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Abstract

While large language models (LLMs) have rapidly improved their performance on
a broad number of tasks, they still often fall short on reasoning tasks. As LLMs
become more integrated in diverse real-world tasks, advancing their reasoning
capabilities is crucial to their effectiveness in nuanced, complex problems. Wang
et al. [33]’s self-consistency framework reveals that sampling multiple rationales
before taking a majority vote reliably improves model performance across vari-
ous closed-answer reasoning tasks. Standard methods based on this framework
aggregate the final decisions of these rationales but fail to utilize the semantic
information detailed in the step-by-step reasoning paths. Our work introduces
semantic self-consistency, enhancing this approach by incorporating and analyzing
both the reasoning paths of these rationales in addition to their final decisions
before taking a majority vote. These methods not only improve the reliability of
reasoning paths but also cause more robust performance on complex reasoning
tasks.

1 Introduction

In recent years, the development of large language models has witnessed remarkable strides, with
significant advancements in their accuracy and expressive capabilities [3, 28, 24, 4]. Despite these
achievements, models still perform suboptimally in domains such as mathematics, commonsense, and
complex algorithmic reasoning [10]. Various methods such as chain-of-thought prompting have been
developed to further increase reasoning capabilities and was further enhanced by the introduction of
self-consistency, which demonstrate that baselines can be pushed forward by sampling and ensembling
multiple model responses with chain-of-thought to improve prediction quality [34, 23].

We build on the framework of self-consistency, proposing two techniques that add a separate semantic
weighting step to rerank results based on their reasoning paths. To achieve this, we use semantic
vector embeddings in combination with self-consistency to group consistent model outputs, aiding in
the identification of similar responses to estimate the most likely output. Additionally, we introduce a
semantic filtering mechanism that discards degenerate or hallucinated outputs, which can be utilized
for analyzing smaller sample sizes. Overall, we demonstrate that self-consistency with semantic
marginalization not only improves accuracy across a range of benchmarks but also serves as a
filtering mechanism. By introducing these methods, we aim to provide a framework for improving
performance and analyzing the semantic usage of model outputs in reasoning.
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Figure 1: Whereas baseline self-consistency comprises three steps: (1) Prompt a model with chain-
of-thought, (2) generate n sampled sequences, and (3) choose results based on the most occurring
final output, our proposed method, shown above, decides based on the semantic consistency of the
employed reasoning path. Our assumption is that language models often apply the correct reasoning
but lack the ability to conclude to the correct result.

2 Datasets

We evaluate the models on arithmetic and commonsense reasoning using three datasets: AQuA-RAT,
SVAMP, and StrategyQA. AQuA-RAT assesses models’ ability to solve arithmetic problems involv-
ing basic calculations, numerical relationships, and multi-step reasoning [17]. SVAMP challenges
models with math problems focused on algebraic manipulations and symbolic reasoning [25]. Strate-
gyQA tests models on answering complex, open-domain questions that require strategic thinking
rather than simple factual knowledge [9]. For specific information please refer to Appendix L.

3 Language Models

Our models are categorized into two types: generators, which produce sequences such as text, code,
or reasoning steps, and featurizers, which transform these outputs into numerical representations
(vector embeddings) that summarize their meaning for analysis.

Detailed information on the configurations used for our models can be found in Appendix I.3.
Additionally important hyperparameters for different methods are discussed in Appendix I We use
chain-of-thought prompting for all of our experiments. The prompts can be found in Appendix K.

3.1 Generators

For our evaluation, we use several models with varying architectures and sizes. First, we utilize
GPT-3.5, a closed-source large-scale transformer model developed by OpenAI [3]. Additionally, we
evaluate both Llama 2 (7B parameters) [32] and Llama 3 (8B parameters) [8], which are open-weight
models known for their strong performance on numerous benchmarks. We also include Mistral 7B
(version 0.1), recognized for its robust capabilities across a variety of language processing tasks [13].
Lastly, we assess GPT-4o mini, a lower parameter variant of the GPT-4o architecture that balances
computational efficiency with high performance across diverse language tasks.

3.2 Featurizers

All of our featurizers are based on the BERT (Bidirectional Encoder Representations from Trans-
formers) model architecture [7], with various fine-tuned versions used to generate embedding vectors
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tailored to specific datasets. RoBERTa is employed for the StrategyQA dataset, which requires
reading comprehension and contextual reasoning, benefiting from RoBERTa’s robustness in general
language processing tasks [19]. Additionally, we use SciBERT for the AQuA-RAT and SVAMP
datasets, which focus on mathematical reasoning, as its specialization in scientific texts makes it
well-suited to handle the language present in these datasets [2].

4 Methodology

We analyze three main mechanisms for weighting and categorization (CPW, sequence comparison,
and filtering of anomalous points) that follow a similar operational pattern outlined below:

1. Generate candidate responses: Given a query of few-shot examples, we generate n samples
based on chain-of-thought prompting [34].

2. Embed reasoning paths: We represent each generated rationale as a vector embedding
using fine-tuned BERT models (e.g., SciBERT for mathematical reasoning tasks). Instead
of focusing on individual sentences or tokens, we obtain a single vector representation for
each entire reasoning path, capturing its overall semantic content.

3. Semantic consistency or outlier removal: We apply various algorithms to weight and
aggregate the responses based on their featurized embedding vectors, enhancing decision-
making by emphasizing semantically consistent reasoning paths or removing outliers.

4.1 Semantic consistency

4.1.1 Centroid Proximity Weighting

In a set of examples, general answers often display similar patterns, suggesting the appli-
cation of embedding vectors to map responses into an n-dimensional space. To identify
the most relevant features, we first compute the centroid of the embeddings, centroid =
1
N

∑N
i=1 data_embedding[i]. Then, we calculate the distance of each vector from the

centroid, distances[i] = ∥data_embeddings[i]− centroid∥, and normalize these distances,
normalized_distances[i] = distances[i]∑N

j=1 distances[j]
. We assign weights to the vectors inversely proportional to

their normalized distances, weights[i] = 1
normalized_distances[i] . Finally, the total weight for each unique

output is computed as sum_weights[u] =
∑

i∈I(u) weights[i], where outputs with the highest total
weights are considered the most likely to be correct.

4.1.2 Semantic Consensus Weighting

To compare the weighting of embedding positions, we introduce another method and weigh responses
relative to their respective sequences with cosine similarity, a measurement of how similar two
vectors. We take n1, n2, n3, . . . , ni as distinct elements in our set N , where each n corresponds
to a featurized embedding vector. The cosine similarity between vectors na and nb is given by
cosine_similarity(na, nb) = na·nb

∥na∥2∥nb∥2
, and for each ne, we compute the cosine similarity with

every ni in N and aggregate the scores: Sne =
∑

ni∈N cosine_similarity(ne, ni). This process is
repeated for each nj in N , resulting in aggregated scores Sn1 , Sn2 , Sn3 , . . . , Sni , and the scores are
summed based on their answer decision, leading to the selection of the highest consensual response.

4.2 Outlier removal

To eliminate outliers, we filter responses based on proximity [18, 21, 5], isolating data points that
significantly deviate and identifying flawed reasoning, degenerated outputs, or model hallucinations.
We examine the following common methods: (1) K-nearest neighbor, using

√∑n
i=1(xi − yi)2;

(2) Isolation forest, where s(x, n) = 2−
E(h(x))

c(n) ; and (3) Support vector machines, defined by
1
2ω

Tω + C
∑n

i=1 ζi.
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5 Results

5.1 Semantic consistency results

We compared Centroid Proximity Weighting (CPW) and Semantic Consensus Weighting (SCW) with
the self-consistency baseline across datasets. As shown in Table 1, SCW generally outperformed
CPW. For Llama 2 7B, SCW boosted accuracy on StrategyQA by 13.53 %, while CPW improved
it by 6.11 %. GPT 3.5 also saw a 7.89 % gain with SCW, but CPW caused a 1.6% drop. GPT-4o
mini underperformed with CPW across all datasets. Cosine similarity improved most models, except
Mistral 7B on StrategyQA and Llama 3 8B on SVAMP, while CPW underperformed in six out of
fifteen model-dataset pairs.

Dataset Method/Metric Llama 2 7B Mistral 7B GPT 3.5 Llama 3 8B GPT-4o mini

AQuA-RAT

Top prob sample 21.65 24.34 53.63 43.02 79.22
SC baseline 24.80 25.60 59.40 45.28 83.07
CPW 24.60 (-0.2) 29.00 (+3.4) 68.00 (+8.6) 46.06 (+0.78) 82.68 (-0.39)
SCW 25.00 (+0.2) 29.80 (+4.2) 65.40 (+6.0) 47.48 (+2.2) 86.18 (+3.11)

SVAMP

Top prob sample 31.90 65.18 77.42 70.55 85.62
SC baseline 46.50 68.50 79.80 73.33 89.80
CPW 47.40 (+0.9) 69.80 (+1.3) 81.00 (+1.2) 74.67 (+1.34) 89.60 (-0.2)
SCW 46.90 (+0.4) 70.20 (+1.7) 80.30 (+0.5) 73.00 (-0.33) 92.38 (+2.98)

StrategyQA

Top prob sample 46.79 64.27 63.21 60.32 75.32
SC baseline 48.91 67.98 66.81 63.32 79.18
CPW 55.02 (+6.11) 60.70 (-7.28) 65.21 (-1.6) 63.32 (+0.0) 73.80 (-5.38)
SCW 62.44 (+13.53) 65.35 (-2.63) 74.70 (+7.89) 71.47 (+8.15) 79.68 (+0.5)

Table 1: Accuracy comparison of CPW and cosine similarity on different datasets and models, with
SciBERT embeddings for AQuA-RAT and SVAMP and RoBERTa encodings for StrategyQA.

CPW improved self-consistency by 3.14% on AQuA-RAT and 0.97% on SVAMP but decreased
performance by -1.63% on StrategyQA, likely due to its limited reasoning paths. This effect was seen
across self-consistency, where improvements were smaller compared to other datasets. A detailed
discussion of these suboptimal cases is in Appendix D.

SCW showed that weighting sequences based on consistency reduces errors and improves accuracy,
outperforming baseline self-consistency.

5.2 Outlier detection results

The results from our analysis of various outlier detection methods isolation forest, k-nearest neighbor,
one-class support vector machines (SVM) demonstrate their effectiveness in refining the quality of
model output. The observed increases in accuracy across these methods remain consistent towards
reduced sample sizes as well, suggesting that the effectiveness of anomaly detection techniques
are not solely dependent on sample size. Obtained results exhibited slight deviations between the
different configurations. A review across different sets of configurations and parameters can be found
under Appendix I.2.1 to I.2.3.

The found results highlight variability across datasets, with isolation forest and one-class SVM
performing better on certain datasets.

6 Discussion

It is worth noting that our system uses embedding vectors to filter responses based on general
reasoning accuracy, prioritizing broad similarity over subtle variations, as the benefit of choosing the
numerical majority vote from self-consistency to yield correct answers still applies, especially in the
limited rationale space. An additional analysis can be found in Appendix B.

Diverse responses are not necessarily undesirable and can lead to elevated results as shown in
Appendix G.1. Against the natural feel, employed methods do not discriminate against diverse
reasoning. Lowering the temperature will make multiple responses more diverse and, therefore,
broaden the distribution. This will not affect performance when using CPW or outlier detection, since
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Dataset Method Llama 2 Mistral GPT 3.5 Llama 3 GPT4o mini
Best / Average Best / Average Best / Average

AQuA-RAT

SC baseline 24.8 / 24.8 25.6 / 25.6 59.4 / 59.4 45.28 / 45.28 83.07 / 83.07
Isolation Forest 28.45 / 26.04 26.61 / 25.97 65.27 / 63.73 72.25 / 68.59 70.86 / 69.78
K-nearest neighbors 25.40 / 25.37 25.91 / 25.66 62.81 / 60.04 68.10 / 66.74 71.65 / 70.81
One-class SVM 26.70 / 24.25 28.45 / 26.08 59.55 / 59.26 68.39 / 65.91 70.87 / 69.23

SVAMP

SC baseline 46.5 / 46.5 68.5 / 68.5 79.8 / 79.8 73.33 / 73.33 89.80 / 89.80
Isolation Forest 45.94 / 45.60 68.84 / 68.34 84.65 / 84.28 84.44 / 81.75 84.44 / 81.76
K-nearest neighbors 45.85 / 45.71 68.84 / 68.52 84.64 / 84.42 82.57 / 81.85 82.57 / 81.85
One-class SVM 44.94 / 43.30 67.23 / 65.33 85.23 / 84.54 82.11 / 80.70 82.11 / 80.70

StrategyQA

SC baseline 48.91 / 48.91 67.98 / 67.98 66.81 / 66.81 63.32 / 63.32 79.18 / 79.18
Isolation Forest 49.34 / 49.01 68.70 / 68.13 70.07 / 69.01 70.80 / 69.37 79.91 / 79.56
K-nearest neighbors 49.49 / 49.09 69.00 / 68.61 68.65 / 68.57 69.43 / 69.10 80.64 / 80.28
One-class SVM 49.85 / 48.98 69.43 / 68.81 68.73 / 68.27 70.45 / 69.23 81.02 / 80.65

Table 2: Outlier detection performance on SVAMP, AQuA-RAT, and StrategyQA. Performance
increase over baseline of n > 1% featured in bold. Encoded based on SciBERT for mathematical
reasoning and RoBERTa for commonsense.

outputs farther from the mean are not outliers but sensible parts of a wider distribution. Consequently,
the weighting process will remain consistent, as all values will proportionally receive lower weights.

7 Conclusion

Our investigation into weighting and anomaly detection methods shows that cosine similarity out-
performs CPW in improving model accuracy, particularly for models like Llama 2 7B and GPT
3.5 on datasets such as StrategyQA. CPW was effective for AQuA-RAT and SVAMP, leading to
accuracy increases, but less so for StrategyQA. Our system prioritizes general reasoning accuracy
using embedding vectors, with numerical majority voting from self-consistency remaining a key
factor in achieving correct answers, especially within limited rationale spaces. Please note that the rec-
ommended methods should be employed with carefully tested hyperparameters, as their effectiveness
may vary with subtle implementation nuances.

8 Related Work

Reasoning is an ubiquitous issue across many domains. [6]. One significant advancement in the
area has been the development of the chain-of-thought prompting [34, 27] and self-consistency
[33], which we extend for our Method. Self improvement of Language Models after generation is
a well-known method for improving accuracy [12]. This concept has often been adapted by other
weighting methods during pre-training to improve overall accuracy [31, 20], using different methods
to shift the distribution [14].

9 Limitations

Our study proposes the application of semantic vector representations to group and weigh model
outputs, which is designed to facilitate the identification of consensus responses [33]. Semantic
vectors must capture variations in meaning and context, which is particularly hard in abstract reasoning
tasks without a sufficient amount of context making prompting techniques to enhance the models
output structure and size an important factor as visualized in Table 3. The process of clustering based
on semantic vectors can be challenging due to the nuanced and abstract nature of reasoning processes.
This limitation underscores the need for advanced featurization models and explicit choice of a fitting
fine-tuned model [22]. Like showcased in Table 6, multiple models should be considered for semantic
analysis, to ensure that the model outputs are grouped in a way that truly reflects their underlying
meaning and relevance. Without these fitting featurizers, on fields with more subtle variations or
on short sequences, the employed method might not be able to distinguish different sequences well
enough to uphold a notable positive effect.
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10 Reproducibility Statement

Our experiments include a variety of models with different sizes. GPT 3.5 as well as GPT-4o mini
have API endpoints that are open for public use https://openai.com/blog/openai-api.

Mistral 7B is available for unrestricted use under the Apache 2.0 license, while its model architecture
and setup are open source: https://github.com/Mistralai/Mistral-src.

Llama 2 7B and Llama 3 8B are models with restricted access, made available by Meta. One
can gain access to them by requesting permission through the provided Meta license. https:
//ai.meta.com/llama/.

All of our BERT models are built upon the BERT-base model developed by google-research, which is
accessible under the Apache 2.0 license, including MathBERT and SciBERT. RoBERTa can be used
under the MIT license.

Our datasets as well as the configurations used for our language models are accessible throughout
this paper and in the Appendix to aid the reproducibility of our experiments.

10.1 GPU usage

approx. Hours GPU Model Memory
250 h NVIDIA T4 15GB
50 h NVIDIA V100 16GB
60 h NVIDIA A100 40GB

100 h NVIDIA TPU v2 32GB

11 Ethical Considerations & Risks

Language models may produce factually incorrect or biased outputs based on user prompts. The
BERT-based featurizers, trained on English corpora, may yield inconsistent results in other languages.
Mistral 7B, Llama 2 7B, and Llama 3 8B lack built-in content moderation, needing external safeguards
against harmful content. While GPT-4o and GPT-4o mini have stronger moderation, biases may still
emerge.

Further risks include that embedding and clustering methods may introduce subtle biases by empha-
sizing specific response types over others. Additionally variations in model temperature and sampling
can add unintended randomness. Controlled sampling and inverse temperature weighting help but
require careful tuning.

We recommend using monitoring tools and responsible model deployment, particularly in high-stakes
applications.
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A Performance variation

Across different findings, we see a variation in performance with a general upward trend. As shown
in Section 3 and discussed in Appendix B, sequence length seems to affect model performance
positively. Smaller sequences tend to contain to be less similar in terms of informational density
compared to all other sequences.

Moreover, GPT 3.5’s and GPT-4o mini’s instruction fine-tuning positively affects sequence length
and output content, leading to longer and more contextual sentences. Additionally, there’s a trend
towards larger models, suggesting that increased parameter size may improve performance across
tasks and the way information is packed across the exemplars.

B Effects of symbolic logic and embeddings

Subtle variations in reasoning or content, particularly in fields like mathematics, can lead to significant
divergences in outcomes, suggesting a preference for symbolic logic to distinguish these differences
precisely. This approach presupposes that correct reasoning across various contexts tends to follow
similar operational patterns. By leveraging embedding vectors, the system isolates responses that
deviate significantly in reasoning quality or factuality, rather than getting entangled in the minutiae
of every possible variation. Thus, while embedding vectors may overlook some subtle differences,
their use is justified by their effectiveness in broadly categorizing and filtering responses according to
general reasoning accuracy.

Additionally, the inherently delivered effect of self-consistency implies that multiple exemplars, when
exhibiting correct or similar reasoning, will eventually result in the majority of correct numerical
answers, which will prove especially effective when the space of rationales is limited to these that are
sufficiently supported by its reasoning path.

We observe a slight correlation between the average sequence length generated by our models and
improvements in accuracy, emphasizing the role of exemplar selection in the reasoning process.
Longer chains of thought can provide more context, but they are also more prone to outliers and
inaccuracies. Similarly, shorter sequences often lack sufficient context to differentiate responses
effectively.

Although sequence length scales with accuracy, we observe no correlation between accuracy and the
averaged BLEU score. This suggests that improvements in text generation quality, as measured by
BLEU, do not necessarily translate to better reasoning accuracy, underscoring the trade-off between
context depth and noise in model predictions.

Dataset Model Avg. Seq.
Length

Avg. Accuracy
Increase (%) Avg. BLEU Score

AQuA-RAT GPT 3.5 102.40 7.30 0.342
AQuA-RAT Mistral 53.24 3.80 0.031
AQuA-RAT Llama 2 49.58 0.00 0.045
AQuA-RAT Llama 3 56.21 1.49 0.185
AQuA-RAT GPT-4o mini 83.65 1.36 0.358
SVAMP GPT 3.5 49.71 0.85 0.440
SVAMP Mistral 52.92 1.50 0.152
SVAMP Llama 2 52.29 0.65 0.213
SVAMP Llama 3 83.45 0.505 0.300
SVAMP GPT-4o mini 80.32 1.19 0.547
StrategyQA GPT 3.5 92.66 3.145 0.289
StrategyQA Mistral 50.68 -4.955 0.227
StrategyQA Llama 2 60.39 9.82 0.075
StrategyQA Llama 3 77.84 4.075 0.141
StrategyQA GPT-4o mini 88.91 -2.44 0.327

Table 3: Comparison of Sequence Length, Accuracy Increase, and BLEU Score across datasets and
models

Larger sequences initially perform better as they leverage more context, but this benefit diminishes as
the sequence length grows too large, resulting in the loss of relevant information. Shorter sequences,
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in contrast, often fail to provide enough context for the model to make accurate distinctions between
responses. BLEU scores reveal that while text generation quality improves moderately with longer
sequences, it does not strongly correlate with accuracy improvements. This highlights the trade-off
between providing enough context and minimizing noise in model predictions [1].

Model SVAMP AQuA-RAT SQA
Mistral 1.01 2.05 1.50
Llama 2 2.13 0.90 1.25
GPT 3.5 0.33 0.57 0.70
Llama 3 1.20 1.80 1.40
GPT-4o mini 0.80 1.00 0.95

Table 4: Accuracy deviation (%) across models and datasets.

C Embedding quality analysis

It is important to distinguish that the employed system focuses on identifying consensual responses
and broader similarity in the representational space of embeddings, rather then subtle nuances. A
clear analysis of our embeddings in connection to symbolic logic and subtle details can be found in
Appendix B.

To test our embeddings and ensure that embeddings do not solely discriminate on numerical output,
we randomly removed numerical outputs before generating embedding vectors. As visible in the
results, performance remained stable and proves that even correctly reasoned but arithmetically
incorrect responses can still be used in different methods to enhance overall output quality and
mechanisms that make use of semantic evaluation.

Further analysis of both the embedding distribution as well as our dimensionality reduction can be
found in Appendix O.

D Self-consistency failure scenarios

Although we observe an upward trend in performance, there are certain scenarios where the applied
methods fail to deliver the desired results.

• Overly similar generations: Generations that provide overly similar reasoning will likely
be categorized in a similar position in the embedding space, which will lead to our semantic
methods, not being able to discern between elements.

• Small subtleties in generations: As described in Section B & Section 6 small subtleties
aren’t captured directly by our model, making it less capable in tasks like Symbolic Reason-
ing or state tracking.

E Comparison to related Methods

E.1 Meta-reasoning over multiple chains-of-thought

While meta-reasoning has proven effective on tasks that have qualitative evident information, its
ability to stay consistent between arithmetic operations and its subsequent reasoning path witnesses
the same limitations as baseline self-consistency and chain-of-thought [35].

E.2 Importance Weighting with self-improvement

Unlike previously established self-improvement and Importance weighting methods as proposed by
Jiang et al. [14]. Our methods weighs results directly after generation in a separate weighting/filtering
step. While results showed some frailty if not tuned with fitting parameters we spare computational
efforts by not requiring an addition pre-training step. Pre-trained self-improvement Models could be
used together with our introduced weighting method, to test performance and facilitate accuracy even
further
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F Sample analysis

In the evaluation of AQuA-RAT, some results exhibited noise. Particularly smaller models failed to
consistently follow the few-shot chain-of-thought examples occasionally. This led to instances where
outputs could not be parsed for final analysis. To ensure reproducibility, we employed the parsing
extraction approach from baseline self-consistency. Furthermore, some models showed degeneration
after generating the initial response, highlighting the need of development for a custom extraction
function to ensure accurate semantic interpretation, particularly when utilizing functions that include
embeddings.

G Efficiency Comparison

Other than self-consistency our methods require additional computation, other than the initial genera-
tion to compute its results.

• Embeddings: The computational cost is moderate, as the BERT model utilized is of a
manageable size, keeping resource usage at a reasonable level.

• Centroid Proximity Weighting: This method is computationally inexpensive, as it relies
solely on mathematical operations without requiring extensive resources.

• Semantic Consensus Weighting: Similarly, this technique is computationally efficient due
to its reliance on lightweight mathematical computations.

• Outlier Detection: All three outlier detection methods employed are computationally
low-cost, ensuring minimal impact on overall performance.

Compared to baseline self-consistency, the performance loss is minimal on modern GPUs, with
the most computational effort still lying on the initial generation. Additionally, unlike other self-
improvement methods, our techniques don’t require an extra pre-training phase and can be applied
directly. As advancements in computational resources continue and smaller models grow increasingly
capable, we expect this concern to become even less significant.

G.1 Sampling from multiple temperatures

Baseline self-consistency samples of static temperature models often result in deterministic or overly
random outputs. We sampled from five different temperatures per generation finding that it provides
a wider range of outputs with a more diverse spectrum of answers and performs above average
compared to baseline self-consistency.

Method Avg. Accuracy (%)
baseline SC 46.50
Varied temp. SC (MV) 46.53
Varied temp. SC (weight) 48.54

Table 5: Weighted self-consistency with varying levels of abstraction improves performance over
baseline.

It is to note that higher temperature showed a degree of randomness that can lead to higher degenera-
tion. However this limiting factor can be mitigated when applied with inverse temperature weighting
and improve performance of up to 2.5%. The effect of different temperature sets can be found in
Appendix N.

G.2 Finetuned featurizers

The process of converting rationales into semantic embedding vectors was applied to multiple
featurizer-models at different forms of fine-tuning to measure the ability of models to effectively
convert sequences into fitting embedding vectors.

13



BERT-Model avg distance (↓)
RoBERTa 48.697
MathBERT 45.892 (-2.8)
SciBERT 45.281 (-3.4)

Table 6: Featurizers finetuned on similar distributions tend to pack answers more tightly together

The results revealed elevated results for SciBERT and MathBERT [29] when compared to RoBERTa.
This is likely due to RoBERTa’s general robust training where in contrast, both MathBERT and
SciBERT exhibit stronger performance3. We conjecture that this is due to their training data being
more representative of the reasoning tasks that we evaluate on here [30]. This observation suggests
that improper or "unfitting" fine-tuning reduces overall data point density, resulting in a loss of
information within the produced vectors, and consequently hindering subsequent marginalization
techniques [22].

G.3 Secondary semantic evaluation methods

The implementation of k-means clustering4 showed that regardless of the fact that reasoning can be
improved by detailed mappings, clustering didn’t attribute to enhance the quality of the semantic
evaluation. Additionally we reason this to be attributed to two limiting factors: We experimented
with a spectrum of values for the parameter k, with a significant emphasis on k=2 to ensure that the
clusters would still provide a sufficient amount of associated rationales with each cluster to utilize the
effect of self-consistency.

Table 7: Performance using k-means for outlier detection, with k = 2

Model AQuA-rat SVAMP SQA
Llama 2 24.16 42.47 47.60
Llama 3 46.06 72.33 17.6
Mistral 24.83 62.52 23.73
GPT 3.5 65.52 78.67 21.97
GPT-4o mini 83.46 89.62 36.68

Table 8: Averaged over 10 runs, clustering has shown volatility based on initial cluster placement.

This method implies that the predictions associated with the majority cluster are the ones for which
the model exhibits the greatest overall confidence. A detailed assessment of the found results can be
accessed in Appendix M.1.

H N-Gram Rationale Comparison

H.1 Rouge-N as a performance measure

Contrary to GPT 3.5’s performance in terms of accuracy, it under performs in comparison when
taking ROUGE metrics into account. As expected it excels in generating accurate, contextually
relevant responses but expressed responses more detailed in a more comprehensive fashion, leading
to lower ROUGE scores due to the strictly accurate less extensive rationale annotated in the dataset.
[16]
The other Models like Llama 2 7B and Mistral 7B produce higher scores. This might be related to
factors like style of writing and higher text length which although it leads to more comprehensive
embeddings lowers it’s score when compared with a metric like Rouge-N as visible in Table 3

3Tested on arithmetic samples only, due to their greater variability and problem-solving scope compared to
the more logic-bound and less varied nature of coding tasks and QA tasks.

4Averaged over 10 random states to ensure an representative example.
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Figure 2: Average Rouge-N Scores across StrategyQA, AQuA-RAT, and SVAMP for Different
Models

H.2 N-Gram weighting

N-Grams are often used for context understanding, aiding tasks like sentiment analysis and language
modeling In our study, we used N-Grams to weigh their impact on results, testing different ’n’ values
to see how they affect accuracy outcomes.

Table 9: Weighting results based on N-Gram overlap with n = 2

Model AQuA-RAT SVAMP
Llama 2 15.5 32.8
Mistral 16.7 47.1
GPT 3.5 25.3 63.9

The low accuracy and poor results, coupled with a degree of randomness in the result distribution,
indicate challenges in effectively correlating text using N-Grams. We experimented with different
values of ’n’ for N-Grams, aiming to improve performance, but encountered limitations. As depicted
in the table, the effectiveness of N-Grams varied, suggesting that the pure similar wording in rationales
cant be utilized in an effective way to improve or even stably perform similar to the baseline. Higher
values of "n" consecutively worsened results.

I Configuration & Parameters

I.1 Varying Response Count

Our analysis indicates that maintaining a minimum of 7-10 responses is crucial to achieving consistent
performance comparable to the baseline. When k is set to lower values, the performance gains
diminish, sometimes leading to completely random results with low accuracy. We expect that
increasing the number of responses could enhance the effectiveness of our methods, leveraging the
additional context and range of responses available to each weighting mechanism for improved
accuracy.
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I.2 Outlier detection Hyperparameters

I.2.1 k-nearest neighbor results

In the k-nearest neighbor (KNN) algorithm, parameters such as the number of neighbors
(n_neighbors), the distance metric (metric), and the algorithm used for computing nearest neighbors
were varied. The best-performing configuration in terms of accuracy was found with n_neighbors
set to 5, using the euclidean metric using the ball_tree algorithm and a threshold of 90% that
concluded to an averaged accuracy of 56.18% with all Models and Datasets.

I.2.2 Isolation forest results

For the Isolation Forest, the grid search varied parameters including the number of estimators
(n_estimators), the contamination factor, and the max samples size. The configuration yielding the
highest accuracy utilized n_estimators=200, contamination=auto, and max_samples=auto with an
performance of 58.56% averaged across all Models and Datasets.

I.2.3 support vector machines results

In the case of Support Vector Machines (SVM), the kernel type (kernel), the regularization parameter
(nu), and the gamma value were among the parameters adjusted. The most accurate results were
achieved with a linear kernel, nu set to 0.01, and gamma set to scale. The average accuracy was
55.17%

I.3 Model configuration

• top-k: 50
• top-p: 50
• sampling: true
• max-new-tokens: see Appendix I.4
• temperature: see Appendix J.1

Configurations may deviate slightly on GPT 3.5 & GPT4o-mini due to usage via the public API.

I.4 Token generation

We used a default of 250 max-new-tokens across all models on SVAMP, due to the complexity and
length of sequences on AQuA-RAT we chose 400 max-new-tokens. Humaneval is known to cause
degeneration after given stopwords, to limit potential faulty generation of new tokens to we set max
new tokens to 400. To ensure long enough reasoning chains we limited the generation on StrategyQA
to 450 tokens.

J Abstract consistency

J.1 Temperature sets

We tested our theory of abstraction on a variety of temperature sets and found that set 1 exhibits the
best balance between diversity and correctness in our examples. Therefore, it outperforms the other
proposed sets.

All other experiments have been conducted on a static temperature of 0.8 to aid reproducibility and
comparability between results and effects of the employed mechanisms.

J.2 Weighing abstract consistency

We propose several methods for weighing sequences from different temperatures. Additionally,
we employ a weighing system based on the inverse of the applied temperature. Furthermore, we
conducted tests using weighted squared inverse weighting on a small subset. However, these tests did
not yield substantially elevated results and performed on a similar margin.
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Set 1 (t) Set 2 (t) Set 3 (t)
0.9 0.7 0.5
0.8 0.6 0.4
0.7 0.5 0.3
0.6 0.4 0.2
0.5 0.3 0.1

Table 10: Each Temperature is tested on 1/5 of the samples per generation, to ensure an even
distribution.
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K Prompting

Previous work in self-consistency indicated that chain-of-thought yielded the most favorable outcomes
both in terms of accuracy and employed reasoning path. This strategy aligned well with the specific
requirements and objectives of a long and sensical reasoning path. Therefore, we chose not to
employ other prompting strategies as they did not match the required qualities as observed with
chain-of-thought prompting.

K.1 Used k-shot prompts

The used 8-Shot prompt for mathematical reasoning follows the example provided in pg. 43 and use
the on pg. 36 referenced set for AQuA on the AQuA-RAT dataset with of the original chain-of-thought
paper.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they
planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74
chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The
number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more from
dad, so in total he has 7 + 2 = 9 toys. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day,
from Monday to Thursday. How many computers are now in the server room?
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A: There are 4 days from Monday to Thursday. 5 computers were added each day. That means in
total 4 * 5 = 20 computers were added. There were 9 computers in the beginning, so now there are 9
+ 20 = 29 computers. The answer is 29.

Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost 2 more. How
many golf balls did he have at the end of Wednesday?
A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls. On
Wednesday, he lost 2 more, so now he has 35 - 2 = 33 balls. The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had $23 in
the beginning, so now she has $23 - $15 = $8. The answer is 8.

Proposed 4-shot on AQuA-RAT:

Q: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of
the numbers is?
Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 64
A: If 10 is added to each number, then the mean of the numbers also increases by 10. So the new
mean would be 50. The answer is (a).

Q: If a / b = 3/4 and 8a + 5b = 22, then find the value of a.
Answer Choices: (a) 1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e) 7/2
A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) = 22. This simplifies to 8a + 20a / 3 = 22, which
means 44a / 3 = 22. So a is equal to 3/2. The answer is (b).

Q: A person is traveling at 20 km/hr and reached his destination in 2.5 hr. Find the distance.
Answer Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50 km
A: The distance that the person traveled would have been 20 km/hr * 2.5 hrs = 50 km. The answer is
(e).

Q: How many keystrokes are needed to type the numbers from 1 to 500?
Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788
A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There
are 401 three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The answer is (b).

Our generation on Humaneval was conducted 0-shot using just the raw prompt given by the dataset.

L Datasets

We selected the datasets that are commonly used in similar methods such as baseline self-consistency
[33] and related work to simplify reproduction and comparison to ensure consistency in our results.

We use the recommended configuration splits for testing as suggested by default for each dataset. For
AQuA-RAT, our test set includes the full set of 254 examples. In the case of StrategyQA, we employ
the complete test split, which consists of 687 samples. Specifically, for SVAMP, we utilize the train
and test split comprising 1,000 samples to achieve a less noisy evaluation.

M K-means Clustering

Across our study we employed kmeans to cluster datapoints mapped by our featurizer model.

M.1 Clustering effects

Clustering has shown diminishing returns in terms of accuracy, however the herein provided evidence
shows that clustering with k-means provides a notable advantages which even tho the accuracy was
low can be used as a diagnostic tool and similarity measure
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M.1.1 Silouhette score

We used the silhouette score to evaluate clustering effectiveness. This score measures how similar an
object is to its own cluster compared to other clusters, ranging from -1 to 1.

Our obtained averaged silhouette score equals 0.41, suggesting a moderate level of distinction between
clusters. This range indicates that, on average, objects within a cluster are closer to each other than to
objects in other clusters, but the separation is not highly distinct.

This finding suggests that clusters are indicating a clear structure in sentence and wording of results
and due to Kmeans nature perform better on higher sample sizes.

M.1.2 Average correct datapoint proportion

Despite the fragility shown during evaluation on benchmarks, the k-means accurately categorizes
the majority of correct answer within the preponderant cluster, not only based on cluster size. This
implies that the method, even with limited data, captures essential patterns effectively.

High-performing models are more likely to adhere closely to the chosen method. This is because
when most answers are correct, there’s a lower chance of incorrect responses outweighing the correct
ones, which could lead to inaccuracies.

The shown results indicate a trend demonstrating that the selected cluster is more likely to feature the
majority of correct responses, with an average of 60.5%.

We witness the same strides towards higher sample sizes with the usage of k-means as already
conveyed in the original self-consistency paper, here larger sample sizes might be able to capture the
amount of correct answers in a more favorable manner due to their enabled potential for a higher
number of clusters, capturing more nuanced and subtle variations rather than the broad range of
responses.

M.1.3 Cluster density comparison

The primary cluster and the ostensibly weaker, later-disregarded cluster exhibit comparable perfor-
mance in terms of the average distance of the data points to its subsequent cluster centroid.

Table 11: Average Deviation for clusters

Method Model Chosen cluster Disregarded cluster

SVAMP LLAMA 2 2.037 2.567
SVAMP Mistral 2.981 3.800
SVAMP GPT 3.5 4.428 4.513
SVAMP GPT 4o mini 4.356 4.653
SVAMP LLAMA 3 4.562 4.569
AQuA-RAT LLAMA 2 0.838 0.670
AQuA-RAT Mistral 0.871 0.598
AQuA-RAT GPT 3.5 3.649 3.684
AQuA-RAT GPT 4o mini 2.134 3.082
AQuA-RAT LLAMA 3 3.235 3.163
StrategyQA LLAMA 2 2.741 3.215
StrategyQA Mistral 1.962 2.487
StrategyQA GPT 3.5 4.283 4.751
StrategyQA GPT 4o mini 1.869 2.935
StrategyQA LLAMA 3 2.864 3.124

N Abstract consistency on different temperature sets

Higher temperature in generative models introduces a degree of randomness that can negatively
impact performance by increasing degeneration in model outputs. However, this limiting factor can
be partially mitigated through techniques such as inverse temperature weighting. When applied
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perplexity = 2 perplexity = 7

Figure 5: T-SNE reduced image based on a test on a subset of arithmetic reasoning examples,
evaluated on 10, 15 and 20 generated outputs based on baseline self-consistency

appropriately alongside temperature variation. The benefits of higher temperature are not monotonic -
beyond an optimal level, continuing to increase temperature will again degrade performance. There
exists a sweet spot where judiciously elevated temperature and re-weighting allows models to produce
greater diversity without excessive degradation which we found to lay between t = 0.5 and t = 0.9.

O Dimensionality reduction

Dimensionality reduction did improve performance in edge cases, but it should not be relied upon for
consistent results and was generally unstable. We recommend that our methods be used without any
additional reduction to ensure more reliable and consistent outcomes. [26, 11, 15]

O.1 t-SNE

To enhance separation and clustering in t-SNE for data exploration and pattern recognition tasks,
we use a perplexity parameter of 2. This choice is based on the fact that local distributions in out
scenario provide a more informative representation than global distributions due to the increased
density of points in close proximity, which improves the detail captured in the mapping.

O.2 PCA

In our scenario, while PCA might be better under very specific random circumstances, such as when
linear relationships dominate the data, t-SNE is generally superior for visualization. t-SNE excels in
revealing complex structures and patterns by capturing local relationships, making it more suitable
for understanding the data visually.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Results and impact are discussed in the abstract, discussion and inside the
limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide an in depth acessment of our Limitations in our Limitations
Section, backed up by additional prove in the appendix and Ethical Considerations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions made are proven by results and theoretical frameworks and
formulars.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed overview over our results, model configuration and
dataset splits in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All datasets can easily be accessed, specific command environments are not
provided. With the information given about used formulars and featurizers, the code can
reproduced and tweaked for the specific usecase as intended.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our appendix aswell as our Dataset and Model section provide detail to the
configuration of models and dataset splits and usage.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use different methods to evaluate significance and discuss those in the
results and discussion.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We show our GPU usage in our Reproducibility statement and in certain parts
of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper is conform to the given guidelines. Nonetheless we discuss ethical
considerations and risks in the main text.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We show impact of our work in the Ethics statement and discuss usage of
Language Models.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our methods cant be exploited for misuse in such a scenario.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all owners, by citing their work and provide a detailed overview over
licenses for models and datasets, in the reproducibility statement.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We introduce no new assets. Details of Models, Datasets and Code are
provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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