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Abstract

Mutual information (MI) is hard to estimate for high dimensional data, and various esti-
mators have been proposed over the years to tackle this problem. Here, we note that there
exists another challenging problem, namely that many estimators of MI, which we denote
as I(X;Y ), are sensitive to scale, i.e., I(X;αT ) ̸= I(X;T ) where α ∈ R. Although some
normalization methods have been hinted at in previous works, there is no in-depth study
of the problem. In this work, we study new normalization strategies for MI estimators
to be scale-invariant, particularly for the Kraskov–Stögbauer–Grassberger (KSG) and the
neural network-based MI (MINE) estimators. We provide theoretical and empirical results
and show that the original un-normalized estimators are not scale-invariant and highlight
the consequences of an estimator’s scale-dependence. We propose new global normalization
strategies that are tuned to the corresponding estimator and scale invariant. We compare
our global normalization strategies to existing local normalization strategies and provide
intuitive and empirical arguments to support the use of global normalization. Extensive
experiments across multiple distributions and settings are conducted, and we find that our
proposed variants KSG-Global-L∞ and MINE-Global-Corrected are most accurate within
their respective approaches. Finally, we perform an information plane analysis of neural net-
works and observe clearer trends of fitting and compression using the normalized estimators
compared to the original un-normalized estimators. Our work highlights the importance of
scale awareness and global normalization in the MI estimation problem.

1 Introduction

Mutual information (MI), is a fundamental measure of dependency between two variables, which has be-
come pivotal in various machine learning domains, including generalization (Xu & Raginsky, 2017; Bu et al.,
2019; Russo & Zou, 2020), representation learning (Bachman et al., 2019; Tschannen et al., 2020) and
fairness (Wang et al., 2023; Roh et al., 2020). Estimating MI for high-dimensional continuous variables
(Xu et al., 2020) is particularly challenging, due to the hardness of accurately estimating the probabil-
ity distribution in high dimensions (Goldfeld & Greenewald, 2021). For example, traditional estimators
like Kraskov–Stögbauer–Grassberger (KSG) (Kraskov et al., 2004), rely on distance metrics, and for high
dimensional data, the distances would have less variation due to the curse of dimensionality.

In this paper, we highlight a critical but underexplored factor that leads to inaccuracies in MI estimation:
the scale of the variables ( i.e., |X|). Specifically, when considering the mutual information I(X;αY ), where
α ∈ R+ is a scaling factor, we demonstrate that when α ≪ 1 or α ≫ 1, the MI estimates can deviate
significantly from the true value. This is problematic since by definition, I(X;αY ) = I(X;Y ) for any two
continuous random variables X and Y . Moreover, a stronger result states that I(X; f(Y )) = I(X;Y ) for
any continuous and invertible transformation f (Cover & Thomas, 2006). In this paper, we mainly focus on
the specific impact of scale.

Most mutual information estimators, including the widely adopted KSG estimator (Kraskov et al., 2004) and
its subsequent variants (Gao et al., 2017), lack scale invariance—a limitation that we rigorously demonstrate
in this study. We provide a theoretical analysis explaining why this deficiency arises. We also show the
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binning estimator (Paninski, 2003) for MI can be scale invariant when the number of bins used is fixed.
However, the binning estimator itself is not well-suited for estimating high-dimensional continuous variables.
Recently the mutual information neural estimator (MINE) (Belghazi et al., 2018) was proposed, which is
a neural network-based estimator of MI that makes use of its Donsker-Varadhan (DV) representation. We
demonstrate theoretically that ideally, MINE should be scale-invariant, but MINE fails in practice due to
limitations introduced by stochastic gradient descent optimization.

Despite numerous surveys that have explored various methods of MI estimation (Walters-Williams & Li,
2009; McAllester & Stratos, 2020; Paninski, 2003), the critical importance of normalization (preprocessing)
has been largely overlooked. A natural solution to ensure scale invariance is to pre-process the data using
standard normalization, where each dimension is adjusted to have a variance of 1, and we refer as local
normalization. This pre-processing step was hinted in (Kraskov et al., 2004) for the KSG estimator. Local
normalization also has been commonly applied as a preprocessing step in many deep learning studies involv-
ing mutual information perspective (Hjelm et al., 2019; Xie et al., 2024). However, local normalization treats
each dimension independently and normalizes them to have a variance of 1, which, as we demonstrate in
Section 5.1, does not work well in the high-dimension setting especially in neural networks, across two sepa-
rate experiments. This is because most high-dimensional feature representations in neural networks always
contain some noisy dimensions, which are of low energy and contain irrelevant features. Thus, amplifying
these low energy dimensions can lead to suboptimal MI estimates. We also note that the recent work by
(Czyż et al., 2023), in addition to trying out local normalization approaches, also studied other preprocessing
methods including the transformation of the margin distribution to uniform distribution (via converting to
rank). We note that this conversion step also brings all individual dimensions to equal importance like local
normalization, and thus would have the same pitfalls in this scenario.

To address this issue, in our work, we propose a set of global normalization approaches. Unlike local
normalization, global normalization preserves the relative energies between the different dimensions, and
thus avoids scaling up low-energy noisy dimensions. Our proposed estimator modifications do not only
include new normalization approaches, however, and often also have an additional maximization step, which
helps bias our estimators better. It is well known that KSG and other MI estimators have a tendency to
have negative bias Czyż et al. (2023), especially in high dimensions. Our normalization approaches for KSG
incorporate this observation via an additional maximization step, which also follows intuitively from one of
our theoretical observations in Proposition 3.

We now summarize our contributions:
• We propose novel scale-invariant extensions of KSG and MINE-based estimators that effectively address

the one-sided scale-invariance issue and substantially improve estimator accuracy. To the best of our
knowledge, our work is the first comprehensive analysis of the effect of scale and various normalization
methodologies, some of which are introduced for the first time in this work.

• We demonstrate that the KSG-Global-L∞ and MINE-Global-Corrected variants consistently produce
the most accurate estimations within their respective approaches, across a broad range of experiments
involving synthetic data, which are targeted towards the high-dimensional and low-data regime. These
experiments include multiple types of transformations, noise injections, and changes in dimensionality.

• We explore the dynamics of MI between inputs X and hidden layers T during neural network training.
Our results highlight that unnormalized estimators significantly confound the scale of T in their esti-
mates, while our normalized approaches can often capture distinct phases of training, such as fitting and
compression.

The rest of the paper is organized as follows. In Section 2, we first provide a formal definition of mutual
information and briefly review the common MI estimators employed in our study, highlighting the motivation
behind enhancing these estimators. In Section 3, we then present an evaluation of the one-sided scale-
invariance issue across three selected MI estimators. In Section 4, we introduce our proposed normalization
strategies, accompanied by key implementation techniques for improving the KSG and MINE estimators.
In Section 6 and Section 7, we conduct extensive experiments on both synthetic datasets and during neural
network training to demonstrate the efficacy of our method. Comparisons are made against both the original
estimators and standard normalization approaches (local normalization). Finally, we summarize our findings
and discuss their implications in Section 8.
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2 Background

2.1 Mutual Information

Mutual information of two variables is a measure that quantifies the mutual dependence between two random
variables. Specifically, it measures the amount of information obtained about one random variable through
the observation of another. The concept of mutual information is closely related to the Shannon entropy,
which measures the average uncertainty or information of a random variable’s possible outcomes. Given a
continuous random variable X with a probability density function f from a set X , the continuous entropy
h(X) is defined as:

h(X) ..= −
∫

X
f(x) log f(x) dx (1)

Then, the mutual information between continuous random variables (RVs) X and Y is given by:

I(X;Y ) = h(x) + h(Y ) − h(X,Y ) (2)

where h(X,Y ) is the joint Shannon entropy of X and Y . This can be interpreted as the reduction in the
uncertainty of X due to the knowledge of Y , or equivalently, as the amount of information that X and Y
share.

In the case of jointly continuous random variables, the mutual information can be expressed in terms of
Kullback–Leibler (KL-) divergence

I(X;Y ) = DKL
(
P(X,Y )∥PX ⊗ PY

)
, (3)

where PX ⊗PY is the dot product of two marginal distributions PX and PY , P(X,Y ) is their joint distribution.
DKL is defined as DKL(P∥Q) := EP

[
log dP

dQ

]
.

Equation 2 and equation 3 are commonly used to describe mutual information. However, in practice,
estimating the true distribution of continuous random variables is challenging, especially for high-dimensional
data. In the following section, we will discuss various estimators used in other works to estimate the
distribution of random variables and subsequently compute mutual information.

2.2 Mutual Information Estimators

In this section, we present several widely-used nonparametric MI estimators that are studied in our work
and have been extensively applied in other research.

Binning Estimator: It is also called histogram based estimator in many research. The simplest approach to
estimate MI is discretizing the continuous random variable into bins, counting the number of samples that fall
into each bin, and computing the probability density (Paninski, 2003). The binning estimator for n samples
can be expressed as În(X;Y )bin = Hbin(X) +Hbin(Y ) −Hbin(X,Y ). where Hbin(X) represents the binned
entropy given a RV X, such that Hbin(X) = −

∑
i P (Xi) logP (Xi). Let n(Xi) be the number of samples that

fall in i-th bin of X, and N is the total number of data points. Then we have P (Xi) ≈ n(Xi)/N for binning
method. Similarly, we represent binned joint entropy as Hbin(X,Y ) = −

∑
i,j P (Xi, Yj) logP (Xi, Yj), and

P (Xi, Yj) ≈ n(Xi, Yj)/N .

Kraskov–Stögbauer–Grassberger (KSG) Estimator: Another popular non-parametric approach to
estimate MI in high dimensions is the KSG estimator in (Kraskov et al., 2004). Unlike the binning estimator,
the KSG estimator uses the k-nearest neighbor (K-NN) statistic to estimate the probability function of
continuous random variables, which also uses the joint entropy decomposition method to estimate MI. The
KSG estimator is effectively estimating:

ĤKL(X) + ĤKL(Y ) − ĤKL(X,Y ), (4)

where HKLrepresents the KL Entropy estimator which is proposed in Kozachenko & Leonenk (1987)’s work.
Informally, in lp distance, each k-NN distance ρk,i,p along with the choice of k, provides a localized perspective
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on the underlying probability distribution around the i-th sample. The probability density function of Xi

under k-NN statistic can be approximately expressed as: f̂X (Xi) cd,p (ρk,i,p)d ≃ k
N , where N is the number

of total samples. With this function and equation 1, we are able to get:

ĤKL(X) = 1
N

N∑
i=1

log
(
Ncd,p (ρk,i,p)d

k

)
+ log(k) − ψ(k), (5)

where cd,p is the volume of d-dimensional balls in lp distance, and ψ(x) is the digamma function (i.e.,
ψ(x) = Γ(x)−1dΓ(x)dx). Note that we have estimated the density of i-th sample, thus the integral in
equation 1 can be rewritten in terms of summation over N samples. As the KSG estimator measures
distances using the l∞norm, as it can be written as:

În
KSG(X;T ) = ψ(k) + ψ(n) − 1

k
− 1
n

n∑
i=1

(ψ(nx,i,∞) + ψ(nt,i,∞)) (6)

In (Gao et al., 2017), authors proposed a bias-improved KSG (BI-KSG) that performs better than KSG
when N is small and X and Y are not independent. It is also important to note that many other variants
of KSG and other estimators (Pál et al., 2010; Gao et al., 2015) use k-NN approach.

Mutual Information Neural Estimator (MINE): In our work, we also look into neural network based
MI estimators, specifically Mutual Information Neural Estimation (MINE) (Belghazi et al., 2018). This
approach adopts the DV representation of KL-divergence (Donsker & Varadhan, 1983).Given RVs X ∼ PX ,
Y ∼ PY , and (Xi, Yi) ∼ PX,Y , we express equation 3 in terms of DV representation to get:

I(X;Y ) = sup
F :X ×Y→R

EX,Y ∼P (X,Y )[F (X,Y )] − log
(
EX,Y ∼P (X)×P (Y )

[
eF (X,Y )

])
, (7)

where F can be any class of functions that satisfying the integrability constraints of the theorem.

Assuming independent and identically distributed (i.i.d.) samples are drawn from P (X,Y ), and Xi and Ỹi,
where Ỹi is taken from the randomly shuffled set of all samples (Yi)n

i=1. When n is large enough, by applying
the law of large numbers, we have:

ÎMINE(X;Y ) = max
F

1
n

n∑
i=1

Tθ (Xi, Yi) − log
(

1
n

n∑
i=1

eTθ(Xi,Ỹi)
)
, (8)

where we choose F to be the family of functions Tθ : X × Y → R to be parameterized by a deep neural
network with parameters θ ∈ Θ. By training a neural network to optimize the above equation (i.e., finding
the optimal Tθ), the final output will yield MINE estimate of MI between X and Y .

2.3 Motivation for Improving MI Estimation

Estimating mutual information (MI) is fundamental to various domains, ranging from learning theory to
practical applications such as medical analysis and wireless communication (Shwartz-Ziv & Tishby, 2017;
Saxe et al., 2018). To motivate our proposed normalization strategy, this section outlines several desirable
properties that effective MI estimators should possess. Let S = {(X1, T1), (X2, T2), ..., (Xn, Tn)} be the
sampled data. With this, let În

est(X;T ) represent an estimate of the MI between X and T using the
estimator est, given N sampled points from the joint distribution P (X,T ). Ideally, we seek the estimator to
have the following properties:

1. Global Scale Invariance: For any arbitrary α ∈ R and n ∈ Z+, În
est(αX;αT ) = În

est(X;T )
2. One-Sided Scale Invariance For any arbitrary α ∈ R and n ∈ Z+, În

est(X;αT ) = În
est(X;T )

We emphasize the importance of these properties because true mutual information inherently satisfies them.
By definition, I(αX;αT ) = I(X;T ) and I(αX;T ) = I(X;T ) for a scalar α. In the case of neural networks,
where X represents the input and T the features, estimation of I(X;T ) becomes important, as it was hy-
pothesized that it can predict the generalization behaviour of deep learning networks (Shwartz-Ziv & Tishby,
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2017). Furthermore, (Shwartz-Ziv & Tishby, 2017) also predicts a two-phase behaviour of I(X;T ) during
training: (a) fitting, where I(X;T ) and I(T ;Y ) increases, and (b) compression where I(X;T ) decreases.
However, this is often not observed (Saxe et al., 2018). We hypothesize that it could be because of the
scale-sensitivity of the estimators, as the scale of T changes significantly during training.

We note that the current estimators may not obey one-sided scale invariance. First, we study three estimators
theoretically: KSG, MINE, and binning.

3 Testing One-sided Scale-Invariance of MI Estimators

In this section, we theoretically test whether the common MI estimators are global-scale invariant and one-
sided scale invariant. In Section 6, we also present an experimental test of one-sided scale-invariance on MI
estimators. Note that for all results that follow, we assume every random variable is bounded. That is, if
X is bounded, we have that |X| ≤ B for some finite B < ∞. Also, for the following results, let X ∈ Rd and
T ∈ Rm.

Binning: Let us denote the binning estimator described in (Paninski, 2003) by În
bin. Then we have the

following result.
Proposition 1. It holds that În

bin(αX;αT ) = În
bin(X;T ) and În

bin(X;αT ) = În
bin(X;T ) ∀α ∈ R+.

Proof Sketch 1. We note that the number of bins chosen for each dimension is fixed, and the locations
of the bins are determined by the minimum and maximum values of the data in each dimension, i.e., they
determine the edges of the bins. Let Xmin ∈ Rd then denote the vector of minimum values across all
dimensions, and vice-versa for Xmax. When X scales to αX, as α > 0, we have that the vector of minimum
values for αX is simply αXmin and similarly for Xmax, and the binning locations also get scaled by α. Thus,
there is a bijection between the binning locations of X and αX. Since both the binning structure and the
data points within each bin are scaled uniformly, the probability of data falling into any given bin remains
unchanged. Therefore, the distribution of data across the bins is invariant under scaling, leading to the same
binning estimator În

bin(X;T ) = În
bin(αX;T ) = În

bin(αX;αT ) for any scaling factor α.
Remark 1. We note that even though the binning estimator is scale-invariant, it is not a good estimator
for MI, more so in the high dimension setting (Kraskov et al., 2004). This is because in high dimensions the
data occupies the space very sparsely, and most bins will yield zero datapoints and thus a zero probability.
Due to this, it is common practice to use fewer bins overall, which instead leads to less accurate estimates
of MI as more information is lost.

KSG: Let us denote the KSG estimator proposed in (Kraskov et al., 2004) by În
KSG. Then, we have the

following results.
Proposition 2. It holds that În

KSG(αX;αT ) = În
KSG(X;T ), ∀α ∈ R+.

Proof Sketch 2. We note the expression for the KSG estimator (equation 3 from (Kraskov et al., 2004) as
follows:

În
KSG(αX;αT ) = ψ(k) + ψ(n) − 1

k
− 1
n

n∑
i=1

(ψ(nαx,i,∞) + ψ(nαt,i,∞)) (9)

Here, ψ denotes the digamma function(Abramowitz, 1974), and nαx,i,∞ =
∑

j ̸=i I{||αXi − αXj || ≤ ρ′
k,i,p},

where ρ′
k,i,p is the k-NN distance of the joint sample i, {αX,αT} (this distance is computed in d + m

dimensions). Furthermore, ||αXi − αXj || represents the X-dimensions only distance (i.e. in d dimensional
space). Let ρ′

k,i,p be the k-NN distance of the joint sample i for the unscaled variables {X,T}. It is trivial to
see that ρ′

k,i,p = αρk,i,p . Thus, nαx,i,∞ =
∑

j ̸=i I{||αXi −αXj || ≤ αρk,i,p} =
∑

j ̸=i I{||Xi −Xj || ≤ ρk,i,p} =
nx,i,∞, and similarly nαt,i,∞ = nt,i,∞. This shows that În

KSG(αX;αT ) = În
KSG(X;T ).

This proof also leads to the following result which states that one-sided scale invariance is not a property of
the KSG estimator.
Proposition 3. It holds that limα,n → ∞ În

KSG(X;αT ) = − 1
k and limα → 0+,n → ∞ În

KSG(X;αT ) = − 1
k ,

where k is the k-nearest neighbor parameter for the estimator. Thus, În
KSG(X;αT ) need not be equal to

În
KSG(X;T ).
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Proof Sketch 3. Following from the proof of Proposition 2, we note that as α→ 0, we have nαt,i,∞ =∑
j ̸=i I{||αTi − αTj || ≤ ρ′

k,i,p} →n. First, note that ρ′
k,i,p = ρk,i,p, as α→ 0. Next, because X and T are

bounded, and as α→ 0, αT should contain all datapoints within the sphere of size ρk,i,p. Similarly, nx,i,∞ = k
in this case, as the nearest neighbor distance is dominated by X, and there will be k datapoints within
the nearest neighbor distance of ρ′

k,i,p, as ρk,i,p = ρ′
k,i,p. Thus we then have: limα,n → ∞ În

KSG(X;αT ) =
ψ(k) + ψ(n) − 1

k + 1
n

∑n
i=1 (ψ(k) + ψ(n))) = − 1

k .s

Lastly, as KSG is global scale-invariant (Proposition 2), we have that limα → 0,n → ∞ În
KSG(X;αT ) =

limα → 0,n → ∞ În
KSG( 1

αX;T ) = limα,n → ∞ În
KSG(αX;T ) = − 1

k . The final result follows from the fact that
În

KSG(X;Y ) = În
KSG(Y ;X).

MINE: We first define two variants of the MINE estimator as follows:

MINE-Opt: This estimator refers to the MINE estimator where instead of training the neural network on
the loss function defined in equation 7 by stochastic gradient descent (SGD), we pick the best neural network
configuration that directly maximizes equation 7. Thus, we pick the global optimum.

MINE-SGD: This estimator refers to the MINE estimator where optimization of the loss function defined
in equation 7, is performed using conventional stochastic gradient descent. This is the standard approach
proposed originally by (Belghazi et al., 2018).

We denote the MINE-based MI estimators by În
MINE−opt and În

MINE−sgd. We then have the following
results.
Proposition 4. It holds that În

MINE−opt(X;αT ) = În
MINE−opt(X;T ) ∀α ∈ R+.

Proof Sketch 4. To demonstrate that În
MINE−opt(X;αT ) = În

MINE−opt(X;T ), we begin by consider-
ing any neural network function f that yields a specific value for the expression EX,Y ∼P (X,T ) [f(X,T )] −
EX,T ∼P (X)×P (T )

[
ef(X,T )], there exists a corresponding neural network function f ′ such that

EX,αT ∼P (X,αT ) [f ′(X,αT )] − EX,αT ∼P (X)×P (αT )

[
ef ′(X,αT )

]
has the same value of the expression involv-

ing f and vice-versa. To constructf ′, let WT be the weights of the first layer of the network f that are
attached to T , and similarly W ′

T for f ′. Define a new network function f ′ with the same architecture as
f except that W ′

T = WT /α. By construction, the function f ′ satisfies f ′(X,αT ) = f(X,T ), which implies
that for every function f that optimizes the expression in equation 7 there is a corresponding function f ′

for the variables X and αT . This also shows that the optimization for I(X;T ) and I(X;αT ) as expressed
in equation 7 is equivalent. As a result, the mutual information estimator În

MINE−opt, which corresponds to
the supremum of the value of this expression over all possible neural network functions, is invariant under
scaling of T . Therefore, we conclude that În

MINE−opt(X;αT ) = În
MINE−opt(X;T ).

Proposition 5. It holds that limα → 0 Î
n
MINE−sgd(X;αT ) = 0 . Thus, În

MINE−sgd(X;αT ) need not be equal
to În

MINE−sgd(X;T ).
Proof Sketch 5. Let f∗ represent the neural network function which optimizes the expression for
În

MINE−sgd(X;αT ), which is EX,αT ∼P (X,αT ) [f ′(X,αT )] − EX,αT ∼P (X)×P (αT )

[
ef ′(X,αT )

]
, via SGD. Let

WT be the weights of the first layer of the network f∗ which are attached to αT . From Theorem 1 of
(Ghosh et al., 2019), we have that |WT |2 ≤ γα2|T |2. Thus, as α→ 0, the weights WT → 0 as well. This
indicates that the contribution of T to the function f∗, as α→ 0, will be negligible. Thus effectively,
limα → 0 Î

n
MINE−sgd(X;αT ) = În

MINE−sgd(X; 0) = 0. This proves the result.

4 Methodology

4.1 Normalization Strategies

In this section, we outline three normalization strategies that form the basis of our studies in this work. We
define them as follows.
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Definition 1. (Local Normalization) We are given a random variable X = [x1, x2, .., xd] ∈ Rd where
xi ∈ R. Let X ∼ P and S = {X1, X2, ..., Xn} ∼ Pn. The locally normalized Xσ|S = [x′

1, x
′
2, .., x

′
d] ∈ Rd is

constructed such that x′
i = xi√

E[(xi−E[xi])2]
for 1 ≤ i ≤ d, where the expectations are over S.

Definition 2. (Global Normalization) Given a random variable X ∈ Rd, let X ∼ P and S =
{X1, X2, ..., Xn} ∼ Pn. The globally normalized XΣ|S ∈ Rd is then constructed as XΣ|S = X√

E[∥X−E[X]∥2]
,

where ∥.∥ denotes the L2 norm and the expectations are over S.
Definition 3. (Global L∞ Normalization) Given a random variable X ∈ Rd, let X ∼ P and
S = {X1, X2, ..., Xn} ∼ Pn. The globally L∞ normalized XΣ∞|S ∈ Rd is then constructed as XΣ∞|S =

X
E[∥X−E[X]∥∞] , where ∥.∥∞ denotes the L∞ norm and the expectations are over S.

Note that for any RV X, we denote by Xσ|S and XΣ|S its locally and globally normalized versions respectively.

4.2 Studied Scale-Invariant Estimators

We are given the RVs X ∈ Rd and T ∈ Rm, and sampled data S = {(X1, T1), (X2, T2), ..., (Xn, Tn)} ∼ Pn
XT .

All following estimates are for the MI between X and T , given S. With this, we propose the following
normalization approaches for KSG and MINE estimators. We outline our approaches for scale-invariant
KSG and MINE extensions in Table 1.

Table 1: Proposed scale-Invariant KSG and MINE variants
KSG MINE

KSG-Local: În
KSG(Xσ|S ;Tσ|S) MINE-Local: În

MINE(Xσ|S ;Tσ|S)
KSG-Global: max

c∈0.1,0.2,..,2

[
În

KSG(XΣ|S ; cTΣ|S)
]

MINE-Global: În
MINE(XΣ|S ;TΣ|S)

KSG-Global-L∞: max
c∈0.1,0.2,..,2

[
În

KSG(XΣ∞|S ; cTΣ∞|S)
]

MINE-Global-Corrected: În
MINE(

√
dXXΣ|S ;

√
dTTΣ|S)

Remark 2. In addition to the above approaches, we compare the standard baselines of KSG and MINE.
Furthermore, we also include a recent variant of KSG in our comparisons, called BI-KSG (Gao et al., 2017),
which has smaller bias levels for highly correlated data. We do not include binning-based measures in our
experimental results, as we find that they fare poorly for almost all of our studied cases. Thus, we only
study the KSG and MINE variants empirically in this work. Also, note that c is a tunable parameter and
the choice of the parameter c is fixed to the range between 0.1 and 2 for all experiments.

5 Additional Motivation for Normalization Variants

In this section, we provide both intuitive and empirical arguments for our proposed variants in the previous
section. First, we provide intuitive and empirical reasons for when and why global normalization approaches
could be preferred. Next, we provide a rationale for our proposed global normalization variants for KSG and
MINE estimators.

5.1 Global over Local

KSG: We argue in this work that global normalization should be the preferred choice, especially for esti-
mating MI of high dimensional data, such as high dimensional feature representations in neural networks.
This is mostly because local normalization makes each variable equally important, which can detrimentally
affect the k-nearest neighbor based estimation of MI in high dimensions. In the context of neural networks,
where X represents the inputs and T the features, often T is very sparse (i.e., most values are near zero and
irrelevant). By scaling these irrelevant dimensions to unit variance, it can lead to worse estimates of MI.

To investigate the above scenario, we conduct the experiment as follows. Given two RVs
X,T ∈ R2 such that T = X + ϵ, where ϵ ∼ N

(
0, σ2I2

)
(I2 is 2 × 2 identity matrix).

7



Under review as submission to TMLR

Figure 1: Average MI estimates for KSG-
based measures for a varying number of
noise dimensions.

Next, a series of independent RVs represented by ϵ = [ϵ1, ϵ2, ...ϵk]
where ϵi ∼ N

(
0, σ′2) (simulated noise), were appended to the input

X, and concatenated to become a 2+k dimensional RV X ′ = [X, ϵ].
Note that I(X;T ) = I(X ′;T ). We impose the constraint that
σ′ ≪ σ, as in neural networks, the irrelevant variables have less
energy than the relevant ones (as a consequence of training). With
this experimental setting, we simulate and plot the MI estimates
of KSG, BI-KSG, KSG-Local, and KSG-Global-L∞ in Figure 1,
as a function of the noise dimension k. It is clear from the fig-
ure that while KSG and KSG-Global-L∞ maintain their estimates,
KSG-Local yields significantly lower estimates with more noise di-
mensions. This is mainly due to the fact that KSG-Local will scale
up the added noise variables and increase their importance.

MINE: We conduct a similar experiment to test whether MINE-Local also has similar artifacts as KSG-
Local, as a result of assigning equal importance to low-energy noise dimensions. Here, we consider RVs
X,T ∈ R2 which are correlated Gaussian variables with a correlation coefficient ρ randomly chosen from a
certain range. Same as before, we then append noise variables ϵ = [ϵ1, ϵ2, ...ϵk] where ϵi ∼ N

(
0, σ′2) to X

to generate X ′ = [X, ϵ]. We then plot the average bias of all MINE variants, when the average is conducted
over 10 trials for each choice of k. In each trial, we choose a random correlation co-efficient ρ. In this way,
we can clearly see the average bias of all estimators over a broad range of correlation.

Figure 2: Bias of MINE-based mea-
sures for varying noise dimensions.

Intuitively, we might expect similar behavior as the KSG experiment,
as when dimensionality d increases, the estimates of MI should reduce
and the bias should become increasingly negative. However, our findings
present an unexpected insight. As summarized in Figure 2, local nor-
malization dramatically affects the bias positively rather than negatively
in the case of MINE-Local. Specifically, the figure shows that as more
noise dimensions are appended, the MINE-Local estimates tend to grow
significantly beyond the true MI, whereas the other measures, including
the MINE-Global variants, which remain stable. Our explanation is as
follows. Unlike KSG, for MINE there is a neural network that actively
seeks to maximize the DV objective. It is well known in the literature
that neural networks can fit random noise data very well Zhang et al.
(2017). Furthermore, as noise dimension increases, the overall data di-
mension increases and so does the number of network parameters, which
enables the network to maximize the DV objective better. For MINE, we
don’t see an increase because the added variables are of very low energy, and thus the network’s effective
input dimensionality doesn’t change as the added noise variables have a negligible impact on the output of
the network.

5.2 KSG-Global: Why the Maximization Step?

We outline two main arguments behind the maximization step for KSG variants in Table 1.

1. Negative bias in high dimensions: We find that the KSG estimator has a significant negative bias for
data in high dimensions. More specifically, we find that the bias of the KSG estimator grows significantly
with data dimension in the negative direction. We show this in two ways. First, we conduct an experiment
where X ∈ Rd and T ∈ Rd are correlated Gaussians with a correlation coefficient ρ chosen such that the
ground truth MI is fixed at a certain value (around 0.8). The dimensionality d is increased from 1 to 9 in
steps of one. We chose to fix the ground truth MI across dimensions, as otherwise average MI would grow
with data dimension, and we did not want the negative bias to be a result of ground truth MI growing faster
than the KSG estimates. For each d, we run 20 trials, where in each trial 1000 data points were sampled
from the joint distribution P (X,T ). We record KSG’s average estimate of MI for each d, and the results

8
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Figure 3: Analyzing the dependency of the bias of the KSG estimator with the data dimension. Please note that log
here is in base 2.

are shown in Figure 3(a). It is clearly evident that the KSG estimate has a growing negative bias with
dimensionality in this scenario.
To get a more general idea of the trends of the bias of the KSG estimator in response to increasing data
dimension, we conduct another experiment. Here, same as before, X ∈ Rd and T ∈ Rd are correlated Gaus-
sians. However, the correlation coefficient ρ is randomly chosen from a pre-determined range. Furthermore,
we conduct 100 trials for each choice of dimensionality d, and in each trial, the estimator has access to 200
sampled datapoints from P (X,T ). We choose a broader range of dimensions, such that d = [2, 4, 8, 16, 32, 64].
Lastly, we plot the percentage of trials in which the estimated MI was greater than or equal to the ground
truth MI. The results are shown in Figure 3(b). Note that for both KSG and BI-KSG, the proportion of
samples where the estimated MI was lower than the ground truth MI increases significantly as d increases.
To that end, we see that when d = 64, most estimates of MI are strictly less than the ground truth values.
These two studies indicate that taking the maximum of multiple estimates of MI from KSG can poten-
tially reduce the negative bias and improve accuracy, especially for high-dimensional data. After all, if
În

KSG(XΣ|S , cTΣ|S) is always less than the true MI irrespective of c, the maximum value in these cases will
always have the least bias. This is supported by our empirical results in Tables 2 and 3.
2. Consequence of Proposition 3: Proposition 3 finds that the KSG estimator for I(X;αT ) converges
to a negative value at either end of the scale spectrum w.r.t α. This motivated us to consider the maximum
estimate of MI În

KSG(XΣ|S , cTΣ|S) across a range of scales in c. Note that as both XΣ|S and TΣ|S represent
the global normalized versions of X and T , we can fix this pre-determined range of scales in c. We later see
that the În

KSG(XΣ|S , cTΣ|S) follows an almost Gaussian like trend w.r.t c (Figure 6a).
Remark 3. Note that MINE has an implicit maximization over relative scales in the way it is optimized.
This is mainly because the weights of the first layer can be any arbitrary set of real numbers as per the
optimization objective. Furthermore, scaling the weights associated with one of the input RVs X or T
is equivalent to scaling X or T respectively, as (αW )TX = WT (αX). It is important to note that the
maximization goes beyond just relative scales though, as the network function should ideally be invariant
to affine transformations of the input. This suggests that MINE intrinsically considers a maximization of
MI over all affine transformations of both variables. However, due to the nature of the gradient descent
approach used to optimize the network, and its preference for flatter minima Keskar et al. (2017), this may
not materialize to the fullest.

5.3 Motivation for Global Normalization Variants

In this section, we provide motivation for the specific global normalization variants proposed in this work:
KSG-Global-L∞ and MINE-Global-Corrected.

KSG: One of the objectives of global normalization is to put both RVs X and T on equal footing w.r.t nearest
neighbor distances, such that the KSG estimator is not biased towards any one variable, which leads to low

9
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and potentially even negative estimates (Proposition 3 and Figure 6a). In contrast, local normalization puts
every dimension of X and T on an equal footing, which risks amplifying the impact of noisy and irrelevant
dimensions, as demonstrated before. However, it is important to consider that KSG’s nearest neighbor
distances are computed using the L∞-norm, instead of L2-norm. Therefore, it is possible that KSG-Global
may not put X and T on an equal footing w.r.t nearest neighbor distances. In fact, when dX ≫ dT , the
L∞-nearest neighbor distances for XΣ|S will be significantly lower than for TΣ|S . This is because global
normalization will ensure that the average energy of dimensions sum to 1, and as dX ≫ dT , the scale of
individual dimensions in X will be significantly smaller than in T . As L∞-norm only considers the largest
element in the vector, this implies that L∞ distances of XΣ|S can turn out much smaller than for TΣ|S in
this case.

Figure 4: Data duplication: Average MI estimates
for KSG-based approaches.

To illustrate this, we conduct an experiment, following
the same setup as before with the Gaussian noise addi-
tion dataset. We have X,T ∈ R2 where T = X + ϵ
and ϵ ∼ N (0, σ2I2). We then increase the dimensional-
ity of X by simply appending a number of its duplicates
to yield X ′ = [X,X,X, ..X](k times). This ensures that
we preserve the distance structure of X in X ′. Let the
number of duplicate copies be denoted by k. Note that
I(X ′;T ) = I(X;T ). For every k we undergo 10 trials, and
in every trial we sample 200 data points from P (X,T )
and obtain MI estimates of KSG and KSG-Global vari-
ants. The results are shown in Figure 4. As hypothesized,
we see that KSG-Global shows a clear reduction as k in-
creases. In contrast, both KSG and KSG-Global-L∞ are
steady and have roughly consistent average MI estimates. This shows the importance of using L∞-norm to
estimate distances instead of L2 in the case of KSG, as it uses L∞-norm for estimating nearest neighbor
distances. Next, we discuss the MINE variants.

MINE: As discussed in KSG’s case, global normalization can yield low individual energy per dimension if the
data dimensionality is large. In the case of MINE, if dX ≫ dT , we will have that Ei[XΣ|S(i)2] ≪ Ei[TΣ|S(i)2],
where Xi and Ti denote individual dimensions of X and T respectively. In fact, Ei[XΣ|S(i)2] = 1

dX
and

Ei[TΣ|S(i)2] = 1
dT

. From the perspective of gradient descent and backpropagation, this implies that most
error signals will focus on T , and X will be relatively neglected. Furthermore, if both dX and dT are large,
the network input will have low energy per dimension, which may affect the optimization adversely. So, to
avoid this, we rescale the global normalized data XΣ|S and TΣ|S to X ′

Σ|S and T ′
Σ|S , such that the average

energy of every dimension E[X ′
Σ|S(i)2] = E[T ′

Σ|S(j)2] = 1, ∀i, j. Thus, X ′
Σ|S =

√
dXXΣ|S and similarly

T ′
Σ|S =

√
dTXΣ|S , which yields the MINE-Global-Corrected approach. Note that rescaling still preserves the

relative energies between different dimensions, i.e., E[X(i)2]/E[X(j)2] = E[X ′
Σ|S(i)2]/E[X ′

Σ|S(j)2].

Figure 5: Estimator bias versus di-
mension: Comparing MINE with
MINE-Global variants.

To showcase the importance of rescaling the globally normalized variables,
we conduct an experiment where X,T ∈ Rd are correlated Gaussian vari-
ables with a correlation coefficient of ρ between the corresponding dimen-
sions of X and T . Like in previous experiments, ρ is chosen randomly
from a specified range for each trial. We vary the dimensionality d from 1
to 9, and for each d we conduct ten trials. In each trial, we generate 1000
data points from P (X,T ), and compare MINE estimates with its global
normalization variants. For every d, we ultimately compute the average
bias of each estimator. Results are shown in Figure 5. Our observations
are two-fold. First, we observe that in general MINE estimates also yield a
growing negative bias with larger input dimensionality. Next, we observe
that MINE-Global grows negative at a faster rate compared to MINE, but
MINE-Global-Corrected shows similar bias trends as MINE. The results
imply that when the input signals are low due to global normalization,
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MINE tends to yield lower estimates on average. Also, they show that our rescaling approach is able to
address this and yield similar bias levels as the original MINE.

6 Experimental Studies

6.1 Summary

Our empirical studies can be categorized into roughly three broad sections:

1. Scale dependence and Signal to Noise Ratio (SNR) analysis of estimators: We perform some
basic tests and analyses of all estimators. First, we study their overall responses to scale changes, and
then we study their responses to changes in noise levels (SNR).

2. Accuracy analysis of estimators: We conduct an extensive accuracy-bias-correlation analysis of all
estimators in two different settings where ground truth MI is known. In each setting, we generate synthetic
data using a diverse set of transformations to simulate different distribution scenarios.

3. Studying neural network training using estimators: We study the MI dynamics of neural networks
during training. Specifically, we analyze the MI between input and features and compare the trends
resulting from various estimators.

For our experiments, we use two base distributions for generating the random variables X and T . We refer
to them in various parts of the experiments. They are as follows:

• Correlated Gaussians: Here, X ∈ Rd ∼ N (0, Id) and T ∈ Rd ∼ N (0, Id), and E[XiTi] = ρ for
1 ≤ i ≤ d and E[XiTj = 0] when i ̸= j. Note that Id denotes the identity matrix of size d× d. This is a
standard setting used in many prior MI estimation works.

• Additive Gaussian Noise: Here X ∈ Rd ∼ N (0, Id) and T = X + ϵ, where ϵ ∼ N (0, σ2Id).

We used the NPEET MI estimator toolbox for estimating KSG and KSG-based measures 1. For MINE, we
used the popular pytorch-based package 2.

6.2 Scale and SNR analysis

6.2.1 Scale

We conduct two sets of experiments. First, we generate X,T using a correlated Gaussian base. Then, we
generate datasets following P (X,T ) across 20 trials. In each trial, we generate 1000 samples from P (X,T ).
Using this set of 20 datasets, we construct many other copies of this set by scaling X ′ = ηX, where η
represents the scaling factor. We choose 20 different η between 10−2 and 103 for KSG, and between 10−2

and 10 for MINE, such that they are equispaced in a log10 scale. We choose different ranges for KSG and
MINE, because the MINE estimates fall rapidly around η = 10 and yield highly negative values after that.
For each η, we compute the average values of the estimators across the 20 datasets and report the average
estimates as a function of η in Figures 6a and 6b. This concludes the first part of our experiments.

Next, we analyze the degree of estimation error, as the scale of X varies via η. To get a robust measure of
error, we conduct 20 trials for every choice of η, and in each trial, we sample X,T from a correlated Gaussian
base and set ρ randomly within a specified interval. After sampling X,T , we generate X ′, T by scaling X, as
X ′ = ηX. We then measure the root-mean-squared error (RMSE) between the MI estimates and the ground
truth MI across the 20 trials and repeat the process for every choice of η. To get more general trends of
error, for every choice of η, and for every trial, we choose to sample ρ randomly. This gives a wider range of
ground truth MI. We plot the RMSE values for every measure for every scale factor η in Figures 6c and 6d.

Takeaways: We see that the standard MI estimators for KSG and MINE are significantly affected by scale.
Furthermore, we see that KSG estimates converge to very low and even negative values as η reaches either
extreme. Interestingly, as η grows, we find that KSG estimates indeed converge to around −0.33 which is
1/k as k = 3 for our experiments. This validates the result in Proposition 3. However, on the other side,
when η reduces to very small values, we find that the estimates reach zero. This is because the estimator we
1 https://github.com/gregversteeg/NPEET 2 https://github.com/gtegner/mine-pytorch
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(a) Scale Trend: KSG (b) Scale Trend: MINE

(c) Error v/s Scale: KSG (d) Error v/s Scale: MINE
Figure 6: Analysis of MI Estimators in response to data scaling. Estimates are for I(ηX; T ), where η is the scaling
factor.

used has a small distance correction in its k-nearest neighbor search. When we remove that correction, we
find that the estimates converge to −0.33 for both extremes of η. We also see that MINE estimates converge
to zero as η reduces. This validates our result in Proposition 5. For both KSG and MINE, we see that the
local and global variants stay robust in terms of scale. For KSG, the values stay essentially level as η varies,
but for MINE there are some small fluctuations. For both cases, we see that the local and global variants
show significantly less estimation error as the scaling factor diverges from one.

6.2.2 SNR

In this section, we show how the scale dependence of MI Estimators can lead to other scenarios where they
exhibit trends which are not ideal. We consider X,T sampled from the additive Gaussian noise base. Thus,
we have T = X + ϵ, where ϵ ∼ N (0, σ2). We additionally scale T to obtain T ′ = 0.1T . We scale down
T to T ′ so that the scale-dependent bias of MI estimators becomes a factor in our experiments. Note that
I(X;T ) = I(X;T ′), and thus when σ2 increases, I(X;T ) should continue to decrease and vice versa. We
vary σ2 such that the Signal-to-noise ratio (SNR) ranges between 0 and 5. For every choice of SNR, we
conduct 10 trials. In each trial, we generate 1000 samples of X,T ′ according to P (X,T ′). Lastly, we average

(a) SNR Trend: KSG (b) SNR Trend: MINE

Figure 7: Average MI estimates for various estimators across different values of SNR. Estimates are for I(X; ηT ),
where T ′ is generated by adding Gaussian noise to X, the level of which controls the SNR. We fix η = 0.1.
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the MI estimates for each estimator across the trials. The process is repeated for all values of SNR in this
range. Results are shown in Figures 7a and 7b.

Takeaways: We first note that the global and local variants of the measures follow a similar trend compared
to the ground truth MI; the average MI estimates grow with SNR. However, interestingly, we see that for
the vanilla KSG and MINE estimators, their average MI estimates stop growing after a while and seem to
converge. This shows that the scale-dependence of unnormalized estimators can potentially yield incorrect
trends of true MI in other settings where scale of the variables can confound the true MI.

6.3 Comparing MI Estimators: Error Analysis

In this section, we undergo a comprehensive series of experiments, where we compute various error measures
of all estimators on a diverse range of datasets. To create these datasets, we follow the two base distributions
described in Section 6.1. After we’ve generated X,T according to the base distributions, we then make X
undergo some (or none) of the following transformations, which are all MI preserving. For what follows, let
X ∈ Rd and T ∈ Rd.

1. Randmat (rm): X ′ = αWTX, where α ∼ Unif(0, 1) and W ∈ Rd×d where W (i, j) ∼ Unif(0, 1).
Unif(a, b) denotes a uniform distribution over [a, b). If the randomly generated W is not invertible, we
keep generating until we get an invertible W .

2. Cube (cb): X ′ = X ◦X ◦X, where ◦ denotes element wise multiplication (Hadamard Product).
3. Sigmoid (sg): X ′ = σ(X), where σ : Rd → Rd is such that X ′[i] = 1

1+e−X[i] , where X[i] denotes the ith

dimension of X and similarly for X ′.
4. Duplicate-self (ds): X ′ = [X,X, ...X] ∈ RKd. We set K = 20 in our experiments.
5. Duplicate-noise (dn): X ′ = [X, ϵ] ∈ Rd+k, where ϵ = [ϵ1, ϵ2, ...ϵk] where ϵi ∼ N

(
0, σ′2). We set

σ′ = 0.2 and k = 20.
Remark 4. Note that as each transformation is MI preserving, we can combine them in arbitrary ways and
generate completely new transformations and data distributions. As we know the ground truth MI of the
original base distribution, the transformed data will also have the same ground truth MI. This framework
allows us to model a flexible set of distributions, which allow us to create high dimensional data with a
low dimensional intrinsic dimension, which is often the case for neural network features. To illustrate, our
data dimension can reach up to 200 dimensions, with very low intrinsic dimension (<10), compared to the
experiments in Czyż et al. (2023) which go up to 25 dimensions. Furthermore, our choice of transformations
is motivated by the choice of estimators tested in this work, and the normalization strategies compared in
this work. For instance, local normalization typically performs poorly with added noise variables (duplicate-
noise), and the KSG-Global variant isn’t consistent in response to addition of duplicate dimension (duplicate-
self). KSG itself is also affected by transformations such as sigmoid and cube as that can drastically change
the distances in the nearest neighbor computation, and thus alter the structure of the data.

6.3.1 Studied Performance Measures

We study three different measures of performance in our experiments. For what follows, let µ̂1, µ̂2, ...µ̂k

denote the estimated values of MI for any estimator across k trials, and let µ1, µ2, ...µk denote the ground
truth values. With this, we summarize our performance measures as follows:

• Normalized RMSE: We first estimate the RMSE as RMSE(µ̂,µ) =
√

Ei[(µ̂i − µi)2]. Then we esti-
mate a basline RMSE as RMSE_Base(µ) =

√
Ei,j [(µi − µj)2]. With this, we can estimate the final

measure as: RMSE_Norm(µ̂,µ) = RMSE(µ̂,µ)
RMSE_Base(µ) .

• Spearman Correlation: This is the Spearman correlation between µ̂ and µ (Zar, 2005). This is
estimated as the Pearson’s correlation coefficient between the rank values of µ̂ and µ.

• Bias: We estimate the bias as Ei [µi − µ̂i].
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6.3.2 Experiment Summary and Takeaways

We summarize the empirical process for the results in Tables 2 and 3, as follows. For each experiment, we
consider a specific set of transformations to be applied to X, which is shown in the first column of the tables.
Once chosen, we then undergo 40 trials of data generation and MI estimation. In each trial, we generate N
samples of X,T ∼ P (X,T ) according to the base distribution, and then transform X according to the list of
transformations in the corresponding row. For Table 2, we set N = 1000. The data dimensionality of X and
T is represented via d and is shown in the tables. After generating N samples, we then obtain MI estimates
from all estimators. Over the course of 40 trails, we then estimate the three different performance measures
outlined in the previous section for all estimators. The only difference between Tables 2 and 3 is that Table
3 considers the correlated Gaussian base distribution, whereas Table 2 considers the additive Gaussian noise
base distribution. Lastly, the red entries in the Tables refer to the case where the estimator error exceeds the
base RMSE, yielding a normalized RMSE of greater than one. These results are thus not significant in terms
of RMSE. However, even in these cases, we find that the MI estimates are often significantly correlated with
the true MI (with Spearman correlation).

Takeaways: The main observations from the results are as follows:

• Overall, global and local normalization variants fare significantly better than the baseline measures.
• Our global normalization variants (MINE-global-corrected and KSG-Global-L∞) overall fare better than

other normalization strategies. In fact when the base distribution is additive Gaussian noise, we find that
in most cases MINE-global-corrected and KSG-global-L∞ outperform compared to the other normaliza-
tion approaches.

• KSG-Global-L∞ has very consistent performance, and across both settings, it seems to have the best
performance in most cases. Even when the normalized RMSE estimates are insignificant (red entries),
KSG-Global shows significant correlation with true MI in many of the cases.

• As discussed in our motivation, we find that overall the global normalization variants (MINE-Global-
Corrected and KSG-Global-L∞) perform better than their vanilla global normalization counterparts.
This is much more apparent in the case of MINE.

7 Application of MI estimations in Deep Learning

(a) KSG (b) MINE

Figure 8: I(X; Z + N (0, σ)) results with varying σ.

The analysis of neural networks’ mechanisms remains a pivotal area of interest in deep learning research.
MI as an important measure of the dependence between two variables, has been widely utilized to analyze
the behavior of neural networks during training. In this section, we present a comprehensive analysis of
MI measures on datasets, including IB dataset (Shwartz-Ziv & Tishby, 2017), MNIST (Deng, 2012) and
CIFAR-10 (Krizhevsky & Hinton, 2009), estimating the MI during neural network training with original,
local-normalized and global-normalized MINE and KSG estimators. Note that we implement a 20-neuron
single-layer MINE estimator for both the MNIST and CIFAR-10 datasets, due to their complexity and the
need for a stable estimator to track the trend of the mutual information. For the IB dataset, we employ a
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two-layer MINE estimator with 30 neurons in each layer, as the relative simplicity of the IB dataset allows
for the use of a more complex estimator to achieve stable results.

To build upon this analysis, we train three different networks for IB, MNIST, and CIFAR-10 datasets. For
the MNIST and IB datasets, we replicate the network architectures from Saxe et al. (2018)’s work, using
the widely-adopted ReLU activation function for the hidden layers. Specifically, for the IB dataset, we
utilize a neural network with 7 hidden layers of dimensions 12-10-7-5-4-3-2. For the MNIST dataset, the
neural network consists of 6 fully connected layers with dimensions 784-1024-20-20-20-10. For the CIFAR-
10 dataset, we adopt a neural network with 4 convolutional layers, 3 fully connected layers, and batch
normalization layers. The tasks for the MNIST and CIFAR-10 datasets involve classifying image inputs into
their respective classes, while the task for the IB dataset involves training a binary decision rule based on
12 randomly distributed points. The networks are trained using SGD and cress-entropy loss. We train 2000
epochs for the IB dataset, 200 epochs for the MNIST dataset, and 1000 epochs for the CIFAR-10 dataset.
Detailed architectures are provided in Appendix A.

Our analyses are summarized as follows. First, we train networks with the aforementioned configurations and
extract the outputs of the selected intermediate layer, denoted as Z. For the IB dataset, the Z is extracted
from the output of the third layer of the network, with a dimension of 7. For the MNIST dataset, the Z
is extracted from the output of the third layer of the network, with a dimension of 20. For the CIFAR-10
dataset, the Z is extracted from the output of the Global Average Pooling layer of the network, with a
dimension of 192. We analyze I(X;Z) and I(Z;Y ) during neural network training from three perspectives:

• Impact of noise: We examine how the MI changes when additive Gaussian noise is introduced in the
intermediate layers of the network.

• Training dynamics: We investigate the changes of MI estimates I(X;Z) over the course of training
epochs.

• Information plane visualization: We plot I(X;Z) against I(Z;Y ) to visualize the information plane,
providing insights into the trade-off between the information preserved about the input X and the infor-
mation relevant to the label Y .

Impact of noise in neural network training: We plot I(X;Z + N (0, σ2)) for trained networks, where a
noise N ∼ N (0, σ2) is added before the Z layer. In these experiments, the signal-noise-ratio (SNR) quantifies
the level of a signal relative to the level of background noise. Specifically, an SNR of a dB implies that with
unit power, the noise variance is 10−a/10. Thus, as SNR increases, the noise level decreases, and intuitively
the MI I(X;Z + N (0, σ2)) will increase due to the reduction in noise. As shown in figure 8, when SNR
increases, the noise variance σ2 decreases, increasing the dependence between X and Z. Consequently, the
MI I(X;Z + N (0, σ2)) should increase. In figure 8, we observe that as the SNR increases, the mutual
information does not change as initially anticipated for the original KSG and MINE estimators. Instead,
their results initially increase and then decline as SNR continues to rise. Notably, both estimators with global
normalization exhibit the most consistent trend, reflecting the expected increase in dependence between X
and Z as noise is reduced.

I(X;Z) versus the number of epochs: As we have already established that the KSG estimator is sensitive
to data scale, we wanted to see to what extent this is the case during the training of neural networks. In
figure 9, we present the change of I(X;Z) during training, comparing the original KSG estimator, its local-
normalized and global-normalized variants, and the MINE estimator and its variants. The displayed results
represent the averages from 10 trials. We also simultaneously plot the scale of the features Z (i.e., |Z|),
and its y-scale is placed on the right side of the figures. We find that in MNIST and CIFAR-10 datasets,
I(X;Z) from the original KSG estimator shows a significantly high correlation with the scale of the features
during training, which hints that it may fundamentally capture the changes in feature scale. In contrast,
the global-normalized estimate does not follow the scale curve and yields interesting trends. For the IB
and CIFAR-10 datasets, the global-normalized estimate first increases and then decreases after training a
certain number of epochs, thus being more adherent to the original fitting followed by the compression trend
proposed by (Shwartz-Ziv & Tishby, 2017). In CIFAR-10, the decrease in I(X;Z) happens right after 3
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(a) KSG

(b) MINE

Figure 9: I(X; Z) measures estimated after every epoch of training on IB, MNIST and CIFAR-10 datasets. Z
represents the output of 3rd layer for IB dataset and MNIST dataset, and 7th layer for CIFAR-10 dataset.

epochs, which demonstrates a completely different trend than the baseline measures. Overall, for KSG, we
note that in two of the three cases we see a clear fitting and compression phase as described in (Shwartz-Ziv
& Tishby, 2017) using KSG-global-L∞, which is not the case for other variants.

In figure 9, we find that the MI estimates obtained by MINE estimators are noisier. This may imply that
MINE estimators may face challenges when dealing with high-dimensional variables that do not follow a
standard distribution, particularly when the sample size is relatively small (N = 5000). However, we do
observe fitting and compression for both local and global variants in IB and MNIST. In (Poole et al., 2019),
authors highlighted that MINE often shows higher variance due to neural network training instability.

Information plane analysis: In figure 10, we plot the information plane for the IB, MNIST, and CIFAR-
10 datasets using the KSG and MINE estimators to reveal MI changes in neural network training. The
displayed results represent the averages from 10 trials. For IB and MNIST datasets, both I(X;Z) and
I(Y ;Z) obtained by the original KSG estimator generally increase with the number of training epochs. In
contrast, the KSG-local and KSG-global-L∞ estimators demonstrate a more refined information bottleneck
trend. Specifically, these estimators show a clear fitting phase where I(X;Z) initially increases and then
stabilizes, followed by a compression phase where I(X;Z) decreases while I(Y ;Z) remains monotonically
increasing. Among these results, the KSG-global estimator yields the most consistent trends, exhibiting
the most distinct fitting and compression phases in two of the three datasets, thus effectively capturing the
information bottleneck phenomenon.
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IB dataset

MNIST dataset

CIFAR-10 dataset

Figure 10: Information plane (I(X; Z) against I(Y ; Z)) for IB, MNIST and CIFAR-10 datasets. Z is the output of
3rd layer for IB dataset and MNIST dataset, and 7th layer for CIFAR-10 dataset.

The information plane plots using the MINE estimator for the IB, MNIST, and CIFAR-10 datasets reveal
different levels of performance. The original MINE estimator fails to effectively capture the information
bottleneck phenomenon in all three datasets. However, the MINE-global-corrected variant demonstrates an
ability to observe the information bottleneck trend in all three datasets. The fitting and compression trends
can also be observed for MINE-local, but the compression trends are harder to decipher clearly on MNIST
and CIFAR-10. In general, we find that the MINE estimates are significantly noisier than the KSG estimates.

8 Conclusion

We presented a comprehensive study of scale invariance in MI estimators, and its impact on estimation
accuracy, trends, and on MI based analysis of neural network training. We outlined multiple normalization
approaches to combat scale changes, centered around KSG and MINE, and discussed the pros and cons
of each approach. Specifically targeting the high-dimensional and low-data regime, intuitive and empirical
arguments were given for each normalization approach and the final choice of estimators. Overall we found
that while both local normalization and global normalization have their own strengths, in most practical
scenarios, global normalization variants fare better. Both normalization strategies lead to desirable behaviour
in response to input scale changes. Extensive experiments across two broad settings were conducted to
measure the overall performance of each estimator. In almost all cases, the local and global normalization
approaches fare much better than their unnormalized counterparts, while global normalization variants
have the best performance overall. Lastly, on three real datasets, we studied the information plane dynamics
w.r.t the hidden layer feature representations during training, for the unnormalized and normalized estimator
variants. More clear trends of fitting and compression were observed with global normalization approaches in
two out of the three datasets, with KSG-Global variants showing clearer trends than MINE-Global variants.
Our work highlights the importance of scale-awareness in the problem of MI estimation, and its potential
impact on MI estimates.
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A Appendix: Network Achitecture for Neural Network Analysis

Table 4: Model Architecture for IB Dataset

Layer Dimension Activation Function
Input 28 × 28 -

Flatten 12 -
Dense 10 ReLU
Dense 7 ReLU
Dense 5 ReLU
Dense 4 ReLU
Dense 4 ReLU
Dense 2 SoftMax

Table 5: Model Architecture for MNIST Dataset

Layer Dimension Activation Function
Input 28 × 28 -

Flatten 784 -
Dense 1024 ReLU
Dense 20 ReLU
Dense 20 ReLU
Dense 20 ReLU
Dense 10 SoftMax

Table 6: Model Architecture for CIFAR-10 Dataset

Layer Dimension Activation Function
Input 32 × 32 × 3 -

Conv2D 32 × 32 × 96 ReLU
Conv2D 32 × 32 × 96 ReLU

MaxPooling 16 × 16 × 96 -
Dropout (0.5) -
Conv2D 16 × 16 × 192 ReLU
Conv2D 16 × 16 × 192 ReLU

Global AveragePooling 192 -
Dense 512 ReLU
Dense 256 ReLU
Dense 20 SoftMax

In Table 5, Table 4 and Table 6, we present the network architecture and output dimensions for each layer
of the neural networks used in our study. The layers with bold text are the layers for extracted Z.

For the IB dataset, we trained for 2000 epochs with an SGD optimizer and a learning rate of 5 × 10−3. For
the MNIST dataset, we trained for 200 epochs with an SGD optimizer and a learning rate of 5 × 10−4. For
the CIFAR-10 dataset, we trained for 1000 epochs with an SGD optimizer and a learning rate of 1 × 10−3.
The batch sizes were 256 for the IB dataset, 128 for the MNIST dataset, and 512 for the CIFAR-10 dataset.
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