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Abstract

Recent studies highlighted a practical setting of unsupervised anomaly detection1

(UAD) that builds a unified model for multi-class images, serving as an alternative2

to the conventional one-class-one-model setup. Despite various advancements3

addressing this challenging task, the detection performance under the multi-class4

setting still lags far behind state-of-the-art class-separated models. Our research5

aims to bridge this substantial performance gap. In this paper, we introduce a6

minimalistic reconstruction-based anomaly detection framework, namely Dino-7

maly, which leverages pure Transformer architectures without relying on complex8

designs, additional modules, or specialized tricks. Given this powerful frame-9

work consisted of only Attentions and MLPs, we found four simple components10

that are essential to multi-class anomaly detection: (1) Foundation Transformers11

that extracts universal and discriminative features, (2) Noisy Bottleneck where12

pre-existing Dropouts do all the noise injection tricks, (3) Linear Attention that nat-13

urally cannot focus, and (4) Loose Reconstruction that does not force layer-to-layer14

and point-by-point reconstruction. Extensive experiments are conducted across15

three popular anomaly detection benchmarks including MVTec-AD, VisA, and the16

recently released Real-IAD. Our proposed Dinomaly achieves impressive image17

AUROC of 99.6%, 98.7%, and 89.3% on the three datasets respectively, which is18

not only superior to state-of-the-art multi-class UAD methods, but also surpasses19

the most advanced class-separated UAD records.20

1 Introduction21

Unsupervised anomaly detection (UAD) aims to detect abnormal patterns from normal images and22

further localize the anomalous regions. Because of the diversity of potential anomalies and their23

scarcity, this task is proposed to model the accessible training sets containing only normal samples as24

an unsupervised paradigm. UAD has a wide range of applications, e.g., industrial defect detection,25

medical disease screening, and video surveillance, addressing the difficulty of collecting and labeling26

all possible anomalies in these scenarios.27

Efforts on UAD attempt to learn the distribution of available normal samples. Most advanced methods28

utilize networks pre-trained on large-scale datasets, e.g. ImageNet [1], for extracting discriminative29

and informative feature representations. Specifically, Feature reconstruction [2; 3; 4] and feature30

distillation methods [5; 6] are proposed to reconstruct features of pre-trained encoders, based on31

the hypothesis that the networks trained on normal images can only construct normal regions, but32

fail for unseen anomalous regions. Feature statistics methods [7; 8; 9] memorize and model all33

anomaly-free features extracted from pre-trained networks in training, and compare them with the34

test features during inference. Pseudo-anomaly methods [10; 11] generate pseudo defects or noises35
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Figure 1: Setting and Performance of UAD and multi-class UAD (MUAD). (a) Task setting of
class-separated UAD. (b) Task setting of MUAD. (c) Comparison of Dinomaly and previous SoTA
methods [13; 14; 15; 16; 8; 17; 18; 19] on MVTec-AD [20], VisA [21], and Real-IAD [22].

on normal images or features to imitate anomalies, converting UAD to supervised classification [11]36

or segmentation tasks [10; 12].37

Conventional works on UAD build a separate model for each object category, as shown in Figure 1(a).38

However, this one-class-one-model setting entails substantial storage overhead for saving models39

[3], especially when the application scenario necessitates a large number of object classes. For40

UAD methods, a compact boundary of normal patterns is vital to distinguish anomalies. Once the41

intra-normal patterns become exceedingly complicated due to various classes, the corresponding42

distribution becomes challenging to measure, consequently harming the detection performance.43

Recently, UniAD [3] and successive studies have been proposed to train a unified model for multi-44

class anomaly detection (MUAD), as shown in Figure 1(b). Under this setting, the "identity mapping"45

that directly copies the input as the output regardless of normal or anomaly harms the performance of46

conventional methods [3]. This phenomenon is caused by the diversity of multi-class normal patterns47

that drive the network to generalize on unseen patterns.48

Within two years, a number of methods have been proposed to address MUAD, such as neighbor-49

masked attention [3], synthetic anomalies [23], feature jitter [3], vector quantization [24], diffusion50

model [25; 26], and state space model (Mamba) [19]. However, there is still a non-negligible51

performance gap between the state-of-the-art (SoTA) MUAD methods and class-separated UAD52

methods, restricting the practicability of implementing unified models, as shown in Figure 1(c). In53

addition, previous methods employ modules and architectures delicately designed, which may not be54

straightforward, and consequently suffer from limited universality and usability.55

In this work, we aim to catch up with the performance of class-separated anomaly detection models56

using a multi-class unified model, namely Dinomaly. To begin with, we build a reconstruction-based57

UAD framework that consists of only vanilla Transformer blocks [27], i.e. Self-Attentions and58

Multi-Layer Perceptrons (MLPs). Within this framework, we propose four simple but essential59

elements that boost Dinomaly to perform equal to or better than SoTA conventional class-separated60

models. First, we show that self-supervised pre-trained Vision Transformers (ViT) [28], especially the61

DINO family [29; 30], serve as powerful feature encoders to extract discriminative representations as62

2



reconstruction objects. Second, as an alternative to carefully designed pseudo anomaly and feature63

noise, we propose to activate the out-of-the-box Dropout in an MLP to prevent the network from64

restoring both normal and anomalous patterns, which is previously referred to as identity mapping.65

Third, we propose to utilize the "side effect" of Linear Attention (a computation-efficient counterpart66

of Softmax Attention) that makes it hard to focus on local regions, to further alleviate the issue of67

identity mapping. Fourth, previous methods adopt layer-to-layer and region-by-region reconstruction68

schemes, distilling a decoder that can well mimic the behavior of the encoder even for anomalous69

regions. Therefore, we propose to loosen the reconstruction constraints by grouping multiple layers70

as a whole and discarding well-reconstructed regions during optimization.71

To validate the effectiveness of the proposed Dinomaly under MUAD setting, we conduct extensive72

experiments on three widely used industrial defect detection benchmarks, i.e., MVTec AD [20]73

(15 classes), VisA [21] (12 classes), and recently released Real-IAD (30 classes). Notably, we74

achieve unprecedented image-level AUROC of 99.6%, 98.7%, and 89.3% on MVTec AD, VisA, and75

Real-IAD, respectively, which surpasses previous SoTA methods by a large margin.76

Related works are presented in Appendix A.1.77

2 Method78

2.1 Dinomaly Framework79

“What I cannot create, I do not understand”——Richer Feynman80

The ability to recognize anomalies from what we know is an innate human capability, serving as a81

vital pathway for us to explore the world. Similarly, we construct a reconstruction-based framework82

that relies on the epistemic characteristic of artificial neural networks. Dinomaly consists of an83

encoder, a bottleneck, and a reconstruction decoder, as shown in Figure 2. Without loss of generality,84

a standard ViT-Base/14 network [28] with 12 Transformer layers is used as the encoder, extracting85

informative feature maps with different semantic scales. The bottleneck is a simple MLP (a.k.a.86

feed-forward network, FFN) that collects the feature representations of the encoder’s 8 middle-level87

layers. The decoder is similar to the encoder, consisting of 8 Transformer layers. During training,88

the decoder learns to reconstruct the middle-level features of the encoder by maximizing the cosine89

similarity between feature maps. During inference, the decoder is expected to reconstruct normal90

regions of feature maps but fails for anomalous regions as it has never seen such samples.91

Foundation Transformers. Foundation models, especially ViTs [28; 31] pre-trained on large-scale92

datasets, serve as a basis and starting point for specific computer vision tasks. Such networks employ93

self-supervised learning schemes such as contrastive learning (MoCov3 [32], DINO [29]), masked94

image modeling (MAE [33], SimMIM [34], BEiT [35]), and their combination (iBOT [36], DINOv295

[30]), producing universal features suitable for image-level visual tasks (image classification, instance96

retrieval) and pixel-level visual tasks (depth estimation, semantic segmentation).97

Because of the lack of supervision in UAD, most advanced methods adopt pre-trained networks to98

extract discriminative features. Recent works [37; 17; 38] have discovered the advantage of robust99

and universal features of self-supervised models over domain-specific ImageNet features in anomaly100

detection tasks. In this work, we further utilize the up-to-date Transformer foundation, i.e., DINOv2101

with registers [39], as the encoder of Dinomaly.102

2.2 Noisy Bottleneck.103

“Dropout is all you need.”104

Generalization ability is a merit of neural networks, allowing them to perform equally well on unseen105

test sets. However, generalization is not so wanted in the context of unsupervised anomaly detection106

that leverages the epistemic nature of neural networks. With the increasing diversity of images and107

their patterns due to multi-class UAD settings, the decoder can generalize its reconstruction ability to108

unseen anomalous samples, resulting in the failure of anomaly detection using reconstruction error.109

This phenomenon is called "identity mapping" in previous works of literature [3; 23; 18].110

A direct solution for identity mapping is to shift "reconstruction" to "restoration". Specifically, instead111

of directly reconstructing the normal images or features given normal inputs, previous works propose112
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Figure 2: The framework of Dinomaly, built by pure Transformer building blocks.

to add perturbations as pseudo anomalies on input images [10; 40; 12] or feature representations113

[3; 25] during network forward propagation; meanwhile, still let the decoder restore anomaly-free114

images or features, formulating a denoising-like framework. However, such methods employ heuristic115

and hand-crafted anomaly generation strategies, that are not universal across domains, datasets, and116

methods.117

In this work, we propose to activate the pre-existing Dropout in an MLP layer. Dropout, a popular118

network element introduced by Hinton et al. [41] in 2014 to prevent overfitting, flourished in nearly119

all neural network architectures to the present day, including Transformers. In Dinomaly, Dropout is120

used to discard neural activations in the MLP bottleneck randomly. Instead of alleviating overfitting,121

the role of Dropout in Dinomaly can be explained as feature noise and pseudo feature anomaly.122

Although the decoder takes noisy features during training, it is encouraged to restore clean features123

from the encoder. Without introducing any novel modules, this paradigm forces the decoder to restore124

normal features given a test image with anomalies, in turn, mitigating identical mapping.125

2.3 Unfocused Linear Attention.126

“One man’s poison is another man’s meat”127

Softmax Attention is the key mechanism of Transformers, allowing the model to attend to different128

parts of its input token sequence. Formally, given an input sequence X ∈ RN×d with length129

N , Attention first transforms it into three matrices: the query matrix Q ∈ RN×d, the key matrix130

K ∈ RN×d, and the value matrix V ∈ RN×d:131

Q = XWQ ,K = XWK ,V = XWV , (1)

where WQ,WK ,WV ∈ Rd×d are learnable parameters. By computing the attention map by the132

query-key similarity, the output of Attention is given as: 1133

Attention(Q,K,V) = Softmax(QKT )V . (2)

1The full form of Attention is Softmax(QKT
√
d

)V. The constant denominator is omitted for narrative simplicity.
The multi-head mechanism that concatenates multiple Attentions is also omitted.
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Figure 3: The decoder attention map (min-max to 0-1 for visualization) of Dinomaly with vanilla
Softmax Attention vs. Linear Attention.

Because the attention map is obtained by computing the similarity between all query-key pairs134

followed by row-wise Softmax, the computation complexity is O(N2d).135

Linear Attention was proposed as a promising alternative to reduce the computation complexity of136

vanilla Softmax Attention concerning the number of tokens [42]. By substituting Softmax operation137

with a simple activation function ϕ(·) (usually ϕ(x) = elu(x) + 1), we can change the computation138

order from (QKT )V to Q(KTV). Formally, Linear Attention is given as:139

LinearAttention(Q,K,V) = (ϕ(Q)ϕ(KT ))V = ϕ(Q)(ϕ(KT )V) , (3)

where the computation complexity is reduced to O(Nd2). The trade-off between complexity and140

expressiveness is a dilemma. Previous studies [43; 44] attribute Linear Attention’s performance141

degradation on supervised tasks to its incompetence in focusing. Due to the absence of non-linear142

attention reweighting by Softmax operation, Linear Attention cannot concentrate on important regions143

related to the query, such as foreground and neighbors.144

Back to MUAD, previous methods [3; 24] suggest adopting Attentions instead of Convolutions145

because Convolutions can easily learn identical mappings. Nevertheless, both operations are in146

danger of forming identity mapping by over-concentrating on corresponding input locations for147

producing the outputs:148

Conv Kernel =

[
0 0 0
0 1 0
0 0 0

]
, Attention Map =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

In Dinomaly, we turn to leverage the "unfocusing ability" of Linear Attention. In order to probe149

how Attentions propagate information, we train two variants of Dinomaly using vanilla Softmax150

Attention or Linear Attention as the spatial mixer in the decoder and visualize their attention maps.151

As shown in Figure 3, Softmax Attention tends to focus on the exact region of the query, while152

Linear Attention spreads its attention across the whole image. This implies that Linear Attention,153

forced by its incompetence to focus, utilizes more long-range information to restore features at each154

position, reducing the chance of passing identical information of unseen patterns to the next layer155
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Figure 4: Schemes of reconstruction constraint. (a) Layer-to-layer (sparse). (b) Layer-to-cat-layer.
(c) Layer-to-layer (dense). (d) Loose group-to-group, 1-group (Ours). (e) Loose group-to-group,
2-group (Ours).

during reconstruction. Of course, employing Linear Attention also benefits from less computation,156

free of performance drop.157

2.4 Loose Reconstruction158

“The tighter you squeeze, the less you have.”159

Loose Constraint. Pioneers of feature-reconstruction/distillation UAD methods [5; 2] are inspired160

by knowledge distillation [45]. Most reconstruction-based methods distill specific encoder layers161

(e.g. 3 last layers of 3 ResNet stages) by the corresponding decoder layers [2; 5; 17] (Figure 4(a))162

or the last decoder layer [3; 4] (Figure 4(b)). Intuitively, with more encoder-decoder feature pairs163

(Figure 4(c)), UAD model can utilize more information in different layers to discriminate anomalies.164

However, according to the intuition of knowledge distillation, the student (decoder) can better mimic165

the behavior of the teacher (encoder) given more layer-to-layer supervision, which is harmful for UAD166

models that detect anomalies by encoder-decoder discrepancy. This phenomenon is also embodied167

as identity mapping. Thanks to the top-to-bottom consistency of columnar Transformer layers, we168

propose to loosen the layer-to-layer constraint by adding up all feature maps of interested layers as169

a whole group, as shown in Figure 4(d). This scheme can be seen as loosening the layer-to-layer170

correspondence, so that the decoder is allowed to act much more differently from the encoder when171

the input pattern is unseen. Because features of shallow layers contain low-level visual characters172

that are helpful for precise localization, we can further group the features into the low-semantic-level173

group and high-semantic-level group, as shown in Figure 4(e).174

Loose Loss. Following the above analysis, we also loosen the point-by-point reconstruction loss175

function by discarding some points in the feature map. Here, we simply borrow the hard-mining176

global cosine loss [18] that detaches the gradients of well-restored feature points with low cosine177

distance during training. Let fE and fD denotes (grouped) feature maps of encoder and decoder:178

Lglobal−hm = Dcos(F(fE),F(fD)) = 1− F(fE)
T · F(fD)

∥F(fE)∥ ∥F(fD)∥
, (4)

179

fD(h,w) =

{
sg(fD(h,w))0.1, if Dcos(fD(h,w), fE(h,w)) < 90% [Dcos(fD, fE)]batch
fD(h,w), else ,

(5)
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where F(·) denotes flatten operation, fD(h,w) represents the feature point at (h,w), sg(·)0.1180

denotes shrink the gradient to one-tenth of the original 2, Dcos(fD(h,w), fE(h,w)) <181

90% [Dcos(fD, fE)]batch selects 90% feature points with smaller cosine distance within a batch.182

Total loss is the mean Lglobal−hm of all encoder-decoder feature pairs.183

3 Experiments184

3.1 Experimental Settings185

Datasets. MVTec-AD [20] contains 15 objects (5 texture classes and 10 object classes) with a186

total of 3,629 normal images as the training set and 1,725 images as the test set (467 normal, 1258187

anomalous). VisA [21] contains 12 objects. Training and test sets are split following the official188

splitting, resulting in 8,659 normal images in the training set and 2,162 images in the test set (962189

normal, 1,200 anomalous). Real-IAD [22] is a large UAD dataset recently released, containing 30190

distinct objects. We follow the official splitting that includes all views, resulting in 36,465 normal191

images in the training set and 114,585 images in the test set (63,256 normal, 51,329 anomalous).192

Metrics. Following prior works [19; 17], we adopt 7 evaluation metrics. Image-level anomaly193

detection performance is measured by the Area Under the Receiver Operator Curve (AUROC),194

Average Precision (AP), and F1 score under optimal threshold (F1-max). Pixel-level anomaly195

localization is measured by AUROC, AP, F1-max and the Area Under the Per-Region-Overlap196

(AUPRO). The results of a dataset is the average of all classes.197

Implementation Details. ViT-Base/14 (patchsize=14) pre-trained by DINOv2-R [39] is used as198

the encoder by default. The drop rate of Noisy Bottleneck is 0.2 by default and increases to 0.4 on199

the diverse Real-IAD. Loose constraint with 2 groups is employed, and the anomaly map is given200

by the mean per-point cosine distance of the 2 groups. The input image is first resized to 4482201

and then center-cropped to 3922, so the feature map (282) is large enough for anomaly localization.202

StableAdamW optimizer [46] with AMSGrad [47] (more stable than AdamW [48] in training) is203

utilized with lr=2e-3, β=(0.9,0.999) and wd=1e-4. The network is trained for 10,000 iterations204

(steps) on MVTec-AD and VisA, and 50,000 iterations on Real-IAD. More details are available in205

Appendix A.2.206

3.2 Comparison to Multi-Class UAD SoTAs207

We compare the proposed Dinomaly with the most advanced methods. Among them, RD4AD [2]208

based on feature reconstruction, SimpleNet [13] based on feature-level pseudo-anomaly, and DeST-209

Seg [12] based on feature reconstruction & pseudo anomaly are designed for conventional class-210

separated UAD settings. UniAD based on feature reconstruction, ReContrast [18] based on contrastive211

reconstruction, ViTAD [17] based on feature reconstruction & Transformer, DiAD [49] based on212

Diffusion reconstruction, and MambaAD [19] based on feature reconstruction & Mamba are designed213

for MUAD settings. Notably, ViTAD and MambaAD are contemporary arxiv preprints released214

within months. The intuitive comparison is already presented in Figure 1.215

Experimental results are presented in Table 1, where Dinomaly surpasses compared methods by a large216

margin on all datasets and all metrics. On the most widely used MVTec-AD, Dinomaly produces217

image-level performance of 99.6/99.8/99.0 and pixel-level performance of 98.4/69.3/69.2/94.8,218

outperforming previous SoTAs by 1.0/0.2/1.2 and 0.7/9.1/7.7/1.6. This result declares that the219

image-level performance on the MVTec-AD dataset is nearly saturated under the MUAD setting.220

On the popular VisA, Dinomaly achieves image-level performance of 98.7/98.9/96.2 and pixel-level221

performance of 98.7/53.2/55.7/94.5, outperforming previous SoTAs by 3.2/2.5/4.2 and 0.2/5.3/5.1/2.6.222

On the Real-IAD that contains 30 classes, each with 5 camera views, we produce image-level and223

pixel-level performance of 89.3/86.8/80.2 and 98.8/42.8/47.1/93.9, outperforming previous SoTAs by224

3.0/2.2/3.2 and 0.3/4.9/5.4/3.4, indicating our scalability to extremely complex scenarios. Per-class225

performances and qualitative visualization are presented in Appendix A.5 and A.6. In addition,226

adopting a larger backbone further improves the above performances, as presented in Table A2.227

2Complete stop-gradient causes optimization instability occasionally.
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Table 1: Performance under multi-class UAD setting (%). †: method designed for MUAD.

Dateset Method
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

MVTec-AD [20]

RD4AD [2] 94.6 96.5 95.2 96.1 48.6 53.8 91.1
SimpleNet [13] 95.3 98.4 95.8 96.9 45.9 49.7 86.5
DeSTSeg [12] 89.2 95.5 91.6 93.1 54.3 50.9 64.8
UniAD [3]† 96.5 98.8 96.2 96.8 43.4 49.5 90.7

ReContrast [18]† 98.3 99.4 97.6 97.1 60.2 61.5 93.2
DiAD [49]† 97.2 99.0 96.5 96.8 52.6 55.5 90.7
ViTAD [17]† 98.3 99.4 97.3 97.7 55.3 58.7 91.4

MambaAD [19]† 98.6 99.6 97.8 97.7 56.3 59.2 93.1
Dinomaly (Ours) 99.6 99.8 99.0 98.4 69.3 69.2 94.8

VisA [21]

RD4AD [2] 92.4 92.4 89.6 98.1 38.0 42.6 91.8
SimpleNet [13] 87.2 87.0 81.8 96.8 34.7 37.8 81.4
DeSTSeg [12] 88.9 89.0 85.2 96.1 39.6 43.4 67.4
UniAD [3]† 88.8 90.8 85.8 98.3 33.7 39.0 85.5

ReContrast [18]† 95.5 96.4 92.0 98.5 47.9 50.6 91.9
DiAD [49]† 86.8 88.3 85.1 96.0 26.1 33.0 75.2
ViTAD [17]† 90.5 91.7 86.3 98.2 36.6 41.1 85.1

MambaAD [19]† 94.3 94.5 89.4 98.5 39.4 44.0 91.0
Dinomaly (Ours) 98.7 98.9 96.2 98.7 53.2 55.7 94.5

Real-IAD [22]

RD4AD [2] 82.4 79.0 73.9 97.3 25.0 32.7 89.6
SimpleNet [13] 57.2 53.4 61.5 75.7 2.8 6.5 39.0
DeSTSeg [12] 82.3 79.2 73.2 94.6 37.9 41.7 40.6
UniAD [3]† 83.0 80.9 74.3 97.3 21.1 29.2 86.7

ReContrast [18]† 86.4 84.2 77.4 97.8 31.6 38.2 91.8
DiAD [49]† 75.6 66.4 69.9 88.0 2.9 7.1 58.1
ViTAD [17]† 82.3 79.4 73.4 96.9 26.7 34.9 84.9

MambaAD [19]† 86.3 84.6 77.0 98.5 33.0 38.7 90.5
Dinomaly (Ours) 89.3 86.8 80.2 98.8 42.8 47.1 93.9

Table 2: Performance under conventional class-separated UAD setting (%). n/a: not available.

Method
MVTec-AD [20] VisA [21] Real-IAD [22]

I-AUROC P-AP P-AUPRO I-AUROC P-AP P-AUPRO I-AUROC P-AP P-AUPRO

Dinomaly (MUAD) 99.6 69.3 94.8 98.7 53.2 94.5 89.3 42.8 93.9

Dinomaly 99.7 68.9 95.0 98.9 50.7 95.1 92.0 45.2 95.1
RD4AD [2] 98.5 58.0 93.9 96.0 27.7 70.9 87.1 n/a 93.8

PatchCore [8] 99.1 56.1 93.5 95.1 40.1 91.2 89.4 n/a 91.5
SimpleNet [13] 99.6 54.8 90.0 96.8 36.3 88.7 88.5 n/a 84.6

EfficientAD [15] 99.1 63.8 93.5 98.1 40.8 94.0 n/a n/a n/a

3.3 Comparison to Class-Separated UAD SoTAs228

We also compare our Dinomaly with class-separated SoTAs, as shown in Table 2. On MVTec-AD and229

VisA, our Dinomaly under MUAD setting is comparable to conventional SoTAs that build individual230

models for each class [2; 13; 8; 15]. In addition, Dinomaly is subjected to nearly no performance231

drop compared to its class-separated counterpart on these datasets. On the complicated Real-IAD232

that involves more images, classes, and views, class-separated Dinomaly sets new SoTA records.233

Multi-class Dinomaly presents moderate performance drop but is still comparable to class-separated234

SoTAs.235

3.4 Ablation Study236

Overall Ablation. We conduct experiments to verify the effectiveness of the proposed elements, i.e.,237

Noisy Bottleneck (NB), Linear Attention (LA), Loose Constraint (LC), and Loose Loss (LL). The238

already-powerful baseline is Dinomaly with noiseless MLP bottleneck, Softmax Attention, dense239

layer-to-layer supervision, and global cosine loss [18]. Results on MVTec-AD and VisA are shown in240

Table 3 and Table A1, respectively. NB and LL can directly contribute to the model performance. LA241

and LC boost the performance with the presence of NB. The use of LC is not solely beneficial because242
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Table 3: Ablations of Dinomaly elements on MVTec-AD (%). NB: Noisy Bottleneck. LA: Linear
Attention. LC: Loose Constraint (2 groups). LL: Loose Loss. Results on VisA see Table A1.

NB LA LC LL
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

98.41 99.09 97.41 97.18 62.96 63.82 92.95
✓ 99.06 99.54 98.31 97.62 66.22 66.70 93.71

✓ 98.54 99.21 97.62 97.20 62.94 63.73 93.09
✓ 98.35 99.04 97.43 97.10 61.05 62.73 92.60

✓ 99.03 99.45 98.19 97.62 64.10 64.96 93.34
✓ ✓ 99.27 99.62 98.63 97.85 67.36 67.33 94.16
✓ ✓ 99.50 99.72 98.87 98.14 68.16 68.24 94.23
✓ ✓ ✓ 99.52 99.73 98.92 98.20 68.25 68.34 94.17
✓ ✓ ✓ 99.57 99.78 99.00 98.20 67.93 68.21 94.50
✓ ✓ ✓ ✓ 99.60 99.78 99.04 98.35 69.29 69.17 94.79

Table 4: Ablations of Dropout rates in Noisy Bottleneck, conducted on MVTec-AD (%). †: default.

Dropout rate
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

0 (noiseless) 98.19 99.55 98.51 97.55 63.11 64.39 93.33
0.1 99.54 99.75 98.90 98.35 69.46 69.19 94.53
0.2 † 99.60 99.78 99.04 98.35 69.29 69.17 94.79
0.3 99.65 99.83 99.16 98.34 68.46 68.81 94.63
0.4 99.64 99.80 99.23 98.22 67.95 68.33 94.57
0.5 99.56 99.81 99.14 98.15 67.43 67.82 94.64

Table 5: Ablations of reconstruction constraint, conduected on MVTec-AD (%). †: default.

Constraints
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

layer-to-layer (dense, every 1) 99.39 99.68 98.73 98.12 68.55 68.63 94.28
layer-to-layer (sparse, every 2) 99.52 99.73 98.95 98.16 68.89 68.57 94.40
layer-to-layer (sparse, every 4) 99.54 99.77 99.05 98.04 66.69 67.17 94.07
layer-to-cat-layer (every 2) 99.48 99.71 99.26 97.83 62.29 62.91 93.16
group-to-group (1 group) 99.64 99.80 99.36 98.18 64.79 65.40 93.96
group-to-group (2 groups)† 99.60 99.78 99.04 98.35 69.29 69.17 94.79

LC makes the reconstruction too easy without injected noise. Combining some of the proposed243

elements boosts the performance of the baseline, while employing them all produces the best results.244

Noisy Rates. We conduct ablations on the discarding rate of the Dropouts in MLP bottleneck, as245

shown in Table 4. Experimental results demonstrate that Dinomaly is robust to different levels246

of dropout rate. Reconstruction Constraint. We quantitatively examine different reconstruction247

schemes presented in Figure 4. As shown in Table 5, group-to-group LC outperforms layer-to-layer248

supervision. On image-level metrics, 1-group LC with all layers added performs similarly to its249

2-group counterpart that separates low-level and high-level layers; however, 1-group LC mixes250

low-level and high-level features which is harmful for anomaly localization. More ablations on251

scalability, input size, pre-trained foundations, etc., are presented in Appendix A.3.252

4 Conclusion253

Dinomaly, a minimalistic UAD framework, is proposed to address the under-performed MUAD254

models in this paper. We present four key elements in Dinomaly, i.e., Foundation Transformer, Noisy255

MLP Bottleneck, Linear Attention, and Loose Reconstruction, that can boost the performance under256

the challenging MUAD setting without fancy modules and tricks. Extensive experiments on MVTec257

AD, VisA, and Real-IAD demonstrate our superiority over previous model-unified multi-class models258

and even recent class-separated models, indicating the feasibility of implementing a unified model in259

complicated scenarios free of severe performance degradation.260
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A Appendix / supplemental material436

A.1 Related Work437

Epistemic methods are based on the assumption that the networks respond differently during in-438

ference between seen input and unseen input. Within this paradigm, pixel reconstruction methods439

assume that the networks trained on normal images can reconstruct anomaly-free regions well, but440

poorly for anomalous regions. Auto-encoder (AE) [50; 51], variational auto-encoder (VAE) [52; 53],441

or generative adversarial network (GAN) [54; 55] are used to restore normal pixels. However, pixel442

reconstruction models may also succeed in restoring unseen anomalous regions if they resemble443

normal regions in pixel values or the anomalies are barely noticeable [2]. Therefore, feature recon-444

struction is proposed to construct features of pre-trained encoders instead of raw pixels [2; 3; 4]. To445

prevent the whole network from converging to a trivial solution, the parameters of the encoders are446

frozen during training. In feature distillation [5; 6], the student network is trained from scratch to447

mimic the output features of the pre-trained teacher network with the same input of normal images,448

also based on the similar hypothesis that the student trained on normal samples only succeed in449

mimicking features of normal regions.450

Pseudo-anomaly methods generate handcrafted defects on normal images to imitate anomalies,451

converting UAD to supervised classification [11] or segmentation tasks [10]. Specifically, CutPaste452

[11] simulates anomalous regions by randomly pasting cropped patches of normal images. DRAEM453

[10] constructs abnormal regions using Perlin noise as the mask and another image as the additive454

anomaly. DeTSeg [12] employs a similar anomaly generation strategy and combines it with feature455

reconstruction. SimpleNet [13] introduces anomaly by injecting Gaussian noise in the pre-trained456

feature space. These methods deeply rely on how well the pseudo anomalies match the real anomalies,457

which makes it hard to generalize to different datasets.458

Feature statistics methods [7; 8; 56; 9] memorize all normal features (or their modeled distribution)459

extracted by networks pre-trained on large-scale datasets and match them with test samples during460

inference. Since these methods require memorizing, processing, and matching nearly all features461

from training samples, they are computationally expensive in both training and inference, especially462

when the training set is large.463

Multi-Class UAD. UniAD [3] first introduced multi-class anomaly detection, aiming to detect464

anomalies for different classes using a unified model. In this setting, conventional UAD methods465

often face the challenge of "identical shortcuts", where both anomaly-free and anomaly samples can be466

effectively recovered during inference [3]. It is caused by the diversity of multi-class normal patterns467

that drive the network to generalize on unseen patterns. This contradicts the fundamental assumption468

of epistemic methods. Many current researches focus on addressing this challenge [3; 24; 18; 57; 25].469

UniAD [3] employs a neighbor-masked attention module and a feature-jitter strategy to mitigate these470

shortcuts. HVQ-Trans [24] proposes a vector quantization (VQ) Transformer model that induces471

large feature discrepancies for anomalies. LafitE [25] utilizes a latent diffusion model and introduces472

a feature editing strategy to alleviate this issue. DiAD [26] also employs diffusion models to address473

multi-class UAD settings. OmniAL [23] focuses on anomaly localization in the unified setting,474

preventing identical reconstruction by using synthesized pseudo anomalies. ViTAD [58] abstracts a475

unified feature-reconstruction UAD framework and employ Transformer building blocks. MambaAD476

[19] explores the recently proposed State Space Model (SSM), Mamba, in the context of multi-class477

UAD.478

Scope of Application. In this work, we focus on sensory AD that detects regional or structural479

anomalies (common in practical applications such as industrial inspection, medical disease screening,480

etc.), which is distinguished from semantic AD. In sensory AD, normal and anomalous samples481

are the same objects except for anomaly, e.g. good cable vs. spoiled cable. In semantic AD, the482

class of normal samples and anomalous samples are semantically different, e.g. animals vs. vehicles.483

Semantic AD methods usually utilize and compare the global representation of images, which484

generally do not suffer from the issues of multi-class setting discussed in this paper..485

A.2 Full Implementation Details486

ViT-Base/14 (patch size=14) pre-trained by DINOv2 with registers (DINOv2-R) [39] is utilized as487

the encoder. The discard rate of Dropout in Noisy Bottleneck is 0.2 by default, which is increased to488
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0.4 for the diverse Real-IAD. Loose constraint with 2 groups and Lglobal−hm loss are used by default.489

The input image is first resized to 4482 and then center-cropped to 3922, so that the feature map490

(282) is large enough for localization. StableAdamW optimizer [46] with AMSGrad [47] is utilized491

with lr (learning rate)=2e-3, β=(0.9,0.999), wd (weight decay)=1e-4 and eps=1e-10. The network492

is trained for 10,000 iterations for MVTec-AD and VisA and 50,000 iterations for Real-IAD under493

MUAD setting. The network is trained for 5,000 iterations on each class under the class-separated494

UAD setting. The lr warms up from 0 to 2e-3 in the first 100 iterations and cosine anneals to 2e-4495

throughout the training. The discarding rate in Equation 5 linearly rises from 0% to 90% in the first496

1,000 iterations as warm-up (500 iters for class-separated setting). The anomaly map is obtained by497

upsampling the point-wise cosine distance between encoder and decoder feature maps (averaging498

if more than one pair or group). The mean of the top 1% pixels in an anomaly map is used as the499

image anomaly score. All experiments are conducted with random seed=1 with cuda deterministic500

for invariable weight initialization and batch order. Codes are implemented with Python 3.8 and501

PyTorch 1.12.0 cuda 11.3, and run on NVIDIA GeForce RTX3090 GPUs (24GB).502

A.3 Additional Ablation Studies and Experiments503

Ablations on VisA. Similar to Table 3 that conduct ablation experiments on MVTec-AD, we504

additionally run them on VisA for further validations. As shown in Table A1, proposed components505

of Dinomaly contribute to the AD performances on VisA as on MVTec-AD.506

Table A1: Ablations of Dinomaly elements on VisA (%). NB: Noisy Bottleneck. LA: Linear
Attention. LC: Loosen Constraint (2 groups). LL: Loosen Loss.

NB LA LC LL
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

95.81 96.35 92.06 97.97 47.88 52.55 93.43
✓ 97.38 97.74 94.07 97.84 50.42 54.57 93.71

✓ 95.74 96.23 91.87 98.01 47.89 52.58 93.34
✓ 96.39 97.01 92.54 97.37 46.80 51.66 92.75

✓ 96.93 97.26 93.32 98.37 49.52 53.59 94.11
✓ ✓ 97.52 97.75 94.33 98.06 51.49 55.09 93.75
✓ ✓ 98.06 98.37 95.18 98.21 51.43 54.89 93.94
✓ ✓ ✓ 98.57 98.77 95.75 98.57 52.29 55.38 94.28
✓ ✓ ✓ 98.22 98.43 95.27 98.51 53.11 55.48 94.24
✓ ✓ ✓ ✓ 98.73 98.87 96.18 98.74 53.23 55.69 94.50

Scalability. Previous works [3; 2; 17] reported that AD methods do not follow the model "scaling507

law", i.e., larger models do not necessarily produce better performance. For example, RD4AD [2]508

found WideResNet50 better than WideResNet101 as the encoder backbone. ViTAD [17] found ViT-509

Small better than ViT-Base. We conduct experiments to probe the influence of the scale of backbone510

Transformers in Dinomaly. ViT-Small, ViT-Base (default), and ViT-Large pre-trained by DINOv2-R511

are used as the encoder, respectively. ViT-Small has 12 layers, so we take the [3,4,5,...10]th layer as512

the interested 8 middle layers, which is the same as default ViT-Base. ViT-Large has 24 layers, so513

we take the [5,7,9,...19]th layer as the interested 8 middle layers. The layer hyperparameters of the514

decoder, such as embedding dimension and numbers of attention heads, follow the hyperparameters515

of the corresponding encoder. Other training strategies are identical to default. As shown in Table A2,516

the MUAD performance of Dinomaly follows the "scaling law". Dinomaly equipped with ViT-Small517

already produces state-of-the-art results. ViT-Large further boosts Dinomaly to an unprecedented518

higher record.

Table A2: Comparison of different ViT architectures, conducted on MVTec-AD (%). Latency per
image is measured on NVIDIA RTX3090 with batch size=16.

Arch. Parameters MACs Latency
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

ViT-Small 37.4M 26.3G 6.8ms 99.26 99.67 98.72 98.07 68.29 67.78 94.36
ViT-Base 148.0M 104.7G 17.2ms 99.60 99.78 99.04 98.35 69.29 69.17 94.79
ViT-Large 275.3M 413.5G 41.3ms 99.77 99.92 99.45 98.54 70.53 70.04 95.09
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519

Input Size. The patch size of ViTs (usually 14 × 14 or 16 × 16) is much larger than the stem520

layer’s down-sampling rate of CNNs (usually 4× 4), resulting in smaller feature map size. For dense521

prediction tasks like semantic segmentation, ViTs usually employ a large input image size [30]. This522

practice holds in anomaly localization as well. In Table A3, we present the results of Dinomaly with523

different input resolutions. Following PatchCore [8], by default, we adopt center-crop preprocessing524

to reduce the influence of background, which can also cause unreachable anomalies at the edge of525

images. Experimental results demonstrate our robustness to input size. While small image size is526

enough for image-level anomaly detection, larger inputs are beneficial to anomaly localization. All527

experiments evaluate localization performance in a unified size of 256× 256 for fairness.528

Table A3: Ablations of input size, conducted on MVTec-AD (%). R4482-C3922 represents first
resizing images to 448×448, then center cropping to 392×392.

Image Size MACs
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

R5122-C4482 136.4G 99.67 99.81 99.12 98.33 69.24 69.47 94.76
R4482 136.4G 99.59 99.77 99.19 98.57 68.09 68.58 95.60
R4482-C3922 104.7G 99.60 99.78 99.04 98.35 69.29 69.17 94.79
R3922 104.7G 99.48 99.74 99.04 98.47 67.02 67.86 95.34
R3842-C3362 77.1G 99.61 99.78 99.22 98.27 67.22 67.77 94.24
R3362 77.1G 99.63 99.84 99.23 98.48 65.46 66.60 95.10
R3202-C2802 53.7G 99.62 99.81 99.07 98.21 65.21 66.34 93.57
R2802 53.7G 99.46 99.75 99.27 98.40 63.28 64.79 94.47

Pre-Trained Foundations. The representation quality of the frozen backbone Transformer is of529

great significance to unsupervised anomaly detection. We conduct extensive experiments to probe530

the impact of different pre-training methods, including supervised learning and self-supervised531

learning. DeiT [59] is trained on ImageNet[1] in a supervised manner by distilling CNNs. MAE [33],532

BEiTv2 [35], and D-iGPT [60] are based on masked image modeling (MIM). Given input images533

with masked patches, MAE [33] is optimized to restore raw pixels; BEiTv2 [35] is trained to predict534

the token index of VQ-GAN and CLIP; D-iGPT [60] is trained to predict the features of CLIP535

model. DINO [29] is based on positive-pair contrastive learning (CL), which is also referred to as536

self-distillation. It trains the network to produce similar feature representations given two views537

(augmentations) of the same image. iBot [36] and DINOv2 [30] combine MIM and CL strategies,538

marking the SoTA of self-supervised foundation models. DINOv2-R [39] is a variation of DINOv2539

that employs 4 extra register tokens.540

Table A4: Comparison between pre-trained ViT foundations, conducted on MVTec-AD (%). All
models are ViT-Base. The patch size of DINOv2 and DINOv2-R is 142; others are 162.

Pre-Train
Method Type Image

Size
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

DeiT[59] Supervised R5122-C4482 98.19 99.24 97.64 97.93 68.98 67.91 91.45
MAE[33] MIM R5122-C4482 96.27 98.33 95.44 96.96 62.89 63.32 89.85
D-iGPT[60] MIM R5122-C4482 98.75 99.24 97.70 98.30 65.77 66.16 92.34
DINO[29] CL R5122-C4482 98.97 99.58 98.14 98.52 70.89 69.02 93.48
iBOT[36] CL+MIM R5122-C4482 99.22 99.67 98.57 98.60 70.78 69.92 93.33
DINOv2[30] CL+MIM R4482-C3962 99.55 99.81 99.13 98.26 68.35 68.79 94.83
DINOv2-R[39] CL+MIM R4482-C3962 99.60 99.78 99.04 98.35 69.29 69.17 94.79

DeiT[59] Supervised R2562-C2242 97.65 99.05 97.40 97.80 62.58 63.39 89.98
MAE[33] MIM R2562-C2242 97.25 98.84 96.94 97.78 63.00 64.01 90.95
BEiTv2[35] MIM R2562-C2242 97.70 99.11 97.39 97.61 59.79 62.53 90.10
D-iGPT[60] MIM R2562-C2242 99.21 99.66 98.47 98.08 60.05 63.05 91.78
DINO[29] CL R2562-C2242 99.20 99.72 98.77 98.16 64.16 65.07 92.02
iBOT[36] CL+MIM R2562-C2242 99.31 99.74 98.77 98.25 64.01 65.37 91.68
DINOv2[30] CL+MIM R2562-C2242 99.26 99.70 98.60 97.95 62.27 64.39 92.80
DINOv2-R[39] CL+MIM R2562-C2242 99.34 99.73 99.03 98.09 63.04 64.48 92.59
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It is noted that most models are pre-trained with the image resolution of 224 × 224, except that541

DINOv2 [30] and DINOv2-R [39] have extra a high-resolution training phase with 518 × 518.542

However, directly using the pre-trained weights on a different resolution for UAD without fine-tuning543

like other supervised tasks can cause generalization problems. Therefore, by default, we still keep544

the feature size of all compared models to 28× 28, i.e., the input size is 392× 392 for ViT-Base/14545

and 448 × 448 for ViT-Base/16. Additionally, we train Dinomaly with the low-resolution input546

size of 224× 224. The results are presented in Table A4. Generally speaking, CL+MIM combined547

models outperform MIM and CL models. In addition, MIM-based models do not benefit from548

higher resolutions but suffer from them, indicating the lack of generalization on a different input549

size. Methods involving CL can better adapt to a higher resolution as they optimize the global550

representation of class tokens in pre-training, which is insensitive to input size. As expected, DINOv2551

and DINOv2-R pre-trained on larger inputs can better benefit from higher resolution in Dinomaly.552

Because some methods, i.e., D-iGPT, DINO, and iBOT, produce similar results to DINOv2 in553

224 × 224, we expect that they also have the potential to be as powerful in Dinomaly if they are554

pre-trained in high-resolution.555

Attention vs. Convolution. Previous works and this paper have proposed to leverage attentions556

instead of convolutions in UAD. Here, we conduct experiments substituting the attention in the557

decoder of Dinomaly by convolutions as the spatial mixers. Following MetaFormer [61], we employ558

Inverted Bottleneck block that consists of 1 × 1 conv, GELU activation, N × N deep-wise conv,559

and 1 × 1 conv, sequentially. The results are shown in Table A5, where Attentions outperform560

Convolutions, especially for pixel-level anomaly localization. In addition, utilizing convolutions in561

the decoder can still yield SoTA results, demonstrating the universality of the proposed Dinomaly.562

Neighbour-Masking. Prior method [3] proposed to mask the keys and values in an n× n square563

centered at each query, in order to alleviate identity mapping in Attention. This mechanism can also564

be applied to Linear Attention as well. As shown in Table A5, neighbor-masking can further improve565

Dinomaly with both Softmax Attention and Linear Attention moderately.566

Table A5: Comparison between Convolutional block, Softmax Attention, and Linear Attention as the
spatial mixer of decoder, conducted on MVTec-AD (%).

Spatial Mixer
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

ConvBlock 3× 3 99.45 99.63 98.64 98.05 65.35 68.07 94.17
ConvBlock 5× 5 99.41 99.62 98.86 97.99 66.64 67.47 94.24
ConvBlock 7× 7 99.42 99.65 98.86 98.01 67.57 67.94 94.45

Softmax Attention 99.52 99.73 98.92 98.20 68.25 68.34 94.17
Softmax Attention w/ Neighbour-Mask n = 1 99.51 99.71 98.90 98.17 67.86 67.92 94.27
Softmax Attention w/ Neighbour-Mask n = 3 99.56 99.76 99.05 98.28 69.26 68.17 94.50

Linear Attention 99.60 99.78 99.04 98.35 69.29 69.17 94.79
Linear Attention w/ Neighbour-Mask n = 1 99.60 99.78 99.04 98.32 68.77 68.72 94.75
Linear Attention w/ Neighbour-Mask n = 3 99.60 99.80 99.14 98.38 69.65 69.38 94.70

Feature Noise. Prior method [3] proposed to perturb the encoder features by Feature Jitter, i.e. adding567

Gaussian noise with scale to control the noise magnitude. We evaluate the feature jitter strategy in the568

proposed Dinomaly by placing it at the beginning of Noisy Bottleneck. As shown in Table A6, both569

Dropout and Feature Jitter can be a good noise injector in Noisy Bottleneck. Meanwhile, Dropout is570

more robust to the noisy scale hyperparameter, and more elegant without introducing new modules.571

Random Seeds. Due to limited computation resources, experiments in this paper are conducted for572

one run with random seed=1. Here, we conduct 5 runs with 5 random seeds on MVTec-AD. As573

shown in Table A7, Dinomaly is robust to randomness.574

A.4 Limitation575

Vision Transformers are known for their high computation cost, which can be a barrier to low-576

computation scenarios that require inference speed. Future research can be conducted on the effi-577

ciency of Transformer-based methods, such as distillation, pruning, and hardware-friendly attention578

mechanism (such as FlashAttention).579
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Table A6: Dropout vs. feature jitter, conducted on MVTec-AD (%).

Noise type
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

No Noise 98.19 99.55 98.51 97.55 63.11 64.39 93.33

Feature Jitter scale=1 99.23 99.54 98.48 97.58 63.22 64.31 93.55
Feature Jitter scale=5 99.24 99.57 98.55 97.84 65.28 65.81 93.75
Feature Jitter scale=10 99.46 99.73 99.12 98.19 67.59 67.80 94.19
Feature Jitter scale=20 99.59 99.79 99.04 98.23 67.93 68.21 94.40

Dropout p=0.1 99.54 99.75 98.90 98.35 69.46 69.19 94.53
Dropout p=0.2 99.60 99.78 99.04 98.35 69.29 69.17 94.79
Dropout p=0.3 99.65 99.83 99.16 98.34 68.46 68.81 94.63
Dropout p=0.4 99.64 99.80 99.23 98.22 67.95 68.33 94.57

Table A7: Results of 5 random seeds on MVTec-AD (%).

Random Seed
Image-level Pixel-level

AUROC AP F1-max AUROC AP F1-max AUPRO

seed=1 99.60 99.78 99.04 98.35 69.29 69.17 94.79
seed=2 99.63 99.79 99.12 98.33 68.73 68.91 94.63
seed=3 99.63 99.79 99.16 98.31 68.70 68.93 94.60
seed=4 99.56 99.74 99.02 98.33 69.04 69.09 94.70
seed=5 99.59 99.77 99.02 98.32 68.64 68.47 94.51
mean±std 99.60±0.03 99.77±0.02 99.07±0.06 98.33±0.01 68.88±0.25 68.91±0.24 94.65±0.09

As discussed in section A.1, Dinomaly is used for sensory AD that aims to detect regional anomalies580

in normal backgrounds. It is not suitable for semantic AD. Previous works have shown that methods581

designed for sensory AD usually fail to be competitive under semantic AD tasks [3; 2]. Conversely,582

methods designed for semantic AD do not perform well on sensory AD tasks [62; 37]. Future work583

can be conducted to unify these two tasks, but according to the "no free lunch" theorem, we believe584

that methods designed for specific anomaly assumption are likely to be more convincing.585

Other special UAD settings, such as zero-shot UAD (vision-language model based) [63], few-shot586

UAD [64], UAD under noisy training set [65], are not included in this work.587

A.5 Results Per-Category588

For future research, we report the per-class results of MVTec-AD [20], VisA [21], and Real-IAD [22].589

The performance of compared methods is drawn from MambaAD [19]. Thanks for their exhaustive590

reproducing. The results of image-level anomaly detection and pixel-level anomaly localization on591

MVTec-AD are presented in Table A8 and Table A9, respectively. The results of image-level anomaly592

detection and pixel-level anomaly localization on VisA are presented in Table A10 and Table A11,593

respectively. The results of image-level anomaly detection and pixel-level anomaly localization on594

Real-IAD are presented in Table A12 and Table A13, respectively.595

A.6 Qualitative Visualization596

We visualize the output anomaly maps of Dinomaly on MVTec-AD, VisA, and Real-IAD, as shown597

in Figure A1, Figure A2, and Figure A3. It is noted that all visualized samples are randomly chosen598

without artificial selection.599
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Table A8: Per-class performance on MVTec-AD dataset for multi-class anomaly detection with
AUROC/AP/F1-max metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD [19] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

O
bjects

Bottle 99.6/99.9/98.4 99.7/100./100. 100./100./100. 98.7/99.6/96.8 99.7/96.5/91.8 100./100./100. 100./100./100.
Cable 84.1/89.5/82.5 95.2/95.9/88.0 97.5/98.5/94.7 89.5/94.6/85.9 94.8/98.8/95.2 98.8/99.2/95.7 100./100./100.

Capsule 94.1/96.9/96.9 86.9/97.8/94.4 90.7/97.9/93.5 82.8/95.9/92.6 89.0/97.5/95.5 94.4/98.7/94.9 97.9/99.5/97.7
Hazelnut 60.8/69.8/86.4 99.8/100./99.3 99.9/99.9/99.3 98.8/99.2/98.6 99.5/99.7/97.3 100./100./100. 100./100./100.
Metal Nut 100./100./99.5 99.2/99.9/99.5 96.9/99.3/96.1 92.9/98.4/92.2 99.1/96.0/91.6 99.9/100./99.5 100./100./100.

Pill 97.5/99.6/96.8 93.7/98.7/95.7 88.2/97.7/92.5 77.1/94.4/91.7 95.7/98.5/94.5 97.0/99.5/96.2 99.1/99.9/98.3
Screw 97.7/99.3/95.8 87.5/96.5/89.0 76.7/90.6/87.7 69.9/88.4/85.4 90.7/99.7/97.9 94.7/97.9/94.0 98.4/99.5/96.1

Toothbrush 97.2/99.0/94.7 94.2/97.4/95.2 89.7/95.7/92.3 71.7/89.3/84.5 99.7/99.9/99.2 98.3/99.3/98.4 100./100./100.
Transistor 94.2/95.2/90.0 99.8/98.0/93.8 99.2/98.7/97.6 78.2/79.5/68.8 99.8/99.6/97.4 100./100./100. 99.0/98.0/96.4

Zipper 99.5/99.9/99.2 95.8/99.5/97.1 99.0/99.7/98.3 88.4/96.3/93.1 95.1/99.1/94.4 99.3/99.8/97.5 100./100./100.

Textures

Carpet 98.5/99.6/97.2 99.8/99.9/99.4 95.7/98.7/93.2 95.9/98.8/94.9 99.4/99.9/98.3 99.8/99.9/99.4 99.8/100./98.9
Grid 98.0/99.4/96.5 98.2/99.5/97.3 97.6/99.2/96.4 97.9/99.2/96.6 98.5/99.8/97.7 100./100./100. 99.9/100./99.1

Leather 100./100./100. 100./100./100. 100./100./100. 99.2/99.8/98.9 99.8/99.7/97.6 100./100./100. 100./100./100.
Tile 98.3/99.3/96.4 99.3/99.8/98.2 99.3/99.8/98.8 97.0/98.9/95.3 96.8/99.9/98.4 98.2/99.3/95.4 100./100./100.

Wood 99.2/99.8/98.3 98.6/99.6/96.6 98.4/99.5/96.7 99.9/100./99.2 99.7/100./100. 98.8/99.6/96.6 99.8/99.9/99.2
Mean 94.6/96.5/95.2 96.5/98.8/96.2 95.3/98.4/95.8 89.2/95.5/91.6 97.2/99.0/96.5 98.6/99.6/97.8 99.6/99.8/99.0

Table A9: Per-class performance on MVTec-AD dataset for multi-class anomaly localization with
AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD [19] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

O
bjects

Bottle 97.8/68.2/67.6/94.0 98.1/66.0/69.2/93.1 97.2/53.8/62.4/89.0 93.3/61.7/56.0/67.5 98.4/52.2/54.8/86.6 98.8/79.7/76.7/95.2 99.2/88.6/84.2/96.6
Cable 85.1/26.3/33.6/75.1 97.3/39.9/45.2/86.1 96.7/42.4/51.2/85.4 89.3/37.5/40.5/49.4 96.8/50.1/57.8/80.5 95.8/42.2/48.1/90.3 98.6/72.0/74.3/94.2

Capsule 98.8/43.4/50.0/94.8 98.5/42.7/46.5/92.1 98.5/35.4/44.3/84.5 95.8/47.9/48.9/62.1 97.1/42.0/45.3/87.2 98.4/43.9/47.7/92.6 98.7/61.4/60.3/97.2
Hazelnut 97.9/36.2/51.6/92.7 98.1/55.2/56.8/94.1 98.4/44.6/51.4/87.4 98.2/65.8/61.6/84.5 98.3/79.2/80.4/91.5 99.0/63.6/64.4/95.7 99.4/82.2/76.4/97.0
Metal Nut 94.8/55.5/66.4/91.9 62.7/14.6/29.2/81.8 98.0/83.1/79.4/85.2 84.2/42.0/22.8/53.0 97.3/30.0/38.3/90.6 96.7/74.5/79.1/93.7 96.9/78.6/86.7/94.9

Pill 97.5/63.4/65.2/95.8 95.0/44.0/53.9/95.3 96.5/72.4/67.7/81.9 96.2/61.7/41.8/27.9 95.7/46.0/51.4/89.0 97.4/64.0/66.5/95.7 97.8/76.4/71.6/97.3
Screw 99.4/40.2/44.6/96.8 98.3/28.7/37.6/95.2 96.5/15.9/23.2/84.0 93.8/19.9/25.3/47.3 97.9/60.6/59.6/95.0 99.5/49.8/50.9/97.1 99.6/60.2/59.6/98.3

Toothbrush 99.0/53.6/58.8/92.0 98.4/34.9/45.7/87.9 98.4/46.9/52.5/87.4 96.2/52.9/58.8/30.9 99.0/78.7/72.8/95.0 99.0/48.5/59.2/91.7 98.9/51.5/62.6/95.3
Transistor 85.9/42.3/45.2/74.7 97.9/59.5/64.6/93.5 95.8/58.2/56.0/83.2 73.6/38.4/39.2/43.9 95.1/15.6/31.7/90.0 96.5/69.4/67.1/87.0 93.2/59.9/58.5/77.0

Zipper 98.5/53.9/60.3/94.1 96.8/40.1/49.9/92.6 97.9/53.4/54.6/90.7 97.3/64.7/59.2/66.9 96.2/60.7/60.0/91.6 98.4/60.4/61.7/94.3 99.2/79.5/75.4/97.2

Textures

Carpet 99.0/58.5/60.4/95.1 98.5/49.9/51.1/94.4 97.4/38.7/43.2/90.6 93.6/59.9/58.9/89.3 98.6/42.2/46.4/90.6 99.2/60.0/63.3/96.7 99.3/68.7/71.1/97.6
Grid 96.5/23.0/28.4/97.0 63.1/10.7/11.9/92.9 96.8/20.5/27.6/88.6/ 97.0/42.1/46.9/86.8 96.6/66.0/64.1/94.0 99.2/47.4/47.7/97.0 99.4/55.3/57.7/97.2

Leather 99.3/38.0/45.1/97.4 98.8/32.9/34.4/96.8 98.7/28.5/32.9/92.7 99.5/71.5/66.5/91.1 98.8/56.1/62.3/91.3 99.4/50.3/53.3/98.7 99.4/52.2/55.0/97.6
Tile 95.3/48.5/60.5/85.8 91.8/42.1/50.6/78.4 95.7/60.5/59.9/90.6 93.0/71.0/66.2/87.1 92.4/65.7/64.1/90.7 93.8/45.1/54.8/80.0 98.1/80.1/75.7/90.5

Wood 95.3/47.8/51.0/90.0 93.2/37.2/41.5/86.7 91.4/34.8/39.7/76.3 95.9/77.3/71.3/83.4 93.3/43.3/43.5/97.5 94.4/46.2/48.2/91.2 97.6/72.8/68.4/94.0
Mean 96.1/48.6/53.8/91.1 96.8/43.4/49.5/90.7 96.9/45.9/49.7/86.5 93.1/54.3/50.9/64.8 96.8/52.6/55.5/90.7 97.7/56.3/59.2/93.1 98.4/69.3/69.2/94.8

Table A10: Per-class performance on VisA dataset for multi-class anomaly detection with
AUROC/AP/F1-max metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

pcb1 96.2/95.5/91.9 92.8/92.7/87.8 91.6/91.9/86.0 87.6/83.1/83.7 88.1/88.7/80.7 95.4/93.0/91.6 99.1/99.1/96.6
pcb2 97.8/97.8/94.2 87.8/87.7/83.1 92.4/93.3/84.5 86.5/85.8/82.6 91.4/91.4/84.7 94.2/93.7/89.3 99.3/99.2/97.0
pcb3 96.4/96.2/91.0 78.6/78.6/76.1 89.1/91.1/82.6 93.7/95.1/87.0 86.2/87.6/77.6 93.7/94.1/86.7 98.9/98.9/96.1
pcb4 99.9/99.9/99.0 98.8/98.8/94.3 97.0/97.0/93.5 97.8/97.8/92.7 99.6/99.5/97.0 99.9/99.9/98.5 99.8/99.8/98.0

macaroni1 75.9/ 1.5/76.8 79.9/79.8/72.7 85.9/82.5/73.1 76.6/69.0/71.0 85.7/85.2/78.8 91.6/89.8/81.6 98.0/97.6/94.2
macaroni2 88.3/84.5/83.8 71.6/71.6/69.9 68.3/54.3/59.7 68.9/62.1/67.7 62.5/57.4/69.6 81.6/78.0/73.8 95.9/95.7/90.7
capsules 82.2/90.4/81.3 55.6/55.6/76.9 74.1/82.8/74.6 87.1/93.0/84.2 58.2/69.0/78.5 91.8/95.0/88.8 98.6/99.0/97.1
candle 92.3/92.9/86.0 94.1/94.0/86.1 84.1/73.3/76.6 94.9/94.8/89.2 92.8/92.0/87.6 96.8/96.9/90.1 98.7/98.8/95.1
cashew 92.0/95.8/90.7 92.8/92.8/91.4 88.0/91.3/84.7 92.0/96.1/88.1 91.5/95.7/89.7 94.5/97.3/91.1 98.7/99.4/97.0

chewinggum 94.9/97.5/92.1 96.3/96.2/95.2 96.4/98.2/93.8 95.8/98.3/94.7 99.1/99.5/95.9 97.7/98.9/94.2 99.8/99.9/99.0
fryum 95.3/97.9/91.5 83.0/83.0/85.0 88.4/93.0/83.3 92.1/96.1/89.5 89.8/95.0/87.2 95.2/97.7/90.5 98.8/99.4/96.5

pipe_fryum 97.9/98.9/96.5 94.7/94.7/93.9 90.8/95.5/88.6 94.1/97.1/91.9 96.2/98.1/93.7 98.7/99.3/97.0 99.2/99.7/97.0
Mean 92.4/92.4/89.6 85.5/85.5/84.4 87.2/87.0/81.8 88.9/89.0/85.2 86.8/88.3/85.1 94.3/94.5/89.4 98.7/98.9/96.2

Table A11: Per-class performance on VisA dataset for multi-class anomaly localization with
AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours

pcb1 99.4/66.2/62.4/95.8 93.3/ 3.9/ 8.3/64.1 99.2/86.1/78.8/83.6 95.8/46.4/49.0/83.2 98.7/49.6/52.8/80.2 99.8/77.1/72.4/92.8 99.5/87.9/80.5/95.1
pcb2 98.0/22.3/30.0/90.8 93.9/ 4.2/ 9.2/66.9 96.6/ 8.9/18.6/85.7 97.3/14.6/28.2/79.9 95.2/ 7.5/16.7/67.0 98.9/13.3/23.4/89.6 98.0/47.0/49.8/91.3
pcb3 97.9/26.2/35.2/93.9 97.3/13.8/21.9/70.6 97.2/31.0/36.1/85.1 97.7/28.1/33.4/62.4 96.7/ 8.0/18.8/68.9 99.1/18.3/27.4/89.1 98.4/41.7/45.3/94.6
pcb4 97.8/31.4/37.0/88.7 94.9/14.7/22.9/72.3 93.9/23.9/32.9/61.1 95.8/53.0/53.2/76.9 97.0/17.6/27.2/85.0 98.6/47.0/46.9/87.6 98.7/50.5/53.1/94.4

macaroni1 99.4/ 2.9/6.9/95.3 97.4/ 3.7/ 9.7/84.0 98.9/ 3.5/8.4/92.0 99.1/ 5.8/13.4/62.4 94.1/10.2/16.7/68.5 99.5/17.5/27.6/95.2 99.6/33.5/40.6/96.4
macaroni2 99.7/13.2/21.8/97.4 95.2/ 0.9/ 4.3/76.6 93.2/ 0.6/ 3.9/77.8 98.5/ 6.3/14.4/70.0 93.6/ 0.9/ 2.8/73.1 99.5/ 9.2/16.1/96.2 99.7/24.7/36.1/98.7
capsules 99.4/60.4/60.8/93.1 88.7/ 3.0/ 7.4/43.7 97.1/52.9/53.3/73.7 96.9/33.2/ 9.1/76.7 97.3/10.0/21.0/77.9 99.1/61.3/59.8/91.8 99.6/65.0/66.6/97.4
candle 99.1/25.3/35.8/94.9 98.5/17.6/27.9/91.6 97.6/ 8.4/16.5/87.6 98.7/39.9/45.8/69.0 97.3/12.8/22.8/89.4 99.0/23.2/32.4/95.5 99.4/43.0/47.9/95.4

cashew 91.7/44.2/49.7/86.2 98.6/51.7/58.3/87.9 98.9/68.9/66.0/84.1 87.9/47.6/52.1/66.3 90.9/53.1/60.9/61.8 94.3/46.8/51.4/87.8 97.1/64.5/62.4/94.0
chewinggum 98.7/59.9/61.7/76.9 98.8/54.9/56.1/81.3 97.9/26.8/29.8/78.3 98.8/86.9/81.0/68.3 94.7/11.9/25.8/59.5 98.1/57.5/59.9/79.7 99.1/65.0/67.7/88.1

fryum 97.0/47.6/51.5/93.4 95.9/34.0/40.6/76.2 93.0/39.1/45.4/85.1 88.1/35.2/38.5/47.7 97.6/58.6/60.1/81.3 96.9/47.8/51.9/91.6 96.6/51.6/53.4/93.5
pipe_fryum 99.1/56.8/58.8/95.4 98.9/50.2/57.7/91.5 98.5/65.6/63.4/83.0 98.9/78.8/72.7/45.9 99.4/72.7/69.9/89.9 99.1/53.5/58.5/95.1 99.2/64.3/65.1/95.2

Mean 98.1/38.0/42.6/91.8 95.9/21.0/27.0/75.6 96.8/34.7/37.8/81.4 96.1/39.6/43.4/67.4 96.0/26.1/33.0/75.2 98.5/39.4/44.0/91.0 98.7/53.2/55.7/94.5
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Table A12: Per-class performance on Real-IAD dataset for multi-class anomaly detection with
AUROC/AP/F1-max metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours
audiojack 76.2/63.2/60.8 81.4/76.6/64.9 58.4/44.2/50.9 81.1/72.6/64.5 76.5/54.3/65.7 84.2/76.5/67.4 86.8/82.4/72.2
bottle cap 89.5/86.3/81.0 92.5/91.7/81.7 54.1/47.6/60.3 78.1/74.6/68.1 91.6/94.0/87.9 92.8/92.0/82.1 89.9/86.7/81.2

button battery 73.3/78.9/76.1 75.9/81.6/76.3 52.5/60.5/72.4 86.7/89.2/83.5 80.5/71.3/70.6 79.8/85.3/77.8 86.6/88.9/82.1
end cap 79.8/84.0/77.8 80.9/86.1/78.0 51.6/60.8/72.9 77.9/81.1/77.1 85.1/83.4/84.8 78.0/82.8/77.2 87.0/87.5/83.4
eraser 90.0/88.7/79.7 90.3/89.2/80.2 46.4/39.1/55.8 84.6/82.9/71.8 80.0/80.0/77.3 87.5/86.2/76.1 90.3/87.6/78.6

fire hood 78.3/70.1/64.5 80.6/74.8/66.4 58.1/41.9/54.4 81.7/72.4/67.7 83.3/81.7/80.5 79.3/72.5/64.8 83.8/76.2/69.5
mint 65.8/63.1/64.8 67.0/66.6/64.6 52.4/50.3/63.7 58.4/55.8/63.7 76.7/76.7/76.0 70.1/70.8/65.5 73.1/72.0/67.7

mounts 88.6/79.9/74.8 87.6/77.3/77.2 58.7/48.1/52.4 74.7/56.5/63.1 75.3/74.5/82.5 86.8/78.0/73.5 90.4/84.2/78.0
pcb 79.5/85.8/79.7 81.0/88.2/79.1 54.5/66.0/75.5 82.0/88.7/79.6 86.0/85.1/85.4 89.1/93.7/84.0 92.0/95.3/87.0

phone battery 87.5/83.3/77.1 83.6/80.0/71.6 51.6/43.8/58.0 83.3/81.8/72.1 82.3/77.7/75.9 90.2/88.9/80.5 92.9/91.6/82.5
plastic nut 80.3/68.0/64.4 80.0/69.2/63.7 59.2/40.3/51.8 83.1/75.4/66.5 71.9/58.2/65.6 87.1/80.7/70.7 88.3/81.8/74.7

plastic plug 81.9/74.3/68.8 81.4/75.9/67.6 48.2/38.4/54.6 71.7/63.1/60.0 88.7/89.2/90.9 85.7/82.2/72.6 90.5/86.4/78.6
porcelain doll 86.3/76.3/71.5 85.1/75.2/69.3 66.3/54.5/52.1 78.7/66.2/64.3 72.6/66.8/65.2 88.0/82.2/74.1 85.1/73.3/69.6

regulator 66.9/48.8/47.7 56.9/41.5/44.5 50.5/29.0/43.9 79.2/63.5/56.9 72.1/71.4/78.2 69.7/58.7/50.4 85.2/78.9/69.8
rolled strip base 97.5/98.7/94.7 98.7/99.3/96.5 59.0/75.7/79.8 96.5/98.2/93.0 68.4/55.9/56.8 98.0/99.0/95.0 99.2/99.6/97.1

sim card set 91.6/91.8/84.8 89.7/90.3/83.2 63.1/69.7/70.8 95.5/96.2/89.2 72.6/53.7/61.5 94.4/95.1/87.2 95.8/96.3/88.8
switch 84.3/87.2/77.9 85.5/88.6/78.4 62.2/66.8/68.6 90.1/92.8/83.1 73.4/49.4/61.2 91.7/94.0/85.4 97.8/98.1/93.3
tape 96.0/95.1/87.6 97.2/96.2/89.4 49.9/41.1/54.5 94.5/93.4/85.9 73.9/57.8/66.1 96.8/95.9/89.3 96.9/95.0/88.8

terminalblock 89.4/89.7/83.1 87.5/89.1/81.0 59.8/64.7/68.8 83.1/86.2/76.6 62.1/36.4/47.8 96.1/96.8/90.0 96.7/97.4/91.1
toothbrush 82.0/83.8/77.2 78.4/80.1/75.6 65.9/70.0/70.1 83.7/85.3/79.0 91.2/93.7/90.9 85.1/86.2/80.3 90.4/91.9/83.4

toy 69.4/74.2/75.9 68.4/75.1/74.8 57.8/64.4/73.4 70.3/74.8/75.4 66.2/57.3/59.8 83.0/87.5/79.6 85.6/89.1/81.9
toy brick 63.6/56.1/59.0 77.0/71.1/66.2 58.3/49.7/58.2 73.2/68.7/63.3 68.4/45.3/55.9 70.5/63.7/61.6 72.3/65.1/63.4

transistor1 91.0/94.0/85.1 93.7/95.9/88.9 62.2/69.2/72.1 90.2/92.1/84.6 73.1/63.1/62.7 94.4/96.0/89.0 97.4/98.2/93.1
u block 89.5/85.0/74.2 88.8/84.2/75.5 62.4/48.4/51.8 80.1/73.9/64.3 75.2/68.4/67.9 89.7/85.7/75.3 89.9/84.0/75.2

usb 84.9/84.3/75.1 78.7/79.4/69.1 57.0/55.3/62.9 87.8/88.0/78.3 58.9/37.4/45.7 92.0/92.2/84.5 92.0/91.6/83.3
usb adaptor 71.1/61.4/62.2 76.8/71.3/64.9 47.5/38.4/56.5 80.1/74.9/67.4 76.9/60.2/67.2 79.4/76.0/66.3 81.5/74.5/69.4

vcpill 85.1/80.3/72.4 87.1/84.0/74.7 59.0/48.7/56.4 83.8/81.5/69.9 64.1/40.4/56.2 88.3/87.7/77.4 92.0/91.2/82.0
wooden beads 81.2/78.9/70.9 78.4/77.2/67.8 55.1/52.0/60.2 82.4/78.5/73.0 62.1/56.4/65.9 82.5/81.7/71.8 87.3/85.8/77.4

woodstick 76.9/61.2/58.1 80.8/72.6/63.6 58.2/35.6/45.2 80.4/69.2/60.3 74.1/66.0/62.1 80.4/69.0/63.4 84.0/73.3/65.6
zipper 95.3/97.2/91.2 98.2/98.9/95.3 77.2/86.7/77.6 96.9/98.1/93.5 86.0/87.0/84.0 99.2/99.6/96.9 99.1/99.5/96.5

Mean 82.4/79.0/73.9 83.0/80.9/74.3 57.2/53.4/61.5 82.3/79.2/73.2 75.6/66.4/69.9 86.3/84.6/77.0 89.3/86.8/80.2

Table A13: Per-class performance on Real-IAD dataset for multi-class anomaly localization with
AUROC/AP/F1-max/AUPRO metrics.

Method → RD4AD [2] UniAD [3] SimpleNet [13] DeSTSeg [12] DiAD [49] MambaAD [19] Dinomaly
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 Arxiv’24 Ours
audiojack 96.6/12.8/22.1/79.6 97.6/20.0/31.0/83.7 74.4/ 0.9/ 4.8/38.0 95.5/25.4/31.9/52.6 91.6/ 1.0/ 3.9/63.3 97.7/21.6/29.5/83.9 98.7/48.1/54.5/91.7
bottle cap 99.5/18.9/29.9/95.7 99.5/19.4/29.6/96.0 85.3/ 2.3/ 5.7/45.1 94.5/25.3/31.1/25.3 94.6/ 4.9/11.4/73.0 99.7/30.6/34.6/97.2 99.7/32.4/36.7/98.1

button battery 97.6/33.8/37.8/86.5 96.7/28.5/34.4/77.5 75.9/ 3.2/ 6.6/40.5 98.3/63.9/60.4/36.9 84.1/ 1.4/ 5.3/66.9 98.1/46.7/49.5/86.2 99.1/46.9/56.7/92.9
end cap 96.7/12.5/22.5/89.2 95.8/ 8.8/17.4/85.4 63.1/ 0.5/ 2.8/25.7 89.6/14.4/22.7/29.5 81.3/ 2.0/ 6.9/38.2 97.0/12.0/19.6/89.4 99.1/26.2/32.9/96.0
eraser 99.5/30.8/36.7/96.0 99.3/24.4/30.9/94.1 80.6/ 2.7/ 7.1/42.8 95.8/52.7/53.9/46.7 91.1/ 7.7/15.4/67.5 99.2/30.2/38.3/93.7 99.5/39.6/43.3/96.4

fire hood 98.9/27.7/35.2/87.9 98.6/23.4/32.2/85.3 70.5/ 0.3/ 2.2/25.3 97.3/27.1/35.3/34.7 91.8/ 3.2/ 9.2/66.7 98.7/25.1/31.3/86.3 99.3/38.4/42.7/93.0
mint 95.0/11.7/23.0/72.3 94.4/ 7.7/18.1/62.3 79.9/ 0.9/ 3.6/43.3 84.1/10.3/22.4/ 9.9 91.1/ 5.7/11.6/64.2 96.5/15.9/27.0/72.6 96.9/22.0/32.5/77.6

mounts 99.3/30.6/37.1/94.9 99.4/28.0/32.8/95.2 80.5/ 2.2/ 6.8/46.1 94.2/30.0/41.3/43.3 84.3/ 0.4/ 1.1/48.8 99.2/31.4/35.4/93.5 99.4/39.9/44.3/95.6
pcb 97.5/15.8/24.3/88.3 97.0/18.5/28.1/81.6 78.0/ 1.4/ 4.3/41.3 97.2/37.1/40.4/48.8 92.0/ 3.7/ 7.4/66.5 99.2/46.3/50.4/93.1 99.3/55.0/56.3/95.7

phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/ 0.1/ 0.9/11.8 79.5/25.6/33.8/39.5 96.8/ 5.3/11.4/85.4 99.4/36.3/41.3/95.3 99.7/51.6/54.2/96.8
phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/ 0.1/ 0.9/11.8 79.5/25.6/33.8/39.5 96.8/5.3/11.4/85.4 99.4/36.3/41.3/95.3 99.7/51.6/54.2/96.8

plastic nut 98.8/21.1/29.6/91.0 98.4/20.6/27.1/88.9 77.4/ 0.6/ 3.6/41.5 96.5/44.8/45.7/38.4 81.1/ 0.4/ 3.4/38.6 99.4/33.1/37.3/96.1 99.7/41.0/45.0/97.4
plastic plug 99.1/20.5/28.4/94.9 98.6/17.4/26.1/90.3 78.6/ 0.7/ 1.9/38.8 91.9/20.1/27.3/21.0 92.9/ 8.7/15.0/66.1 99.0/24.2/31.7/91.5 99.4/31.7/37.2/96.4

porcelain doll 99.2/24.8/34.6/95.7 98.7/14.1/24.5/93.2 81.8/ 2.0/ 6.4/47.0 93.1/35.9/40.3/24.8 93.1/ 1.4/ 4.8/70.4 99.2/31.3/36.6/95.4 99.3/27.9/33.9/96.0
regulator 98.0/7.8/16.1/88.6 95.5/9.1/17.4/76.1 76.6/0.1/0.6/38.1 88.8/18.9/23.6/17.5 84.2/0.4/1.5/44.4 97.6/20.6/29.8/87.0 99.3/42.2/48.9/95.6

rolled strip base 99.7/31.4/39.9/98.4 99.6/20.7/32.2/97.8 80.5/ 1.7/ 5.1/52.1 99.2/48.7/50.1/55.5 87.7/ 0.6/ 3.2/63.4 99.7/37.4/42.5/98.8 99.7/41.6/45.5/98.5
sim card set 98.5/40.2/44.2/89.5 97.9/31.6/39.8/85.0 71.0/ 6.8/14.3/30.8 99.1/65.5/62.1/73.9 89.9/ 1.7/ 5.8/60.4 98.8/51.1/50.6/89.4 99.0/52.1/52.9/90.9

switch 94.4/18.9/26.6/90.9 98.1/33.8/40.6/90.7 71.7/ 3.7/ 9.3/44.2 97.4/57.6/55.6/44.7 90.5/ 1.4/ 5.3/64.2 98.2/39.9/45.4/92.9 96.7/62.3/63.6/95.9
tape 99.7/42.4/47.8/98.4 99.7/29.2/36.9/97.5 77.5/ 1.2/ 3.9/41.4 99.0/61.7/57.6/48.2 81.7/ 0.4/ 2.7/47.3 99.8/47.1/48.2/98.0 99.8/54.0/55.8/98.8

terminalblock 99.5/27.4/35.8/97.6 99.2/23.1/30.5/94.4 87.0/ 0.8/ 3.6/54.8 96.6/40.6/44.1/34.8 75.5/ 0.1/ 1.1/38.5 99.8/35.3/39.7/98.2 99.8/48.0/50.7/98.8
toothbrush 96.9/26.1/34.2/88.7 95.7/16.4/25.3/84.3 84.7/ 7.2/14.8/52.6 94.3/30.0/37.3/42.8 82.0/ 1.9/ 6.6/54.5 97.5/27.8/36.7/91.4 96.9/38.3/43.9/90.4

toy 95.2/ 5.1/12.8/82.3 93.4/ 4.6/12.4/70.5 67.7/ 0.1/ 0.4/25.0 86.3/ 8.1/15.9/16.4 82.1/ 1.1/ 4.2/50.3 96.0/16.4/25.8/86.3 94.9/22.5/32.1/91.0
toy brick 96.4/16.0/24.6/75.3 97.4/17.1/27.6/81.3 86.5/ 5.2/11.1/56.3 94.7/24.6/30.8/45.5 93.5/ 3.1/ 8.1/66.4 96.6/18.0/25.8/74.7 96.8/27.9/34.0/76.6

transistor1 99.1/29.6/35.5/95.1 98.9/25.6/33.2/94.3 71.7/ 5.1/11.3/35.3 97.3/43.8/44.5/45.4 88.6/ 7.2/15.3/58.1 99.4/39.4/40.0/96.5 99.6/53.5/53.3/97.8
u block 99.6/40.5/45.2/96.9 99.3/22.3/29.6/94.3 76.2/ 4.8/12.2/34.0 96.9/57.1/55.7/38.5 88.8/ 1.6/ 5.4/54.2 99.5/37.8/46.1/95.4 99.5/41.8/45.6/96.8

usb 98.1/26.4/35.2/91.0 97.9/20.6/31.7/85.3 81.1/ 1.5/ 4.9/52.4 98.4/42.2/47.7/57.1 78.0/ 1.0/ 3.1/28.0 99.2/39.1/44.4/95.2 99.2/45.0/48.7/97.5
usb adaptor 94.5/ 9.8/17.9/73.1 96.6/10.5/19.0/78.4 67.9/ 0.2/ 1.3/28.9 94.9/25.5/34.9/36.4 94.0/ 2.3/ 6.6/75.5 97.3/15.3/22.6/82.5 98.7/23.7/32.7/91.0

vcpill 98.3/43.1/48.6/88.7 99.1/40.7/43.0/91.3 68.2/ 1.1/ 3.3/22.0 97.1/64.7/62.3/42.3 90.2/ 1.3/ 5.2/60.8 98.7/50.2/54.5/89.3 99.1/66.4/66.7/93.7
wooden beads 98.0/27.1/34.7/85.7 97.6/16.5/23.6/84.6 68.1/ 2.4/ 6.0/28.3 94.7/38.9/42.9/39.4 85.0/ 1.1/ 4.7/45.6 98.0/32.6/39.8/84.5 99.1/45.8/50.1/90.5

woodstick 97.8/30.7/38.4/85.0 94.0/36.2/44.3/77.2 76.1/ 1.4/ 6.0/32.0 97.9/60.3/60.0/51.0 90.9/ 2.6/ 8.0/60.7 97.7/40.1/44.9/82.7 99.0/50.9/52.1/90.4
zipper 99.1/44.7/50.2/96.3 98.4/32.5/36.1/95.1 89.9/23.3/31.2/55.5 98.2/35.3/39.0/78.5 90.2/12.5/18.8/53.5 99.3/58.2/61.3/97.6 99.3/67.2/66.5/97.8
Mean 97.3/25.0/32.7/89.6 97.3/21.1/29.2/86.7 75.7/ 2.8/ 6.5/39.0 94.6/37.9/41.7/40.6 88.0/ 2.9/ 7.1/58.1 98.5/33.0/38.7/90.5 98.8/42.8/47.1/93.9
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Figure A1: Anomaly maps visualization on MVTec-AD. All samples are randomly chosen.
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Figure A2: Anomaly maps visualization on VisA. All samples are randomly chosen.
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Figure A3: Anomaly maps visualization on Real-IAD. All samples are randomly chosen.
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addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove602
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• [NA] means either that the question is Not Applicable for that particular paper or the609

relevant information is Not Available.610

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).611
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reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it613

(after eventual revisions) with the final version of your paper, and its final version will be published614

with the paper.615

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.616

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a617

proper justification is given (e.g., "error bars are not reported because it would be too computationally618

expensive" or "we were unable to find the license for the dataset we used"). In general, answering619

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we620

acknowledge that the true answer is often more nuanced, so please just use your best judgment and621

write a justification to elaborate. All supporting evidence can appear either in the main paper or the622

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification623

please point to the section(s) where related material for the question can be found.624

IMPORTANT, please:625

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",626

• Keep the checklist subsection headings, questions/answers and guidelines below.627

• Do not modify the questions and only use the provided macros for your answers.628

1. Claims629

Question: Do the main claims made in the abstract and introduction accurately reflect the630

paper’s contributions and scope?631

Answer: [Yes]632

Justification: Well reflected.633

Guidelines:634

• The answer NA means that the abstract and introduction do not include the claims635

made in the paper.636

• The abstract and/or introduction should clearly state the claims made, including the637

contributions made in the paper and important assumptions and limitations. A No or638

NA answer to this question will not be perceived well by the reviewers.639

• The claims made should match theoretical and experimental results, and reflect how640

much the results can be expected to generalize to other settings.641

• It is fine to include aspirational goals as motivation as long as it is clear that these goals642

are not attained by the paper.643

2. Limitations644

Question: Does the paper discuss the limitations of the work performed by the authors?645

Answer: [Yes]646

Justification: Presented in Appendix.647
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Guidelines:648

• The answer NA means that the paper has no limitation while the answer No means that649

the paper has limitations, but those are not discussed in the paper.650

• The authors are encouraged to create a separate "Limitations" section in their paper.651

• The paper should point out any strong assumptions and how robust the results are to652

violations of these assumptions (e.g., independence assumptions, noiseless settings,653

model well-specification, asymptotic approximations only holding locally). The authors654

should reflect on how these assumptions might be violated in practice and what the655

implications would be.656

• The authors should reflect on the scope of the claims made, e.g., if the approach was657

only tested on a few datasets or with a few runs. In general, empirical results often658

depend on implicit assumptions, which should be articulated.659

• The authors should reflect on the factors that influence the performance of the approach.660

For example, a facial recognition algorithm may perform poorly when image resolution661

is low or images are taken in low lighting. Or a speech-to-text system might not be662

used reliably to provide closed captions for online lectures because it fails to handle663

technical jargon.664

• The authors should discuss the computational efficiency of the proposed algorithms665

and how they scale with dataset size.666

• If applicable, the authors should discuss possible limitations of their approach to667

address problems of privacy and fairness.668

• While the authors might fear that complete honesty about limitations might be used by669

reviewers as grounds for rejection, a worse outcome might be that reviewers discover670

limitations that aren’t acknowledged in the paper. The authors should use their best671

judgment and recognize that individual actions in favor of transparency play an impor-672

tant role in developing norms that preserve the integrity of the community. Reviewers673

will be specifically instructed to not penalize honesty concerning limitations.674

3. Theory Assumptions and Proofs675

Question: For each theoretical result, does the paper provide the full set of assumptions and676

a complete (and correct) proof?677

Answer: [NA] .678

Justification: No theory.679

Guidelines:680

• The answer NA means that the paper does not include theoretical results.681

• All the theorems, formulas, and proofs in the paper should be numbered and cross-682

referenced.683

• All assumptions should be clearly stated or referenced in the statement of any theorems.684

• The proofs can either appear in the main paper or the supplemental material, but if685

they appear in the supplemental material, the authors are encouraged to provide a short686

proof sketch to provide intuition.687

• Inversely, any informal proof provided in the core of the paper should be complemented688

by formal proofs provided in appendix or supplemental material.689

• Theorems and Lemmas that the proof relies upon should be properly referenced.690

4. Experimental Result Reproducibility691

Question: Does the paper fully disclose all the information needed to reproduce the main ex-692

perimental results of the paper to the extent that it affects the main claims and/or conclusions693

of the paper (regardless of whether the code and data are provided or not)?694

Answer: [Yes]695

Justification: Yes, and code is in supplementary material.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698
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• If the paper includes experiments, a No answer to this question will not be perceived699

well by the reviewers: Making the paper reproducible is important, regardless of700

whether the code and data are provided or not.701

• If the contribution is a dataset and/or model, the authors should describe the steps taken702

to make their results reproducible or verifiable.703

• Depending on the contribution, reproducibility can be accomplished in various ways.704

For example, if the contribution is a novel architecture, describing the architecture fully705

might suffice, or if the contribution is a specific model and empirical evaluation, it may706

be necessary to either make it possible for others to replicate the model with the same707

dataset, or provide access to the model. In general. releasing code and data is often708

one good way to accomplish this, but reproducibility can also be provided via detailed709

instructions for how to replicate the results, access to a hosted model (e.g., in the case710

of a large language model), releasing of a model checkpoint, or other means that are711

appropriate to the research performed.712

• While NeurIPS does not require releasing code, the conference does require all submis-713

sions to provide some reasonable avenue for reproducibility, which may depend on the714

nature of the contribution. For example715

(a) If the contribution is primarily a new algorithm, the paper should make it clear how716

to reproduce that algorithm.717

(b) If the contribution is primarily a new model architecture, the paper should describe718

the architecture clearly and fully.719

(c) If the contribution is a new model (e.g., a large language model), then there should720

either be a way to access this model for reproducing the results or a way to reproduce721

the model (e.g., with an open-source dataset or instructions for how to construct722

the dataset).723

(d) We recognize that reproducibility may be tricky in some cases, in which case724

authors are welcome to describe the particular way they provide for reproducibility.725

In the case of closed-source models, it may be that access to the model is limited in726

some way (e.g., to registered users), but it should be possible for other researchers727

to have some path to reproducing or verifying the results.728

5. Open access to data and code729

Question: Does the paper provide open access to the data and code, with sufficient instruc-730

tions to faithfully reproduce the main experimental results, as described in supplemental731

material?732

Answer: [Yes]733

Justification: Yes, and code is in supplementary material.734

Guidelines:735

• The answer NA means that paper does not include experiments requiring code.736

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/737

public/guides/CodeSubmissionPolicy) for more details.738

• While we encourage the release of code and data, we understand that this might not be739

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not740

including code, unless this is central to the contribution (e.g., for a new open-source741

benchmark).742

• The instructions should contain the exact command and environment needed to run to743

reproduce the results. See the NeurIPS code and data submission guidelines (https:744

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.745

• The authors should provide instructions on data access and preparation, including how746

to access the raw data, preprocessed data, intermediate data, and generated data, etc.747

• The authors should provide scripts to reproduce all experimental results for the new748

proposed method and baselines. If only a subset of experiments are reproducible, they749

should state which ones are omitted from the script and why.750

• At submission time, to preserve anonymity, the authors should release anonymized751

versions (if applicable).752
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• Providing as much information as possible in supplemental material (appended to the753

paper) is recommended, but including URLs to data and code is permitted.754

6. Experimental Setting/Details755

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-756

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the757

results?758

Answer: [Yes]759

Justification: Yes.760

Guidelines:761

• The answer NA means that the paper does not include experiments.762

• The experimental setting should be presented in the core of the paper to a level of detail763

that is necessary to appreciate the results and make sense of them.764

• The full details can be provided either with the code, in appendix, or as supplemental765

material.766

7. Experiment Statistical Significance767

Question: Does the paper report error bars suitably and correctly defined or other appropriate768

information about the statistical significance of the experiments?769

Answer: [Yes]770

Justification: Results with mean and std are presented in Appendix.771

Guidelines:772

• The answer NA means that the paper does not include experiments.773

• The authors should answer "Yes" if the results are accompanied by error bars, confi-774

dence intervals, or statistical significance tests, at least for the experiments that support775

the main claims of the paper.776

• The factors of variability that the error bars are capturing should be clearly stated (for777

example, train/test split, initialization, random drawing of some parameter, or overall778

run with given experimental conditions).779

• The method for calculating the error bars should be explained (closed form formula,780

call to a library function, bootstrap, etc.)781

• The assumptions made should be given (e.g., Normally distributed errors).782

• It should be clear whether the error bar is the standard deviation or the standard error783

of the mean.784

• It is OK to report 1-sigma error bars, but one should state it. The authors should785

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis786

of Normality of errors is not verified.787

• For asymmetric distributions, the authors should be careful not to show in tables or788

figures symmetric error bars that would yield results that are out of range (e.g. negative789

error rates).790

• If error bars are reported in tables or plots, The authors should explain in the text how791

they were calculated and reference the corresponding figures or tables in the text.792

8. Experiments Compute Resources793

Question: For each experiment, does the paper provide sufficient information on the com-794

puter resources (type of compute workers, memory, time of execution) needed to reproduce795

the experiments?796

Answer: [Yes]797

Justification: Yes.798

Guidelines:799

• The answer NA means that the paper does not include experiments.800

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,801

or cloud provider, including relevant memory and storage.802
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• The paper should provide the amount of compute required for each of the individual803

experimental runs as well as estimate the total compute.804

• The paper should disclose whether the full research project required more compute805

than the experiments reported in the paper (e.g., preliminary or failed experiments that806

didn’t make it into the paper).807

9. Code Of Ethics808

Question: Does the research conducted in the paper conform, in every respect, with the809

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?810

Answer: [Yes]811

Justification: Yes.812

Guidelines:813

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.814

• If the authors answer No, they should explain the special circumstances that require a815

deviation from the Code of Ethics.816

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-817

eration due to laws or regulations in their jurisdiction).818

10. Broader Impacts819

Question: Does the paper discuss both potential positive societal impacts and negative820

societal impacts of the work performed?821

Answer: [Yes]822

Justification: Yes.823

Guidelines:824

• The answer NA means that there is no societal impact of the work performed.825

• If the authors answer NA or No, they should explain why their work has no societal826

impact or why the paper does not address societal impact.827

• Examples of negative societal impacts include potential malicious or unintended uses828

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations829

(e.g., deployment of technologies that could make decisions that unfairly impact specific830

groups), privacy considerations, and security considerations.831

• The conference expects that many papers will be foundational research and not tied832

to particular applications, let alone deployments. However, if there is a direct path to833

any negative applications, the authors should point it out. For example, it is legitimate834

to point out that an improvement in the quality of generative models could be used to835

generate deepfakes for disinformation. On the other hand, it is not needed to point out836

that a generic algorithm for optimizing neural networks could enable people to train837

models that generate Deepfakes faster.838

• The authors should consider possible harms that could arise when the technology is839

being used as intended and functioning correctly, harms that could arise when the840

technology is being used as intended but gives incorrect results, and harms following841

from (intentional or unintentional) misuse of the technology.842

• If there are negative societal impacts, the authors could also discuss possible mitigation843

strategies (e.g., gated release of models, providing defenses in addition to attacks,844

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from845

feedback over time, improving the efficiency and accessibility of ML).846

11. Safeguards847

Question: Does the paper describe safeguards that have been put in place for responsible848

release of data or models that have a high risk for misuse (e.g., pretrained language models,849

image generators, or scraped datasets)?850

Answer: [NA] .851

Justification: No risk.852

Guidelines:853

• The answer NA means that the paper poses no such risks.854
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• Released models that have a high risk for misuse or dual-use should be released with855

necessary safeguards to allow for controlled use of the model, for example by requiring856

that users adhere to usage guidelines or restrictions to access the model or implementing857

safety filters.858

• Datasets that have been scraped from the Internet could pose safety risks. The authors859

should describe how they avoided releasing unsafe images.860

• We recognize that providing effective safeguards is challenging, and many papers do861

not require this, but we encourage authors to take this into account and make a best862

faith effort.863

12. Licenses for existing assets864

Question: Are the creators or original owners of assets (e.g., code, data, models), used in865

the paper, properly credited and are the license and terms of use explicitly mentioned and866

properly respected?867

Answer: [Yes]868

Justification: Yes.869

Guidelines:870

• The answer NA means that the paper does not use existing assets.871

• The authors should cite the original paper that produced the code package or dataset.872

• The authors should state which version of the asset is used and, if possible, include a873

URL.874

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.875

• For scraped data from a particular source (e.g., website), the copyright and terms of876

service of that source should be provided.877

• If assets are released, the license, copyright information, and terms of use in the878

package should be provided. For popular datasets, paperswithcode.com/datasets879

has curated licenses for some datasets. Their licensing guide can help determine the880

license of a dataset.881

• For existing datasets that are re-packaged, both the original license and the license of882

the derived asset (if it has changed) should be provided.883

• If this information is not available online, the authors are encouraged to reach out to884

the asset’s creators.885

13. New Assets886

Question: Are new assets introduced in the paper well documented and is the documentation887

provided alongside the assets?888

Answer: [NA] .889

Justification: No new assets.890

Guidelines:891

• The answer NA means that the paper does not release new assets.892

• Researchers should communicate the details of the dataset/code/model as part of their893

submissions via structured templates. This includes details about training, license,894

limitations, etc.895

• The paper should discuss whether and how consent was obtained from people whose896

asset is used.897

• At submission time, remember to anonymize your assets (if applicable). You can either898

create an anonymized URL or include an anonymized zip file.899

14. Crowdsourcing and Research with Human Subjects900

Question: For crowdsourcing experiments and research with human subjects, does the paper901

include the full text of instructions given to participants and screenshots, if applicable, as902

well as details about compensation (if any)?903

Answer: [NA] .904

Justification: No human subjects.905
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Guidelines:906

• The answer NA means that the paper does not involve crowdsourcing nor research with907

human subjects.908

• Including this information in the supplemental material is fine, but if the main contribu-909

tion of the paper involves human subjects, then as much detail as possible should be910

included in the main paper.911

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,912

or other labor should be paid at least the minimum wage in the country of the data913

collector.914

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human915

Subjects916

Question: Does the paper describe potential risks incurred by study participants, whether917

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)918

approvals (or an equivalent approval/review based on the requirements of your country or919

institution) were obtained?920

Answer: [NA] .921

Justification: No involving.922

Guidelines:923

• The answer NA means that the paper does not involve crowdsourcing nor research with924

human subjects.925

• Depending on the country in which research is conducted, IRB approval (or equivalent)926

may be required for any human subjects research. If you obtained IRB approval, you927

should clearly state this in the paper.928

• We recognize that the procedures for this may vary significantly between institutions929

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the930

guidelines for their institution.931

• For initial submissions, do not include any information that would break anonymity (if932

applicable), such as the institution conducting the review.933
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