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Abstract
In this work, we focus on a fundamental yet001
underexplored problem, event semantic clas-002
sification in context, to help machines gain a003
deeper understanding of events. We classify004
events from six perspectives: modality, affirma-005
tion, specificity, telicity, durativity, and kinesis.006
These properties provide essential cues regard-007
ing the occurrence and grounding of events,008
changes of status that events can bring about,009
and the connection between events and time. To010
this end, this paper introduces a novel bilingual011
dataset collected for the semantic classification012
tasks and models designed to address them as013
well. By incorporating these event properties014
into downstream tasks, we demonstrate that un-015
derstanding the fine-grained event semantics016
benefits event understanding and reasoning via017
experiments on event extraction, temporal rela-018
tion extraction and subevent relation extraction.019

1 Introduction020

A semantic class contains words that share a se-021

mantic feature. For example, within nouns, there022

are two subclasses, concrete nouns, and abstract023

nouns. Concrete nouns include people, plants, and024

animals, while abstract nouns refer to concepts025

such as qualities, actions, and processes. In this026

work, instead of classifying nouns that are rather027

comprehensible lexemes in text, our focus is on028

the semantic classification of events. We perform029

semantic classification from multiple perspectives,030

which yields properties that are beneficial to com-031

prehensive event understanding and relevant down-032

stream tasks such as event extraction (Doddington033

et al., 2004; Wang et al., 2020b), event-event re-034

lation extraction (Glavaš et al., 2014; O’Gorman035

et al., 2016), and event reasoning (Han et al., 2021).036

Different from conventional span classification037

tasks such as entity typing (Mikheev et al., 1998;038

Yaghoobzadeh and Schütze, 2015; Choi et al.,039

2018) and event typing (Walker et al., 2006; Wad-040

den et al., 2019; Zhang et al., 2021) that map041

Context: The community warmly RECEIVED the
refugees.
Event: RECEIVED

Synset of event: receive.v.5
Definition of synset (gloss): express willingness
to have in one’s home or environs.

Properties of RECEIVED
Modality: realis
Affirmation: affirmative
Specificity: specific
Telicity: telic
Durativity: durative
Kinesis: non-static

Figure 1: An example of event semantic classification
from six perspectives. The synset of the event is drawn
from WordNet (Miller, 1992).

textual spans to predefined ontologies for abstrac- 042

tion purposes, we focus on understanding the fine- 043

grained semantic qualities of an event. To facil- 044

itate this, we propose to classify events by their 045

multi-faceted properties — modality, affirmation, 046

specificity, telicity, durativity, and kinesis. The 047

definitions of these properties are as follows1: 048

• Modality (actuality): whether an event actu- 049

ally occurs. 050

• Affirmation: whether an event is described 051

affirmatively. 052

• Specificity (genericity): whether an event 053

refers to a particular instance. 054

• Telicity (lexical aspect): whether an event has 055

a specific endpoint. 056

• Durativity (punctuality): whether an event 057

happens momentarily. 058

1Details about these properties are discussed in §2.
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• Kinesis: whether an event describes a state or059

an action.060

Among these properties, modality, affirmation, and061

specificity are of great help to understanding the oc-062

currence and grounding of an event, since modality063

and affirmation indicate if an event actually occurs064

(Hopper and Thompson, 1980), whereas specificity065

indicates whether an event is understood as a sin-066

gular occurrence, a finite set of such occurrences,067

or others (Doddington et al., 2004). Telicity and068

durativity, on the other hand, are properties that069

connect events with time, and thus they evidently070

provide useful cues for temporal reasoning in nar-071

rative text. And the last property, kinesis, divides072

events into states and non-states. Examples that073

belong to states include “desire,” “want,” “love,”074

and so forth. They involve no dynamics and do not075

constitute changes themselves (Mourelatos, 1978).076

There are a few works that have incidentally077

tagged some properties for events in the TimeML078

(Pustejovsky et al., 2003), ACE (Doddington et al.,079

2004), MASC (Ide et al., 2008), and UDS (Gantt080

et al., 2022) annotations. Yet only modality has081

been addressed with machine learning approaches082

in Monahan et al. (2015). In terms of usage of083

these properties, previous effort has been limited to084

leveraging them in feature-based statistical learning085

methods for the event coreference resolution task086

(Ahn, 2006; Bejan and Harabagiu, 2010). In a087

nutshell, we lack the tools to obtain these useful088

attributes and have not fully exploited them for089

event understanding and reasoning tasks.090

In this paper, we introduce ESC, the first compre-091

hensive dataset collected for event semantic classi-092

fication in both English and Chinese. It contains all093

the WordNet (Miller, 1992) example sentences for094

frequent verbs that feature 5,015 eventive synsets.095

The event mentions within these sentences are an-096

notated with their six semantic properties. We also097

introduce and evaluate several models for the pro-098

posed tasks. By incorporating the event properties099

predicted by our best model into multiple event-100

related tasks, we demonstrate the utility of these101

properties through detailed experimental analysis.102

The contribution of this paper is threefold:103

• We introduce a new bilingual dataset for fine-104

grained event semantic classification tasks in105

English and Chinese.106

• We design novel models for classifying events107

by six properties and evaluate the performance108

of large language models (LLMs) on this task. 109

• To enhance the model performance of event 110

understanding, we propose a constraint learn- 111

ing and enforcing methodology for incorpo- 112

rating event properties and evaluate on three 113

downstream datasets. 114

2 Event Properties 115

This section introduces six event properties we aim 116

to address and why we choose them in detail. We 117

also provide examples and analysis on how they 118

assist event reasoning tasks. 119

2.1 Modality 120

Modality, also referred to as actuality, classifies 121

events into realis and irrealis. Realis indicates that 122

an event is a statement of fact, in other words, the 123

event actually happens. For example, the “speak” 124

event in “I hired an assistant who SPEAKS English” 125

actually occurs. On the contrary, if the context of 126

an event is expressing nonactual or nonfactual, then 127

the modality of the event is irrealis. For example, 128

the “speak” event in “I am looking for an assistant 129

who SPEAKS English” is in an irrealis mode. The 130

modality property of events presents the ground- 131

ing and occurrence information. This is useful in 132

event coreference resolution and temporal relation 133

extraction since it is unreasonable to predict the 134

coreferential or temporal relation between a non- 135

factual event and an event that actually occurs. 136

2.2 Affirmation 137

Affirmation is similar to modality in the sense that 138

they are both properties about the happening of an 139

event. Affirmation divides events into those men- 140

tioned in affirmative clauses like “we e1:HAD some 141

bread yesterday” and those mentioned in negative 142

clauses like “but now we e2:HAVE no more bread.” 143

Yet different from modality, we can explore the 144

temporal order between affirmative events and neg- 145

ative events, e.g., the temporal relation between 146

(e1, e2) is BEFORE. Essentially, we use realis for 147

statements of fact, either affirmative or negative, 148

and irrealis for anything contrary to fact, either 149

affirmative or negative. And this is why we sepa- 150

rately handle affirmation and modality, instead of 151

merging them into one event property, i.e., polarity 152

in the ACE annotations (Doddington et al., 2004). 153
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2.3 Specificity154

There are specific events and generic events if we155

classify them with specificity. Generic events can156

be found in the following example: “After HAV-157

ING a large meal, lions may SLEEP longer.” In158

contrast, the events in the following sentence, “the159

lion HAD a large meal and SLEPT for 24 hours,”160

are both specific ones. We cannot infer any event161

relations across the two example sentences, given162

that events within different sentences do not agree163

on specificity with each other.164

2.4 Telicity165

Telicity describes how an event is structured in re-166

lation to time. If an event has a natural endpoint,167

it is said to be telic; if the situation an event de-168

scribes is not heading for any particular endpoint,169

it is said to be atelic. A common example of events170

that differ in their lexical aspect is “arrive” and171

“run”: the former has a natural endpoint while the172

latter does not. However, “run” in a certain context,173

like “RUNNING ten miles”, has a natural endpoint.174

Another example is “I ATE it up” and “I am EAT-175

ING it”: the former activity is viewed as completed176

and telic, while the latter is atelic. Though we may177

determine the telicity for part of event triggers with-178

out any context, we can observe changes in telicity179

for event triggers in different contexts. And that is180

why we need to provide contexts of events when181

annotating telicity.182

Some readers may argue that this “endpoint” test-183

ing for events is not clear enough, since any event,184

if placed in a longer time scale, would always have185

an endpoint. On that account, we consider an-186

other algebraic definition of telicity proposed by187

Krifka (1989): telic events are quantized, while188

atelic ones are cumulative. This would be easy to189

understand if we took a dimensionality increase190

perspective. We can view entities as objects in191

the three-dimensional space and events as objects192

in the four-dimensional space where time is in-193

troduced as an extra axis. Of course, events are194

different from entities in many ways, e.g., events195

often involve the interaction among multiple enti-196

ties, yet a remarkable difference between entities197

and events is that events interact with time. Note198

that there is a countability distinction in the entity199

domain: “book,” “chair,” and “person” are count-200

able, whereas “water,” “food,” and “air” are un-201

countable. If we apply the countability concept202

to the time axis in the event domain, we can get203

countable events (or telic events) like “SOLVE a 204

puzzle” and uncountable events (or atelic events) 205

like “WALK around aimlessly.” With the help of the 206

algebraic definition, the inter-annotator agreement 207

(IAA) is significantly improved compared to when 208

only the “endpoint” definition is given (see Tab. 1). 209

Telicity is beneficial to temporal reasoning in 210

that it provides endpoint information about events. 211

For instance, consider the following two sentences: 212

“he e3:RAN his eyes over her body and e4:KISSED 213

her on the forehead” and “he was in e5:LOVE with 214

her and e6:KISSED her on the forehead.” Notice 215

that e3:RAN in the first sentence is a telic event that 216

has an endpoint whereas e5:LOVE in the second 217

is an atelic event that has no endpoint. Therefore, 218

the temporal relationship between the first event 219

pair (e3, e4) is BEFORE, and the temporal relation 220

between the second pair (e5, e6) is INCLUDES. 221

2.5 Durativity 222

Durativity classifies events into two categories: du- 223

rative events and punctual events. Punctual events 224

are those that happen within several seconds, such 225

as “KICK a football” and “LOSE my wallet”; and 226

durative events last for some period of time longer 227

than seconds: for instance, “GO to school” typically 228

takes tens of minutes, and “LOSE weight” usually 229

takes several months. Note that “lose” can be punc- 230

tual and durative events in different contexts. So is 231

the case for many other event triggers, and thus we 232

need to study the durativity of events with contexts. 233

As shown in Zhou et al. (2020), the duration of 234

events not only provides important cues in temporal 235

reasoning but in event coreference and parent-child 236

relations as well. It is evident that two events with 237

different durativity features are not coreferential 238

to each other. And a punctual event cannot be the 239

parent of a durative event, given that a parent-child 240

relation entails spatio-temporal containment. 241

2.6 Kinesis 242

Kinesis is a property that distinguishes states from 243

non-states (actions). Non-static events usually 244

bring about status changes in event participants, 245

whereas static events do not. Continuing with the 246

previous example “he was in e5:LOVE with her 247

and e6:KISSED her on the forehead,” e5 is a state 248

whereas e6 is an action (non-state). Note that the 249

kinesis of some event triggers can also be context- 250

dependent, e.g., “own” is a non-state in the first 251

example and a state in the second: (1) “he owned 252

his mistake in front of the class,” (2) “he owns 253
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Modality Affirmation Specificity Telicity Durativity Kinesis

IAA 0.65 0.85 0.87 0.53 0.61 0.67

Table 1: Inter-annotator agreement (Fleiss’ kappa) of the ESC annotation.

two houses.” Based on the aforementioned three254

attributes, i.e., telicity, durativity, and kinesis, Com-255

rie (1976) proposed to divide events into five cat-256

egories as shown in Tab. 2. Here we do not dive257

deeper into the naming of event classes, since our258

focus is how they benefit event understanding and259

reasoning in general.

Punctual Durative
Telic Achievement Accomplishment
Atelic Semelfactive Activity
Static State

Table 2: Comrie (1976)’s classification of events based
on three properties: telicity, durativity, and kinesis.

260

3 Data Annotation261

Though there are verbal and nominal events, we be-262

lieve the learning of event properties for one class263

can be generalized to the other with the help of cur-264

rent LLMs. We select 2,416 verbs from the 5,000265

most frequent words2 in the Corpus of Contempo-266

rary American English (COCA). Regarding these267

verbs, there are 5,015 synsets and 7,399 example268

sentences in WordNet (Miller, 1992). We treat269

the example sentences as contexts of these verbal270

events. We translate the English context sentences271

into Chinese and extract the spans of verbs using272

their synsets’ Chinese names in WordNet.273

We employ the Data Collection and Labeling274

Services from Tencent Cloud3 for our event prop-275

erty annotation, in which each assignment asks276

six questions regarding an event and costs ¥2.0277

(∼$0.3). Each assignment takes about one minute278

to complete and the hourly payment is about $18.279

We require that our annotators are “Master Work-280

ers,” indicating reliable annotation records. We281

identified 15 valid annotators: all of them are na-282

tive Chinese speakers who have received higher ed-283

ucation and speak fluent English. Before working284

on the annotation assignments, they are trained by285

experts to fully understand the instructions that pro-286

vide definitions and examples of each event prop-287

2https://www.wordfrequency.info
3https://cloud.tencent.com/solution/

data-collect-and-label-service

erty (see §2)4. Each annotator is assigned 1,500 288

events such that each event is annotated by at least 289

three annotators. The final labels are determined 290

by majority voting and the IAA’s (Fleiss’ kappa) of 291

the six tasks are shown in Tab. 1. We also provide 292

sample annotation results in Tab. 3. 293

4 Classification Models 294

In this section, we introduce the models designed 295

for the proposed classification tasks. 296

4.1 Multi-label Predictor 297

Given the context of an event, we first use a pre- 298

trained language model, XLM-RoBERTa (Conneau 299

et al., 2020), to produce the contextualized embed- 300

dings for all tokens. To obtain the representation of 301

the event he, we concatenate the hidden state of the 302

last layer that is stacked on top of the event trigger 303

e and the attention vector of the event. If the event 304

trigger spans multiple subword pieces, the average 305

of the subword representations is taken. We then 306

use a multi-layer perceptron with six output log- 307

its followed by a sigmoid function to estimate the 308

value for each property. 309

4.2 Indirect Supervision from Glosses 310

A gloss5 provides the sense definition for a lex- 311

eme. For example, the gloss of “ran” in “He RAN 312

his eyes over her body” is pass over, across, or 313

through. With the gloss, the telicity of “ran” can be 314

easily inferred as telic, since “pass over” has a natu- 315

ral endpoint. And here is another example in which 316

gloss knowledge helps us determine the durativity 317

of an event: the gloss of “touch” in “He could not 318

TOUCH the meaning of the poem” is “comprehend.” 319

If we look at the trigger “touch” itself, we might 320

think that it is somewhat punctual. However, the 321

comprehension of a poem requires some careful 322

reading and is actually a durative process that can- 323

not be completed within seconds. 324

Given that gloss knowledge provides richer se- 325

mantic information than the event trigger itself, 326

we would like to leverage the glosses provided 327

4The detailed guideline, annotation interface, and dataset
statistics are shown in Appendix §8.

5We obtain the gloss of an event by looking up the defini-
tion of the synset of that event in WordNet.
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Event in context Modality Affirmation Specificity Telicity Durativity Kinesis

He RAN his eyes over her body. 1 1 1 1 1 1
The setting sun THREW long shadows. 1 1 1 0 0 0

The community warmly RECEIVED the refugees. 1 1 1 1 0 1
Please PLUG in the toaster! 0 1 1 1 1 1

He could not TOUCH the meaning of the poem. 1 0 1 1 0 0
Lions only EAT meat. 1 1 0 1 0 1

He DEBUTS next month at the Metropolitan Opera. 0 1 1 1 0 1

Table 3: Sampled events (marked in BLUE) in context along with their annotated semantic properties. 1’s and 0’s
respectively denote (Realis, Irrealis) for Modality, (Affirmative, Negative) for Affirmation, (Specific, Generic) for
Specificity, (Telic, Atelic) for Telicity, (Punctual, Durative) for Durativity, (Action, State) for Kinesis.

by WordNet to enhance the model performances.328

Keeping the other components the same as our first329

model, we simply append the gloss to the begin-330

ning of the input context, e.g., “[CLS] Touch means331

comprehend in the following sentence. [SEP] He332

could not touch the meaning of the poem.”333

4.3 Few-Shot Learning with GPT-3334

To evaluate the event understanding ability of GPT-335

3 (Brown et al., 2020), we design prompts and336

study event semantic classification in a few-shot337

fashion. As shown in Fig. 2, for each event prop-338

erty, we provide its definition and a few examples in339

the prompt, and ask GPT-3 binary questions about340

events. To overcome the commonly observed high341

variance issue of prompt-based approaches (Zhao342

et al., 2021), we set the number of examples even343

for each label (two examples each) to mitigate the344

majority label bias. We also conduct two sets of345

experiments by alternating the label of the last ex-346

ample6, so as to mitigate the recency bias (out-347

putting answers may be biased towards the end of348

the prompt). To make a fair comparison with the349

method proposed in §4.2, we also conduct another350

set of experiments by incorporating gloss knowl-351

edge into the prompt for each event.352

4.4 Conversational Solution with ChatGPT353

Recently, ChatGPT, which was trained with rein-354

forcement learning techniques from human feed-355

back, has drawn a huge amount of attention since356

it is able to interact with human beings and an-357

swer questions in broad domains. To see how well358

ChatGPT can perform on our tasks, instead of de-359

scribing the event properties and examples in the360

prompt every time as what we do for GPT-3 (see361

Fig. 2), we exploit the advantage of the dialogue362

format of ChatGPT to reduce the excessive over-363

head. Specifically, we provide those additional364

6Basically we switch the last two examples in Fig. 2.

Prompt: Telicity describes how an event is structured in
relation to time. If an event has a natural endpoint, it is said to
be telic; if the situation an event describes is not heading for
any particular endpoint, it is said to be atelic. Below are a few
examples.

Event: ran
Context: He ran his eyes over her body.
Telicity: telic

Event: threw
Context: The setting sun threw long shadows.
Telicity: atelic

Event: expecting
Context: We were expecting a visit from our relatives.
Telicity: atelic

Event: debuts
Context: This young soprano debuts next month at the
Metropolitan Opera.
Telicity: telic

Please determine the telicity of the following event:

Event: flies
Context: Time flies like an arrow.
Telicity:

Response: atelic

Figure 2: An example prompt for GPT-3 to determine
the telicity of an event in English. The text in apricot
denotes the essential part of the prompt, whereas the
other part contains definitions and examples of telicity
which are excessive overhead information that could be
reduced in the requests to ChatGPT.

information only at the first round of the conversa- 365

tion and ask binary questions regarding the event 366

properties as follow-up questions. To mitigate the 367

biases mentioned in §4.3, as well as to incorpo- 368

rate gloss knowledge, we conduct additional sets of 369

experiments as counterparts of GPT-3 experiments. 370

5 Evaluation 371

In this section, we describe the experiments on 372

the ESC dataset. We randomly 80/10/10 split the 373

data into train/dev/test sets and use F1 score as 374
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Modality Affirmation Specificity Telicity Durativity Kinesis Avg.

MP 0.95 0.94 0.95 0.81 0.91 0.75 0.89
MP + Gloss 0.94 0.96 0.95 0.84 0.93 0.80 0.90

GPT-3 0.58 0.78 0.87 0.38 0.61 0.34 0.59
GPT-3 + Gloss 0.61 0.76 0.87 0.44 0.62 0.36 0.61

ChatGPT 0.65 0.73 0.92 0.40 0.66 0.35 0.62
ChatGPT + Gloss 0.66 0.79 0.89 0.51 0.69 0.42 0.66

Table 4: Experimental results on the ESC dataset (the numbers are averaged F1 scores on English and Chinese).
MP denotes the multi-label predictor, and MP+Gloss denotes the gloss-appended version of multi-label predictor.
Bold number in each column denote the best result for each property.

the evaluation metric. For the multi-label predic-375

tor and its gloss-appended version, we select five376

random seeds to train the model and calculate the377

averaged F1 scores on the test set. GPT-3 and378

ChatGPT-related results are averaged numbers of379

two different prompt settings on the test set.380

We report the averaged F1 scores on the English381

and Chinese test sets in Tab. 4. From the results382

we can see that the multi-label predictor with gloss383

knowledge offers the best performances in terms384

of F1, outperforming the baseline multi-label pre-385

dictor by 1% on average. It is notable that there is386

a 5% gain in the kinesis classification performance,387

given that MP+Gloss leverages both direct supervi-388

sion from the labels and indirect supervision from389

gloss knowledge. GPT-3 and ChatGPT, with no390

direct supervision from the dataset, achieve decent391

performances of an average score of 0.59 and 0.62.392

With the help of gloss, we observe a 2% and 4%393

gain in the average performance across six event394

properties respectively for GPT-3 and ChatGPT.395

Through the experiments, we find that the396

biggest problem of these large language models397

(LLMs) lies in that minor changes in the prompt398

can make huge differences in the response. For399

example, when we ask ChatGPT to determine the400

kinesis of “lay out” in the following sentence: “the401

nurse lays out the tools for the surgery,” it gives402

different answers when the prompt varies from403

“Please determine the kinesis of the following event”404

to “Please determine the kinesis of the following405

event and explain why.” With the first prompt, it406

is able to give the correct answer non-static (“lay407

out” in this context means to spread the tools out408

so that they can be easily accessible, which is obvi-409

ously an action). However, when asked to provide410

an explanation, it first gives the opposite answer,411

static, and then provides the following explanation:412

“This is because the event is likely describing the413

act of arranging or organizing the tools, rather than414

involving any movement or change in the state of415

the tools or event participants.” The first part of the 416

explanation is correct, but from the second part, it 417

seems that ChatGPT is not completely clear about 418

the meaning of “change in state.” Hence, how to 419

improve the robust reasoning ability of LLMs re- 420

quires further investigation. 421

6 Enhancing Event-Centric NLP Tasks 422

In this section, we leverage the event properties to 423

improve the model performances on event reason- 424

ing tasks. We study two methods to this end, one is 425

to incorporate these properties in existing models 426

as features, and the other is to induce constraints 427

and incorporate the constraints into the models. 428

We examine three event-centric NLP tasks, namely 429

event extraction, event temporal relation extraction, 430

and subevent relation extraction, which serve as the 431

media for demonstrating the effectiveness of our 432

proposed tasks and models. 433

6.1 Event Extraction 434

Event extraction includes two subtasks, event trig- 435

ger identification, and classification. Here we only 436

focus on the classification part since we need to 437

know the textual span of events first to determine 438

their properties. Recent models for event extrac- 439

tion (Wadden et al., 2019; Lin et al., 2020) are 440

mostly based on the tokens’ contextual representa- 441

tions learned by pretrained language models. The 442

event representations are then fed into neural net- 443

works to predict the event types in some predefined 444

ontology. By concatenating the six-dimensional 445

vector of event properties with event representa- 446

tions, we can easily add the semantic classification 447

results as features. As another way of incorporating 448

event properties, we leverage the semantic mean- 449

ing of event types to induce constraints. For exam- 450

ple, if an event has type TRANSPORT (a subtype 451

of MOVEMENT) in ACE annotations (Doddington 452

et al., 2004), then its durativity can only be dura- 453

tive. Similarly, if an event is subsumed under the 454

6



Figure 3: Experimental results of incorporating event properties in existing models. Trig-C is short for event trigger
classification. Note that the baseline model for Trig-C is OneIE (Lin et al., 2020) while the baseline for the rest two
is JCL (Wang et al., 2020a). The metric we use for all evaluations is F1 score.

type of MEET (a subtype of CONTACT), then its455

kinesis can only be non-static.456

Inspired by the expressiveness of Rectifier Net-457

work (Pan and Srikumar, 2016), we employ it to458

automatically learn constraints using the training459

set of ACE. Specifically, the constraints serve as460

criteria for whether an event with certain properties461

can belong to certain types. Let Xp be the property462

vector with six dimensions and Xt be the one-hot463

type vector (following Wadden et al. (2019)’s pre-464

processing method for ACE05-E and ACE05-CN465

dataset). Then the information to be included in466

the constraints about an event can be expressed as:467

X = Xp ∪Xt. (1)468

Let Y denote whether an event with properties Xp469

can be classified as event type Xt. We obtain all470

the events with their types from the training set471

documents, and leverage our MP+Gloss model to472

predict the value of Xp for each event. We set473

the labels for these events to Y = 1 (which are474

treated as positive examples). After we acquire475

all the possible X values, we randomly perturb476

the bits of positive examples to generate the same477

amount of negative examples and set the labels478

for those instances as Y = 0. We represent the479

constraints for event-type classification as K linear480

inequalities where we assume K is the upper bound481

for all the rules to be learned. And Y = 1 if X482

satisfies constraints ck for all k = 1, · · · ,K. The483

kth constraint ck is expressed by a linear inequality:484

wk ·X+ bk ≥ 0, (2)485

whose weights wk and bias bk are learned. Since a486

system of linear inequalities is equivalent to a Rec-487

tifier Network (Pan et al., 2020), we adopt a two-488

layer Rectifier Network for learning constraints 489

p = σ
(
1−

K∑
k=1

(wk ·X+ bk)
)
, (3) 490

where p denotes the possibility of Y = 1 and σ(·) 491

denotes the sigmoid function. We train the param- 492

eters wk’s and bk’s of the Rectifier Network in a 493

supervised fashion. After obtaining the parameters, 494

we fix them and add the constraints as a regulariza- 495

tion term in the loss function (i.e., cross-entropy 496

loss) of the OneIE model (Lin et al., 2020). Specif- 497

ically, p is converted into the negative log space 498

which is in the same space as the cross-entropy loss 499

(Li et al., 2019). In this way, the loss corresponding 500

to the learned constraints is 501

Lcons = −log
(
σ(1−

K∑
k=1

ReLU(wk ·X+ bk))
)
.

(4) 502

6.2 Event-Event Relation Extraction 503

Event-event relation extraction is another set of 504

tasks that require reasoning over event semantics. 505

We study two tasks, namely event temporal relation 506

extraction and subevent relation extraction in this 507

work. Similar to how we add event properties into 508

the event type classification model, we adopt two 509

approaches here as well. One is to concatenate the 510

event properties with event representations, and the 511

other is to induce and integrate constraints into the 512

learning objectives of the model. We follow the 513

same process to obtain the positive and negative ex- 514

amples for constraint learning introduced in (Wang 515

et al., 2021). We employ the joint constrained learn- 516

ing (JCL) model proposed by Wang et al. (2020a) 517

to address the two tasks at the same time. Given 518

that the training objective of JCL is a combination 519

of annotation loss, symmetry loss, and transitivity 520

7



loss, we directly add the constraints learned with521

Rectifier Network (see Eq. 3) into the loss function.522

6.3 Experiments and Analysis523

For event trigger classification, we follow the same524

training methodology proposed in (Lin et al., 2020)525

and evalutate on ACE05-E and ACE05-CN. While526

for event-event relation extraction, we adopt the527

joint training approach introduced in (Wang et al.,528

2020a) and evaluate on the MATRES and HiEve529

dataset. F1 scores are used for evaluating the mod-530

els’ performances and the results are shown in531

Fig. 3. Adding event properties as feature vec-532

tors brings about significant improvement in the533

task of subevent relation extraction, outperform-534

ing the baseline model by relatively 2.5%. They535

also enhance the model performance via constraints536

learned by Rectifier Network. This is most notable537

in the task of event trigger classification, where538

the model performance is improved by relatively539

1.9%. Overall, incorporating event properties via540

constraints works better than adding them directly541

to the event representations. This demonstrates that542

inducing and enforcing constraints in such ways543

better captures the inter-dependencies between dif-544

ferent event properties, as well as their connec-545

tion with event types and relations. And this also546

provides an effective paradigm to integrate useful547

semantic information into recent neural models.548

7 Related Work549

The study of event semantics has been the focus550

of both linguistics and philosophy for a long time.551

Early effort on this topic dates back to sixty years552

ago: Vendler (1957) classified verbal events into553

four categories on whether they express “activ-554

ity,” “accomplishment,” “achievement” or “state.”555

And the criteria for distinguishing “accomplish-556

ment” and “achievement” from the other two is557

they have certain endpoints, i.e., they are telic.558

Later, Comrie (1976) introduced durativity and ki-559

nesis to further categorize events into five classes560

(see Tab. 2). Though there are further efforts that561

classify events in finer ways (Bach, 1986; Moens562

and Steedman, 1988), this paper focuses on how563

semantic classification of events supports the un-564

derstanding of event-centric reasoning tasks. The565

most relevant work to our focus are the ten differ-566

ent event facets involved in the transitivity property567

of a clause (Hopper and Thompson, 1980) and the568

seven attributes designed for examining eventive-569

ness (Monahan and Brunson, 2014) (i.e., to de- 570

termine whether a lexeme can be identified as an 571

event). Annotated on the MASC corpus (Ide et al., 572

2008), the SitEnt dataset (Friedrich and Palmer, 573

2014; Friedrich et al., 2016) captures event vs. state 574

distinctions. The DIASPORA dataset (Kober et al., 575

2020) annotates phone conversations for stativity 576

and telicity. Nevertheless, these previous works 577

have mainly established theoretical frameworks for 578

event study and left building tools for machine rea- 579

soning as the future endeavor. 580

Recent efforts in event annotations have been 581

made in event detection (Walker et al., 2006; Wang 582

et al., 2020b), and event-event coreferential, tem- 583

poral, hierarchical, and causal relations (Bejan and 584

Harabagiu, 2010; Pustejovsky et al., 2003; Glavaš 585

and Šnajder, 2014; Mirza and Tonelli, 2014). These 586

corpora have enabled data-driven models to gain 587

understanding of event semantics and how they in- 588

teract with other events. However, models learned 589

from these corpora often rely on dataset statistics 590

(Wang et al., 2022b,a) and thus are biased towards 591

prior knowledge and have limited interpretability. 592

8 Conclusion 593

In this work, we first study six event properties that 594

help machines gain a deep understanding of events 595

and then introduce a novel dataset we collect for 596

event semantic classification7. Various semantic 597

information can be inferred from these properties 598

in that they provide the occurrence and grounding 599

of events and their connection with time as well. 600

We design six methods for event semantic clas- 601

sification, four of which involve recent large lan- 602

guage models. Experimental results demonstrate 603

that ChatGPT performs better than GPT-3 even 604

though its response is still subject to minor per- 605

turbation of the prompt formats. On average, the 606

model MP+Gloss performs best in the proposed 607

tasks and it is employed to predict event properties 608

in three downstream tasks. To enhance the perfor- 609

mances of neural models proposed for these tasks, 610

we discuss two methodologies for incorporating 611

useful event properties. Results show that the pre- 612

dicted event properties are effective in enhancing 613

the performances of existing models across three 614

different tasks. Therefore, we claim that the funda- 615

mental task of event semantic classification benefits 616

both event understanding and reasoning. 617

7We will release the data and code upon acceptance.
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Limitations618

This work builds on human annotations and the ap-619

plication of state-of-the-art language models. The620

models might be biased towards the corpus used621

for training. And we only use XLM-RoBERTa to622

acquire the representations of events in MP and623

MP+Gloss; there might be more powerful archi-624

tectures. The training of our models requires GPU625

resources which might produce environmental im-626

pacts, though the inference stage does not take up627

much computational resources.628

Ethics Statement629

There are no direct societal implications of this630

work, though the dataset we introduce in this work631

might contain certain biases originated from the hu-632

man annotations. Yet we believe that the proposed633

tasks and methods can benefit various event-centric634

NLP/NLU tasks like event extraction, task-oriented635

dialogue systems, and so forth.636
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Modality Affirmation Specificity Telicity Durativity Kinesis

Realis:Irrealis Affirmative:Negative Specific:Generic Telic:Atelic Durative:Punctual Action:State
# of cases 6327:1072 6732:667 4445:2954 1298:6101 6773:626 4278:3121

Table 5: Dataset statistics.

Figure 4: The event property annotation of “acknowledge” in the annotation interface.

Figure 5: The event property annotation of “display” in the annotation interface.

Figure 6: Annotation guideline for durativity and telicity.
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Figure 7: Annotation guideline for modality and genericity.

Figure 8: Annotation guideline for kinesis and affirmation.

13


	Introduction
	Event Properties
	Modality
	Affirmation
	Specificity
	Telicity
	Durativity
	Kinesis

	Data Annotation
	Classification Models
	Multi-label Predictor
	Indirect Supervision from Glosses
	Few-Shot Learning with GPT-3
	Conversational Solution with ChatGPT

	Evaluation
	Enhancing Event-Centric NLP Tasks
	Event Extraction
	Event-Event Relation Extraction
	Experiments and Analysis

	Related Work
	Conclusion

