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Abstract

Random forests have been widely used for their ability to provide so-called impor-
tance measures, which give insight at a global (per dataset) level on the relevance
of input variables to predict a certain output. On the other hand, methods based
on Shapley values have been introduced to refine the analysis of feature relevance
in tree-based models to a local (per instance) level. In this context, we first show
that the global Mean Decrease of Impurity (MDI) variable importance scores cor-
respond to Shapley values under some conditions. Then, we derive a local MDI
importance measure of variable relevance, which has a very natural connection
with the global MDI measure and can be related to a new notion of local feature
relevance. We further link local MDI importances with Shapley values and dis-
cuss them in the light of related measures from the literature. The measures are
illustrated through experiments on several classification problems.

1 Motivation

While research in machine learning (ML) often focuses on predictive accuracy, another important
topic concerns the interpretation of ML models and their predictions. Interpreting a model helps to
uncover the mechanisms it captures (e.g., biomarkers useful to diagnose a disease), and to explain its
predictions (e.g., why a particular patient is diagnosed healthy or sick). The latter becomes essential
when a ML prediction may impact one’s life, and as a way of checking the trustworthiness of a ML
model (e.g., to identify unwanted biases). Common interpretation tools include variable importance
measures that assess which, and to which extent, variables are important for a model. They help to
understand how the model works, and to gain insight on the underlying modelled mechanism.

In tree-based methods, such as Random forests [Breiman, 2001], feature importance scores can be
derived as a low-cost by-product of the learning step. Given their extensive use in applied research,
tree-based importance measures have been studied both empirically (see, e.g., Strobl et al. [2007],
Archer and Kimes [2008], Genuer et al. [2010], Auret and Aldrich [2011]) and theoretically (see, e.g.,
Ishwaran et al. [2007], Louppe et al. [2013], Louppe [2014], Sutera et al. [2018], Li et al. [2019],
Sutera [2019], Scornet [2020]). Assuming a sufficiently large learning set and number of trees,
these works showed that importance measures have desirable properties, such as consistency with
respect to the notion of feature relevance. They also analyzed the impact of learning meta-parameters
(e.g., randomization level, tree depth, ensemble size) on such properties. While standard importance
measures evaluate the global importance of a feature at the level of a dataset, several works proposed
new approaches based on Shapley values to derive local scores reflecting the importance of a feature
for a given prediction (e.g., Neto and Paulovich [2020], Lundberg et al. [2020], Izza et al. [2020]).

The contribution of the present work in this context is two-fold. First, we show that the standard mean
decrease of impurity (MDI) measure when derived from totally randomized trees and in asymptotic
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conditions (similar to those used to show the consistency with respect to the relevance) are Shapley
values, and therefore have the same properties as any other importance measures based on these
values (Section 3). Secondly, we propose a new local MDI measure for tree-based ensemble models
to measure feature relevance locally, which naturally derives from global MDI and corresponds to
Shapley values in the same conditions (Section 4). Global and local MDI are compared against other
Shapley-value based scores, both conceptually (Section 5) and empirically (Section 6).

2 Background

In what follows, we consider a standard supervised learning setting and denote by V = {X1, . . . , Xp}
the set of p input variables, and by Y the output.

Game theory and Shapley value. We only remind here concepts and results that are useful later in
the paper. Notations below are mostly adapted from [Besner, 2019].

In game theory, a TU-game (V, v) (i.e., a cooperative game with transferable utilities) is defined by a
finite set of players V = {X1, . . . , Xp}2 and a characteristic (or coalition) function v ∈ V : 2V → R,
with v(∅) = 0, that maps a coalition (i.e., a set) of players to a real number representing the outcome
or gain of a game (see, e.g., [van den Brink et al., 2015]). A TU-game (V, v) is monotonic if
v(S) ≤ v(T ) if S ⊆ T ⊆ V . Let us denote by V −m the set V \ {Xm}. The marginal contribution
MCv

m(S) of player Xm ∈ V for S ⊆ V −m is defined by MCv
m(S) = v(S ∪ {Xm}) − v(S). A

player Xm ∈ V is called a null player if MCv
m(S) = 0 for all S ⊆ V −m. Two players Xi and Xj

are said to be symmetric whenever v(S ∪ {Xi}) = v(S ∪ {Xj}) for all coalitions S ⊆ V −i,j .

A TU-value φv : V → R is a function that assigns to any player Xm ∈ V and any function v (∈ V is
omitted in the rest) a value, denoted φv(Xm) ∈ R, also known as its payoff, reflecting its contribution
in the game (V, v). Several properties or axioms for TU-values have been defined in the literature
that are expected to be satisfied in practical contexts (see [Besner, 2019] for a more exhaustive list):

Efficiency: For all v ,
∑

Xm∈V φv(Xm) = v(V ). The TU-value divides the total gain (i.e., gain
when all players are involved) among all players in an additive way.

Symmetry: For all v, φv(Xi) = φv(Xj) if players Xi and Xj are symmetric. Two players of equal
contributions in every game (i.e., with every coalition S) should get the same value.

Null player: For all v , φv(Xm) = 0 if Xm is a null player. A null player should get a zero payoff.

Strong monotonocity3: For all v, w and Xm ∈ V such that MCv
m(S) ≥ MCw

m(S) for all S ⊆ V −m,
we have φv(Xm) ≥ φw(Xm). If a player’s marginal contributions are greater (or equal) in a game
than in another in all coalitions, then its payoff in this game should not be lower than in the other.

Specific forms of TU-value have been studied in the literature from the point of view of which axioms
they satisfy and how uniquely they are defined by these axioms. As one of the most prominent results,
it has been shown [Young, 1985] that the only TU-value that satisfies Efficiency, Symmetry, Null
player4, and Strong monotonicity is the Shapley value ϕSh

v defined by [Shapley, 1953]:

ϕSh
v (Xm) =

∑
S⊆V −m

|S|!(p− |S| − 1)!

p!
MCv

m(S). (1)

Other equivalent formulations of the Shapley value, as well as other axiomatisations of this value, have
been proposed in the literature. Axiomatisations of other, typically more general, sets of TU-values
are also available (see [Besner, 2019] for a recent and exhaustive discussion of this topic).

Feature relevance. In the feature selection literature, a common definition of the relevance of a
feature is as follows [Kohavi et al., 1997]:

A variable Xm ∈ V is relevant to Y (with respect to V ) iff ∃B ⊂ V : Xm ⊥̸⊥ Y |B. A variable
Xm is irrelevant if it is not relevant. Relevant variables can be further divided into two categories
according to their degree of relevance [Kohavi et al., 1997]: A variable Xm is strongly relevant

2We use the same notations for the (set of) players as for (set of) input features, as the two will coincide later.
3In the ML literature, strong monotonicity is often called consistency [Lundberg and Lee, 2017].
4Actually, the Null player property is not required as it can be derived from strong monotonicity.
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to Y (with respect to V ) iff Y ⊥̸⊥ Xm|V −m. A variable X is weakly relevant if it is relevant but not
strongly relevant. Strongly relevant variables thus convey information about the output that no other
variable (or combination of variables) in V conveys.

Decision trees and forests. Each interior node of a decision tree [Breiman et al., 1984] is labelled
with a test based on some input and each leaf node is labelled with a value of the output. The
tree is typically grown from a learning sample of size N drawn from P (V, Y ) using a procedure
that recursively partitions the samples at each node t into two child nodes (tL and tR). The test st
used to partition the samples at node t is the one that maximises the mean decrease of some node
impurity measure i(·) (e.g., the Shannon entropy, the Gini index or the variance of Y ): ∆i(s, t) =

i(t) − p(tL)
p(t) i(tL) −

p(tR)
p(t) i(tR), where p(tL) and p(tR) are the proportions of samples that fall in

nodes tL and tR respectively. Single decision trees suffer from a high variance that is very efficiently
reduced by building instead an ensemble of randomized trees and aggregating their predictions.
Popular methods are Breiman [2001]’s Random Forests that build each tree from a different bootstrap
sample with a local random selection of K(≤ p) variables at each node from which to identify
the best split, and Geurts et al. [2006]’s Extra-Trees which skip bootstrapping and additionally
randomly select the split values. Following Geurts et al. [2006], Louppe et al. [2013], ensemble of
randomized trees grown with the value of the randomization parameters K set to 1 will be called
Totally randomized trees.

Mean decrease impurity importance. Given an ensemble of trees, several methods have been
proposed to evaluate the (global) importance of variables for predicting the output [Breiman et al.,
1984, Breiman, 2001]. This paper focuses on the Mean Decrease of Impurity (MDI) importance.
Given a tree T , the MDI importance of a variable Xm for predicting the output Y is defined as :

Imp(Xm, T ) =
∑

t∈T :ν(st)=Xm

p(t)∆i(st, t), (2)

where the sum is over all interior nodes t in T , ν(st) denotes the variable tested at node t, and p(t)
is the fraction of samples reaching node t. Imp(Xm, T ) is thus the (weighted) sum of impurity
decreases over all nodes where Xm is used to split. The MDI importance of Xm derived from forests
of NT trees is then the average of Imp(Xm, T ) over all trees:

Imp(Xm) =
1

NT

∑
T

Imp(Xm, T ). (3)

While this measure was initially proposed as a heuristic, Louppe et al. [2013] characterise it theo-
retically under the following conditions: (1) all input variables and the output are categorical (not
necessarily binary) (2) trees use so-called exhaustive splits5, and (3) impurity is measured by Shannon
entropy6. Later, we will refer to these conditions collectively as the categorical setting.

In the categorical setting, Louppe et al. [2013] (Thm. 1) show that for totally randomized trees (i.e.,
K = 1) and in asymptotic conditions (i.e., assuming NT → ∞ and a learning sample of infinite size),
the MDI importance, denoted Imp∞, is given by:

Imp∞(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈Pk(V −m)

I(Y ;Xm|B), (4)

where Pk(V
−m) is the set of subsets of V −m of cardinality k, and I(Y ;Xm|B) is the conditional

mutual information of Xm and Y given the variables in B. They also show that the sum of the MDI
importances of all variables is equal to the mutual information between all input features and the
output [Louppe et al., 2013, Thm. 2]:

p∑
m=1

Imp∞(Xm) = I(Y ;V ). (5)

A direct consequence of Equation 4 is that a variable Xm is irrelevant iff Imp∞(Xm) = 0, which
makes the MDI importance a sensible measure to identify relevant variables.

5Each node is split into |Xi| sub-trees, one for each of the |Xi| different values of the split variable Xi.
6A short introduction to information theory and the related notations used in the paper is provided in

Appendix G.
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3 Global MDI importances are Shapley values

In this section, we revisit the theoretical analysis of Louppe et al. [2013] and Sutera [2019] in the
light of TU-games and TU-values, focusing on the categorical setting and asymptotic conditions
adopted by these authors. We show in Section 3.1 that MDI importances computed from totally
randomized trees can be interpreted as the Shapley value for a particular TU-game and we then
discuss in Section 3.2 the case of non totally randomized trees (i.e., K > 1).

3.1 Totally randomized trees

Let us consider a TU-game (V, v), where V is the set of variables and the coalition function v is
the mutual information v(·) = I(Y ; ·). Since v(∅) = I(Y ; ∅) = 0, this is a valid TU-game. This
TU-game is monotonic since we have I(Y ;T ) = I(Y ;S) + I(Y ;T \ S|S) ≥ I(Y ;S) as soon as
S ⊆ T ⊆ V (using the chain rule and the positivity of the conditional mutual information). Marginal
contributions for v can be rewritten as:

MCv
m(S) = v(S ∪ {Xm})− v(S) = I(Y ;S ∪ {Xm})− I(Y ;S) = I(Y ;Xm|S), (6)

using the definition of (conditional) mutual information. A null player is thus defined as a variable
Xm such that MCv

m(S) = I(Y ;Xm|S) = 0 for all S ⊆ V −m. This definition exactly coincides
with the definition of an irrelevant variable (Section 2), since I(Y ;Xm|S) = 0 is equivalent to
Y ⊥⊥ Xm|S. Two variables Xi and Xj are symmetric whenever v(S ∪ {Xi}) = v(S ∪ {Xj}) for
all S ⊆ V −i,j , which is equivalent to I(Y ;Xi|S) = I(Y ;Xj |S) for all S ⊆ V −i,j , i.e., Xi and Xj

bring the same information about Y in all contexts S.

With this definition, the following theorem shows that MDI importance of totally randomized trees
corresponds to the Shapley value for this TU-game:

Theorem 1. (MDI are Shapley values) For all feature Xm ∈ V ,

Imp∞(Xm) = ϕSh
v (Xm), (7)

where ϕSh
v is the Shapley value with v(S) = I(Y ;S) (∀S ⊆ V ).

The proof7 of this theorem follows from a direct comparison of Equations 1 and 4.

Given this result, the four axioms that uniquely defines Shapley values are obviously satisfied. They
translate into the following properties of the importances Imp∞:

Efficiency:
∑p

m=1 Imp∞(Xm) = v(V ) = I(Y ;V ), which states that MDI importances decompose,
in an additive way, the mutual information I(Y ;X1, . . . , Xp). This results is identical to Equation 5.

Symmetry: If Xi and Xj are symmetric, then Imp∞(Xi) = Imp∞(Xj). This property is easy to
check knowing that I(Y ;S ∪ {Xi}) = I(Y ;S ∪ {Xj}) implies that I(Y ;Xi|S) = I(Y ;Xj |S) and
therefore swapping Xi and Xj in Equation 4 would keep all terms of the sum unchanged.

Null player: If Xm is a null player, i.e., an irrelevant variable, then Imp∞(Xm) = 0. Note that
Louppe et al. [2013] actually showed a stronger result, stating in addition that Imp∞(Xm) = 0 only
if Xm is irrelevant to Y .

Strong monotonicity: Let us assume two outputs Y1 and Y2. Strong monotonicity says that if for all
feature subsets S ⊆ V −m: I(Y1;Xm|S) ≥ I(Y2;Xm|S), then we have ImpY1

∞(Xm) ≥ ImpY2
∞(Xm).

This property states that if a variable brings more information about Y1 than about Y2 in all contexts
S, it is more important to Y1 than to Y2.

The link between MDI importance and Shapley value shows that, in the finite setting, standard MDI
importances from totally randomized trees compute an approximation of the Shapley values (for
I(Y ;V )), at least in the categorical setting8. MDI importance will be compared with other measures
from the literature that explicitly seek to estimate the same quantities in Section 5.

7The proofs of all theorems are in Appendix A.
8For example, in the context of an ensemble of binary decision trees, MDI importance measure does not

estimate the same quantities as in the categorical setting [Louppe, 2014, Sutera, 2019].
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3.2 Non totally randomized trees

When K > 1, K variables are randomly picked at each node and the best split, in terms of impurity
reduction, among these K variables is selected to actually split the node. Because several variables
then compete for each split, some variables might be never (or less often) selected if there are other
variables providing larger impurity decreases. These masking effects will impact the properties of the
MDI importances. Let us denote by ImpK∞(Xm) the importance of Xm derived from randomized
trees built with a given value of K in asymptotic conditions. When K > 1, ImpK

∞(Xm) can no
longer be decomposed as in Equation 4, as some I(Y ;Xm|S) terms will not be included in the sum
or with a weight different from the one in Equation 4. Actually, although ImpK

∞ attributes a payoff to
each variable in V , it can not be interpreted as a TU-value for the TU-game defined by (V, v), with
v(·) = I(Y ; ·). Indeed, its computation requires to have access to conditional mutual information of
the form I(Y ;Xm|S = s) for all coalition S but also for all set of values s of variables in S and the
latter can not be derived from the knowledge only of I(Y ;S) for all S.

The efficiency and null player conditions are however still satisfied by ImpK∞:

Efficiency: Louppe et al. [2013] showed that
∑p

m=1 ImpK
∞(Xm) = v(S) = I(Y ;V ) for all K as

soon as the trees are fully developed.

Null player If Xm is a null player (i.e., an irrelevant variable), then ImpK
∞(Xm) = 0 [Louppe et al.,

2013]. Note that ImpK∞(Xm) = 0 is however not anymore a sufficient condition for Xm to be
irrelevant. It can be shown however that a strongly relevant variable Xm will always be such that
ImpK

∞(Xm) > 0 whatever K [Sutera et al., 2018].

Symmetry is not necessarily satisfied however, since I(Y ;Xi|S) = I(Y ;Xj |S) for all S ⊆ V −i,j

does not ensure that I(Y ;Xi|S = s) = I(Y ;Xj |S = s) for all s, which would be required for the
feature to be fully interchangeable when K > 1. Similarly, strong monotonicity is not satisfied either
for ImpK

∞, as shown in Example 1 in Appendix B.

Note that as discussed in [Louppe et al., 2013], the loss of several properties when K > 1 should
not preclude using ImpK

∞ as an importance measure in practice. In finite setting, using K > 1 may
still be a sound strategy to guide the choice of the splitting variables towards the most impactful ones
during tree construction and therefore result in more statistically efficient estimates.

4 Local MDI importances

So far, MDI importances are global, in that they assess the overall importance of each variable
independently of any test instance. An important literature has emerged in the recent year that focuses
on local importance measures that can assess the importance of a variable locally, i.e., for a specific
instance. In Section 4.1, we define a novel local MDI-based importance measure. We highlight the
main properties of this measure and show in particular that it very naturally decomposes the standard
global MDI measure. In Section 4.2, we show, in the categorical setting, that the asymptotic analysis
of global MDI can be extended to the local MDI, which allows us, in Section 4.3 to show that local
MDI importances are also Shapley values for a specific characteristic function in the case of totally
randomized trees. Finally, in Section 4.4, we propose a local adaptation of the notion of feature
relevance and link it with the local MDI measure.

4.1 Definition and properties

Let us denote by x = (x1, . . . , xp)
T a given instance of the input variables, with xj the value of

variable Xj . In what follows, we will further denote by xS a given set of values for the variables in a
subset S ⊆ V (in particular, x{Xj} = xj).

Definition 1. (Local MDI) The local MDI importance Imp(Xm,x) of a variable Xm with respect to
Y for a given instance x is defined as follows

Imp(Xm,x) =
1

NT

∑
T

∑
t∈T :ν(st)=Xm

∧x∈t

i(t)− i(txm
) (8)
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where the outer sum is over the NT trees of the ensemble, the inner sum is over all nodes that are
traversed by x and where Xm is used to split, txm is the successor of node t followed by x in the tree
(corresponding to Xm = xm), and i(.) is the impurity function.

This general measure quantifies how important is feature Xm to predict the output of the test example
x represented by its input features. It collects all differences i(t)− i(txm

) along all paths traversed
by example x in the ensemble. In practice, this can be implemented very efficiently at no additional
cost with respect to the computation of a prediction, as soon as all impurities, computed at training
time, are stored at tree nodes.

The intuition behind this measure is that a variable is important for a sample x if it leads to important
reductions of impurity along the paths traversed by x. Note that unlike global MDI, local MDI
can be negative, as the impurity can increase from one node to one of its successors. A variable of
negative importance for a given sample x is thus such that, in average over all paths traversed by x, it
actually increases the uncertainty about the output (because it helps for predicting the output of other
instances).

A natural link between local and global MDI is given by the following result:

Imp(Xm) =
1

N

N∑
i=1

Imp(Xm,xi), (9)

where {(x1, y1), . . . , (xN , yN )} is the learning sample of N examples that was used to grow the
ensemble of trees. This result can be shown easily by combining the definitions in Equations 2 and 8
of global and local MDI respectively. Local MDI is thus a way to decompose the global MDI over all
training examples.

4.2 Asymptotic analysis

In the categorical setting and asymptotic conditions, the decomposition in Equation 4 for totally
randomized trees can be adapted to the local MDI measure, denoted Imp∞(Xm,x).

Theorem 2. (Asymptotic local MDI) The local MDI importance Imp∞(Xm,x) of a variable Xm

with respect to Y for a given sample x as computed with an infinite ensemble of fully developed
totally randomized trees and an infinitely large training sample is

Imp∞(Xm,x) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈P(V −m)

H(Y |B = xB) −H(Y |B = xB , Xm = xm) (10)

where H(Y |·) is the conditional entropy of Y . Similarly as in the finite setting, Imp∞(Xm,x) can
be negative, since the difference H(Y |B = xB)−H(Y |B = xB , Xm = xm) is not always positive.
Example 2 in Appendix B illustrates one such a situation.

In asymptotic condition, the decomposition in Equation 9 furthermore becomes:

Imp∞(Xm) =
∑
x∈V

P (V = x)Imp∞(Xm,x), (11)

where the sum is over all possible input combinations. Combined with 5, this leads to the following
double decomposition (over features and instances) of the information I(V ;Y ):

I(V ;Y ) =

p∑
m=1

∑
x∈V

P (V = x)Imp∞(Xm,x). (12)

4.3 Local MDI importances are Shapley values

Let us define a local characteristic function vloc(S;x) = H(Y )−H(Y |S = xS), which measures
the decrease in uncertainty (i.e., the amount of information) about the output Y when the variables
in S are known to be xS . This characteristic function is thus parameterized by x. The proof of

6



Theorem 1 can be adapted to the decomposition in Equation 10 to show that local MDI importances
of totally randomized trees in asymptotic conditions are Shapley values with respect to vloc(.;x):

Imp∞(Xm,x) = ϕSh
vloc(.;x)

(Xm) (13)

As a consequence, Imp∞(Xm,x) satisfies the Shapley value properties at any point x, i.e.:

Efficiency: vloc(V ;x) = H(Y ) −H(Y |V = x) =
∑p

m=1 Imp∞(Xm,x). This is in accordance
with the decomposition in Equation 12, since

∑
x∈V P (V = x)vloc(V ;x) =

∑
x∈V P (V =

x)(H(Y )−H(Y |V = x)) = I(V ;Y ).

Symmetry: If Xi and Xj are such that H(Y ) − H(Y |S = xS , Xi = xi) = H(Y ) − H(Y |S =
xS , Xj = xj) for every S ⊆ V −i,j , then Imp∞(Xi,x) = Imp∞(Xj ,x).

Null player If Xi is such that H(Y |S = xS , Xm = xm) = H(Y |S = xS) for all S ⊆ V −m, then
Imp∞(Xi,x) = 0.

Strong monotonicity: Assuming two outputs Y1 and Y2, if H(Y1|S = xS)−H(Y1|S = xS , Xm =
xm) ≥ H(Y2|S = xS) − H(Y2|S = xS , Xm = xm) for all S ⊆ V −m, then we have
ImpY1(Xm,x) ≥ ImpY2(Xm,x).

As in the case of global MDI, using non totally randomized trees (K > 1) will make local MDI to
depart from the Shapley values, because of masking effects. Actually, local MDI importances will
again not correspond to TU-values for vloc(·;x), since they are not uniquely defined by vloc(·;x).
Indeed, tree splits along the paths traversed by x can not be determined from vloc(·;x) only, as
they depend on impurity reductions on other paths as well. However, the efficiency and null player
properties will again remain valid, although symmetry and strong monotonicity are not guaranteed.

4.4 Local relevance

A major result regarding the global MDI importance in asymptotic conditions is its link with Kohavi
et al. [1997]’s notion of feature relevance. A similar relationship can be established between local
MDI importance measures and a new notion of local relevance (at the level of a samples) inspired
from the null player property of Shapley values.
Definition 2. Xm is locally irrelevant at x with respect to the output Y iff P (Y = y|X = xm, B =
xB) = P (Y = y|B = xB) for all B ⊆ V −m and all y ∈ Y . It is locally relevant otherwise.

A variable is thus locally irrelevant at x if knowing its values never changes the probability of
any output whatever the other variables that are known. Local relevance can be linked with global
relevance through the following theorem.
Theorem 3. A variable Xm is irrelevant with respect to Y if and only if it is locally irrelevant with
respect to Y for all x such that P (V = x) > 0.

In the categorical setting and asymptotic conditions, local relevance is linked to local MDI through
the following theorem:
Theorem 4. If a variable is locally irrelevant at x with respect to Y , then Imp∞(Xm,x) = 0.

Theorem 4 coincides exactly with the null player property of Section 4.3. Local MDI importance
is thus a sensible score to identify locally irrelevant variables. Note that, unlike with global MDI,
there might exist variables Xm such that Imp∞(Xm,x) = 0 despite Xm being locally relevant at x.
However, a globally relevant variable Xm will always receive a non zero Imp∞(Xm,x) at some x.

5 Discussion and related works

In the literature, Shapley values have been mostly used to decompose model predictions f̂(x) at any x
into a sum of terms that represent the (local) contribution of each variable to the prediction [Strumbelj
and Kononenko, 2010, Lundberg and Lee, 2017]. The characteristic function vf̂ considered by these

methods is v(S) = f̂S(xS)− f̂∅(x∅), where f̂S(xS) is the model to be explained restricted to the
variables in S and f̂∅(x∅) is often set to E[f̂(X)]. Typically, f̂S(xS) is defined as E[f̂(X)|XS = xS ],
where the expectation is over the conditional p(XS̄ |XS = xS) or the marginal (a.k.a. interventional)
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p(XS̄) distribution. These methods are mostly model agnostic, i.e., they can handle any machine
learning model, considered as a black-box, although the estimation of restricted models and the
computation of the Shapley values (Equation 1) can be very challenging in general.

Among this literature, Lundberg et al. [2020] have proposed TreeSHAP, a framework to efficiently
compute Shapley values when f̂ are trees or sum of trees. One of the only alternative local importance
measures for trees is Saabas’ heuristic method (implemented in [Saabas, 2014]). Saabas’ method
measures local variable importances for a sample x by collecting the changes in the (expected) model
prediction due to each variable value along the tree branches followed by x. Like TreeSHAP, Saabas’
importances sum to the model prediction at x. They are much faster to compute but do not satisfy all
properties of Shapley values, in particular strong monotonicity.

One main difference between local MDI and TreeSHAP/Saabas as studied in Lundberg et al. [2020]
is that local MDI decomposes entropy (or more generally impurity) reductions (vloc(V ;x)), while
TreeSHAP/Saabas decompose model predictions9 (vf̂ ). As a consequence, local MDI scores are
independent of output normalisation or scaling and do not require to choose a specific class probability
score to be used as f̂(x) to be decomposed. This also allows to connect local and global MDI in a
natural way, and gives a probabilistic interpretation to the null player property in terms of variable
irrelevance. Algorithmically, local MDI uses the exact same collecting procedure along tree paths
as Saabas’ measure, replacing output differences with impurity reductions. Similarly as Saabas,
local MDI results in a much more efficient and simpler estimation scheme than TreeSHAP but it
looses some properties of Shapley values in the general case. Section 4.3 however shows that these
properties are retrieved in the case of totally randomized trees, at least asymptotically. This also
applies to Saabas’ measure (as sketched in Theorem 1 in the supplement of Lundberg et al. [2020]).
Although TreeSHAP is guaranteed to ensure strong monotonicity asymptotically, the relevance of
its scores is still tied to the quality of the tree-based model that it explains. For example, using
TreeSHAP with Random forests with K > 1 or pruned trees will also potentially lead to biases in the
importance scores (e.g., due to masking effects) with respect to what would be obtained if f̂ was the
Bayes classifier. We believe this is a similar trade-off as the one met in local MDI with respect to K.

Our results also highlight a link between global MDI and SAGE [Covert et al., 2020], a purely
model-agnostic method for global importance computation. SAGE estimates Shapley values for
vℓ(S) = E[ℓ(f̂∅(X∅), Y )]− E[ℓ(f̂S(XS), Y )] where ℓ is a loss function and expectations are taken
over p(V,X). Covert et al. [2020] have shown that when ℓ is cross-entropy, f̂ is the Bayes classifier,
and restricted models are estimated through the conditional distributions, then the population version
of SAGE is strictly identical to Equation 4. Interestingly, both methods arrive to this population
formulation through very different algorithms. SAGE explicitly estimates Shapley values, while
global MDI are obtained by collecting impurity reductions at tree nodes in a random forest. Global
MDI departs from 4 and Shapley values when K > 1. On the other hand, being model agnostic, like
TreeSHAP, SAGE is tied to the quality of the model it explains. Given the difficulty of sampling from
the conditional distribution, its implementation also samples from the marginal distribution instead,
which makes it depart from Shapley values and affects its convergence to 4. In practice, we will show
in the next section that both methods produce very similar results, when used with Random forests
(but with a strong advantage to global MDI in terms of computing times).

Overall, we believe our analysis of local and global MDI sheds some new lights on these measures.
Although they were not designed as such, these methods can indeed be interpreted as procedures
to sample variable subsets and compute mutual information such that they provide estimates of
Shapley values for a very natural characteristic function based on mutual information. Although they
are tightly linked algorithmically with Random forests, they actually highlight general properties
of the original data distribution independently of these models. This makes them very different
from model-agnostic methods that explain pre-existing models, furthermore regardless of the data
distribution when restricted models are estimated from marginal distributions.

9Although TreeSHAP authors advocate the decomposition of model predictions as the way to go, a variant
of TreeSHAP [Lundberg et al., 2020] can also decompose model loss by enforcing feature independence, at a
higher computational cost however than the local MDI measure proposed here.
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Figure 1: Normalized importance scores derived from
an ensemble of totally and non-totally randomized Extra-
Trees (with K = 1, . . . , p) for the global MDI importance
measure (left) and SAGE (right).
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Figure 3: Local importances derived by local measures from a forest of 1000 Extra-Trees with K ∈
{1,√p, p}) for led (left) and digits (right). Results for all samples can be found in Appendix E.

6 Illustrations

Here, global and local MDI are illustrated and compared against SAGE, Saabas, and TreeSHAP
on two classification problems. The led problem [Breiman et al., 1984] consists of an output
Y ∈ {0, . . . , 9} with equal probability and seven binary variables representing each a segment of a
seven-segment display and whose values are determined unequivocally from Y . The digits problem
consists of an output Y ∈ {0, . . . , 9} and 64 integer inputs corresponding to the pixels of a 8 × 8
grayscale image of a digit. Additional experiments on other datasets are reported in Appendix E. In
all experiments, importance scores are computed either using Scikit-Learn [Pedregosa et al., 2011] or
method authors’ original code (data and code are open-source, see details in Appendix C).

Global importances are shown in Figure 1 on the led dataset for an ensemble of 1000 Extra-Trees
[Geurts et al., 2006] and several values of K, with global MDI and SAGE (using the cross-entropy
loss). Importances are normalized such that the sum of (absolute values of) the scores is equal to
one. With K = 1, both approaches clearly yield very similar scores, as expected from the discussion
in Section 5. Both methods remain very close when K is increased. Regardless of the importance
measure, one can notice the masking effect that favors X1 and X4 at the expense of the other variables
when K increases. The same effect appears when SAGE uses another loss function and for the global
importance measure derived from TreeSHAP (see Appendix D).

Local importances are then computed for both classification problems from an ensemble of 1000
Extra-Trees and with the three local importance measures. Scores from Saabas and TreeSHAP are
obtained from the additive decomposition of the conditional probability of the predicted class (which
might not be the true class). Local feature importances for two samples are reported in Figure 3 by
coloring either the corresponding segment (left) or pixel (right) for three values of K. The three local
importance measures yield very similar importance scores, suggesting that they provide matching
explanations of model predictions. This similarity is further quantified by measuring the correlation
between the (absolute value of) local importance scores of all pairs of methods for several K (Figure 2
for digits, Appendix E for led). The mean correlation over all samples remains close to 1 for all
pairs, although the variation (depicted by the shaded area delimiting the range between minimal and
maximal correlations) is impacted by the value of K. As expected, Saabas and TreeSHAP, which
both decompose model predictions, are closer to each other than to Local MDI.
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7 Conclusion

MDI importances have been used extensively as a way of measuring, globally, the respective con-
tribution of variables. In this paper, we showed that global MDI importances derived from totally
randomized trees are actually Shapley values that decompose the mutual information I(V ;Y ) when
the impurity measure is the Shannon entropy. We then proposed a local MDI importance that very
naturally decomposes global MDI over the training examples. We showed that local MDI importances
are also Shapley values with respect to conditional entropy reductions and that they are consistent
with respect to a novel local relevance notion. We compared MDI importances conceptually with
other recent local and global feature importance scores inspired from Shapley values and showed
empirically that all these methods are very close, while both global and local MDI importances do
not require any extra computation with respect to the tree construction. Overall, local and global
MDI measures provide a natural and efficient way of explaining properties of the data distribution.

While the main results of this paper assume categorical variables and Shannon entropy as impurity
measure, they can be extended to other impurity measures and to regression (see Appendix F). As
future works, we would like to better characterize these measures in non-asymptotic conditions
and outside of the purely categorical setting. More experiments should be also carried out to better
highlight differences, practically, between the MDI family and other methods such as TreeSHAP and
SAGE that more explicitly approximate Shapley values. Finally, the link with Shapley values and
TU-games in general could be further investigated to propose other extensions of MDI measures (for
example to highlight variables interactions as in [Lundberg et al., 2020]).
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