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ABSTRACT

Deep reinforcement learning (RL) algorithms for continuous control tasks often
struggle with a trade-off between exploration and exploitation. The exploitation
objective of a RL policy is to approximate the optimal strategy that maximises the
expected cumulative return based on its current beliefs of the environment. How-
ever, the same policy must also concurrently perform exploration to gather new
samples which are essential for refining the underlying function approximators.
Contemporary RL algorithms often entrust a single policy with both behaviours.
However, these two behaviours are not always aligned; tasking a single policy with
this dual mandate may lead to a suboptimal compromise, resulting in inefficient
exploration or hesitant exploitation. Whilst state-of-the-art methods focus on alle-
viating this trade-off between exploration and exploitation to prevent catastrophic
failures, they may inadvertently sacrifice the potential benefits of optimism that
drives exploration. To address this challenge, we propose a new algorithm based
on training two distinct policies to disentangle exploration and exploitation for
continuous control and aims to strike a balance between robust exploration and
exploitation. The first policy is trained to explore the environment more optimisti-
cally, maximising the upper confidence bound (UCB) of the expected return, with
the uncertainty estimates for the bound derived from an approximate Bayesian
framework. Concurrently, the second policy is trained for exploitation with con-
servative value estimates based on established value estimation techniques. We
empirically verify that our proposed algorithm, combined with TD3, SAC and
REDQ, significantly outperforms existing approaches across various benchmark
tasks, demonstrating improved performance.

1 INTRODUCTION

An important phenomenon in reinforcement learning (RL) that has a complex relationship with the
trade-off between exploration and exploitation (Sutton & Barto| 2018)) is the overestimation bias
(Thrun & Schwartz, 1993} |Lan et al., 2020). State-of-the-art actor-critic RL algorithms propose to
alleviate the overestimation bias to achieve better performance (Kuznetsov et al., [2020; Chen et al.,
20215 |[Hiraoka et al., [2022), because it is often less catastrophic to underestimate the bias rather
than overestimate it (Hasselt et al., 2016} [Fujimoto et al.| 2018)). On the other hand, this bias may
be viewed as a form of optimism in the face of uncertainty, potentially encouraging the policy to
explore and take actions that may have benefits in the long run.

The trade-off between exploration and exploitation stems from demanding two distinct behaviours
from a single policy. These two behaviours may often be in direct conflict; effective exploita-
tion typically demands a near-deterministic adherence to high-value actions according to its beliefs,
whereas effective exploration necessitates stochasticity and a willingness to probe seemingly subop-
timal pathways. To tackle this problem, prior works have considered disentangling policies for ex-
ploration and exploitation whilst adding other techniques, such as incorporating exploration bonuses
(Colas et al.,[2018; Whitney et al., 2021} |Schifer et al., 2022)) or using an Upper Confidence Bound
(UCB) style exploration (O’Donoghue et al., 2018} |Ciosek et al., 2019), or use disentangled policy
trained for evaluation with off-policy RL and distribution correction (Li et al., [2022).

This work is focused on continuous control tasks. Recent works suggest that state-of-the-art RL
algorithms might have been leading to too conservative value estimates, thus resulting in insufficient
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exploration of the environment, especially during the initial stages of training, and suggest to amend
algorithms with some optimistic value estimations (Ji et al., 2024} (Omura et al., |2025). However,
calculating optimistic value estimations is usually not straightforward for algorithms designed for
continuous control tasks. Instead, recent works have taken inspiration from offline RL (Ji et al.,
2024} (Omura et al., [2025)), calculates the Bellman Optimality Operator using samples from the
replay buffer.

Our proposed algorithm tackles the problem rollout data {s¢, az, s},7¢}
from another direction. We introduce two dis- v

tinct policies following the generic framework -
of disentangling policy learning; one trained
to explore the environment optimistically and D
one trained to alleviate the overestimation bias

[ update J [ update J
timates from the replay buffer (i.e. the Bellman Trtask Texplore
Optimality Operator), by disentangling the ex- maximise task  maximise UCB-based
ploration and exploitation policies, we may nat- reward objective

by using conservative value estimates. Further-
more, instead of calculating optimistic value es-
urally introduce optimistic state-action pairs di- interact \/
rectly into the replay buffer.

stochastically select

Our main idea is that we may utilise an ap- every timestep

proximate UCB to introduce more optimistic |
Q-value estimates to steer the exploration pol-
icy. We may achieve efficient exploration that
cannot be achieved by simply using Gaussian noise exploration as is commonly done. Furthermore,
our approach deviates from employing a weighted average of the optimistic and conservative Q-
value estimates. We propose to stochastically sample from and alternate between the optimistically
and conservatively trained policies during the training process. The main motivation for this design
is to ensure that a capacity for exploration is retained throughout all stages of learning. This allows
the policy to periodically engage in optimistic behaviours even late in the training, further preventing
premature convergence to a purely exploitative policy. The schematics of our proposed method is in

Figure[I]

Figure 1: Schematics of our proposed method.

We term our proposed method BOXD (Bayesian Optimism eXploration with Dual Policies).
The main contribution of this work is as follows.

* We propose an algorithm that disentangles exploration and exploitation policies based
on the Bayesian UCB principles for continuous control tasks. We utilise dropout in
the Q-functions to estimate its epistemic uncertainty, and show that by calculating the
maximum of Q-functions we may approximate UCB.

* We propose to stochastically sample from and alternate between the optimistic and
conservative trained policies during the training process, via an annealing policy con-
ditioning scheme, to create a mixture of optimistic and conservative samples in the
replay buffer.

* We demonstrated that BOXD built on top of TD3, SAC and REDQ achieves consider-
ably better performance than widely used algorithms in continuous action tasks. We
argue that this outperformance stems from the usage of more optimistic exploration
introduced by the disentangled exploration policy.

2 PRELIMINARIES

A standard RL problem is defined as an infinite-horizon Markov Decision Process MDP = (S, A,
P, R, v), where the RL agent at time ¢ observes a state s; from a set of states S, chooses an action
a from a set of actions A, and receives a reward r according to a mapping of the reward function
R,r:S x A— R. The environment then transitions into a state s;41 with a transition probability
function P(s:41]8¢, a;) and the interaction continues. We also define the replay buffer D containing
the state, action, reward, and next state at timestep t as D = (s, as, 7, St+1). The objective of
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an RL agent is to maximise the discounted expected return E,[>,~ 7R (8¢, ar)], which is the
expected cumulative sum of rewards when following the policy in the MDP, and the importance of
the horizon is determined by a discount factor v € [0, 1). Consequently, the goal is to find a policy
« that maximises the discounted expected return.

The Bellman Equation. In continuous RL, the Bellman equation (Richard, [1957; [Sutton & Barto,
2018) play a fundamental role in defining the iterative updates for value functions in MDPs. For
a given policy 7, the Bellman equation describes a fundamental relationship between the value
of a state-action pair (s,a) and the value of the subsequent state-action pair (s’,a’): Q(s,a) =
74+ YE (s o) [Q(s', a’)], where @’ ~ 7(-]s"). In an actor-critic setting, the learning target value y is
setas: y =1+ yQu(s',a’), @’ ~ w(:|s") and the critic objective minimisation is often calculated
using Mean Squared Error (MSE) as E(y — Q4 (s,a))?.

Bayesian Optimisation and the Upper Confidence Bound. In Bayesian optimisation, the objec-
tive function f(x) is assumed to be unknown, and the goal is to identify optimal * € X that
maximises f(z), given a set of observations {x;,y;})¥.; where y; = f(z;). The main challenge
in Bayesian optimisation lies in effectively exploring the parameter space X whilst collecting infor-
mative samples. To this end, candidate points are typically selected by maximising an acquisition
function U(x). A widely used acquisition function is the upper confidence bound (UCB), defined
as

U(x) = u(x) + co(x) (1)

where u(x) and o(x) denote the predictive mean and standard deviation of f(x), respectively, and
c is a trade-off parameter and its strength may determine the the strength of the more optimistic or
conservative estimation.

In classical reinforcement learning, it has been noted that exploration using UCB often performs
well in discrete state—action spaces Sutton & Barto| (2018). However, in continuous state—action
spaces, estimating the mean and standard deviation of the expected return is non-trivial, and there-
fore exploration based on the UCB principles is not readily employed in recent deep RL methods.

Using n Q-functions. Contemporary actor-critic reinforcement learning algorithms for continuous
control are predicated upon training an ensemble of n independently initialised Q-functions (); for
j = 1,2...n. For the computation of the target value y, the minimum value amongst these functions
is employed: y = r + v min;—; _, Q,(s’,a’),a’ ~ =(-|s"). This calculation engenders more
conservative Q-value estimates (Hasselt et al., 2016; [Fujimoto et al.| 2018} |[Ciosek et al., 2019;
Haarnoja et al.| 2018} |An et al., 2021} Chen et al., 2021} |[Hiraoka et al., [2022)) in order to mitigate
overestimation bias.

3  MOTIVATION: PRELIMINARY EXPERIMENTS

To provide an empirical example, we conducted Simple MDP Quvalue estimates
an experiment in an illustrative toy environ-
ment, as depicted in the left side of Figure [2]
with the goal of evaluating the convergence
rate of training Q-values towards their opti-
mal values. A reward 7y is obtained upon
reaching state si, whilst the episode termi-
nates when the agent reaches either state sg
or s4. For this simplified scenario, the dis-
count rate 7y is set to 0.9. Both the Q-values
and the policy logits 0, , are stored in re-
spective tabular tables, and we use two dif-
ferently initialised Q-tables. The UCB is cal-
culated as the variance between the two esti-
mates, as shown in Equation @) The Q val-
ues were updated using a temporal difference
rule analogous to that of SARSA: Q(s,a) «
Q(s,a)+a(r+Eqx[Q(s',a')]), whilst the
policy was updated using a policy gradient

Figure 2: Left: A simple toy environment
MDP. Right: The estimated values of Q(sg, ao)
and Q(so, a1 ) when using tabular actor-critic with
a SARSA-based critic update, UCB-based update
and annealing update. In the right sub-figure, the
learning curve including the UCB may approxi-
mate the optimal value more swiftly.
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method (05, < 05,0 + aVglogm(als) Q(s,a)), where o represents the step size. Some addi-
tional details about this toy example can be found in Section

We train two tabular Q-tables to learn the optimal Q-value for each states in the MDP in an ideal
scenario (right sub-figure) without modelling noisy functional approximators. We calculate the
Bayesian UCB based on the mean and the variance of two Q-tables. To obtain the best of both
worlds,we also include a scheme where Q*™dling — ¢pQUCB (1 — 1)) QSARSA that transitions from
UCB to SARSA Q with w decays linearly from 1.0 to 0.0.

As demonstrated in the right sub-figure in Figure 2] we may observe that SARSA-based Q updates
(in grey) are less biased but potentially sacrifices convergence rate. By performing UCB-principled
optimistic estimation (in red), we may obtain faster convergence to the optimal Q-value, potentially
improve sampling efficiency. it is natural to use some kind of transition from optimistic UCB Q
values into the less biased SARSA Q-values (in blue), as shown in the left sub-figure.

4 BAYESIAN OPTIMISM LEARNING WITH DUAL POLICIES

Our proposed method, Bayesian Optimism eXploration with Dual Policies (BOXD), entails train-
ing two distinct policies: an optimistic policy 7*P'°"® and a conservative policy 7. The optimistic
policy is trained by approximating the Bayesian UCB principles. Furthermore, each policy is associ-
ated with a distinct set of Q-functions, designated as Q°*P°" and Q'*** respectively. Unless specified
otherwise, QP is assumed to comprise an ensemble of n Q-functions, and Q™ contains two
Q-functions.

We describe how the exploration policy 7P is trained below. The conservative policy 7 is

trained in direct accordance with the chosen base algorithm (e.g. TD3 (Fujimoto et al.,|2018), SAC
(Haarnoja et al., 2018)) or REDQ (Chen et al.,|2021))). The pseudocode of our proposed algorithm is
presented in Algorithm T}

4.1 OPTIMISTICALLY TRAINED EXPLORATION POLICY

Our goal is to estimate the mean and standard

deviation of the Q-function in order to calcu- 800
late the UCB for a more optimistic Q-value es-
timation. However, in practice, directly approx- 700
imating the mean and standard deviation of the
Q-function is not straightforward. 500

Specifically, assume two samples are gener-
ated as Gaussian Q1,Q2 ~ N(u,0). Al-
though computing the mean and standard de-
viation from the generated samples is relatively
simple, determining the optimism parameter in
the UCB may be computationally expensive. 200
That is, in OAC (Ciosek et al., [2019) and TOP

@
3
3

IQM return
I
8

oac

red
(Moskovitz et al.|[2021])) the trade-off parameter . — redg+BOXD
c in UCB is done by training/tuning additional — Soo+BOXD
networks. To address this, we exploit the prop- - tsda13c+DERL
erties of samples drawn from a Gaussian distri- td3+BOXD
bution. It is known that max(Q1, Q2) follows i — ¥22+DERL

an extreme value distribution, and its expecta-
tion is given by ° ” " env int;rsactions * * 30196
Figure 3: Best averaged IQM for 11 DM Control
Emax(Q1,Q2)] = p+ —, (2) tasks of our proposed method versus baselines.
va Our proposed algorithm significantly outperforms

where 7 is the circle constant (Arnold et al., baselines.

1992). Leveraging this relationship, the UCB
acquisition function may be approximated without the need for explicitly estimating the mean and
standard deviation.
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This relationship in equation 2] may be generalised to the maximum of n samples. Each Q-function
may be reformulated as Q;(s,a) = u(s,a) + o(s,a)Z;(s,a) where Z; ~ N(0,1), the expected
value of the maximum taken across an ensemble of n Q-functions may be expressed as:

E[InaX(Ql(Saa)vQ2(Saa)v'“7Qn(saa)ﬂ (3)
= Elmax(u+ oZ1(s,a),u + 0Z5(s,a), ...+ 0 Z,(s,a))] 4
= p+ Emax(Zy,,...,Z,)]o(s,a) )
=p+ / 2-n[®(2)]" o (2) dz o(s,a) (6)
~ o+ o1 (7;1%?’2755) o(s,a), from (Bloml [1958;|Arnold et al.| [1992])

where ®(z) denotes the standard normal cumulative distribution function (CDF) and ¢(z) denotes
the standard normal probability density function (PDF).

Practically, inspired by DroQ (Hiraoka et al., [2022), a recently proposed actor-critic algorithm that
add dropout (Srivastava et al., 2014) into Q-functions, we model the Q-functions as stochastic func-
tions by introducing dropout layers. We may view this use of dropout as a Bayesian approximation
in Gaussian Processes (Gal & Ghahramani, 2016). Each estimate, utilising a different randomly
generated dropout mask, effectively draws a sample from an approximate posterior distribution over
the network’s weights.

By estimating each Q-function @), for k times, both p(s, a) and o(s, a) may be more stably esti-
mated and tuned. By the derivations in Equation (3), with a’ ~ 7*Pl(.|s") we therefore train our
optimistic policy 7P by taking the maximum as:

QR (s, a') = max(Ex[QT™(s', ), B [Q5™" (s, )], . Ex QP (s', a)]), (D)

where E;[Q<"'(s’, a’)] denotes the mean of the k estimates sampled from the j-th Q-function

j
Q%P These estimated Q-value estimates may therefore be leveraged to construct further opti-

mistic Q-value estimates, formulated in accordance with the UCB principle, to guide the exploration
policy m°*Pl°" The respective target value y becomes:

y=r(s,a) +v QR (s, ') ®)

Whilst the UCB exploration constant c is typically tuned to balance exploration and exploitation
in Bayesian optimisation, in our framework the degree of optimism in the Q-value estimates can
instead be controlled by the number of Q-functions n in the ensemble, as well as by the number
of estimates k generated by each @); function. A comprehensive description of all implementation-
specific details is provided in Section|[C}

4.2 ANNEALING POLICY CONDITIONING WHEN INTERACTING WITH THE ENVIRONMENT
The interacting policy 7 is chosen between 7P and 7'® at each timestep, instead of exclu-
sively employing the optimistic policy m®*P!® to interact with the environment. We propose an an-
nealing scheme to govern this process, designed to balance the needs of exploration and exploitation
during learning. This scheme begins by utilising the exploratory policy 7P at the early stages of
training to ensure a rich and diverse set of samples are included in the replay buffer, before gradu-
ally transitioning to the more conservative task policy 7% as learning progresses. This transition is
governed by a threshold s, which increases linearly over the course of training in Equation (9).

Given a maximum training duration of 7" timesteps and |- | denoting the floor function, our proposed
annealing policy conditioning at the current timestep ¢ is expressed as:

7Texplore if p>s

griask otherwise

10¢
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Algorithm 1 BOXD

Initialise policy networks 7P and 73“"51‘, N Q-function parameters ¢;, j = 1,..., N, and empty
replay buffer D. Set target parameters ¢; < ¢;, forj =1,...,N.

while initial collection steps <t < T do

Take action a; ~ 7°(-|s;) according to annealing policy selection Equation (9). Observe reward
4, next state s;y1; D < D UJ(s¢, ag, e, Ser1).

Sample a mini-batch B = {(s;, a;, i, s;)}¥_; from D.

explore

" Update optimistic critic @

explore

Compute the target value for @, by sampling & times (Equation ):

PP =y maiy o ERIQSP(shal)], ] ~ mo(]s])

e N e G | B Rt

Update Q?plore by minimising N~ SN (52 — Q;Xplore(si, a;))?

I« Update conservative critic ka

Compute the target value for Q;‘;‘Sk:

it =y mingoy, v @ (si,a7), af ~ ()

Update Q4™ by minimising N~ Y71 | (5 — Q4% (s;, a;))?

"« Update optimistic policy 7' via base algorithm using Q°*P'ore

"4 Update conservative policy 7* via base algorithm using Q'

"« Update target networks if applicable, depending on the base algorithm

end

As a result, the replay buffer D becomes populated with a mixture of state-action pairs originating
from both optimistic and conservative policies. This consolidated replay buffer is subsequently
utilised for the training of both the Q°*P°" and Q" ensembles.

This cross-collection of state-action pairs compels the conservative Q-functions to account for poten-
tially high-reward exploratory actions, whilst simultaneously grounding the optimistic Q-functions
with samples from more reliable trajectories, thereby enhancing overall learning stability. The key
advantage of this methodology is that it yields less exploitative samples than would arise from inter-
acting with the environment exclusively on samples from 7'**, whilst producing a more tempered
UCB compared to one trained solely on samples generated by e*Plore,

5 EXPERIMENTS

In this section, we empirically evaluate the performance of BOXD, comparing it to previous related
online RL approaches on a variety of challenging tasks. We show that BOXD outperforms previous
baselines. We also provide analyses on BOXD’s design choices and including ablation studies in
the appendices. Detailed hyperparameters and implementation details used in our experiments are
shown in Section[Cl

5.1 EXPERIMENTAL SETUPS

Baselines. The proposed algorithm, BOXD, is implemented upon the foundations of three widely
used benchmarking algorithms for continuous control: TD3 (Fujimoto et al.||2018), SAC (Haarnoja
et al.,|2018)) and and REDQ (Chen et al., |2021)), whilst adding dropout (Srivastava et al., |2014) and
layernorm (Ba et al., |2016) into Q-functions, following DroQ (Hiraoka et al. 2022)). For all our
algorithms, a uniform dropout rate of p = 0.001 is applied to all tasks.

In addition to direct comparisons with these base algorithms, we provide a comparative performance
analysis against three other related methods. The first is an approach analogous to DERL (Schéfer
et al. [2022), a framework which is conceptually similar in that it also disentangles exploration and
exploitation policies whilst adding exploration bonuses to the exploration policy. For DERL, we
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Figure 4: The IQM return for each task in DM Control of our proposed method versus baselines.
Our proposed method generally achieve the best or near-best performances, whilst significantly
outperforms in some tasks such as fish-swim, hopper-hop, humanoid-tasks and quadruped-walk.

also combine it with both TD3 and SAC, whilst for the exploration bonus we used RND
2019). The second is OAC (Ciosek et al., [2019), a SAC-based algorithm notable for its use
of optimistic Q-value estimation by UCB principles whilst addressing the directionally uninformed-
ness of action sampled from the policy. The third one is TOP (Moskovitz et al] [2021), the source
of optimism behind a more advanced state-of-the-art algorithm BRO [Nauman et al.| (2024), is an
approach similar to OAC by learning the optimistic trade-off hyperparameter ¢ by framing it as
multi-arm bandit problem.

Benchmark and Evaluation Method. We evaluate on 11 challenging tasks in the commonly used
benchmark DeepMind Control (DM control) Suite (Tunyasuvunakool et al., 2020), where the maxi-
mum achievable return for these tasks is 1000. To show the efficacy of BOXD, we separately report
4 hard dog tasks also from DM-control and 2 sparse-reward manipulation tasks from gymnasium-
robotics (de Lazcano et al [2024). For manipulation tasks, we report the success rate. We train 10
seeds, seeds= {0,1,2,3,4,5,6,7,8,9}, for all tasks and train for 3 million timesteps whilst eval-
uating every 10000 timesteps. We run 20 episodes for each evaluation, and calculate inter-quantile
mean (IQM) with shaded area as the IQM-std (the std of inter-quantile samples) according to best
practices (Agarwal et al.},[2021)). The results are shown in the next subsection.

5.2 RESULTS AND Q&AS

Our experiments aim to answer the following questions.

Q: What is the performance of BOXD for DM-control benchmarking tasks ?
A: Our proposed BOXD achieves the best or near-best performance on most tasks, especially in
tasks where state space is larger and more exploration is desired.

The aggregated averaged IQM return across 11 tasks in DM Control is shown in Figure 3] and the
IQM return for each task are shown in Figure El Compared with baselines, we find that BOXD
generally achieves better performance or near-best with benchmarking methods. Especially in the
hopper tasks and humanoid tasks, the IQM return of our proposed BOXD (paired with TD3, SAC
and REDQ) significantly increases. We hypothesise that this is because these tasks have larger state
dimensions, thus requiring stronger exploration mechanism in the algorithms. Whereas for cheetah-
run, we hypothesise that a single mode is sufficient to achieve strong performance, therefore stronger
exploration mechanism is not helpful for this task.
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Figure 5: The IQM return for 4 hard dog tasks in DM-control and 2 sparse-reward manipulation
tasks in gymnasium-robotics. Our proposed BOXD outperforms baseline algorithms by a large
margin in both harder dog tasks and sparse-reward manipulation tasks.

OAC may achieve good performance on certain tasks such as cheetah-run, but underperform in some
tasks such as hopper-hop. DERL paired with TD3 does not exhibit strong performance, whilst its
SAC counterpart struggles at similar tasks as OAC such as hopper-hop. On the other hand, BOXD
works well with both deterministic policy TD3 and stochastic policy SAC, REDQ.

An interesting phenomenon may be observed that in the humanoid-run, humanoid-stand and
humanoid-walk tasks. Our proposed method exhibits a delayed performance improvement when
compared to the SAC baseline. For these tasks, this initial performance lag suggests that the sam-
ples collected during the early, exploration-focused phase do not yield immediate benefits for ex-
ploitation. However, these exploration samples prove to be important in the later stages of training.
Collectively, these findings underscore a key insight: enhancing the exploratory process during the
initial phases of training may ultimately lead to superior asymptotic performance and improved
overall sample efficiency.

Q: What is the performance of BOXD for DM-control dog tasks and sparse-reward tasks?
A: Our proposed BOXD achieves the best or near-best performance.

On these tasks, we trained our proposed BOXD using default settings (n = 2, £ = 2). For dog
tasks, BOXD outperforms baselines by a substantial margin, achieving state-of-the-art performance
whilst being much simpler to implement compared to other state-of-the-art algorithms that incor-
porates complex components (Nauman et al.} 2024} [Lee et al} 2025)). For the harder sparse-reward
manipulation tasks, i.e. PointMaze-Large, our proposed BOXD can generate successful episodes
whilst baseline algorithms fail to do so. The IQM return/success rate for each task are shown in
Subsection[3.2]

Q: What is the effect of annealing policy conditioning? Can we not just use 7¢*Plor¢?

: We can, and it performs well in general. However, without transitioning from the exploration
A: W d it perfa llin g 1. H thout t t g fi the explorat
olicy 7 o the exploitation policy 7'** (i.e. annealing policy conditioning), the performance
policy 7P to the exploitation policy 7'k ling policy condit g), the perf
will saturate at some point.

To verify the effectiveness of our proposed annealing policy conditioning, we trained additionally
on all tasks with four more patterns. Firstly, with no conditioning, where we always use 7P ag
acting policy m (i.e. setting s = 0 as threshold, noted as 100-0); secondly, a fixed 10% probability
to use 7 for sampling the action policy 7 (i.e. setting s = 0.1 as threshold, noted as 90-10);
a 50% probability (i.e. setting s = 0.5 as threshold, noted as 50-50) to choose between 7% and
2 and finally a purely linear annealing conditioning with s = /7. The aggregated averaged IQM
return over all 11 tasks is shown in Figure[6] and individual performance for each task and be found
in Section[F} For these experiments, we use fixed k£ = 2 and n = 2 for easier comparisons.

We may observe in Figure [6] that without the annealing conditioning strategy, the performance will
stagnate or decay at the later stages of the training. We hypothesise that this is because the re-
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play buffer will contain fewer samples that are aligned with exploitation objective, whilst having
too much exploration-aligned samples. Some form of transitioning from 7P to 7k may be
beneficial, also shown in the toy example Section[3] To our surprise, a strategy of 50-50 proba-
bility sampling between the two exploration and exploitation policies performs remarkably well.
Nevertheless, even without the annealing conditioning strategy, our proposed method outperforms
baseline algorithms.

Q: What are the important hyperparameters of BOXD?
A: The most important hyperparam-

eter is the number of sampling = W
times, k, for the Q-value estimates. /'*“"‘"‘ Gl My,

. . . i '
In geperal, setting it to k = 2 is PRI i’ 7
sufficient. 4 i
500 i 500 f“/
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conservative counterpart, Qj , asin-

gle sample is employed (i.e. k = 1),
a configuration consistent with stan-
dard practice in related algorithms
when dropout is used (e.g. DroQ

raoka et al, [2022)). The second hy-

Figure 6: The average IQM for 11 DM Control tasks of our
proposed method with or without annealing conditioning.
Left: TD3-based. Right: SAC-based. Our proposed an-
nealing strategy proves to be important. No conditioning or
fixed conditioning show performance saturation.

perparameter related to optimism is
the number of Q-functions n used in calculating the optimistic Q-value estimates. Generally we
find that setting n = 2 (i.e. the same as Q) is a good start.

We provide a comprehensive ablation studies regarding the number of critic samples k£ and the
number of Q-functions n. We stress that there is not much need to tune hyperparameters for each
individual tasks, as the default performance already outperforms baselines. For completeness, the
result using default hyperparameter values (n = 2, k = 2) are also shown. Additionally, the dropout
rate can also affect performance. An ablation study of the influence of dropout rate is included.
Please refer to Section[Dlfor these ablation studies.

Q: What about more recent state-of-the-art algorithm, such as BRO?

A: Comparing directly with BRO (Nauman et al.l [2024)) is not so straightforward because BRO
employs a much larger and deeper networks, and since our proposed method mainly address how the
optimism is encouraged, to ensure fairer comparison we compare with BRO’s optimistic component,
namely TOP (Moskovitz et al] 2021). The results are included in Figure ] For more details,
please refer to Section [C] For completeness, we also provide comparison directly with BRO in
Section [E] showing that BOXD can achieve best or near-best performance whilst having less than
half computational costs, shown in Tablem

Q: What are the computational costs?

A: We perform computational cost calculations comparing BOXD with baseline algorithms on one
of the tasks, walker-run in a P-100 GPU in Table[I] As expected, the training time of our proposed
method is approximately twice of the baseline we built on, since we have two copies of networks.
However, our training time is still faster compared to BRO (Nauman et al. [2024) which use much
deeper networks for their critic networks. We show in Section [E] that BOXD can achieve near-best
performance compared to BRO, whilst using approximately half of the computation cost.

Table 1: Reference computational cost on walk-run. Our proposed method can achieve similar
performance as BRO in approximately half of the training time.

TD3
11hrs

TD3-BOXD
18hrs

SAC
12hrs

SAC-BOXD
20hrs

TOP
13.5hrs

BRO
36hrs

algorithm
approx. time
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6 RELATED WORKS

Disentangle Exploration and Exploitation. Several works have previously explored the idea of
disentangling exploration and exploitation policies by adding exploration bonuses to the exploration
policy DERL (Schifer et al.| [2022), GEPPG (Colas et al., [2018); by training/tuning a trade-off
parameter ¢ in UCB principles (OAC (Ciosek et al.} [2019)), (TOP (Moskovitz et al.|, [2021)); or by
changing different objectives (DEEP) (Whitney et al.| 2021). The work of [Beyer et al.| (2019)) is
similar to ours where they train multiple policies and choose different policies to interact with the
environment. Our work mainly differ from these lines of work in the way exploration is encouraged.
Our work proposes to leverage Bayesian principles by taking the maximum of dropout-enabled Q
functions, which is significantly easier to implement and tune compared to the learnt optimism in
DERL, OAC and TOP.

In meta-RL, (Liu et al.| | 2021; Norman & Clunel |2024) decouples exploration and exploitation poli-
cies where exploration and exploitation is not done concurrently rather as a prerequisite for meta-RL
tasks, whilst (Liu et al.}|2021) constructed separated exploitation objective from exploration, whilst
automatically identify and recover task-relevant information. Similarly, in offline RL settings, Mark
et al. (2023) experimented using offline data to enable faster exploration in online RL settings, dis-
entangling exploration and exploitation in terms of phases of training. Furthermore, decoupling
policies is also considered in multi-arm bandit problems (Avner et al. [2012). Our work not only
differ from these works in the aforementioned way of encouraging exploration, but also in that our
work is done in pure online RL settings without meta-RL.

Optimistic state-action value estimates. One line of work is to integrate ideas from offline-RL
algorithms to obtain more optimal Q-value estimates. In particular, (Ji et al., 2024} |Luo et al., [2024;
Omura et al.} 2025) adopted IQL (Kostrikov et al.,2022) to learn the Bellman Optimality Operator,
which are known to accelerate training speed albeit being more biased compared to the Bellman
SARSA Operator. These works offer different strategies to blend them into policy updates, by either
merging the estimates (Ji et al., 2024) or use an annealing schedule (Omura et al) 2025). Our
work differs from these line of work, where we trained disentangled policies and use them to obtain
mixture of both optimistic and conservative state-action pairs into the replay buffer, whilst they use
the conservative replay buffer to estimate optimal values. These works, similar to ours, introduces
additional networks for training.

7 LIMITATION AND CONCLUSION

This work introduces BOXD, a novel algorithm predicated on the principle of disentangling explo-
ration and exploitation. Our proposed method leverages the established interpretation of dropout as
a Bayesian approximation, allowing for the quantification of epistemic uncertainty from the model.
Utilising the UCB principle, we propose training a dedicated exploration policy 7P guided by
an UCB that may be directly estimated from this uncertainty, thereby enabling a more effective ex-
ploration of the state-action space. Furthermore, we propose a strategy to annealing condition which
policy to use to interact with the environment. This annealing strategy may improve stability by in-
troducing both exploration and exploitation samples into the replay buffer directly. We have shown
that our proposed method significantly outperforms baselines and related works in challenging tasks.

A primary limitation of our proposed BOXD stems from the additional computational costs. This
overhead is a direct result of: 1) the k estimates required to compute the maximum due to different
dropout masks; 2) maintaining a separate neural network for the optimistic policy 7®'°"; and 3)
maintaining the corresponding ensemble of n of Q-functions Q°*P°", Whilst our empirical results
demonstrate that effective performance may be achieved with a minimal number of these functions
(i.e., k=2, n=2), the introduction of these supplementary networks inevitably increases both memory
and computational requirements. One potential future work direction is to incorporate more sophis-
ticated strategies to sample the optimistic and conservative samples from the replay buffer, such
as using Prioritised Experience Replay (PER) (Schaul et al.| |2015)) or Hindsight Experience Replay
(HER) (Andrychowicz et al.,2017), in order to further make use of these optimistic and conservative
samples obtained by disentangling exploration and exploitation policies. Another potential future
work is to blend the optimistic and conservative value estimates directly into updating Q values and
build directly upon our work.

10
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REPRODUCIBILITY STATEMENT

We implement our method in JAX (Bradbury et al.,|2018)). Details on implementation including the
hyperparameters helpful for reproduction of our method are included in Section[C] A comprehensive
ablation study of design choices may be found in Section|[D} We have also included the source code
used for our experiments in the supplementary material for reference.
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A LARGE LANGUAGE MODELS USAGE DISCLOSURE

We have utilised Large Language Models (LLM) in the writing of this work to help with word
polishing and grammar checking.

B PRELIMINARY EXPERIMENTS DETAILS

In the preliminary toy experiment in Section [3] we compared SARSA-based updates in actor-critic
models using the environment shown in left sub-figure of Figure [2] We compared the optimistic
UCB Q-values and the annealing counterpart to the default SARSA-based update. The critic stores
the estimated Q-values for each state-action pair in a table and updates them based on either UCB or
SARSA. The policy manages logits for each state-action pair in a table, calculates the distribution
using the softmax function, and samples actions from this distribution. The policy may be expressed

as follows:
exp (Gs,a)

N ; exp (95,17)

The update of these logits is performed using the policy gradient method, with the update equation
given as follows:

mo(a | s) (10)

0 «+ 6 + aVlogmg(as | st) Q(se, ar),
Vo, . logmg(a | 8) = 0a.ar — mo(a’ | s),

(1)

where 4, o is the Kronecker delta. The step size « used for updates in both the critic and the policy
was set to Se-4. This step size was chosen because it yields smoother learning curves. Whilst
increasing the step size accelerates learning, the observation that UCB-based updates can converge
faster than SARSA-based updates remained consistent. The initial state was randomly selected from
S0, S1, and so with equal probability. Additionally, a probability of 10% of taking random actions,
akin to an e-greedy policy, was introduced. We run the toy example for 20 times, and plot the mean
and the std of Q-table.

C EXPERIMENTS IMPLEMENTATION DETAILS & HYPERPARAMETERS

Our implementation and experiments are done in JAX (Bradbury et al.| 2018). Specifically, the
versions of important libraries we use in our experiments are: JAX 0.4.30, (Bradbury et al.,|2018),
MuJoCo 3.3.5Todorov et al.|(2012), Deepmind Control Suite 1.0.31, (Tunyasuvunakool et al.,[2020)
and gym 0.23.1 (Brockman et al.| [2016). Nevertheless, we do not expect a lot of empirical perfor-
mance even if the library versions do not follow exactly ours.

Shared across all algorithms. The replay buffer size is set to 10°, and the discount factor  is set to
0.99. The target update rate 7 for target network(s) is 0.005. We have initial random collect steps of
10000. To ensure a fair comparison, all methods employ a batch size of 256, and all neural networks
used two hidden layers consisting of 256 units each. All methods use ReLU (Agarap, [2018) as
activation function. We use Adam (Kingma & Bal 2015) as optimiser for all neural networks with
the learning rate set to 0.0003.

TD3, SAC and REDQ. For baselines, TD3 (Fujimoto et all [2018), SAC (Haarnoja
et al [2018) and REDQ are both implemented closely following excellent public repos-
itories such as JAXRL https://github.com/ikostrikov/jaxrl, high-replay-ratio
(D’Oro et al, 2023) https://github.com/proceduralia/high_replay_ratio_
continuous_control and annealing-q-learning (Omura et all [2025), (https://github.
com/motokiomura/annealed-g-learning). We use the default hyperparameters pro-
vided in these algorithms. That is, in REDQ, default usage is to randomly select 2 critics from
10 critics to calculated the target y;, whilst updating the critic loss from all 10 critics. For REDQ,
all training is using n = 2. Additionally, whilst REDQ was originally developed for higher update-
to-data (UTD) settings, we set UTD=1 for our experiments.

BOXD. Our implementation closely follow DroQ based on SAC and TD3. For each Q-function we
add dropout (Srivastava et al.,|2014) and layernorm (Ba et al.,|2016) consequently after each linear
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layer (i.e. linear — dropout — layernorm — activation), except to the last linear layer. For our
proposed method, in all experiments and our proposed method, the dropout probability rate set to
p = 0.001 and is the same across all tasks. we include in Table 2] the tuned number of critics n and
number of samples k from the critics is used for each task. However, as shown in Section@ we can
achieve good performance by setting to default values k = 2, n = 2.

Table 2: numbers of critics n and numbers of samples k used in our experiments.

Algorithm [ [ TD3+BOXD [ SAC+BOXD [ REDQ+BOXD
Task n k n k n k
cheetah-run 2 2 2 2 2 2
finger-turn_hard 2 2 2 2 2 2
fish-swim 2 2 2 2 2 2
hopper-hop 10 2 10 2 2 2
hopper-stand 2 2 2 2 2 2
humanoid-run 2 2 2 3 2 2
humanoid-stand 2 4 2 3 2 2
humanoid-walk 2 2 2 4 2 2
quadruped-run 2 10 2 3 2 2
quadruped-walk 2 2 2 3 2 2
walker-run 2 2 2 2 2 2

OAC. For OAC, which was officially implemented in PyTorch (Paszke et al., 2019), we re-
implemented into JAX. For hyperparameters, we followed the publicly released official implementa-
tion (https://github.com/microsoft/ocac—explore/) and use 5., = 4.66. Addition-
ally, for OAC (Ciosek et al., 2019), we explored with its UCB-related hyperparameter /3., = {3,6},
but we did not find significant performance differences. An ablation study on S,, = {3,6} is
included in Section

DERL framework based algorithm. For DERL, the original work is experimented in discrete
tasks with A2C (Mnih et al.| |2016) as base algorithm. We adapt their framework of disentangling
exploration and exploitation policies to continuous control, and add intrinsic reward bonuses to the
exploration policy. The policies are trained with TD3 and SAC as base algorithm. Specifically, in our
experiments we add RND (Burda et al.|[2019) as the intrinsic reward, and experimented with various
coefficients = {0.1, 1.0, 5.0} when adding the bonus to the extrinsic reward (from the environment).
Only the best result is presented.

TOP-like algorithm. For a TOP-like algorithm (Moskovitz et al.| [2021), we use the official imple-
mentation of BRO (Nauman et al.|, [2024), whilst disabling the larger and deeper networks (i.e. not
using BroNet but using MLP) to ensure fairer comparison. Furthermore, we employ a batch size of
256 instead of 128 as used by default in BRO. Additionally, we set UTD=1 to be consistent for all
algorithms.

BRO. We use the official implementation of BRO (Nauman et al. [2024)), whilst using all default
hyperparameters, and uses UTD=1. Results on some tasks are included in Section [E]

D ABLATION STUDIES

As described in the main manuscript, we introduce two additional hyperparameters in estimating the
approximate UCB, namely the number of sampling times & of each Q-function, and the number of
Q-functions 7 to train 7Pl We first show that generally setting n = 2, k = 2 is a good start, and
if given more computational costs (e.g. setting k = 4) for some tasks we may get further enhanced
performance. The number of n also affect optimism, and we show that for some tasks where further
optimism is desired, setting n higher may be beneficial. On the other hand, for some tasks, being too
optimistic is disadvantageous. We aim to answer the following questions for our ablation studies.
Additionally, we performed an ablation on the UCB hyperparameter of OAC (Ciosek et al.,|[2019).

Q: Ablation: How is the results for default n = 2, £ = 2?
A: Only a few tasks are significantly affected by even more optimism (i.e. setting higher % or higher
n), namely hopper-hop. Other tasks are only slightly affected.
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We show results using default values of n
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2 and k£ = 2. Only for the task hopper-hop we
see significant difference. For other tasks, the results are similar with higher & and sometimes de-
cays for higher n (especially for humanoid tasks, where too much optimism will cause degrading
performance). In Figure[7jwe show the results comparing the averaged result with best-tuned hyper-
parameters results (left) and averaged result with default hyperparameter (n = 2, k = 2) (right). In
Figure[8] we show the full result on all tasks with default hyperparameter (n = 2, k = 2).
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Figure 7: Left: Averaged IQM for 11 DM Control tasks of our proposed method with tuned hy-
perparameters 7, k versus baselines. Right: Averaged IQM of our proposed method using k£ = 2,
n = 2 versus baselines.
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Figure 8: Results for using default hyperparameters n = 2, k = 2. Generally speaking there is not a
significant performance difference compared to tuned hyperparameters version in Figure [ except
for the task hopper-hop.
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Q: Ablation: How does the number of times of Q sampling & affect performance?

A: Depending on the tasks. We recommend to use £ = 2 as a starting point.

We additionally train k£ = {3, 4,10} for our algorithm based on TD3 and SAC. Similar trends may
be observed in both TD3-based and SAC-based results. Generally speaking, using k = 2 is a good
start. For tasks that requires more exploration such as hopper-hop, using higher £ may result in better
performance. Higher k generally does not make the performance decay. The results for TD3-base
and the results for SAC-base are shown in Figure 9]
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Q: Ablation: How does the number of Q-functions n affect performance?
A: Depending on the tasks. Generally speaking, same as contemporary actor-critic algorithms, using
n = 2 is a good starting point.

The number of critics greatly affects the UCB trade-off parameter c,,, as shown in Equation (from|
[(Blom[ 1958} [Arnold et al.[[T992)). We include in Table [3| the approximate values of ¢,, for n =
{2,3,4,10}. We additionally train n = {3,4, 10} for our algorithm based on TD3 and SAC. For
hopper-hop, similarly as using higher &k, more optimism may be beneficial. However, for humanoid
tasks, too much exploration is disadvantageous in both TD3-based SAC-based results. The results
for TD3-base and the results for SAC-base are shown in Figure [I0}

Table 3: Approximate values for UCB trade-off parameter c,,, depending on the number of critics n.

n 2 3 4 10
cn 0564 0.846 1.029 1.539

Q: How is OAC affected by its UCB hyperparameter J,;?
A: Tt does not significantly affect performance.

Generally, the performance is not significantly affected except for the task hopper-hop. Thus we use
the official value /3,,;, = 4.66 for all experiments.

Q: How does the dropout rate affected performance?

A: In the main text we used a consistent dropout rate of 0.001 for all experiments. This value follows
the values investigated by DroQ (Hiraoka et al} [2022), which uses dropout for regularisation. We
perform an ablation study with our proposed method BOXD on TD3 on the dropout rate = (0.01,
0.1), using the default optimism related hyperparameters of n = 2, k = 2. The results are included

in Figure[12]

Q: How effective is the maximum operation?

A: In this work, based on Bayesian principles, we propose to take the maximum of critics coupled
with dropout to compute the UCB. One may ask about how optimistic the maximum operation is,
and how much performance difference will it make if we only take the mean of the critics, effectively
setting the trade-off parameter ¢ = 0. We perform ablation study on the comparing the maximum
operation that we propose to use versus taking the mean, using the default n = 2, kK = 2. The results
are included in Figure [[3]

E DIRECT COMPARISON WITH BRO

In our results in Section |§| we mainly compared with methods (i.e. OAC, DERL, TOP) that en-
courages optimism to demonstrate the effectiveness of BOXD. In this section we trained BRO on
dm-control tasks, and compared with our proposed method. Furthermore, we also build a version of
our proposed BOXD on BRO, named bro+BOXD. Perhaps surprisingly, our proposed BOXD can
achieve comparative performance in most tasks whilst having significantly less model capacity. For
example, in the hopper-hop task our proposed outperforms BRO. Interestingly, BRO+BOXD does
not outperform these built on smaller models, reaching similar performance td3+BOXD, showing
that our method does not require deeper and larger networks, thus enable much faster training time.
To facilitate easier visualisation, we omit the results of OAC, DERL and TOP in the results are
shown in Figure [T4]

F ANNEALING RESULTS

In the main manuscript, we described our strategy of annealing conditioning to select the action
policy 7' to interact with the environment. We showed the aggregated average IQM return in
the main manuscript, and here we include results on the 11 individual tasks regarding the way
annealing policy conditioning is used. Using a 50-50 conditioning strategy is generally good as well.
Furthermore, we include another version of pure linear annealing, where instead of Equation @) we
set s = % so the threshold s is purely linearly increasing according to current step ¢ versus the total
training steps 7'. This ablation is noted as linear annealing in Figure T3]
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