1.
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Table 2: Comprehensive quantization results of different MLLMs across various evaluation datasets.

MLLMs Method Bits Setting TextVQA Val↑ DocVQA Val↑ OCRBench↑ MME↑Visual LLM
- BF16 BF16 77.65 90.97 794 2209
RTN

W8A8 W4A8

52.02 59.04 542 1528
SmoothQuant 59.88 59.75 544 1540
Quarot 73.34 84.07 715 2067

InternVL2-8B MQuant (Ours) 77.49 90.27 785 2156
RTN

W4A8 W4A8

40.06 31.58 302 1482
SmoothQuant 46.48 31.21 310 1540
Quarot 49.10 33.62 361 1941
MQuant (Ours) 76.62 88.42 725 2155
- BF16 BF16 61.40 60.36 493 1834
RTN

W8A8 W4A8

0.45 0.03 189 625
SmoothQuant 7.45 7.70 160 797
Quarot 45.32 42.44 286 940

Qwen-VL-Chat-9.6B MQuant (Ours) 61.16 59.31 483 1691
RTN

W4A8 W4A8

1.02 0.02 193 585
SmoothQuant 8.59 4.28 188 921
Quarot 46.77 37.35 289 1091
MQuant (Ours) 60.50 58.72 473 1713
- BF16 BF16 79.10 89.18 847 2248
RTN

W8A8 W4A8

61.00 65.16 332 1300
SmoothQuant 62.40 65.76 424 1510
Quarot 73.71 80.04 736 1850

MiniCPM-V 2.6-8B MQuant (Ours) 80.41 89.15 844 2244
RTN

W4A8 W4A8

60.70 62.23 351 1404
SmoothQuant 65.67 60.02 455 1491
Quarot 68.96 79.63 685 1734
MQuant (Ours) 81.14 89.75 839 2189
- BF16 BF16 84.43 93.87 842 2319
RTN

W8A8 W4A8

33.92 52.61 442 1298
SmoothQuant 49.11 53.97 444 1500
Quarot 79.36 89.57 754 2045

Qwen2-VL-7B MQuant (Ours) 84.43 93.61 830 2269
RTN

W4A8 W4A8

40.20 38.82 422 1082
SmoothQuant 46.25 52.36 411 1535
Quarot 71.44 83.96 670 1911
MQuant (Ours) 84.32 93.58 824 2255
- BF16 BF16 82.82 81.16 782 2153
RTN

W8A8 W4A8

7.05 3.70 0.00 140
SmoothQuant 9.05 4.10 0.00 148
Quarot 82.00 80.17 782 2115

GLM-4V-9B MQuant (Ours) 82.06 80.53 782 2164
RTN

W4A8 W4A8

7.61 3.60 0.00 163
SmoothQuant 9.85 4.40 0.00 188
Quarot 64.16 45.52 516 2048
MQuant (Ours) 81.58 79.67 754 2120

5.1 OVERALL RESULTS

Weight-activation quantization results of various MLLMs. MQuant can be applied to the
quantization of various MLLMs. As shown in Table 2, our MQuant demonstrates significant
improvements over several representative quantization methods. In W8A8 setting, MQuant achieves
performance nearly equivalent to that of FP models across all evaluation datasets. Notably, even in the
more challenging W4A8 setting, MQuant maintains comparable performance with FP models, while
other advanced quantization methods exhibit significant performance degradation. These results
indicate that our MQuant provide a more general and effective PTQ solution with strong compatibility
for maintaining high accuracy in MLLMs under various quantization settings.

Speedup and Memory Savings. We fixed the input sequence as ”text-image-text” with 15 textual
tokens, varying the image resolution from 280 × 280 to 5600 × 5600. Notably, the ”text-image-
text” sequence setting is not arbitrarily chosen; instead, it is a common setting in existing evaluation
datasets (Duan et al., 2024). We evaluate speedup and memory savings by comparing PyTorch’s BF16,
AWQ (W4-only), and our MQuant (W4A8). ❶ Speedup: As shown in Table 10, MQuant consistently
achieves speedups over both PyTorch and AWQ across all resolutions, with a maximum of 24.76%
over PyTorch at 840× 840. Notably, MQuant outperforms AWQ, which is slower than PyTorch at
most resolutions due to negative speedups. This significant speedup highlights the advantage of our
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Table 3: Comparison of latency and memory saving with Pytorch (BF16), AWQ (W4-only) and
ours MQuant (W4A8) on Qwen2-VL-7B. Pytorch and AWQ using the Qwen2-VL-7B official
implementation. ↓ means lower values are better, ↑ means larger values are better.

Image size Latency (s) Memory (G)
H ×W Pytorch AWQ↓ Speedup↑ MQuant↓ Speedup↑ Pytorch AWQ↓ Improve↑ MQuant↓ Improve↑
2802 0.257 0.286 (+0.029) -10.14% 0.220 (-0.037) +16.82% 16.45 7.45 (-9.00) +120.67% 6.50 (-9.95) +152.92%
8402 0.261 0.304 (+0.043) -14.14% 0.210 (-0.051) +24.76% 16.45 7.45 (-9.00) +120.67% 6.50 (-9.95) +152.92%
14002 0.559 0.652 (+0.093) -14.29% 0.432 (-0.127) +20.24% 16.90 7.90 (-9.00) +113.92% 6.97 (-9.93) +142.71%
19602 1.369 1.598 (+0.229) -14.26% 1.112 (-0.257) +16.63% 17.82 8.82 (-9.00) +100.00% 7.85 (-9.97) +119.93%
25202 2.820 3.175 (+0.355) -11.14% 2.357 (-0.436) +19.63% 19.04 10.05 (-8.99) +89.59% 9.10 (-9.94) +109.92%
30802 5.208 5.872 (+0.664) -11.27% 4.488 (-0.720) +16.02% 20.58 11.58 (-9.00) +77.60% 10.61 (-9.97) +96.45%
56002 8.380 9.393 (+1.013) -10.78% 7.469 (-0.911) +12.19% 22.22 13.22 (-9.00) +57.54% 12.25 (-9.97) +61.65%

per-tensor static quantization, eliminating the overhead of token-wise scale computation. Even at
higher resolutions (e.g., 56002), MQuant maintains a 12.19% latency improvement, demonstrating
scalability across various image sizes. ❷ Memory Savings: MQuant offers substantial memory
reductions compared to both PyTorch and AWQ. It consistently reduces memory usage by over
100% compared to PyTorch (e.g., 152.92% at 8402) and significantly outperforms AWQ’s memory
efficiency, achieving up to 101.07% savings at higher resolutions. These experiments demonstrate
MQuant’s strengths in both latency and memory savings, achieving up to 24.76% faster inference
and reducing memory consumption by over 100% compared to baselines. This significant gain is
attributed to MQuant’s conversion of mixed input tokens into modality-decoupled tokens, eliminating
irregular memory operations (e.g., slice, concat, pad) introduced by directly applying MSQ. This
transformation reduces memory consumption and mitigates the computational overhead and increased
latency caused by the surge in token counts from higher image and video resolutions.

5.2 ABLATION STUDY

In this section, we select Qwen2-VL-7B (Wang et al., 2024), currently one of the most powerful
open-source MLLMs, to ablate the effectiveness of our proposed designs.

Table 4: The accuracy and speedup of our MSQ and AIFS scheme on the linear layer during prefill
stage. The input sequence is structured as ”text-image-text-image-text-image-text” with an image
resolution of 2240× 2240 and 50 textual tokens. Latency were tested on an NVIDIA RTX 6000 Ada
Generation. ↓ means lower values are better, ↑ means larger values are better.

Activation Weight TextVQA Val↑ DocVQA Val↑ OCRBench↑ MME↑ Latency ↓ (s) Speedup ↑
BF16 BF16 84.43 93.87 842 2319 1.690 -
W4-g128(AWQ) BF16 83.93 (-0.50) 93.13 (-0.74) 828 (-14) 2252 (-67) 2.057 (+0.367) -17.8%
A8-per-token dyn

W4-per-channel sta

84.32 (-0.11) 93.61 (-0.26) 830 (-12) 2269 (-50) 1.253 (-0.437) +34.9%
A8-per-tensor sta 40.20 (-44.12) 38.82 (-54.79) 422 (-408) 1082 (-1187) 1.016 (-0.674) +66.3%
A8-MSQ 84.32 (-0.11) 93.61 (-0.26) 830 (-12) 2269 (-50) 1.085 (-0.605) +55.8%
A8-MSQ+AIFS 84.32 (-0.11) 93.61 (-0.26) 830 (-12) 2269 (-50) 1.017 (-0.673) +66.2%

Accuracy and Speedup Efficiency of the AIFS Scheme. We compare the accuracy and
speedup results of our MSQ and AIFS. As previously discussed, the number of visual tokens
in MLLMs increases quadratically with image resolution, and existing dynamic per-token quanti-
zation introduces additional inference latency due to the computation of token-wise scale factors.
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Figure 6: The Speedup of AIFS+MSQ on Qwen2-VL-7B.

Our AIFS transforms mixed visual
and textual tokens into a unified
multi-modal representation, enabling
static per-tensor quantization for acti-
vations and addressing the quadratic
time complexity. As shown in
Table 4, MSQ+AIFS achieves the
same speedup efficiency as per-tensor
static quantization while maintaining
near-lossless accuracy comparable to
the original Float model across all lin-
ear layers in MLLMs. Furthermore,
we evaluate the speedip of AIFS for visual tokens under varying image resolutions, comparing it
with per-token setting and FP model. As shown in Figure 6, results indicate that as image resolution
increases, AIFS achieves speedups around 20% and 80%. This substantiates the effectiveness and
efficiency of our MSQ and AIFS design for MLLM quantization. Moreover, since AIFS requires

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

only a one-time rearrangement of the input data (adjusting the causal mask and token index offline),
it does not alter the overall computation graph. We also report the acceleration results both in prefill
and decode stage in Table 7 of Appendix.

Table 5: Ablation study of proposed quantization designs on the OCR and MME benchmarks.

MLLMs Methods Bits Setting TextVQA Val↑ DocVQA Val↑ OCRBench↑ MME↑ Lat (ms) ↓Static AIFS + MSQ LN2RN RMS Visual LLM

Qwen2-VL-7B

BF16 BF16 84.43 93.87 842 2319 6523
✓ ✗ ✗ ✗

W4A8 W4A8

71.44 83.96 670 1911 5479
✓ ✓ ✗ ✗ 78.95 87.55 721 2095 5484
✓ ✓ ✓ ✗ 82.48 91.91 803 2174 5452
✓ ✓ ✓ ✓ 84.32 93.58 824 2255 5471

Ablation Study of Proposed Quantization Methods. We conduct ablation studies on Qwen2-VL-
7B (Table 5) to evaluate our quantization methods. Starting from the ’Static’ baseline (both LLM and
visual components quantized using GPTQ with online Hadamard transformation), we progressively
incorporate our designs. Applying AIFS and MDQ to the LLM part, while keeping the visual part
quantized with GPTQ, significantly improves performance, demonstrating their effectiveness for the
LLM. Adding LN2RN to the visual part allows us to apply offline and online Hadamard rotation to
the vision encoder, further enhancing performance. Adding RMS further achieves performance close
to the FP model, showing the effectiveness of our proposed designs while maintaining high accuracy.

Table 6: Comparative quantized results under different quantization settings on the OCR and MME
benchmarks. † means re-implementation based on the official weight-only quantization setting with a
group size of 128 (Wang et al., 2024).

MLLMs Method Bits Setting TextVQA Val↑ DocVQA Val↑ OCRBench↑ MME↑Visual LLM

Qwen2-VL-7B

- BF16 BF16 84.43 93.87 842 2319
GPTQ (g128)† BF16 W8 84.33 93.97 842 2313
GPTQ (g128)† BF16 W4 84.18 93.25 831 2285
AWQ (g128)† BF16 W4 83.93 93.13 828 2252
MQuant (g128) BF16 W4 84.55 93.18 832 2304
MQuant (g128) W4 W4 84.70 93.57 828 2292
MQuant (per-channel) W4A8 W4A8 84.32 93.58 824 2255

Weight-only Quantization. We compare our weight-only quantization results with the official
Qwen2-VL-7B, which uses GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) to quantize only
the LLM while keeping the visual encoder in BF16. For fairness, we adopt the same group size of 128.
As shown in Table 6, our W4 LLM quantization aligns with their settings, achieving nearly lossless
accuracy compared to other methods. Extending W4 quantization to the visual encoder enables
4-bit quantization of the entire MLLM; MQuant still performs comparably to the BF16 model and
even surpasses other methods. Under the W4A8 weight-activation quantization setting, our results
remain consistent, with some metrics surpassing advanced weight-only methods. These experiments
confirm MQuant’s effectiveness and robustness across various quantization configurations, whether
for weight-only or weight-activation quantization, and for partial or full quantization of MLLMs.

6 CONCLUSION

In this paper, we propose MQuant, the first accurate and efficient post-training quantization solution
for multimodal large language models (MLLMs). Addressing their unique challenges, MQuant
reduces the time to first token (TTFT) with per-tensor static quantization and introduces modality-
specific quantization (MSQ) to handle distribution discrepancies between visual adn textual tokens.
Besides, we propose attention-invariant flexible switching (AIFS) to ensure consistent positioning of
multimodal tokens and computational invariance, enhancing quantization efficiency. Furthermore,
we propose a unified LayerNorm to RMSNorm transformation, enabling seamless integration of the
MLLM vision encoder with Hadamard rotation. Finally, we reveal the weight outliers caused by the
online Hadamard rotations and propose Rotation Magnitude Suppression (RMS) to mitigate them.
Extensive experiments on five mainstream MLLMs demonstrate that MQuant attains state-of-the-art
PTQ performance, with the W4A8 model matching FP model accuracy. These findings highlight
MQuant’s potential to advance MLLM quantization and enhance practical applicability.
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A APPENDIX

A.1 ROTARY POSITION EMBEDDING FOR ATTENTION-INVARIANT FLEXIBLE SWITCHING

Many modern LLMs (Touvron et al., 2023a;b; Dubey et al., 2024) use rotary position embedding
(RoPE) (Su et al., 2021) to encode information about the order of tokens in the input sequence. Rotary
position embeddings are linear transformations applied to keys and queries defined as:

Rdh

Θ,m =



cos iθ1 − sin iθ1 0 0 · · · 0 0
sin iθ1 cos iθ1 0 0 · · · 0 0

0 0 cos iθ2 − sin iθ2 · · · 0 0
0 0 sin iθ2 cos iθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos iθdh/2 − sin iθdh/2

0 0 0 0 · · · sin iθdh/2 cos iθdh/2


(14)

where i ∈ [1, L] is the token index, Θ = {θi = 10000−2(i−1)/D, i ∈ [1, 2, ..., D/2]}, and θi, i ∈
1..D/2 are predefined constants.

In the proposed Attention-Invariant Flexible Switching (AIFS) mechanism, we also apply the re-
arrangement for position embedding to maintain the computation equivalence. For a mixed input
token E = {et1, ..., evm, ..., evn, ..., e

t
L) ∈ (Ev,Et)} (in Eq 7), where m and n denote the start and

end indices of the visual tokens. Specifically, after AIFS, the unified token can formulated as:
E =

{
evm, ..., evn, e

t
1, ..., e

t
m−1, ..., e

t
L) ∈ (Ev,Et)

}
. Therefore, the unified token indices after AIFS

can be represented as:

(m, ..., n, 1, ...,m− 1, n+ 1, ..., L) = AIFS(1, ...,m, ..., n, ..., L) (15)

Due to we are aware of the final indices for input token after AIFS, than we can utilize the reorder
token indices for Eq 14 to get the corresponding position embedding.

A.2 SPEEDUP OF MSQ+ AIFS.

Stage BF16 Per-token Dynamic Ours Ours + GEMV Speedup

Prefill 1690 1253 1017 - +23%
Decode 17.5 16.4 13.06 8.2 +100%

Table 7: Latency (ms) comparison with Float and per-token dynamic quantization in W4A8 setting.

Here, we provide a more comprehensive comparison, we further report the acceleration results on the
decode stage. Configuration is aligned with Table 4, measuring mean latency (ms) of linear layer
for decoding 2,000 tokens. A custom kernel was implemented for W4A8 kernel GEMV operations.
As shown in Table 7, compared to per-token dynamic quantization, in addition to achieving 23%
speed improvement during the prefill stage, our method achieves an 100% speed up in decode stage.
Overall, our AIFS+MSQ transforms the time-consuming online dynamic quantization into offline
static quantization, achieving significant acceleration with almost no loss in accuracy, especially in
long sequences. Notably, in practical applications, using OpenAI’s token pricing as an example, our
method can save ≈30% in costs, and this effect is even more pronounced in other MLLMs, as visual
tokens are more expensive than textual tokens.

A.3 WEIGHTS OUTLIERS AFTER ONLINE HADAMARD TRANSFORMATION

Following (Tseng et al., 2024; Ashkboos et al., 2024b) we make use of fast Hadamard transformation
where convenient. Hadamard matrix is an orthogonal matrix with entries proportional to {+1,−1}.
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A Walsh-Hadamard matrix is a square matrix of size 2n with For a Hadamard matrix:

H2 = 1√
2

[
1 1
1 −1

]
and H2n = H2 ⊗H2n−1 . (16)

(AB)ij =

n∑
r=1

airbrj = ai1b1j + ai2b2j + · · ·+ ainbnj (17)

Thereby the HWℓ2 can be formulated as:

(HWℓ2)ij =

n∑
r=1

hirwrj = hi1w1j + hi2w2j + · · ·+ hinwnj (18)

where H ∈ Rdin×din and Wℓ2 ∈ Rdin×dout , din and dout is the dimension of input and output of
weight Wℓ2 . Due to the properties of the Hadamard matrix H , whose first row consists entirely of
1, for the first row in (HWℓ2), (HWℓ2)0j =

∑n
r=1 wrj , due to the property of Hadamard matrix

H . So, the values in Wℓ2 are subject to continuous accumulation and summation, resulting in the
exists of outliers in the first row of the output matrix HWℓ2 . Notably, the matrix HWℓ2Q still has
the same problem, for simplicity, we omit the matrix Q in the main paper.

A.4 IMAGE TOKENS IN VARIOUS MLLMS
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Figure 7: The number of prefill visual tokens across different MLLMs as the image splits or resolution
increases.
As shown in Fig 7, for different MLLMs (Bai et al., 2023b; Wang et al., 2024; Yao et al., 2024;
Chen et al., 2024b), the number of prefill visual tokens grows as image resolution increases. This
rapid expansion in token count exacerbates the inference latency, particularly in per-token dynamic
quantization, which requires separate processing for each token, such as memory access and scale
computation. As a result, the TTFT in MLLMs increases drastically, severely impacting overall
inference latency. Moreover, in higher-demand scenarios such as video-based tasks and multi-image
dialogues, the accumulation of visual tokens becomes even more pronounced, further exacerbating
the increase in TTFT.

A.5 MQUANT ALGORITHM

Here, we present our MQuant algorithm for MLLMs in Algorithm 1.
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Algorithm 1 MQuant Quantization Algorithm
Input: Full-precision (FP) MLLM model with a vision encoder E, visual-language projector P , and
a large language model LLM; Calibration dataset Dc.
Output:

• For E and P : per-channel weight scale sEw , per-channel weight zero-point zEw , per-tensor
activation scales sEa , per-tensor activation zero-point zEa .

• For LLM: per-channel weight scale sllmw , per-channel weight zero-point zllmw , per-tensor
activation scales s

llm

av for visual tokens and sllmat for textual tokens, per-tensor activation
zero-points zllmav for visual tokens and zllmas for textual tokens.

1: Apply Hadamard Rotation to the LLM Part as described:
2: Apply the offline and online Hadamard rotations to all the weights and activations in LLM.
3: Quantize Weights of the LLM:
4: Input the calibration dataset Dc to the FP MLLM.
5: Use GPTQ to quantize the weights for LLM, obtaining per-channel weight quantization parame-

ters sllmw and zllmw .
6: For the LLM Part:

(a) Input Dc to the FP MLLM.
(b) Compute per-tensor activation quantization parameters s

llm

av and sllmat , zllmav and zllmat

for visual and textual tokens respectively, based on the proposed Modality-Specific
Quantization (MSQ) in Sec 4.1.

(c) Reorder the input mixed token sequence from E = et1, . . . , e
v
m, . . . , evn, . . . , e

t
L to a uni-

fied modality-decoupled sequence Eu = evm, . . . , evn, e
t
1, . . . , e

t
m−1, . . . , e

t
n+1, . . . , e

t
L

using the proposed Attention-Invariant Flexible Switching (AIFS) scheme in Sec ??.
7: Transform all the LayerNorm to RMSNorm in MLLM vision encoder E and Visual-Language

Projector P using the proposed Post LayerNorm-to-RMSNorm transformation in Sec 4.2.
8: Apply the offline and online Hadamard rotations to all the weights and activations in E and P .
9: Quantize Weights of E and P :

10: Input Dc to the transformed FP vision encoder E and Visual-Language Projector P .
11: Use GPTQ to quantize E and P , obtaining per-channel weight quantization parameters sEw and

zEw .
12: Address the weight outliers using caused by online Hadamard based on the proposed Rotation

Magnitude Suppression (RMS) in Sec 4.3.

A.6 EFFECTIVENESS OF ROTATIONAL MAGNITUDE SUPPRESSION FOR WEIGHT OUTLIERS IN
LLMS.

Table 8: WikiText-2 PPL on 4-bit quantization of LLAMA-2 models
with 2048 sequence length.

Method Weight Quantization LLAMA-2 7B LLAMA-2 13B LLAMA-2 70B
Baseline - 5.47 4.88 3.32

QuaRot GPTQ 6.10 5.40 3.79
QuaRot RMS + GPTQ 6.04 5.32 3.67

For LLMs, compared
to the original Quarot,
integrating RMS with
Quarot leads to perfor-
mance improvements
across LLaMA2 models
with 7B, 13B, and 70B
parameters, as detailed
in Table 8. For MLLMs,
ablation studies presented
in Table 5 demonstrate that the RMS method significantly enhances quantization performance.

A.7 WEIGHT OUTLIERS FROM ON ROTATION

Previous study Quarot (Ashkboos et al., 2024b) leveraged incoherence processing (Chee
et al., 2023; Tseng et al., 2024) to make the weights matrix and activations easier to quan-
tize by multiplying randomized Hadamard matrix. Here, we briefly summarize the pipeline
of Quarot for LLMs. As shown in Figure 8 (a), we select a randomized Hadamard ma-
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trix with size that matches the hidden dimension of the model, denoted as Q. (1) the
input X is incoherence process to enable improved quantization, becoming X ← XQ;

MHSA/

GELU

XQ

YQ

RMSNorm

Linear 1

QT(α)Wl1

Linear 2

HWl2Q

hadamard
din Dimension Index

din Dimension Index

Original Weights Distribution Wl2

Weights Distribution after Hadamard Transformation HWl2

H

din

din Wl2
din

dout

HWl2=

×

dout

din

(a) (b)

Figure 8: (a) The pipeline of Quarot, (b) transformed weights outliers.

(2) we remove the scaling
operation from RMSNorm
(diag(α)) and absorbing into
the subsequent weight ma-
trices Wℓ1 of input linear;
(3) to cancel the impact of
Q, Q⊤ is applyed to weight
matrices Wℓ1 , then Wℓ1 ←
Q⊤(α)Wℓ1 ; (4) to improve
the quantize-ability of the acti-
vations within each block, in-
sert online Hadamard opera-
tions before the output linear
ℓ2; (5) to retain the computa-
tional invariance, Hadamard
matrix H is implicitly re-
versed by fusing into the
output linear matrix Wℓ2 :
Wℓ2 ←HWℓ2Q. Without loss of generality, the weight matrices Wℓ1 can also be query/key/value-
projection matrix, and the weight matrices Wℓ2 can also be output weight matrix, please refer to
Quarot for more quantization details.

A.8 RMS ALGORITHM

Here, we present our RMS design with Quarot in Algorithm 2.

Algorithm 2 RMS Integration with Quarot
Require: An LLM or MLLM model
Ensure: Quantized model with RMS
1: Initialize an empty list marks
2: for each linear layer in the model do
3: if Layer satisfies Equation 13 then
4: Mark the layer and append its ID to marks
5: end if
6: end for
7: Apply Quarot or other Hadamard-based transformations to the model
8: for each layer ID in marks do
9: Modify the layer’s implementation using the RMS method

10: end for
11: Quantize the model
12: return model

A.9 COMPARISON OF DIFFERENT MLLMS: INPUT PRE-PROCESS, LAYERNORM
ARCHITECTURE IN VISION ENCODER, MODEL PARAMETERS AND FLOPS.

In this section, we compare the visual input pre-process methods, LayerNorm structures in MLLM
vision encoder, model parameters, and Flops across five mainstream MLLMs: InternVL2-8B (Chen
et al., 2024a), Qwen-VL-Chat-9.6B (Bai et al., 2023b), MiniCPM-V 2.6-8B (Yao et al., 2024),
Qwen2-VL-7B (Wang et al., 2024), and GLM-4V-9B (Hong et al., 2024). This comparison highlights
the architectural differences between these models, particularly the TTFT sensitivity to input image
resolution, illustrating the unique challenges these variations present for quantization and efficient
inference.

A.10 SPEEDUP AND MEMORY SAVINGS WITH SCALING IMAGE RESOLUTION

We fixed the input sequence as ”text-image-text” with 15 textual tokens and presente the detailed
changes of speed and memory, varying the image resolution from 280×280 to 5600×5600. Notably,
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Table 9: Comparison of TTFT sensitivity to image resolution, model Parameters and flops in
mainstream MLLMs. † means the Flops values are measured with the number of visual tokens is 256.

MLLMs TTFT’s sensitivity to input image resolution LayerNorm Params (B) FLOPs (T)†
Visual LLM Visual LLM

InternVL2-8B TTFT increases with input image aspect ratio Pre-LN 0.34 7.74 1.28 7.54
Qwen-VL-Chat-9.6B Fixed input resolution (448×448) Pre-LN 1.94 7.73 4.23 3.70
MiniCPM-V 2.6-8B TTFT increases with input image aspect ratio Pre-LN 0.49 7.61 4.16 3.64
Qwen2-VL-7B TTFT increases quadratically with input image resolution Pre-LN 0.68 7.61 1.31 3.61
GLM-4V-9B Fixed input resolution (1120×1120) Post-LN 4.51 8.78 12.10 4.70

Table 10: Comparison of latency and memory saving with Pytorch and AWQ on Qwen2-VL-7B. ‡

means the Qwen2-VL-7B official implementation.

Image size Pytorch‡ (BF16) AWQ‡ (W4-only) MQuant (W4A8)
H ×W Latency(s) Memory(G) Latency(s) Memory(G) Latency(s) Memory(G)

2802 0.257 16.45 0.286 (-10.14%) 7.45 (+120.67%) 0.220 (+16.82%) 6.50 (+152.92%)
5602 0.252 16.45 0.292 (-13.70%) 7.45 (+120.67%) 0.211 (+19.48%) 6.50 (+152.92%)
8402 0.261 16.45 0.304 (-14.14%) 7.45 (+120.67%) 0.210 (+24.76%) 6.50 (+152.92%)
11202 0.326 16.58 0.384 (-15.10%) 7.56 (+119.51%) 0.262 (+24.48%) 6.61 (+151.59%)
14002 0.559 16.90 0.652 (-14.29%) 7.90 (+113.92%) 0.432 (+20.24%) 6.97 (+142.71%)
16802 0.881 17.33 1.066 (-17.39%) 8.33 (+108.57%) 0.705 (+18.23%) 7.40 (+130.27%)
19602 1.369 17.82 1.598 (-14.26%) 8.82 (+100.00%) 1.112 (+16.63%) 7.85 (+119.93%)
22402 2.013 18.40 2.294 (-12.24%) 9.40 (+95.74%) 1.653 (+17.83%) 8.44 (+117.84%)
25202 2.820 19.04 3.175 (-11.14%) 10.05 (+89.59%) 2.357 (+19.63%) 9.10 (+109.92%)
28802 3.883 19.77 4.345 (-10.64%) 10.77 (+83.81%) 3.297 (+17.69%) 9.82 (+101.07%)
30802 5.208 20.58 5.872 (-11.27%) 11.58 (+77.60%) 4.488 (+16.02%) 10.61 (+96.45%)
33602 6.814 21.46 7.548 (-9.73%) 12.46 (+70.65%) 6.004 (+13.41%) 11.50 (+83.01%)
36402 8.360 22.22 9.377 (-10.84%) 13.22 (+57.54%) 7.469 (+11.91%) 12.25 (+61.65%)
44802 8.349 22.22 9.379 (-10.97%) 13.22 (+57.54%) 7.469 (+11.71%) 12.25 (+61.65%)
56002 8.380 22.22 9.393 (-10.78%) 13.22 (+57.54%) 7.469 (+12.19%) 12.25 (+61.65%)

the ”text-image-text” sequence setting is not arbitrarily chosen; instead, it is a common setting
in existing evaluation datasets (Duan et al., 2024). We evaluate speedup and memory savings by
comparing PyTorch’s BF16, AWQ (W4-only), and our MQuant (W4A8). Speedup: As shown in
Table 10, MQuant consistently achieves speedups over both PyTorch and AWQ across all resolutions,
with a maximum of 24.76% over PyTorch at 840 × 840. Notably, MQuant outperforms AWQ,
which is slower than PyTorch at most resolutions due to negative speedups. This significant speedup
highlights the advantage of our per-tensor static quantization, eliminating the overhead of token-wise
scale computation. Even at higher resolutions (e.g., 56002), MQuant maintains a 12.19% latency
improvement, demonstrating scalability across various image sizes. Memory Savings: MQuant offers
substantial memory reductions compared to both PyTorch and AWQ. It consistently reduces memory
usage by over 100% compared to PyTorch (e.g., 152.92% at 8402) and significantly outperforms
AWQ’s memory efficiency, achieving up to 101.07% savings at higher resolutions. These experiments
demonstrate MQuant’s strengths in both latency and memory savings, achieving up to 24.76% faster
inference and reducing memory consumption by over 100% compared to baseline methods. This
makes MQuant a more efficient solution for deploying MLLMs in resource-constrained environments.

A.11 QUANTIZATION GRANULARITY

Furthermore, as mentioned in SoomthQuant (Xiao et al., 2022), there are different different granular-
ity levels. The per-tensor static quantization uses a single step size for the entire matrix. Per-token
dynamic quantization employs different s for the activations associated with each token, being a
common granularity for activations quantization of existing LLMs. For weights, per-channel quanti-
zation applies distinct s for each output channel of the weights, while group-wise quantization utilizes
a coarse-grained s for different channel groups. Notably, group-wise quantization is a prevalent
granularity for weight quantization in LLMs (Frantar et al., 2022; Yao et al., 2022). Please refer to
appendix for more quantization basics.
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A.12 ADVANTAGE OF MSQ AND AIFS

In per-tensor static quantization, the quantization parameters (i.e., scale and zero-point) are precom-
puted for an entire tensor (e.g., weights or activations) and remain fixed throughout inference. While
efficient, this approach often leads to large and unacceptable accuracy loss in MLLMs due to their
diverse activation distributions across varying inputs.

In contrast, per-token dynamic quantization computes quantization parameters on-the-fly for each
input token during inference. This approach incurs significantly higher computational overhead,
as the quantization parameters must be recalculated for every input token, along with multiple
additional memory traversals. Such requirements make per-token dynamic quantization unfriendly or
impractical for edge devices and some AI accelerators, which struggle with fine-grained dynamic
operations Tan et al. (2024). This issue is especially severe in MLLMs, where the token count
increases significantly with higher image resolution or more video frames. The Modality-Specific
Quantization (MSQ) in MQuant is a novel per-modality quantization approach specifically designed
to address the unique challenges of MLLMs quantization.

Furthermore, MSQ can be naturally applied to the unified modality-decoupled tokens generated by
AIFS. By integrating MSQ and AIFS, our designs yields three key advantages: (1) Computational
Equivalence and Strong Compatibility: The unified causal mask and token index introduced by
AIFS preserves the inherent causal relationships among tokens, ensuring numerical equivalence
during attention computations. Moreover, since AIFS requires only a one-time rearrangement of the
input data (adjust causal mask and token index in offline), it does not alter the overall computation
graph. This characteristic allows for seamless integration with other LLM inference acceleration
methods, such as FlashAttention (Dao et al., 2022), ensuring both computational equivalence and
strong compatibility. As shown in Table 2, MQuant achieves SOTA quantization performance across
5 mainstream MLLMs. (2) Reduced Inference Latency: MSQ not only addresses the substantial
distributional differences between modalities but also mitigates the significant computational overhead
and increased inference latency caused by the surge in token counts from higher image and video
resolutions. As shown in Table 4, MSQ+AIFS significantly reduces latency from 2.057s to 1.1017s,
closely matching the speed of the per-tensor static setting while maintaining near-lossless accuracy
comparable to the original Float model. (3) Enhanced Memory and Computational Efficiency: By
combining MSQ and AIFS, we convert mixed input tokens into unified, modality-decoupled tokens,
eliminating the irregular memory operations (e.g., slice, concat, pad) introduced by directly applying
MSQ. This transformation reduces memory consumption and improves efficiency of GEMM kernel,
which would otherwise be compromised by the interleaved and non-fixed positions of visual and
textual tokens. As shown in Table 10, MQuant can achieve up to 24.7% speedup and 152.9% memory
savings.

A.13 LAYERNORM, RMSNORM AND COMPUTATIONAL INVARIANCE

We introduce LayerNorm, RMSNorm, the computational Invariance, and their usage in Transformers.

Layer Normalization (LayerNorm, LN) (Ba, 2016) is a technique to normalize the activations of
intermediate layers of neural networks. Given a vector x ∈ Rd, LayerNorm normalizes it to obtain a
zero-mean unit-variance vector,

LayerNorm(x) =
x− µ(x)1√

x2
2/d− µ2(x) + ϵ

,where µ(x) =
1Tx

d
, ϵ > 0. (19)

LayerNorm recenters and rescales the activations and gradients in the forward and backward compu-
tations, which enables fast and robust training of neural networks.

Root Mean Square Normalization (RMSNorm) (Zhang et al., 2019) is another technique used for
normalizing the activations. It is similar to LayerNorm in that it aims to accelerate and stabilize the
training but uses a different normalization approach. Instead of normalizing the inputs based on their
mean and variance, RMSNorm normalizes them based on their root mean square (RMS) value. It is
defined in the following equation,

RMSNorm(x) =
x√

x2
2/d+ ϵ

,where ϵ > 0. (20)

RMSNorm only rescales the input vector and the corresponding gradients, discarding the recentering
process. As shown in their definitions, RMSNorm is computationally simpler and more efficient
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than LayerNorm. It is reported that replacing LayerNorm with RMSNorm can achieve comparable
performance and save training and inference time by 7%− 64% (Zhang et al., 2019).

Given a zero-mean vector x, these two kinds of normalization are equivalent. Formally, if µ(x) = 0,
then LayerNorm(x) = RMSNorm(x). We may optionally introduce learnable parameters and apply
an element-wise affine transformation on the output of LayerNorm and RMSNorm.

LayerNorm (LN) and RMSNorm Given the input concated token X after embeddings with the
shape L×D, the X is passed through a LayerNorm (Ba, 2016) operation, which subtracts the mean
from each row of the matrix, divides the row by its standard deviation, rescales (columnwise), and
adds an offset. Follow (Ashkboos et al., 2024a), we write the LayerNorm block as

LayerNorm(X) = RMSNorm(XM)diag(α)
√
D + 1Nβ⊤ (21)

where RMSNorm(X) applies x ← x/∥x∥ to each row of X , and X = concat(Ev,Et)) is the
concatenation between text tokens Et and the visual tokens Ev. The vector parameter α and offset
(vector) parameter β are learned independently at each LayerNorm instance. The constant matrix
M = I− 1

D11⊤ is a D×D matrix which subtracts the mean from each row of X , called recentering
operation. Formally, if M = I , the input X has a zero-mean, the Eq 21 is equivalent to RMSNorm.
Specifically, LayerNorm is widely employed in visual encoders E, whereas RMSNorm (Zhang et al.,
2019) is commonly used in LLMs (Touvron et al., 2023a; Dubey et al., 2024) and has been shown to
accelerate training and inference time with similar performance (Zhang et al., 2019).

Computational Invariance in RMSNorm. Based on the computational invariance, recent stud-
ies (Ashkboos et al., 2024a;b) have shown that orthogonal transformations can effectively smooth
outliers and improve the quantize-ability of both weights and activations. In particular, for
transformers, inserting linear layers with an orthogonal matrices Q before and after the RM-
SNorm (Zhang et al., 2019) layer in a transformer, the network remains unchanged. In detail,
given the input X and orthogonal matrix Q for RMSNorm layer, the computational invariance
means: RMSNorm(XQ)Q⊤ = RMSNorm. Here, Q⊤Q = QQ⊤ = I and a rotation matrix is an
orthogonal matrix with |Q| = 1. Note that multiplying a vector x by Q does not change the norm of
the vector, since ∥Qx∥ =

√
x⊤Q⊤Qx =

√
x⊤x = ∥x∥.

A.14 LAYERNORM TO RMSNORM TRANSFORMATION.
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Figure 9: The proposed Post-LN + Rotate Scheme.

Post-LayerNorm to RMSNorm Transformation. As shown in Figure 9, we present the detailed
Post-LN + Rotate design.

Pre-LayerNorm to RMSNorm Transformation. Here, we propose unified LayerNorm-to-
RMSNorm transformation, aiming to synthesize the transformer architecture of MLLMs’ vision
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encoders and LLMs, endowing them with rotation-friendly characteristics that facilitate the effective
removal of outliers. We take Pre-LN transformer as an example to show that how transform Pre-LN
into RMSNorm layer while guaranting arithmetic equivalence. As shown in Figure 10 (a), for the input
Xk of the k-th block, the main block in pre-LN transformer is Xk+1 = Xk + ℓ2(g(ℓ1(LN(Xk)))),
where k ∈ [1, N ], and N is the block number. If g is an activation function, such as GELU,
this block is a multi-layer perceptron (MLP) module. If g is a multi-head attention, then this
block is the casual attention module (Vaswani et al., 2017). Due to the recentering operation,
LN exhibits invariance to shifts, such that LN(Xk − a1) = LN(Xk),∀a ∈ R. Therefore,
as shown in Figure 10 (b), we can replace LN as RMSNorm layer through two modifications:

LN RMSNorm

Linear1

Linear2

MHSA/

GELU

Linear1

Linear2

MHSA/

GELU

Recenter

(a) Pre-LN (b) Pre-RMSN
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(X
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μ
(X

))
, 

μ
=

0

X
, 
 μ
≠

0
Figure 10: The illustration of transfor-
mation from Pre-LN to RMSNorm.

❶ recenter the input Xk to Xk − µ(Xk)1, ensuring
that the input to norm layer maintain a zero mean. ❷
adjust the weights A2 and bias b2 of the the linear ℓ2
to Â2 = A2 − 1

D11TA2, b̂2 = b2 − µ(b2)1. Con-
sequently, the LN can be replaced with an RMSNorm
layer with the same arithmetic functionality. The first op-
eration is to recenter Xk, while the second operation is
to recenter the output of main branches. Notably, since
Xk+1 = Xk+ℓ2(g(ℓ1(LN(Xk)))), after applying ❶ and
❷, the input and the output of main branch are re-centered
with zero-mean, while the input of residual branches also
maintain a zero mean. Therefore, the output after current
blocks, Xk+1 (which serves as the input for next block),
still maintain zero-mean. A detailed proof is provided in
the Appendix. Ultimately, we establish the equivalence of
Pre-LN and Pre-RMSNorm Transformers. Now that every
LayerNorm in the transformer has been converted to RM-
SNorm in MLLMs, we can use any orthogonal matrices Q
to the model. Therefore, the visual encoder and LLMs are in a rotation-friendly RMSNorm-only
transformer architecture.

A.15 TRANSFORMER FORWARD PASS

Here, we refer from SliceGPT (Ashkboos et al., 2024a) to describe the transformer forward pass
process. As described in Figure 10 illustrates part of a transformer network: an attention block
connected to a Feed Forward Network (FFN) block through a LayerNorm or RMSNorm block, with
residual connections.

Embeddings Let D be the embedding dimension of our transformer, N be the sequence length.
The transformer model takes as input a sequence of token IDs and position IDs, and uses them to
index the embedding matrices, producing the initial signal X with shape N ×D. In what follows we
consider, without loss of generality, a single embedding matrix Wembd indexed by input sequence s.

Attention Blocks in LLMs The attention block has four matrices: Wk,Wq,Wv and Wo, each of
dimension D ×D. The input signal arriving into the block is projected into the Key (XWk), Query
(XWq), and Value (XWv) matrices, which are then split into multiple heads. A nonlinear operation
is applied at each head before the signals are combined and multiplied by the output weight matrix
Wo. Since the first three weight matrices are applied separately to the inputs, we can concatenate
them and perform a single matrix multiplication. We can consider the concatenation of these matrices
to be a single linear layer, which we denote as Linear1 ℓ1, as shown in Figure 10. The MHSA in
Figure 10 means the attention computation. We also refer to the output linear as Linear2 ℓ2, as
shown in Figure 10. We treat the attention block as MHSA(XW1)W2, where MHSA represents the
multi-head attention operation.

FFN Blocks The other type of block that appears in transformer architectures is a Feed Forward
Network (FFN) block. In many cases, this is a Multi-layer Perceptron (MLP), which also can be
represented with Figure 10. A Linear1 layer ℓ1 with weight matrix W1, followed by an non-linear
operation (i.e., GELU function), and Linear2 layer: ℓ2 with weight matrix W2. We can therefore
denote the operation of MLP or gated FFN layers as GELU(XW1)W2.

Language Modelling (LM) Head All of the transformer networks to which we apply in this paper
have a decoder-only structure: after multiple layers applying alternating attention and FFN blocks, a
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head block computes logits which are used to compute the loss during training and token prediction
on deployment. The head operation is XWhead + bhead.

Once the model is trained and all of the parameters are set, the computations required in a transformer
network to produce predictions involve passing signal matrices from one block to the next until
the head node is reached. Since we are able to define both FFN and attention blocks in the form
σ(XW1)W2, where we understand that σ represents either a point-wise (GELU function) or multi-
head-attention nonlinearity (MHSA), we are able to describe the forward pass using Algorithm 3.

Algorithm 3 Pre-LN Transformer

Require: {W ℓ
1 ,W

ℓ
2 }Lℓ=1 weights and biases of FFN and attention blocks

Require: {σℓ}Lℓ=1 nonlinearity associated with each block
Require: {Normℓ}Lℓ=0 LayerNorm or RMSNorm instances to perform between blocks
Require: Wembd,Whead, bhead embedding and head matrices
Require: s input sequence

1: X ←Wembd[s, :] index embeddings
2: X ← Norm0(X) normalize
3: for ℓ = 1 . . . L do
4: Z ← σℓ

(
XW ℓ

in

)
W ℓ

2 apply FFN or attention
5: X ← Normℓ(X +Z) normalize and apply residual connection
6: end for
7: return XWhead + bhead apply model head
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