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ABSTRACT

Achieving optimal performance in reinforcement learning requires robust policies
supported by training processes that ensure both sample efficiency and stability.
Modeling the policy in reproducing kernel Hilbert space (RKHS) enables efficient
exploration of local optimal solutions. However, the stability of existing RKHS-
based methods is hindered by significant variance in gradients, while the robust-
ness of the learned policies is often compromised due to the sensitivity of hyper-
parameters. In this work, we conduct a comprehensive analysis of the significant
instability in RKHS policies and reveal that the variance of the policy gradient
increases substantially when a wide-bandwidth kernel is employed. To address
these challenges, we propose a novel RKHS policy learning method integrated
with representation learning to dynamically process observations in complex en-
vironments, enhancing the robustness of RKHS policies. Furthermore, inspired
by the advantage functions, we introduce a residual layer that further stabilizes
the training process by significantly reducing gradient variance in RKHS. Our
novel algorithm, the Residual Kernel Policy Network (ResKPN), demonstrates
state-of-the-art performance, achieving a 30% improvement in episodic rewards
across complex environments.

1 INTRODUCTION

Reproducing Kernel Hilbert Space (RKHS) methods have emerged as powerful tools in reinforce-
ment learning (RL) due to their ability to model policies nonparametrically, allowing for flexible
function approximation and efficient exploration of the solution space (Lever & Stafford, 2015; Pa-
ternain et al., 2020). By leveraging kernels, RKHS-based policies can capture complex relationships
in high-dimensional observation spaces, leading to expressive models that adapt well to diverse en-
vironments (Paternain et al., 2022). However, despite these advantages, RKHS-based policies face
significant challenges that limit their practical applicability. A critical issue is the high variance in
policy gradients inherent to RKHS methods (Smith & Egeland, 2024). This excessive variance arises
because the RKHS gradient updates do not fully exploit all previously sampled episodes, leading to
instability during training and difficulties in converging to optimal policies (Dastider et al., 2022).
Additionally, the robustness of RKHS models is often compromised due to hyperparameter sensitiv-
ity. Different environments may require distinct hyperparameter settings, making it challenging for
RKHS policies to maintain consistent performance across varied and complex environments (Liu &
Lian, 2024). In environments with large action spaces, such as the Humanoid environment (Todorov
et al., 2012), RKHS methods struggle to scale effectively.
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From our review of existing approaches, grid search methods are commonly employed for hyper-
parameter tuning to align the data distribution with the RKHS kernel (Montesinos López et al.,
2022; Hsu & Lin, 2002; Wilson et al., 2016). The requirement for meticulous hyperparameter tun-
ing introduces additional computational complexity and limits the adaptability of RKHS policies
to new tasks. Regarding variance reduction, various techniques such as learning rate search (Le
et al., 2019), symmetric estimation (Paternain et al., 2020), and policy search (Chen et al., 2016)
are proposed to stabilize the training process, while the effectiveness of these variance reduction
methods is often constrained to specific environments. Alternatively, variance can be mitigated by
introducing bias into the estimation process, such as leveraging predefined kernel orthogonal ba-
sis (Mazoure et al., 2020) or employing an online clustering approach to aggregate similar kernel
orthogonal bases into central representations (Wang & Principe, 2021). Despite their promise, the
implementation of these methods in high-dimensional spaces poses significant challenges due to
computational inefficiencies.

To fully leverage the advantages of RKHS methods and develop stable, robust policies across di-
verse environments, we introduce the Residual Kernel Policy Network (ResKPN). Our approach
integrates representation learning with RKHS policy models to dynamically process observations,
enhancing the adaptability and robustness of RKHS policies in complex environments. By incor-
porating a neural network for feature extraction, we adjust the distribution of inputs to better align
with the chosen kernel, mitigating hyperparameter sensitivity. Furthermore, inspired by the variance
reduction capabilities of advantage functions, we introduce a residual layer (He et al., 2016b) that
significantly reduces gradient variance within RKHS. This addition stabilizes the training process
and enables the discovery of high-performing policies with improved robustness. Specifically, the
following key contributions are made:

• We propose a novel RKHS policy learning algorithm that employs a neural network to
dynamically represent observations, enhancing the adaptability and robustness of RKHS
policies across diverse environments by aligning observation distributions with the chosen
kernel.

• We conduct an in-depth analysis of the high variance issue in RKHS policy gradients. Our
findings reveal that learning with traditional RKHS policies, particularly in wide-bandwidth
kernels, leads to significant instability and high variance during training.

• We introduce a variance reduction technique by designing a residual layer for the RKHS
policy. Our analysis demonstrates that this approach effectively reduces gradient variance
and stabilizes the training process. Combined with representation learning, our ultimate
algorithm, ResKPN, achieves superior performance across various challenging environ-
ments, including a 30% episodic rewards improvement in the Humanoid environment.

2 BACKGROUND

In this section, we review previous studies on reinforcement learning within RKHS. Additionally, we
provide a brief overview of variance reduction techniques in reinforcement learning to facilitate the
subsequent introduction of the variance reduction methods designed for RKHS policies. To describe
the methodology of the ResKPN algorithm, we also examine prior research on the integration of
kernel methods and deep learning techniques.

2.1 REINFORCEMENT LEARNING WITHIN RKHS

Reinforcement learning algorithms attempt to learn the optimal Q-function for the cumulative
rewards or the optimal policy (Sutton & Barto, 2018). This paper concentrates on the latter one,
which leads to the policy gradient algorithm. The cumulative rewards (Bedi et al., 2024) is define as

U(πw) = Eτ∼p(τ ;πw)

[ ∞∑
t=1

γt−1r (st, at)

]
,

where p (τ ;πw) = p(s1)
∏∞
t=1 p(st+1|st, at)πw(at|st) represents the distribution of the trajectory

τ = ((s1, a1), (s2, a2), ...) following the policy πw and r(st, at) denotes the instant reward of state-
action pair (st, at). γ is the discounted factor of reward. The policy gradient is to find the gradient
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direction to maximize U(πw) that

∇wU (πw) =
1

1− γ
Ea∼π(a|s),s∼ρπw (s) [Q

πw(a, s)∇w log πw(a|s)] , (1)

where Qπw(a, s) = Eτ∼p(τ ;πw)

[∑∞
t=1 γ

t−1r(at, st)|a1 = a, s1 = s
]

is the Q-function and ρπw
(s)

represents the marginal density of the state under policy πw.

Reproducing Kernel Hilbert Space (RKHS) is the vector valued Hilbert Space HK where an
elements K(x, ·) ∈ H satisfies the reproducing property ⟨K(x, ·),K(y, ·)⟩ = K(x, y). Despite
the policy is modeled by the parameter w with particular parameterized functions, the stochastic
policy is directly modeled as a function h in RKHS HK , where the updating gradient for it is also a
function. In detail, the action is chosen from a multivariate normal distribution N (h(s),Σ)

πh,Σ(a|s) :=
1

Z
e−

1
2 (h(s)−a)

⊤Σ−1(h(s)−a), (2)

where the mean value is dependent on the function h ∈ HK . The gradient for the RKHS policy is
then derived (Paternain et al., 2020; Lever & Stafford, 2015) as

∇hU (πh) =
1

1− γ
Ea,s

[
Qπh(a, s)K(s, ·)Σ−1(a− h(s))

]
,

where the derivative with respect to function h uses the Fréchet derivative (Mcgillivray & Oldenburg,
1990). To compute the stochastic gradient ∇hU (πh), a common approach is to use Monte Carlo
approximation (Lever & Stafford, 2015), which incurs high computational costs, particularly in
complex environments. In (Pontil et al., 2005; Paternain et al., 2020), a pair (s, a) is sampled from
trajectories to obtain an unbiased estimate of ∇hU (πh). The accuracy of this estimate depends
on the precision of the Q-function approximation Qπh(z), for which actor-critic methods (Dastider
& Lin, 2022) are employed to ensure more stable estimations. In this paper, the estimation of
∇hU (πh) is obtained from the one pair estimation in (Cervino et al., 2021)

∇hÛ (πh) = ηK(sk, ·)Σ−1(ak − h(sk))Q̂
πh(ak, sk), (3)

where η represents the learning rate.

2.2 VARIANCE REDUCTION AND DEEP KERNEL LEARNING

Variance in policy gradient is seen as the main factor influencing the performance of policy gra-
dient algorithms (Hafner & Riedmiller, 2011). Aiming to reduce the variance, a series of classic
reinforcement learning algorithms are proposed. Designed with the famous actor-critic framework
(Grondman et al., 2012), baseline control variate is proposed for leveraging the vibration in Q-
function (Greensmith et al., 2004). It introduces a baseline function, which is mainly chosen as
the state value function V (s) = Ea[Q(a, s)], to eliminate unnecessary variance introduced by state
values, which formulates as

∇wÛ (πw) = Aπw(ak, sk)∇w log πw(ak|sk),

where Aπw(ak, sk) = Qπw(ak, sk)−V πw(sk) is known as the advantage function. The update size
of the policy gradient is further limited in the generalized advantage estimation method (Schulman
et al., 2016) by introducing an iteration optimization algorithm for trust region policy optimiza-
tion (Schulman et al., 2015). Combining the well-performance variance techniques, the proximal
policy optimization (PPO) algorithm is proposed (Wu et al., 2021), achieving the overall best perfor-
mance, which is viewed as the baseline algorithm in the successive research. The ultimate gradient
∇wU (πw) in PPO is formulated as

Aπw(ak, sk)min

(
πw(ak|sk)
πw (ak|sk)

, clip

(
πw(ak|sk)
πw (ak|sk)

, 1− ϵ, 1 + ϵ

))
∇w log πw(ak|sk), (4)

where πw (a|s) represents the policy in the last iteration, and ϵ is the ratio of the clip, limiting the
update size of the new policy. Based on this, the discovered policy optimisation (DPO) algorithm (Lu
et al., 2022) is designed to further smooth the training process while encouraging the exploration,
ahieving the overall best performance.
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Deep Kernel Learning is widely studied with the development of kernel methods and neural net-
works. Kernel methods can learn a wide range of conditional distributions and predictive functions
conditioned on context sets of arbitrary sizes (Kim et al., 2019). However, their applicability is of-
ten constrained by the necessity of designing task-specific kernels. To address this limitation, deep
learning techniques are introduced to parameterize observations through learnable network layers,
giving rise to deep kernel learning (Wilson et al., 2016), which enhances the scalability and per-
formance of the model on complex tasks. For example, (Papamarkou et al., 2024) employs deep
kernel processes to improve digit classification accuracy, while (Kristiadi et al., 2020) incorporates
kernels into ReLU networks for more efficient predictions. Moreover, wide residual networks can be
interpreted as performing kernel regression within the associated RKHS (Lai et al., 2023), offering
a theoretical explanation for the smoother functions they learn. This smoothness contributes to the
networks’ superior generalization capabilities (Tirer et al., 2022).

Despite the strong performance of deep kernel learning in typical deep learning tasks, few stud-
ies integrate deep learning methods with kernels in RKHS for policy gradient. To the best of our
knowledge, this is the first paper to incorporate representation learning through neural networks into
RKHS policy gradient methods for the rapid identification of locally optimal policies. We present
a novel formulation of the RKHS policy gradient and provide a detailed analysis of the algorithm’s
stability.

3 PROPOSED METHOD: THE RESIDUAL KERNEL POLICY NETWORK

In this section, we introduce the proposed RKHS policy gradient method, ensuring a stable training
process across multiple environments. We begin by analyzing the limitations in the current RKHS
policy gradient: the insufficient representational capacity and the excessive variance. In order to
enhance representational capacity for learning in complex environments, we describe representation
learning in Section 3.2. This representation learning is integrated with a neural network updated
using the Proximal Policy Optimization (PPO) algorithm, enabling the adaptive adjustment of obser-
vation distributions across different environments. In Section 3.3, we introduce advantage functions
to reduce the variance in the RKHS gradient. Additionally, based on the representation learning, we
design a residual layer as the baseline function for the RKHS policy to further minimize variance.

3.1 THE LIMITATIONS IN RKHS POLICY GRADIENT

In this section, a detailed analysis is conducted to illustrate two main drawbacks in the RKHS policy
gradient: the insufficient representational capacity (Wilson et al., 2016) and excessive variance (Le
et al., 2019).

Insufficient representational capacity is the primary issue limiting the learning adaptability of
kernel methods (Wu & Wang, 2009). The hyperparameters of a kernel are highly sensitive to the
distribution of input data, leading to under-fitting in uneven data distributions (Wang et al., 2020).
A straightforward method to select hyperparameters is grid search (Hsu & Lin, 2002), while the
computational complexity limits its use in high dimensional spaces. To adaptively learn the hyper-
parameters, they are modeled with linear functions or separation index. In (Wilson et al., 2016),
the input of kernel is directly learned by neural networks, which achieves excellent performance in
orientation extraction and magnitude recovery tasks. To illustrate the insufficient representational
capacity of RKHS policies, we investigate their learning performance under different hyperparam-
eter settings. Specifically, we employ the Gaussian kernel defined as K(x, y) = exp

(
−∥x−y∥2

σ2

)
to learn from observations, applying the gradient as described in Equation (3). As demonstrated in
Figure 1a, the RKHS policy fails to update when σ2 = 0.01 and 5.0. In contrast, episodic returns
improve during training for σ2 = 0.05, 0.1, 0.5, and 1.0. To the best of our knowledge, there is
currently no general method for performing RKHS policy learning across various environments that
offers strong robustness and insensitivity to hyperparameters.

Excessive variance is a prevalent issue in policy gradient methods (Greensmith et al., 2004). When
applying the RKHS policy gradient, the problem becomes more prominent. We now compare the
variance of gradient between the RKHS policy and the linear policy πθ(a|s) defined in Appendix.
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(a) (b)

Figure 1: The insufficient representational capacity and excessive variance in RKHS policy gradient
within Inverted Pendulum environment. (a) The learning performance choosing different σ2. (b)
The variance in training for different kernels compared with linear policy.

A.1, where the corresponding estimated gradient is denoted as ∇θÛ (πθ). We can prove that the

variance ratio R =
Varak

(∇hÛ(πh))

Varak
(∇θÛ(πθ))

is highly dependent on the choice of kernel K(·, ·).

Lemma 3.1 (A.1) Assuming that Q̂πθ (a, s) and Q̂πh(a, s) conditioned on sk are linear functions,
i.e., Q̂πθ (a, sk) = c⊤1 a+d1, Q̂

πh(a, sk) = c⊤2 a+d2, where c1, d1, c2, d2 are learnable parameters.
Then, when the dimension of the action space is 1, the variance ratio R satisfies:

Esk

[
Varak(∇hÛ (πh))

Varak(∇θÛ (πθ))

]
≥ Esk

[
K2(sk, sk)

s2k

2c21
2c22 +Σ−1(c2θ⊤sk + d2)2

]
.

We prove Lemma 3.1 in Appendix. A.1. Following this, it is observed that the variance of the RKHS
policy is highly dependent on the chosen kernel, which leads to excessive variance when a wide-
bandwidth kernel is selected. We test three different kernels in the Inverted Pendulum environment,
comparing them with linear policy in Figure 1b. The results illustrate that the variance of all three
kernels is significantly higher than that of linear policy, which coincides with the findings in Lemma
3.1.

3.2 LEARNING REPRESENTATIONS FOR RKHS KERNEL

The neural networks enable the learning model to extract multiple features from data using the back-
propagation algorithm (LeCun et al., 2015). In order to adjust the data distribution for compatibility
with the RKHS kernel, observations are initially input into a neural network for feature representa-
tion, and the subsequently distribution-adjusted representations are utilized for gradient iteration in
the RKHS policy. Without loss of generality, we use ψϑ(·) to represent the neural networks with
parameters ϑ for representation learning, where the RKHS policy in Equation (2) is adapted as

πϑ,h,Σ(a|s) :=
1

Z
e−

1
2 (h(ψϑ(s))−a)⊤Σ−1(h(ψϑ(s))−a). (5)

For the sake of clarity, the parameters of the policy are defined as ϖ = (ϑ, h,Σ). We update ψϑ(·)
using the actor-critic scheme similar to the PPO algorithm, the critic V πϖ

δ is also modeled as neural
networks with parameters δ, where the gradient derived from TD error is formulated as

∇δT̂D (πϖ) =
1

N

N∑
t=1

∇δ

[(
V̂ πϖ

δ (st)− R̂t

)2
]
,

where R̂t is the target value (Wu et al., 2021). We use the operator Tπϖ
(ak, sk) to represent the

minimum calculation min
(
πϖ(ak|sk)
πϖ (ak|sk) , clip

(
πϖ(ak|sk)
πϖ (ak|sk) , 1− ϵ, 1 + ϵ

))
in Equation (4). Based on

the chain rule in derivative, the gradient of the neural networks ψϑ(·) is also derived as

∇ϑÛ (πϖ) = Aπϖ (ak, sk)Tπϖ (ak, sk)Σ
−1(ak − h(ψϑ(sk)))∇ϑh(ψϑ(sk)).
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This formulation resembles the loss function of the PPO algorithm, differing primarily in the inclu-
sion of the RKHS function h(ψϑ(sk)), where h is updated using the RKHS gradient with the only
modification being that the state sk is represented by the neural network ψϑ(sk):

∇hÛ (πϖ) = ηK(ψϑ(sk), ·)Σ−1(ak − h(ψϑ(sk)))Q̂
πϖ (ak, sk). (6)

Following the gradient estimation, the Kernel Policy Network (KPN) algorithm is shown in Algo-
rithm 1. It should be noticed that the h function only updates for L times to avoid the explosion
of the gradient. Meanwhile, the update epoch is set to update parameters of neural networks for
J times in each training, ensuring sufficient learning of critic and representation networks. With
the integration of representation neural networks ψϑ(·), the RKHS policy can update dynamically
during each training epoch. Experiment results show that the KPN algorithm achieves further better
performance than pure RKHS policy even with tuned hyperparameters. Nevertheless, the excessive
variance problem still exists, leading to the extreme reward cliff (Sullivan et al., 2022) in the training
process.

Algorithm 1 KPN algorithm
Hyperparameters: Total number of training steps L, mini-batch size N , step times of agent
each training T and the update epoch J of critic and neural networks ψϑ(·) each train-
ing.

1: Initialize critic V πh

δ (s), RKHS function h = 0, actor πϖ and replay buffer B.
2: Start with the initial state s0
3: for l = 1, . . . , L do
4: Using policy πϖ, collect and store transitions (st, at, rt, st+1) in replay buffer B.
5: for j = 1, . . . , J do
6: Sample mini-batch {(si, ai, ri, si+1) | i = 1, . . . , N} from B.
7: Estimate the critic gradient ∇δT̂D (πϖ) and update the parameters δ.
8: Estimate the neural networks ψϑ(·) gradient ∇ϑÛ (πϖ) and update the parameters ϑ.
9: end for

10: Sample a transition (si, ai, ri, si+1) from B.
11: Estimate the RKHS gradient ∇hÛ (πϖ) and update the function h = h+∇hÛ (πϖ).
12: end for

3.3 THE RESIDUAL LAYER FOR VARIANCE REDUCTION

In this section, we introduce two proposed variance reduction methods designed for the KPN algo-
rithm, attaining a stable training process.

The advantage function is widely used as a surrogate for theQ-function in policy gradient methods.
It is proven in (Weaver & Tao, 2001) that using the advantage function does not introduce bias into
the estimation of the policy gradient ∇wU (πw). In this paper, we introduce the advantage function
to decrease the variance for RKHS policy gradient ∇hÛ (πϖ) in the KPN algorithm. We adopt the
gradient estimation in Equation 6 as:

∇hÛ
πϖ

A (πϖ) = ηK(ψϑ(sk), ·)Σ−1(ak − h(ψϑ(sk)))A
πϖ (ak, sk), (7)

where Aπϖ (ak, sk) = Qπϖ (ak, sk) − V πϖ (sk). We denote the introduced algorithm with advan-
tage functions as AdvKPN. Moreover, based on the representation networks in KPN algorithm, the
residual layer is specifically designed to diminish the variance in RKHS gradient.

The residual layer is initially introduced in resnet structure to address the vanishing gradient prob-
lem (He et al., 2016b). The key idea of the residual layer is to learn the additive residual function
F(x) + f(x), where f(x) is usually chosen as the identity mapping f(x) = x. It is assumed that
when the x is the optimal value, F will converge to the zero mapping to skip the network layer
(He et al., 2016a). In this paper, inspired by the convergence property of the residual layer, we
also design a fully connected layer for the AdvKPN algorithm to form the final ResKPN algorithm.
The complete algorithmic scheme is illustrated in Figure 2, with step-by-step details provided in the
subsequent text. The policy integrated with the residual layer is expressed as follows:

πϖ,ι(a|s) :=
1

Z
e−

1
2 (h(ψϑ(s))+µι(ψϑ(s))−a)⊤Σ−1(h(ψϑ(s))+µι(ψϑ(s))−a),
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Figure 2: The scheme of the ResKPN algorithm.

where µι(·) is the fully connected layer with parameters ι. Therefore, it is easily derived that our
ultimate RKHS gradient:

∇hÛAπϖ (πϖ,ι) = ηK(ψϑ(sk), ·)Σ−1(ak − h(ψϑ(sk))− µι(ψϑ (sk)))A
πϖ (ak, sk). (8)

It should be noticed that the gradient of the representation network is also changed to ∇ϑÛ (πϖ,ι)
due to the integration of residual layer:

Aπϖ (ak, sk)Tπϖ (ak, sk)Σ
−1(ak−h(ψϑ(sk))−µι(ψϑ (sk)))∇ϑ(h(ψϑ(sk))+µι(ψϑ (sk))). (9)

Following this, the ResKPN algorithm is obtained by substituting the gradient of RKHS and the
representation network in Algorithm 1 with Equation (9) and Equation (8). The advantage value
Aπϖ (ak, sk) is computed by combining the state value V (sk), represented by the critic networks,
with the reward r(ak, sk). The detailed methodology, along with supplementary explanations for
Figure 2, is provided in Appendix B.1. Meanwhile, we can prove that the variance of the RKHS
gradient above follows the following order:

Theorem 3.2 (A.2) Assuming that Qπϖ (ak, sk) ≥ 1
2Eak [Q

πϖ (ak, sk)] =
1
2V

πϖ (sk) and ak −
h(ψϑ(sk)) ≥ 1

2µι(ψϑ (sk)) when they following the same policy πϖ,ι, the variance of the RKHS
policy gradient gradually decreases as:

Varak(∇hÛ (πϖ)) ≥ Varak(∇hÛAπϖ (πϖ)) ≥ Varak(∇hÛAπϖ (πϖ,ι))

We prove Theorem 3.2 in Appendix. A.2. The introduction of the residual layer is motivated by
the variance reduction properties observed in the advantage function. Specifically, by incorporat-
ing a baseline function V πϖ (sk) = Eak [Qπϖ (ak, sk)], which exhibits greater stability compared to
Qπϖ (ak, sk), the variance during training can be decreased. Similarly, for RKHS policies, a stable
baseline function can be leveraged to reduce the variance of the RKHS gradient, which is shown in
the proof of Theorem 3.2. An ideal candidate for this baseline is the residual network µι(·). Fur-
thermore, the integration of a fully connected layer enhances representation learning, and together,
these two components jointly contribute to ResKPN’s superior overall performance. To directly il-
lustrate the variance reduction effect of this baseline function, an intuitive comparison is provided
in Appendix C.

Based on the aforementioned adaptation, the RKHS policy retains non-parametric representations
suitable for high-dimensional environments and enhances its representational capacity. Meanwhile,
the excessive variance in the RKHS policy gradient is mitigated, resulting in a more stable learning
process. The incorporation of a residual layer introduces an additional learner, leveraging the advan-
tages of ensemble learning as well. In order to achieve the overall best performance, the techniques
in PPO and DPO algorithms are also integrated into all algorithms proposed above to stabilize the
training process, where the technique details are described in Appendix B.1.
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4 EXPERIMENTAL RESULTS

In this section, various experiments are employed to verify the effectiveness of the representation
learning and the variance reduction residual layer. We divide this section into three parts: (1) the
environment setting of our experiment, (2) the comparison results including ablation study across
multiple environments for the aforementioned algorithms, and (3) the analysis of the effectiveness
of the proposed methods.

4.1 EXPERIMENT SETTING

Figure 3: The episodic reward in multiple MuJoCo environments for proposed algorithms.

We evaluate our proposed algorithm on six continuous control tasks from the MuJoCo environments
(Todorov et al., 2012), including the Inverted Pendulum, Hopper, Half Cheetah, Walker2D, Hu-
manoid, and Humanoid Standup. These tasks are ordered by increasing complexity, ranging from
low to high. The primary objective of these environments is to optimize the performance of simu-
lated robotic agents to enhance the forward progress and maintain stability with minimized energy
consumption (Batra et al., 2024). The detailed setup of our experiment is described in Appendix B.

4.2 COMPARISONS

We compare our results with the original RKHS policy (Origin-Kernel), DPO algorithm and the
widely used baseline PPO algorithm in the comparison. The episodic reward of the training agents
serves as the primary metric for assessing the effectiveness of the algorithms. We show the training
performance of different methods in Figure 3.

As illustrated in the figure, our ultimate model, ResKPN, achieves the overall best performance. It
converges faster than other baseline algorithms in the Inverted Pendulum, Hopper, Humanoid, and
Humanoid Standup environments, achieving up to 30% higher episodic rewards compared to the
DPO algorithm. In the Walker2D and Half Cheetah environments, ResKPN also attains comparable
results, while both the PPO and DPO algorithms struggle to perform well in these settings. The
RKHS policy with representation networks takes more time to explore initially, leading to lower
episodic returns at the start of training, as shown in the Inverted Pendulum, Hopper, and Humanoid
environments. However, after sufficient exploration of the environment space, the RKHS policy
achieves higher episodic rewards due to its sampling efficiency.

Considering the ablation results, it is significant that the AdvKPN and KPN fail to learn effective
policies in complex environments such as Humanoid and Humanoid Standup. This reflects how
the ResKPN algorithm leverages the advantages of ensemble learning with integrated representation
networks. In contrast, the original RKHS method can only achieve similar performance to other
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Figure 4: The standard deviation in MuJoCo environments for proposed algorithms.

algorithms in the simpler Inverted Pendulum environment, while it fails to learn effectively in more
complex scenarios.

We also present the training variance in Figure 4. We observe that when all algorithms succeed
in learning the local optimal policy in the Inverted Pendulum environment, the ResKPN algorithm
exhibits the most stable training process overall. After integrating the advantage functions, the
variance in AdvKPN decreases significantly compared to the KPN algorithm, which exhibits the
highest variance similar to that of the PPO algorithm. For the insufficient learning observed in
KPN and AdvKPN algorithms within complex environments, their variances in these situations
are abnormally lower than those of algorithms that successfully learn a good policy, indicated by
dashed lines in the figure. When considering the learned policies, it is observed that the ResKPN
algorithm achieves relatively low variance, except in the Humanoid environment. More experiment
comparisons are shown in Appendix D.

(a) (b)

Figure 5: The comparison of distributions and the learning performance after adjusting hyperpa-
rameters (a) The boxplot demonstrates the distribution differences of the observations (obs) and
representations (rep) in different dimensions. (b) Comparison of episodic rewards for the RKHS
policy with optimized hyperparameters versus alternative settings. The performance of the KPN
algorithm is also illustrated.

4.3 ANALYSE FOR EFFECTIVENESS

In this section, we conduct a comprehensive evaluation addressing two key questions: (1) How
effectively does representation learning adjust the observations of the original environment to align
with the RKHS kernel? (2) Does the integration of advantage functions and the residual layer lead
to a reduction in the variance of the RKHS gradient?
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To answer (1), we consider the Gaussian kernel K(x, y) = exp
(
−∥x−y∥2

σ2

)
, where the hyperpa-

rameter σ can be viewed as an scaling of the variance of the observation distribution. The setting of
the hyperparameter can imitate the scaling of observation embedding learned by the representation
learning appaorch. In detail, let mean(varobs) denote the mean variance of the original observa-
tions, and mean(varrep) represent the mean variance of the representations. Then the controller σ

is set as σ∗ =
√

mean(varobs)
mean(varrep)

. The comparison of the distributions between observations and repre-
sentations is illustrated in Figure 5a. It is shown that the representation networks tend to reduce the
variance in the distribution of observations while maintaining a relatively unchanged mean. After
tuning the hyperparameter, we observe a significant improvement in the learning performance of the
RKHS policy, as shown in Figure 5b. The results indicate that the original RKHS policy achieves the
best overall performance compared to other hyperparameter settings, although it still underperforms
relative to the KPN, which dynamically processes observations through neural networks.

Figure 6: The estimated variance in MuJoCo environments for proposed algorithms.

To answer (2), we utilize a classic variance estimation formula, with detailed methodology provided
in Appendix B.2. The variance of the RKHS gradient across various environments is illustrated in
Figure 6.

The results indicate that the introduction of advantage functions significantly reduces the variance in
KPN. Nevertheless, ephemeral fluctuations are still observed, particularly in the Inverted Pendulum,
Hopper, and Humanoid Standup environments. The ResKPN further mitigates these fluctuations
during training, demonstrating a rapid decrease in gradient variance at the beginning of the training
process, notably in the Humanoid and Walker2D environments.

5 CONCLUSION

In this paper, we examine the limitations of RKHS policies, focusing on how inadequate representa-
tion learning and excessive variance cause unstable training and low robustness across environments.
To address these issues, we introduce the ResKPN model, which capitalizes on the high sample
efficiency of RKHS policies. Our theoretical analysis of ResKPN is validated, confirming the effec-
tiveness of the proposed variance reduction methods. Comprehensive experiments demonstrate that
our algorithm outperforms baseline methods.

However, several challenges remain. Unlike gradient updates in neural networks, which use mini-
batches for averaging gradients, RKHS gradient updates cannot currently leverage minibatches
due to computational complexity. Additionally, the kernel’s separate learning of high-dimensional
spaces may hinder performance in multi-agent settings. Future research will focus on kernel embed-
ding techniques to enable batch RKHS gradient updates and on approximating kernel computations
to improve sample efficiency and reduce variance.
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for the non-linear inverse problem: A comparative study 1. Geophysical prospecting, 38(5):499–
524, 1990.
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A VARIANCE ANALYSE

A.1 THE VARIANCE RATIO

In this section, we provide a proof to Lemma 3.1, which indicates that the variance ratio R satisfies:

Esk

[
Varak(∇hÛ (πh))

Varak(∇θÛ (πθ))

]
≥ Esk

[
K2(sk, sk)

s2k

2c21
2c22 +Σ−1(c2θ⊤sk + d2)2

]
.

First, we define the linear policy.

Definition A.1 (Linear policy) The linear policy πθ(a|s) is modeled as

πθ(a|s) =
1

Z
e−

1
2 (θ

⊤s−a)⊤Σ−1(θ⊤s−a),

where θ is the trainable parameter for policy. Linear policy embeds state s in a linear manner as
θ⊤s.

Comparing with RKHS policy in Equation (2), the only difference of lienar policy is the modeling
of the mean vector θ⊤s and h(s). Therefore, the estimated gradient of linear policy ∇θÛ (πθ) is
derived (Zhao et al., 2011) as

∇θÛ (πθ) = η · skΣ−1
(
ak − θ⊤sk

)
Q̂πθ (ak, sk).

Then, we apply this definition in the variance ratio R. Considering the expectation of variance ratio
conditioned on ϑ, combine with Eq. 3, we can have the variance ratio R as

R =
Varak(∇hÛ (πh))

Varak(∇θÛ (πθ))
=
η2 Varak(K(sk, ·)Σ−1(ak − h(sk))Q̂

πh(ak, sk))

η2 Varak(skΣ
−1 (ak − θ⊤sk) Q̂πθ (ak, sk))

=
⟨K(sk, ·),K(sk, ·)⟩Varak(K(sk, ·)Σ−1(ak − h(sk))Q̂

πh(ak, sk))

s2k Varak(Σ
−1 (ak − θ⊤sk) Q̂πθ (ak, sk))

=
K(sk, sk)Varak(K(sk, ·)Σ−1(ak − h(sk))Q̂

πh(ak, sk))

s2k Varak(Σ
−1 (ak − θ⊤sk) Q̂πθ (ak, sk))

,

where the last step uses the reproducing kernel property that ∀x, y, ⟨K(x, ·),K(y, ·)⟩ = K(x, y).

Considering the Assumption A.1 that Q̂πθ (ak, sk) and Q̂πh(ak, sk) are linear functions conditioned
on sk, i.e., Q̂πθ (a, sk) = c⊤1 a+ d1, Q̂πh(a, sk) = c⊤2 a+ d2, we can have that

R =
K(sk, sk)Varak(Σ

−1(ak − h(sk))(c1ak + d1))

s2k Varak(Σ
−1 (ak − θ⊤sk) (c2ak + d2))

.

We first consider the variance in the numerator part. Denote y = Σ− 1
2 (ak−h(sk)), then we have that

y ∼ N (0, 1), then we can write Var
(
Σ−1(ak − h(sk))(c1ak + d1)

)
= Var

(
Σ− 1

2 y(c1ak + d1)
)

.
Further, we have

Var
(
Σ− 1

2 y(c1ak + d1)
)

= E
[(

Σ− 1
2 y(c1ak + d1)

)2
]
−

(
E
[
Σ− 1

2 y(c1ak + d1)
])2

= Σ−1E
[(
y(c1(Σ

1
2 y + h(sk)) + d1)

)2
]
−
(
E
[
Σ− 1

2 y(c1(Σ
1
2 y + h(sk)) + d1)

])2

= Σ−1
[
c21ΣE[y4] + 2c1Σ

1
2 (c1h(sk) + d1)E[y3] + (c1h(sk) + d1)

2E[y2]
]

−
(
c1E[y2] + (c1h(sk) + d1)E[y]

)2
= Σ−1

[
c21Σ · 3 + 2c1Σ

1
2 (c1h(sk) + d1) · 0 + (c1h(sk) + d1)

2 · 1
]

− (c1 · 1 + (c1h(sk) + d1) · 0)2

= 3c21 +Σ−1(c1h(sk) + d1)
2 − c21

= 2c21 +Σ−1(c1h(sk) + d1)
2.
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Using the similar method, the variance Varak(∇θÛ (πθ)) is derived as 2c22 +Σ−1(c2θ
⊤sk + d2)

2.

Therefore, the variance ratio is

R =
K2(sk, sk)

s2k

2c21 +Σ−1(c1h(sk) + d1)
2

2c22 +Σ−1(c2sk + d2)2
≥ K2(sk, sk)

s2k

2c21
2c22 +Σ−1(c2θ⊤sk + d2)2

.

In this case,

Esk

[
Varak(∇hÛ (πh))

Varak ∇θÛ (πθ))

]
≥ Esk

[
K2(sk, sk)

s2k

2c21
2c22 +Σ−1(c2θ⊤sk + d2)2

]
.

A.2 THE VARIANCE IN DIFFERENT RKHS GRADIENT ALGORITHMS

In this section, we prove the Theorem 3.2.

Advantage Function Effect First, we prove that Varak(∇hÛ (πϖ)) ≥ Varak(∇hÛAπϖ (πϖ)).

For simplification of notations, we denote Varak(∇hÛAπϖ (πϖ)) = Eak
[
(ΓA − Eak [ΓA])2

]
with

ΓA = ∇hÛAπϖ (πϖ) = ∇ log πϖ (ak|sk)Aπϖ ,

and Varak(∇hÛ (πϖ)) = Eak [(ΓQ − Eak [ΓQ])2] with

ΓQ = ∇hÛ(πϖ) = ∇ log πϖ(ak|sk)Qπϖ (ak, sk).

Similarly, we can denote that ΓV = Eak [(ΓV )2] with ∇ log πϖ(ak|sk)V πϖ (sk). Since Aπϖ =
Qπϖ (ak, sk)− V πϖ (sk), we can derive that:

ΓA − Eak [ΓA]
=∇ log πϖ (ak|sk)Aπϖ − Eak [∇ log πϖ (ak|sk)Aπϖ ]

=∇ log πϖ (ak|sk) (Qπϖ (ak, sk)− V πϖ (sk))− Eak [∇ log πϖ (ak|sk) (Qπϖ (ak, sk)− V πϖ (sk))]

=
(
∇ log πϖ(ak|sk)Qπϖ (ak, sk)− Eak [∇ log πϖ (ak|sk)Qπϖ (ak, sk)]

)
−(

∇ log πϖ (ak|sk)V πϖ (sk)− Eak [∇ log πϖ (ak|sk)V πϖ (sk)]
)

=(ΓQ − Eak [ΓQ])− (ΓV − Eak [ΓV ]) .
Therefore, we have that

Varak(∇hÛAπϖ (πϖ))

=Eak
[
(ΓA − Eak [ΓA])

2
]

=Eak
[(

(ΓQ − Eak [ΓQ])− (ΓV − Eak [ΓV ])
)2

]
=Eak

[
(ΓQ − Eak [ΓQ])

2 − 2 (ΓQ − Eak [ΓQ]) (ΓV − Eak [ΓV ]) + (ΓV − Eak [ΓV ])
2
]

=Varak(∇hÛ (πϖ)) + Eak
[
−2 (ΓQ − Eak [ΓQ]) (ΓV ) + (ΓV )

2
]

=Varak(∇hÛ (πϖ)) + Eak
[
(ΓV )

2 − 2ΓQΓV

]
=Varak(∇hÛ (πϖ)) + (V πϖ )2(sk)Eak [⟨∇ log πϖ (ak|sk),∇ log πϖ (ak|sk)⟩]−
2V πϖ (sk)Eak [⟨∇ log πϖ (ak|sk)Qπϖ (ak, sk),∇ log πϖ (ak|sk)⟩] ,

where we use the Eak [∇ log πϖ (ak|sk)V πϖ (sk)] = 0 property for ∇ log πϖ (ak|sk) (Weaver &
Tao, 2001). Therefore, it is easily derived that

Γ2
Q − Γ2

A =− (V πϖ )2Eak [⟨∇ log πϖ (ak|sk),∇ log πϖ (ak|sk)⟩] +
2V πϖ (sk)Eak [⟨∇ log πϖ (ak|sk)Qπϖ (ak, sk),∇ log πϖ (ak|sk)⟩]

≥0,

where the last inequality uses the assumption Qπϖ (ak, sk) ≥ 1
2Eak [Q

πϖ (ak, sk)] =
1
2V

πϖ (sk).
Therefore, it is shown that Varak(∇hÛ (πϖ)) ≥ Varak(∇hÛAπϖ (πϖ)).
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Residual Effect Now we consider the variance of ∇hÛAπϖ (πϖ,ι). Similarly, we write
Varak(∇hÛAπϖ (πϖ,ι)) = Eak

[
(Γh,µ − Eak [Γh,µ])2

]
,where Γh,µ = ∇hÛAπϖ (πϖ,ι) =

K(sk, ·)Σ−1(ak − h (ψϑ (sk)) − µι (ψϑ (sk)))A
πϖ (ak, sk). Additionally, we denote

that Varak(∇hÛAπϖ (πϖ)) = Eak
[
(Γh − Eak [Γh])2

]
with Γh = K(sk, ·)Σ−1(ak −

h (ψϑ (sk)))A
πϖ (ak, sk) and Γµ = K(sk, ·)Σ−1(µι (ψϑ (sk)))A

πϖ (ak, sk). Like the derivations
in the advantage function effect, it is easily observed that

Γh,µ − Eak [Γh,µ] = (Γh − Eak [Γh])− (Γµ − Eak [Γµ]) .

Based on the definition, we have that

Varak(∇hÛAπϖ (πϖ,ι))

=Eak
[
(Γh,µ − Eak [Γh,µ])2

]
=Eak

[(
(Γh − Eak [Γh])− (Γµ − Eak [Γµ])

)2
]

=Varak(∇hÛAπϖ (πϖ)) + Eak
[
−2 (Γh − Eak [Γh]) (Γµ) + (Γµ)

2
]

=Γ2
A + Eak

[
⟨−2K (sk, ·)Σ−1 (ak − h (ψϑ (sk)))A

πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk)⟩

+⟨K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A

πϖ (ak, sk)⟩
]
,

where we use the property Eak
[
K(sk, ·)Σ−1µι (ψϑ (sk))A

πϖ (ak, sk)
]

= 0 due to
Eak [Aπϖ (ak, sk)] = 0, then we can derive that

Varak(∇hÛAπϖ (πϖ))−Varak(∇hÛAπϖ (πϖ,ι))

=Eak
[
⟨2K (sk, ·)Σ−1 (ak − h (ψϑ (sk)))A

πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk)⟩

−⟨K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A

πϖ (ak, sk)⟩
]

≥Eak
[
⟨K(sk, ·)Σ−1µι (ψϑ (sk))A

πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk)⟩

−⟨K(sk, ·)Σ−1µι (ψϑ (sk))A
πϖ (ak, sk),K(sk, ·)Σ−1µι (ψϑ (sk))A

πϖ (ak, sk)⟩
]

≥0

Therefore we can attain that Varak(∇hÛ (πϖ)) ≥ Varak(∇hÛAπϖ (πϖ)) ≥
Varak(∇hÛAπϖ (πϖ,ι)), where the last inequality uses the assumption ak − h(ψϑ(sk)) ≥
1
2µι(ψϑ (sk)).

B DETAILS IN EXPERIMENT

The experimental details are shown in this section, including a scheme figure of the ResKPN al-
gorithm, the techniques in PPO and DPO integrated with the proposed algorithms, the function to
estimate the variance of the RKHS gradient, and the hyperparameters in the experiments.

Without loss of generality, we adopt the Gaussian kernel for the experiments due to its well-
established properties in capturing smooth and continuous relationships in high-dimensional spaces.
To leverage GPU acceleration for training and simulation, we utilize the Brax simulator, which is
developed using Jax (Freeman et al., 2021). The experiments are conducted on a cluster server, with
each experiment utilizing an NVIDIA RTX A6000 GPU and 32 cores of an Intel(R) Xeon(R) Gold
5218 CPU running at 2.30 GHz.

B.1 THE IMPLEMENTATION DETAILS IN RESKPN

The methodology scheme of ResKPN is shown in Figure 7, where ∇ιÛ (πϖ,ι) represents the
gradient in the residual layer µι(ψϑ (·)), and the notation FC means the Fully Connected layer,
which composes the representation networks. The observations are initially input into the repre-
sentation networks for distribution adjustment. Both RKHS function h(ψϑ(sk)) and residual layer
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Figure 7: The scheme of the ResKPN algorithm.

µι(ψϑ (sk))) uses the representations for action choosing. Additionally, the covariance matrix Σ−1

is parameterized as the network parameters, which are updated through the backpropagation. The
main difference between ResKPN and AdvKPN algorithm is the usage of the residual layer, stabi-
lizing the training process.

To leverage the classic variance reduction techniques, We employ the techniques of Proximal Policy
Optimization (PPO) algorithms in the KPN, AdvKPN, and ResKPN algorithms to reduce variance.
Specifically, the optimization objective in PPO utilizes Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015), which we adapt to optimize our gradient. The optimization objective in
TRPO is given by

maximize
θ

Êk
[
πθ(ak | sk)
πθold(ak | sk)

Âk

]
subject to Êk [KL [πθold(· | sk), πθ(· | sk)]] ≤ δ,

where θold represents the parameters before the update. Inspired by this formulation, since

∇πh(ak | sk)
πhold(ak | sk)

=
πh(ak | sk)
πhold(ak | sk)

∇ log πh(ak | sk),

we adapt the RKHS policy gradient by scaling the original gradient with the policy ratio πh(ak|sk)
πhold (ak|sk)

.
Additionally, we incorporate the clipping technique used in PPO, where the policy ratio is clipped
as follows:

min

(
πh(ak | sk)
πhold(ak | sk)

, clip

(
πh(ak | sk)
πhold(ak | sk)

, 1− ϵ, 1 + ϵ

))
.

The threshold value ϵ is set to 0.2 in the PPO algorithm. In contrast, we set ϵ to 1 in the RKHS
policy to encourage more exploration, leveraging the high sample efficiency of the RKHS gradient.
To balance the exploration-exploitation trade-off, we introduce the drift function D from Discov-
ered Policy Optimization (DPO). The main difference between DPO and the PPO algorithm is the
inclusion of a drift function that depends on the advantage function values, allowing the adjustment
of hyperparameters to control the degree of exploration and exploitation in the policy. The drift
function is calculated as:
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D =



max

0,

(
πh(ak | sk)
πhold(ak | sk)

− 1

)
Aπϖ − αD tanh


(
πh(ak | sk)
πhold(ak | sk)

− 1

)
Aπϖ

αD


 , if Aπϖ ≥ 0,

max

0,
πh(ak | sk)
πhold(ak | sk)

Aπϖ − βD tanh


πh(ak | sk)
πhold(ak | sk)

Aπϖ

βD


 , otherwise,

where the hyperparameters αD and βD balance the exploration and exploitation of the policy. The
drift function D is integrated into the RKHS gradient as:

∇hÛAπϖ (πϖ,ι) = ηK(ψϑ(sk), ·)Σ−1 (ak − h(ψϑ(sk))− µι(ψϑ(sk))) (A
πϖ (ak, sk)−D) .

Table 1: Comparison of Hyperparameters among ResKPN, PPO, and DPO.

Parameter ResKPN PPO DPO
Optimization

Learning Rate 3× 10−4 3× 10−4 3× 10−4

Learning Rate for RKHS 1× 10−1 N/A N/A
Adam for RKHS 0.9 N/A N/A
Max Gradient Norm 0.5 0.5 0.5

Environment
Number of Environments in Parallel 2048 2048 2048

Training Schedule
Number of Steps per Update 10 10 10
Total Timesteps 5× 107 5× 107 5× 107

Number of Minibatches 32 32 32
Algorithm Specific

GAE Lambda 0.95 0.95 0.95
Clip Epsilon 0.2 0.2 0.2
Clip Epsilon for RKHS 1 N/A N/A
DPO Alpha 2.0 N/A 2.0
DPO Beta 0.6 N/A 0.6
DPO Alpha RKHS 1 N/A N/A
DPO Beta RKHS 0.6 N/A N/A

Model Architecture
Feature Dimension 256 N/A N/A
Activation Function tanh tanh tanh

B.2 THE ESTIMATION OF VARIANCE IN THE RKHS GRADIENT

To estimate the variance of RKHS gradient in the experiment, we conduct G parallel experiments.
It is observed that the RKHS gradient can be denoted as αtK(st, ·), where αt represents the coeffi-
cient including the learning rate, the derivative of log policy and the Q-function value or advantage
function, and the kernel is determined by the observations st. Therefore, we can derive the following
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variance estimation equation:

V̂arak,sk(∇θÛ (πh)) =
1

G

G∑
t=1

⟨αtK(st, ·)−
1

G

G∑
i=1

αiK(si, ·), αtK(st, ·)−
1

G

G∑
i=1

αiK(si, ·)⟩

=
1

G

G∑
t=1

αtK(st, st)α
⊤
t − 2αt

1

G

G∑
i=1

K(si, st)α
⊤
i +

1

G2

G∑
i=1

G∑
j=1

αiK(si, sj)α
⊤
j

 ,
(10)

where we use the reproducing property of the RKHS kernel.

B.3 HYPERPARAMETERS IN THE EXPERIMENT

The hyperparameters for PPO, DPO and ResKPN are shown in Table 1. The Max Gradient Norm
only limits the gradient update of the representation networks in ResKPN. We run environments in
parallel based on the JAX, which supports the acceleration of simulation in GPUs. All experiments
run for 5× 107 steps to compare the learning speed and convergence performance.

C MORE EXPLANATIONS FOR THE VARIANCE REDUCTION EFFECT IN THE
RESIDUAL LAYER

One of the main reasons that the advantage function Aπϖ (ak, sk) = Qπϖ (ak, sk) − V πϖ (sk) can
reduce the variance of the gradient is the natural properties that V πϖ (sk) = Eak [Qπϖ (ak, sk)],
which indicates that the state value function V πϖ (sk) is potentially stable than the Q-function
Qπϖ (ak, sk) (Greensmith et al., 2004). We compare these three values in the Hopper environment,
which is shown in Figure 8. It can be seen that after subtracting the state value function V πϖ (sk),
the advantage function shows more stability and a low-value curve, which avoids the overestimation
(Greensmith et al., 2004).

Figure 8: The variance reduction by introducing the advantage function in Hopper environment.

Inspired by the baseline function in the advantage framework, we introduce the residual layer µι(·)
as a ”baseline function” within the RKHS policy. This addition significantly enhances training
stability compared to the RKHS function h(·). To demonstrate the variance reduction achieved by
the residual layer, we compare the values of ak − h(ψϑ(sk)) − µι(ψϑ(sk)), ak − h(ψϑ(sk)), and
µι(ψϑ(sk)) in Figures 9 and 10, across the Inverted Pendulum and Hopper environments. These
comparisons reveal that introducing the residual layer as a ”baseline function” stabilizes the product
term (ak − h(ψϑ(sk)) − µι(ψϑ (sk))) relative to the original RKHS term (ak − h(ψϑ(sk))). This
stabilization directly contributes to the variance reduction in the RKHS gradient:

∇hÛAπϖ (πϖ,ι) = ηK(ψϑ(sk), ·)Σ−1(ak − h(ψϑ(sk))− µι(ψϑ (sk)))A
πϖ (ak, sk).

This also provides additional evidence supporting the correctness of Theorem 3.2.
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(a) (b)

Figure 9: Variance reduction achieved by introducing the residual layer µι(·) in the Inverted Pen-
dulum environment. (a) Comparison of ak − h(ψϑ(sk)) and µι(ψϑ(sk)). (b) Comparison of
ak − h(ψϑ(sk)) and ak − h(ψϑ(sk))− µι(ψϑ(sk)).

(a) (b)

Figure 10: Variance reduction achieved by introducing the residual layer µι(·) in the Hopper envi-
ronment. (a) Comparison of ak − h(ψϑ(sk)) and µι(ψϑ(sk)). (b) Comparison of ak − h(ψϑ(sk))
and ak − h(ψϑ(sk))− µι(ψϑ(sk)).

D MORE EXPERIMENT COMPARISONS

D.1 MORE VARIANCE REDUCTION METHODS COMPARISON

In this section, we delve into variance reduction techniques from related literature and present an
experiment on the minibatch method to highlight the distinctions and advantages of our approach
compared to prior research.

Table 2: Variance Reduction Methods for RKHS Policies.

Paper Variance Reduction
Method Tested Environment State Action

(Le et al., 2019) Learning rate search / Ker-
nel matching pursuit Quadrotor Navigation 13 3

(Paternain
et al., 2020) Symmetric estimation Self-Charging Surveillance

Robot 3 2

(Mazoure et al.,
2020)

Predefined kernel orthogo-
nal basis Pendulum 3 1

(Wang &
Principe, 2021)

Kernel orthogonal bases
clustering

Nonhuman primate per-
forming an obstacle-
avoidance task

/ 1

Table 2 summarizes various variance reduction methods for RKHS-based reinforcement learning
policies, highlighting their tested environments, techniques, and applicable state-action dimensions.
These approaches, while effective in specific scenarios, face significant challenges when applied to
high-dimensional environments like MuJoCo. For instance, the model-based method in (Paternain
et al., 2020) reduces gradient variance by averaging gradients of symmetric transitions, a strategy
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that is effective in simple tasks such as self-charging surveillance robots but struggles in complex
settings where symmetric transitions are difficult to identify. Similarly, (Le et al., 2019) introduces
a kernel matching pursuit method that reduces variance through gradient regression, yet it suffers
from computational instability in tasks with large state-action spaces, such as those found in MuJoCo
environments.

The method in (Mazoure et al., 2020) proposes truncating RKHS embeddings to represent policies
using kernel orthogonal bases, theoretically reducing Q-function variance. However, its reliance
on partitioning the state space into fixed bins renders it impractical for high-dimensional environ-
ments. For example, in the Hopper environment with a 17-dimensional state space, even simple
binary division across dimensions leads to an exponential number of kernel bases, making the ap-
proach computationally infeasible. Similarly, (Wang & Principe, 2021) employs an online clustering
method to aggregate kernel orthogonal bases, reducing computational costs and variance in neural
signal processing tasks. While this technique offers valuable insights, its focus on Q-function learn-
ing rather than policy gradient optimization, coupled with the bias introduced by clustering, limits
its applicability to RKHS policy frameworks in high-dimensional settings. These methods collec-
tively underscore the challenges of applying variance reduction techniques effectively in complex
environments like MuJoCo, where computational efficiency and scalability remain critical obstacles.

Although variance reduction techniques have been specifically designed for RKHS gradients, mini-
batch gradient computation (Qian & Klabjan, 2020) is widely adopted in deep learning and many
machine learning tasks due to its effectiveness in stabilizing gradient updates. However, applying
minibatch gradients directly to RKHS methods introduces significant computational challenges. The
mean of RKHS gradients must be explicitly expressed as

∑n
i=1 αiK(si, ·), where n represents the

minibatch size. This results in a quadratic increase in computational complexity as n grows, making
minibatch gradients computationally prohibitive for RKHS-based methods.

To evaluate the impact of minibatch size on computational cost, we conducted experiments with
varying minibatch sizes in two environments, and the results are summarized in Table 3.

Table 3: Training Time for Different Minibatch Sizes Across Environments (in minutes).

Environment Training Time (min.)/ Minibatch Size n
n = 1 n = 2 n = 3 n = 4 n = 5

Half Cheetah 13.19 61.25 140.74 199.49 205.07
Hopper 10.83 58.91 123.12 169.03 202.61

The results demonstrate that training time increases quadratically with minibatch size in both the
Hopper and Half Cheetah environments. For example, using a minibatch size of n = 5 requires over
three additional hours of computation compared to n = 1. These findings underscore the computa-
tional infeasibility of employing minibatch gradients in RKHS-based methods for high-dimensional
environments. Despite the significant computational cost, using minibatches remains important due
to their ability to reduce training variance. We conducted experiments with a minibatch size of n = 2
(as larger sizes are prohibitively slow) to evaluate training performance and variance, as shown in
Figures 11 and 12. These figures indicate that the training performance with n = 2 minibatches
shows minimal differences compared to the original approach. However, incorporating an addi-
tional transition per training period effectively reduces the variance of both AdvKPN and ResKPN,
highlighting the potential of the minibatch approach.

If the computational cost associated with minibatches can be addressed, we believe that this design
has the potential to further reduce variance in RKHS policy methods, offering a promising direction
for future research.

D.2 EXPERIMENTS ON OTHER ENVIRONMENTS

In this section, we extend the experimental evaluation of our proposed algorithms to two additional
environments: Pusher and Reacher. The episodic rewards obtained during training are presented in
Figure 13.
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Figure 11: The episodic reward in Hopper environment for minibatch size n = 2.

Figure 12: The standard deviation in Hopper environment for minibatch size n = 2.

Figure 13: The episodic reward in Pusher and Reacher environments for proposed algorithms.
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It is illustrated in the Figure 13 that the ResKPN consistently achieves the best performance in the
Pusher environment. In the Reacher environment, all algorithms except KPN and Origin-Kernel
converge to the optimal reward. This demonstrates the robustness of ResKPN, particularly in com-
plex environments requiring precise control. To further analyze stability during training, the standard
deviations of the episodic rewards for the proposed algorithms are shown in Figure 14. From Fig-

Figure 14: The standard deviation in Pusher and Reacher environments for proposed algorithms.

ure 14, it is evident that ResKPN, DPO, and AdvKPN achieve the smallest overall variance in the
Pusher environment, indicating stable learning dynamics. In the Reacher environment, while all
algorithms (except KPN) converge, the PPO algorithm exhibits significant oscillations in the final
phase of training. In contrast, algorithms such as ResKPN maintain high stability throughout train-
ing. These supplementary results further demonstrate the efficacy and robustness of the proposed
ResKPN algorithm.

D.3 OTHER ABLATION EXPERIMENTS

In this section, we investigate whether the integration of a residual layer can enhance the perfor-
mance or reduce the training variance of PPO and DPO algorithms. The episodic rewards during
training across multiple MuJoCo environments are illustrated in Figure 15.

Figure 15: The episodic reward in multiple MuJoCo environments for additional baseline algo-
rithms.

The results show that the PPO-res algorithm exhibits improvements in Walker2D and Hopper, main-
tains similar performance in Half Cheetah and Humanoid Standup, but experiences a decline in
performance in Inverted Pendulum and Humanoid. For DPO-res, its performance remains largely
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unchanged, with a slight decrease observed in Half Cheetah. A plausible explanation for this trend
is that the existing neural network structures in PPO and DPO may already provide sufficiently
well-learned representations, rendering the addition of a residual layer less impactful. The residual
layer might only offer benefits in specific cases, such as addressing issues of overfitting or gradient
dispersion. However, it does not function as an additional representation learning component, as it
does in ResKPN, to further enhance performance.

The variance reduction effect of integrating the residual layer with AdvKPN is another significant
consideration. The standard deviations during training for the additional baseline algorithms are
presented in Figure 16.

Figure 16: The standard deviation in multiple MuJoCo environments for additional baseline algo-
rithms.

As shown in Figure 16, the addition of the residual layer has minimal impact on training variance
across all tested environments. Both PPO-res and DPO-res maintain similar variance levels to their
respective baselines, PPO and DPO. This can be attributed to the similar gradient calculation mech-
anisms used in PPO, DPO, and their residual-layer variants. Adding a residual layer directly into the
neural network architecture may not effectively reduce variance in these cases.

In contrast, for policies with inherently high variance, such as KPN and AdvKPN, integrating a
stable learner, like the residual network, significantly stabilizes training, as demonstrated in our
theoretical analysis and the visualizations provided in Appendix C. This highlights the effectiveness
of the residual layer in scenarios where the original policy struggles with variance-related instability.

D.4 ALTERNATIVE KERNEL CHOICES

In this section, we evaluate alternative kernel choices within the ResKPN algorithm by testing Lin-
ear, Laplacian, and Sigmoid kernels, and comparing their performance against the Gaussian kernel
and the PPO algorithm. The episodic rewards achieved by ResKPN with different kernels across
multiple MuJoCo environments are presented in Figure 17. As shown in the figure, the Gaus-
sian kernel achieves the best overall performance, with the Laplacian kernel yielding comparable
episodic rewards. The Sigmoid kernel performs slightly worse but still outperforms PPO in most
environments, except for Half Cheetah. The Linear kernel, however, produces the lowest perfor-
mance due to its inability to capture non-linear relationships, which are critical for complex tasks
requiring intricate patterns and interactions. We also examine the variance in episodic rewards, as
shown in Figure 18.

Observing the figure, it is evident that ResKPN with Gaussian, Sigmoid, and Laplacian kernels
exhibits similar stability, with relatively low variance across episodes in most environments. In
contrast, the Linear kernel demonstrates significantly higher variance, especially in complex envi-
ronments such as Half Cheetah and Hopper. This elevated variance underscores the limitations of
the Linear kernel, as its inability to model non-linear relationships results in less stable and reliable
performance.
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Figure 17: The episodic reward in multiple MuJoCo environments for ResKPN within different
kernels.

Figure 18: The standard deviation in multiple MuJoCo environments for ResKPN within different
kernels.
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E THE COMPUTATIONAL COST

In this section, we show the computational cost in Table 4. All algorithms are accelerated using
JAX, significantly reducing computation time (Freeman et al., 2021). Among the tested methods,
PPO and DPO exhibit the lowest overall computational costs. Integrating the RKHS policy with
representation learning increases computation time due to the additional computational requirements
of the RKHS function, which vary depending on the chosen kernel. Specifically, Linear ResKPN and
Sigmoid ResKPN achieve moderate computation times, whereas Gaussian ResKPN and Laplacian
ResKPN exhibit the highest computational costs, attributed to the intensive calculations required for
these kernels.

A comparison of episodic reward performance and computational costs reveals a trade-off between
performance and efficiency. For applications prioritizing policy performance, the Gaussian or Lapla-
cian kernel may be preferred due to their superior episodic rewards. Conversely, for scenarios em-
phasizing computational efficiency while maintaining reasonable policy performance, the Sigmoid
kernel offers a balanced alternative. The choice of kernel should be guided by the specific require-
ments and constraints of the application environment.

Table 4: Runtime Comparison Across Different Algorithms and Environments (in minutes).

Environment KPN Gaussian
ResKPN PPO DPO Laplacian

ResKPN
Linear

ResKPN
Sigmoid
ResKPN

Half Cheetah 13.09 13.18 3.95 4.68 14.21 6.08 6.24
Humanoid Standup 13.70 13.77 2.08 2.14 12.56 7.37 6.61
Inverted Pendulum 10.29 10.31 3.50 3.86 11.22 2.60 2.63
Walker2d 11.00 11.06 3.69 4.12 10.59 3.55 3.69
Hopper 10.69 10.80 1.54 1.55 13.56 3.30 3.34
Humanoid 13.07 13.23 2.13 2.28 15.43 5.96 6.12
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