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ABSTRACT
Polyp segmentation is crucial for preventing colorectal cancer
a common type of cancer. Deep learning has been used to
segment polyps automatically, which reduces the risk of mis-
diagnosis. Localizing small polyps in colonoscopy images is
challenging because of its complex characteristics, such as
color, occlusion, and various shapes of polyps. To address this
challenge, a novel frequency-based fully convolutional neural
network, Multi-Frequency Feature Fusion Polyp Segmenta-
tion Network (M3FPolypSegNet) was proposed to decompose
the input image into low/high/full-frequency components to
use the characteristics of each component. We used three
independent multi-frequency encoders to map multiple in-
put images into a high-dimensional feature space. In the
Frequency-ASPP Scalable Attention Module (F-ASPP SAM),
ASPP was applied between each frequency component to pre-
serve scale information. Subsequently, scalable attention was
applied to emphasize polyp regions in a high-dimensional
feature space. Finally, we designed three multi-task learn-
ing (i.e., region, edge, and distance) in four decoder blocks
to learn the structural characteristics of the region. The
proposed model outperformed various segmentation models
with performance gains of 6.92% and 7.52% on average for
all metrics on CVC-ClinicDB and BKAI-IGH-NeoPolyp,
respectively.

Index Terms— Deep learning, Fully convolutional neu-

ral network, Polyp segmentation, Frequency domain

1. INTRODUCTION
Colorectal Cancer is one of the most common types of cancer
worldwide [1]. Because colorectal cancer typically starts as
polyps and progresses to cancer, medical experts recommend
regular colonoscopies for the early detection of polyps. How-
ever, manual polyp detection is not highly accurate, because
of dependence on the ability of doctors and the limitations
of colonoscopy equipment, which results in a decreasing sur-
vival rate.
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With the advancement of deep learning [2, 3], automatic
polyp segmentation has been developed rapidly to reduce
misdiagnosis resulting from overworked doctors and obso-
lete equipment. U-Net [4] has been widely adopted in polyp
segmentation tasks because of its remarkable performance in
biomedical image segmentation. In U-Net++ [5], the ensem-
ble nested U-Net of various depths and deep supervision are
used. ResNet++ [6] is focused on attention mechanisms and
multi-scale feature extraction. In PraNet [7], reverse attention
is used to clarify the relationship between areas and boundary
cues to mitigate misaligned prediction.

The localization of small polyps in polyp segmentation
is challenging because of complex structures such as, colors,
occlusion, and various shapes of polyps and affects model
performance. Frequency-based methods exhibit consider-
able potential for image segmentation. In FRCU-Net [8],
the Laplacian pyramid and Frequency Re-Calibration mod-
ule that implement frequency attention to the basic U-Net
architecture was applied. By contrast, in FDA [9], discrete
Fourier transform (DFT) is applied to each image, replacing
the low-frequency component of the target image with the
source image and the source image with the target style is
reconstructed through inverse DFT.

In this paper, we propose a novel frequency-based fully
convolutional neural network (FCNN), Multi-Frequency Fea-
ture Fusion Polyp Segmentation Network (M3FPolypSegNet).
M3F PolypSegNet extracts feature maps by decomposing the
input image into low/full/high-frequency to learn unique char-
acteristics. The Frequency-ASPP Scalable Attention Module
(F-ASPP SAM) combines the modified ASPP and atten-
tion modules to preserve scale information and emphasize
polyp regions in a high-dimensional feature space. Finally, a
multi-task (i.e., region, edge, and distance) loss is designed
for learning the structural characteristics of the polyp region
during training. The proposed model outperformed various
segmentation models with performance gains of 6.92% and
7.52% on average for all metrics on CVC-ClinicDB and
BKAI-IGH-NeoPolyp, respectively. The contributions of the
study are as follows:

• We propose a novel polyp segmentation model (M3F
PolypSegNet) based on a multi-frequency encoder and
a single-decoder architecture that utilizes unique char-



Fig. 1. The proposed M3FPolypSegNet architecture. (a) Overall block diagram of our network, (b) Overview of F-ASPP SAM,
and (c) Training procedure of i-level decoder block DB(i) with multi-task learning and Si = {Ri, Ei, Di} is multiple output
from each decoder block DB(i) for i = 1, 2, 3, 4.

acteristics for each frequency component.
• F-ASPP SAM introduces trainable parameters between

the foreground/background attention of frequency and
scale to prevent information loss during the gradual up-
sampling of the decoder block. Furthermore, the van-
ishing gradient problem was prevented by performing
multi-task deep supervision training in each decoder
block.

• We experimentally achieved state-of-the-art perfor-
mance in various evaluation metrics when compar-
ing various polyp image segmentation models on two
datasets (CVC-ClinicDB and BKAI-IGH-NeoPolyp).

2. METHOD
M3FPolypSegNet is a novel polyp segmentation architecture
with multiple encoders and a single decoder-based FCNN
for end-to-end training. Our model consists of three primary
components, namely multi-frequency encoder, frequency-
ASPP scalable attention module, and single decoder with
multi-task learning. Figure 1 (a) display the overall architec-
ture of M3FPolypSegNet.

2.1. Multi-Frequency Encoder
We were motivated by [10], in which the low/high-frequency
components exhibit distinct cues that contain the approximate
location and details from the low/high-frequency polyp im-
age, respectively. Therefore, our motivation is that if latent
feature maps of images are extracted and combined with var-
ious frequencies, a multi-modality perspective can be used.
For this purpose, we applied DFT to transform the input im-
age in the frequency domain.

Let xfull ∈ RH×W×3 be the input image where H and
W are the height and width of the input image, respectively.

First, we transform the input image into the frequency domain
using DFT as follows:

x̂full = F{xfull} ∈ CH×W×3 (1)

where F{·} denotes the DFT with a shift operator that
multiplies (−1)u+v in the frequency domain to translate the
DC component to the center of the image where u and v are
the frequency index. The low/high-frequency components
based on the proportion of the total power spectrum of the
image are defined. Let T and P be the total and partial power
spectrum of the image, respectively. For a power spectrum
ratio 0 ≤ r ≤ 1, we define the low-frequency component
satisfying P/T ≤ r. After finding the maximum frequency
index (umax, vmax) satisfying the condition, we define the
low-frequency pass mask Mlow as follows:

Mlow(u, v) =

{
1 if u2 + v2 ≤ R2

0 if Otherwise
(2)

where R2 = u2
max + v2max. We decompose x̂ into

the low/high-frequency components by two binary masks,
namely Mlow and 1 − Mlow to create a new input image as
follows: {

xlow = F−1{xfull ⊗Mlow}
xhigh = F−1{xfull ⊗ (1−Mlow)}

(3)

where F−1{·} and ⊗ represent the inverse DFT with a
shift operator that multiplies (−1)x+y and element-wise mul-
tiplication, respectively. We design an encoder-decoder archi-
tecture similar to U-Net [4] in this paper. The encoder consists
of four blocks with a convolutional layer, batch normaliza-
tion, and ReLU activation function. First, a high-dimensional



feature map was extracted from a full-frequency image for
each i = 1, 2, 3, 4 as follows:

xfull
i = efulli

(
xfull
i−1

)
(4)

where xfull
0 = xfull , and ei(·) is i-th encoder block. The

multi-frequency encoder has higher representation power
than a single encoder by training multiple encoders from im-
ages in various frequency components. However, xlow and
xhigh exhibit information loss, because specific frequency
ranges are completely removed. To solve this problem, we
add a residual connection, Guided Convolution Block (GCB),
from a full-frequency encoder into low/high-frequency en-
coders while extracting high-dimensional feature maps as
follows:

xz
i = ezi

(
xz
i−1

)
+GCB

(
xfull
i

)
(5)

where z = low, high and GCB(·) consists of 1× 1 con-
volution and ReLU activation function. Because the three in-
puts have distinct characteristics, we use three independent
encoders that do not share parameters. Through this method,
each encoder extracts feature maps corresponding to each fre-
quency component while minimizing information loss.

2.2. Frequency-ASPP Scalable Attention Module
In the F-ASPP SAM, heterogeneous feature maps are fused
to enhance polyp regions. The architecture of F-ASPP
SAM is displayed in Figure 1 (b). First, the three feature
maps are concatenated as X =

[
xlow
4 ,xfull

4 ,xhigh
4

]
∈

RH/16,W/16,3C4 . Convolutional layers with various atrous
rates are then used for efficient multi-frequency and scale
fusion. In this paper, after modifying the original ASPP ar-
chitecture, the four branches use convolution operations with
various atrous rates to extract feature maps and then sum
them.

However, this method cannot capture polyp regions, and
the results tend to be scattered. Therefore, we simultane-
ously applied foreground/background attention and concate-
nated them to preserve the information of polyp regions dur-
ing progressive decoding. We introduced two trainable pa-
rameters (α and β) to determine two attention ratios as fol-
lows:

O = C3×3([(αg(f(X)))X, (β(1− g(f(X))))X]) (6)

where f(·) and g(·) are four-branch ASPP module which
we modified from original module [11] and 1 × 1 convolu-
tion block, respectively. The result of the concatenation goes
through a 3 × 3 convolutional layer and continues with the
decoding.

2.3. Training and Inference Process
By applying deep supervision to each block of the decoder,
we obtained four additional outputs R0, S1, S2, S3 and the fi-
nal output S4. We denote that Si = {Ri, Ei, Di} is multiple
outputs from each decoder block, DB(i), that performs multi-
task learning for each i = 1, 2, 3, 4. At this stage, each task
prediction is upsampled to the same size as the ground truth
to calculate the loss function. The edge ground truth, EG, is
obtained by applying the anisotropic Sobel edge detection fil-
ter from RG. The distance map ground truth, DG, is obtained
from RG by applying a distance transform and normalizing
the distances from pixels in the region to edges between 0
and 1. The loss function for the ith decoder block, DB(i), is
computed as follows:

Li = LBCE(U24−i(Ri), RG) + LBCE(U24−i(Ei), EG)

+LMSE((U24−i(Di), DG)

(7)

where U24−i(·) is bi-linear interpolation with a 24−i scale
factor. Finally, the total loss function in M3FPolypSegNet
is Ltotal = LBCE(R0, RG) +

∑4
i=1 Li. Additionally, the

final prediction map Rfinal can be obtained by applying the
sigmoid function to R4 ∈ S4.

3. EXPERIMENTAL RESULTS
3.1. Experimental Settings and Implementation Details
We implemented M3FPolypSegNet in Pytorch 1.11 and
Python 3.8, and used two datasets (CVC-ClincDB [12] and
BKAI-IGH-NeoPolyp [13]) for training and evaluation. All
input images were resized at the same resolution of 256×256.
We compared the proposed M3FPolypSegNet with ten exist-
ing segmentation networks (FCN8s [2], DeepLabv3+ [11],
SegNet [14], U-Net [4], U-Net++ [15], CENet [16], ResU-
Net [17], ResU-Net++ [6], PraNet [7]). We optimized param-
eters using the Adam optimizer in an end-to-end approach.
The initial learning rate started from 10−4 and decreased
to 10−6 by using the cosine annealing learning rate sched-
uler, and the training settings were set to a batch size of 16
and epochs of 200. During the training phase, a random
horizontal flipping with a probability of 50% and a random
non-extended rotation between −5◦ and 5◦ were applied.
We use five representative segmentation metrics (pixel accu-
racy, precision, recall, F1-Score, and IoU) for comparison.
We fixed r = 0.5 to equally set the importance between
low/high-frequency1.

3.2. Results Analysis
Table 1 summarizes experiment results. As presented in
Table 1, M3FPolypSegNet outperformed on all metrics but
exhibited a much higher recall on the CVC-ClnicDB dataset.
In particular, IoU is improved by approximately 2.5%, and

1The code is available in our M3FPolypSegNet.git

https://github.com/ICIP2023/M3FPolypSegNet.git


Table 1 Experiment results on the CVC-ClinicDB and BKAI-IGH-NeoPolyps datasets. Bold and italic denote best and second-
best performance, respectively.

Method Parameters CVC-ClinicDB [12] BKAI-IGH-NeoPolyps [13]
Acc F1-Score Recall Precision IoU Acc F1-Score Recall Precision IoU

FCN8s [2] 18.64M 0.9723 0.8015 0.8175 0.8299 0.7285 0.9659 0.7234 0.8399 0.7092 0.6726
DeepLabV3+ [11] 59.34M 0.9791 0.8373 0.8306 0.8736 0.7844 0.9806 0.8822 0.9066 0.8881 0.8422

SegNet [14] 16.50M 0.9631 0.5787 0.6862 0.5707 0.5484 0.9501 0.6440 0.7238 0.6374 0.6115
U-Net [4] 34.53M 0.9792 0.8585 0.8635 0.8962 0.7985 0.9842 0.9052 0.9217 0.9138 0.8696

U-Net++ [15] 36.63M 0.9827 0.8817 0.8897 0.9157 0.8257 0.9861 0.9178 0.9515 0.9194 0.8878
CENet [16] 29.00M 0.9845 0.8854 0.8699 0.9249 0.8370 0.9869 0.9133 0.9285 0.9161 0.8790

ResU-Net [17] 10.81M 0.9522 0.7812 0.7563 0.8720 0.7022 0.9791 0.8860 0.9222 0.8878 0.8362
ResU-Net++ [6] 14.48M 0.9684 0.7643 0.7907 0.7948 0.7026 0.9476 0.7846 0.8887 0.7611 0.7152

PraNet [7] 32.55M 0.9797 0.8748 0.8654 0.9244 0.8248 0.9918 0.9370 0.9461 0.9395 0.9081
M3FPolySegNet (Ours) 22.39M 0.9883 0.8937 0.9015 0.9062 0.8507 0.9891 0.9399 0.9441 0.9450 0.9147

Fig. 2. Qualitative results of PraNet [7], CENet [16] and
M3FPolypSegNet for each input image. Red boxes indicate
misdiagnosis of the input images.

1.3% compared with PraNet and CENet, respectively. We
introduce two trainable attention ratios (α and β) between
foreground and background in F-ASPP SAM. Therefore,
M3FPolypSegNet’s prediction mask can observe higher de-
tails of polyp edges compared to PraNet [7], which only uses
existing reverse attention. Furthermore, M3FPolySegNet ob-
tained higher performance than PraNet even if approximately
10M lower number of parameters. In Figure 2, we observe the
qualitative results of each method. In colonoscopy image, a
single lighting source makes difficulties that edges of polyps
are ambiguous. Our model leverages the high-frequency
components to increase invariance and perform specialized
segmentation on colonoscopy images. High-frequency com-
ponents tend to reveal detailed information, such as the edges
of polyps, and by utilizing this information, the accuracy and
performance of polyp segmentation can be improved.

3.3. Ablation Study
In this section, we measure the performance of each com-
ponent of M3FPolypSegNet; Frequency(FD), GCB, Multi-
Task Learning (MTL) and Frequency-ASPP Scalable Aten-
tion Module (F-ASPP SAM), separately on two datasets to

Table 2 Ablation study on the CVC-ClinicDB and BKAI-
IGH-NeoPolyps (BKAI) datasets. Bold and italic denote best
and second-best performance, respectively.

FD GCB MTL F-ASPP SAM CVC-ClincDB BKAI
✗ ✗ ✗ ✗ 0.7985 0.8696
✓ ✓ ✗ ✗ 0.7909 0.8684
✓ ✗ ✓ ✗ 0.8103 0.8771
✓ ✓ ✓ ✗ 0.8282 0.8820
✓ ✓ ✓ ✓ 0.8507 0.9147

gain a deeper understanding of our model. The results are
summarized in the Table 2.

First, when FD and GCB are applied to U-Net, perfor-
mance degradation occurs on CVC-ClinicDB and BKAI.
However, after MTL is applied for each decoder, the per-
formance is improved by 2.97% and 1.24% compared with
U-Net. Table 2 reveals that keeping MTL and removing GCB
results in performance degradation of 3.49% and 4.04%,
respectively. This result indicates that GCB supplement
information loss due to FD and gain performance improve-
ment. Finally, when F-ASPP SA is added, the performance
of both datasets is improved by a large margin. It can be seen
that CVC-ClinicDB and BKAI-IGH-NeoPolyp improve from
0.8282 and 0.882 to 0.8507 and 0.9147, respectively.

4. CONCLUSION
We propose M3FPolypSegNet, a polyp segmentation model
based on frequency-domain automated colonoscopy images.
Experiment results revealed that M3FPolypSegNet exhibits
higher learning and evaluation capabilities than existing polyp
segmentation models (CVC-ClinicDB: > 6% & BKAI-IGH-
NeoPolyp: > 7%). In particular, the power spectrum-based
frequency decomposition technique and multi-frequency-
based feature fusion method enable high-performance im-
provements by preventing spatial information loss during
training. Furthermore, we demonstrated that the proposed
model can be applied to various datasets because it does
not require any initialization techniques or post-processing
techniques. We conducted additional research in areas such
as various topics related to biomedical images (brain tumor
segmentation, liver segmentation, etc.), rather than restricting
M3FPolypSegNet to polyp segmentation task.
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