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ABSTRACT

Deep reinforcement learning (RL) algorithms for continuous control tasks often
struggle with a trade-off between exploration and exploitation. The exploitation
objective of a RL policy is to approximate the optimal strategy that maximises
the expected cumulative return based on its current beliefs of the environment.
However, the same policy must also concurrently perform exploration to gather
new samples which are essential for refining the underlying function approxima-
tors. Contemporary RL algorithms often entrust a single policy with both be-
haviours. However, these two behaviours are not always aligned; tasking a single
policy with this dual mandate may lead to a suboptimal compromise, resulting
in inefficient exploration or hesitant exploitation. Whilst state-of-the-art methods
focus on alleviating this trade-off between exploration and exploitation to pre-
vent catastrophic failures, they may inadvertently sacrifice the potential benefits
of optimism that drives exploration. To address this challenge, we propose a new
algorithm based on training two distinct policies to disentangle exploration and
exploitation for continuous control and aims to strike a balance between robust
exploration and exploitation. The first policy is trained to explore the environ-
ment more optimistically, maximising the upper confidence bound (UCB) of the
expected return, with the uncertainty estimates for the bound derived from an ap-
proximate Bayesian framework. Concurrently, the second policy is trained for
exploitation with conservative value estimates based on established value estima-
tion techniques. We empirically verify that our proposed algorithm, combined
with TD3 or SAC, significantly outperforms existing approaches across various
benchmark tasks, demonstrating improved performance.

1 INTRODUCTION

An important phenomenon in reinforcement learning (RL) that has a complex relationship with the
trade-off between exploration and exploitation (Sutton & Barto, 2018) is the overestimation bias
(Thrun & Schwartz, 1993; Lan et al., 2020). State-of-the-art actor-critic RL algorithms propose to
alleviate the overestimation bias to achieve better performance (Kuznetsov et al., 2020; Chen et al.,
2021; Hiraoka et al., 2022), because it is often less catastrophic to underestimate the bias rather
than overestimate it (Hasselt et al., 2016; Fujimoto et al., 2018). On the other hand, this bias may
be viewed as a form of optimism in the face of uncertainty, potentially encouraging the policy to
explore and take actions that may have benefits in the long run.

The trade-off between exploration and exploitation stems from demanding two distinct behaviours
from a single policy. These two behaviours may often be in direct conflict; effective exploita-
tion typically demands a near-deterministic adherence to high-value actions according to its beliefs,
whereas effective exploration necessitates stochasticity and a willingness to probe seemingly subop-
timal pathways. To tackle this problem, prior works have considered disentangling policies for ex-
ploration and exploitation whilst adding other techniques, such as incorporating exploration bonuses
(Colas et al., 2018; Whitney et al., 2021; Schäfer et al., 2022) or using a Upper Confidence Bound
(UCB) style exploration (O’Donoghue et al., 2018; Ciosek et al., 2019), or use disentangled policy
trained for evaluation with off-policy RL and distribution correction (Li et al., 2022).

This work is focused on continuous control tasks. Recent works suggest that state-of-the-art RL
algorithms might have been leading to too conservative value estimates, thus resulting in insufficient
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exploration of the environment, especially during the initial stages of training, and suggest to amend
algorithms with some optimistic value estimations (Ji et al., 2024; Omura et al., 2025). However,
calculating optimistic value estimations are usually not straightforward for algorithms designed for
continuous control tasks. Instead, recent works has taken inspiration from offline RL (Ji et al., 2024;
Omura et al., 2025), calculates the Bellman Optimality Operator using samples from the replay
buffer.

updateupdate 

rollout data

replay buffer

stochastically select
every timestep

maximise UCB-based 
objective 

maximise task
reward

interact

Figure 1: Schematics of our proposed method.

Our proposed algorithm tackles the problem
from another direction. We introduce two dis-
tinct policies following the generic framework
of disentangling policy learning; one trained
to explore the environment optimistically and
one trained to alleviate the overestimation bias
by using conservative value estimates. Further-
more, instead of calculating optimistic value es-
timates from the replay buffer (i.e. the Bellman
Optimality Operator), by disentangling the ex-
ploration and exploitation policies, we may nat-
urally introduce optimistic state-action pairs di-
rectly into the replay buffer.

Our main idea is that we may utilise an ap-
proximate UCB to introduce more optimistic
Q-value estimates to steer the exploration pol-
icy. We may achieve efficient exploration that
cannot be achieved by simply using Gaussian noise exploration as is commonly done. Furthermore,
our approach deviates from employing a weighted average of the optimistic and conservative Q-
value estimates. We propose to stochastically sample from and alternate between the optimistically
and conservatively trained policies during the training process. The main motivation for this design
is to ensure that a capacity for exploration is retained throughout all stages of learning. This allows
the policy to periodically engage in optimistic behaviours even late in the training, further preventing
premature convergence to a purely exploitative policy. The schematics of our proposed method is in
Figure 1.

We term our proposed method BOXD (Bayesian Optimism eXploration with Dual Policies).
The main contribution of this work is as follows.

• We propose an algorithm that disentangles exploration and exploitation policies based
on the Bayesian UCB principles for continuous control tasks. We utilise dropout in
the Q-functions to estimate its epistemic uncertainty, and show that by calculating the
maximum of Q-functions we may approximate UCB.

• We propose to stochastically sample from and alternate between the optimistic and
conservative trained policies during the training process, via an annealing policy con-
ditioning scheme, to create a mixture of optimistic and conservative samples in the
replay buffer.

• We demonstrated that BOXD built on top of TD3 and SAC achieves considerably
better performance than widely used algorithms in continuous action tasks. We ar-
gue that this outperformance stems from the usage of more optimistic exploration
introduced by the disentangled exploration policy.

2 PRELIMINARIES

A standard RL problem is defined as an infinite-horizon Markov Decision Process MDP = 〈S, A,
P , R, γ〉, where the RL agent at time t observes a state st from a set of states S, chooses an action
a from a set of actions A, and receives a reward r according to a mapping of the reward function
R, r : S × A → R. The environment then transitions into a state st+1 with a transition probability
function P (st+1|st, at) and the interaction continues. We also define the replay bufferD containing
the state, action, reward, and next state at timestep t as D = (st, at, rt, st+1). The objective of
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an RL agent is to maximise the discounted expected return Eπ[
∑∞

t=0 γtR(st, at)], which is the
expected cumulative sum of rewards when following the policy in the MDP, and the importance of
the horizon is determined by a discount factor γ ∈ [0, 1). Consequently, the goal is to find a policy
π that maximises the discounted expected return.

The Bellman Equation. In continuous RL, the Bellman equation (Richard, 1957; Sutton & Barto,
2018) play a fundamental role in defining the iterative updates for value functions in MDPs. For
a given policy π, the Bellman equation describes a fundamental relationship between the value
of a state-action pair (s, a) and the value of the subsequent state-action pair (s′, a′): Q(s, a) =
r + γE(s′,a′)[Q(s′, a′)],where a′ ∼ π(·|s′). In an actor-critic setting, the learning target value y is
set as: y = r + γQϕ(s

′, a′), a′ ∼ π(·|s′) and the critic objective minimisation is often calculated
using Mean Squared Error (MSE) as E(y −Qϕ(s, a))

2.

Bayesian Optimisation and the Upper Confidence Bound. In Bayesian optimisation, the objec-
tive function f(x) is assumed to be unknown, and the goal is to identify optimal x∗ ∈ X that
maximises f(x), given a set of observations {xi, yi}Ni=1 where yi = f(xi). The main challenge
in Bayesian optimisation lies in effectively exploring the parameter space X whilst collecting infor-
mative samples. To this end, candidate points are typically selected by maximising an acquisition
function U(x). A widely used acquisition function is the upper confidence bound (UCB), defined
as

U(x) = µ(x) + cσ(x) (1)

where µ(x) and σ(x) denote the predictive mean and standard deviation of f(x), respectively, and
c is a trade-off parameter and its strength may determine the the strength of the more optimistic or
conservative estimation.

In classical reinforcement learning, it has been noted that exploration using UCB often performs
well in discrete state–action spaces Sutton & Barto (2018). However, in continuous state–action
spaces, estimating the mean and standard deviation of the expected return is non-trivial, and there-
fore exploration based on the UCB principles is not readily employed in recent deep RL methods.

Using n Q-functions. Contemporary actor-critic reinforcement learning algorithms for continuous
control are predicated upon training an ensemble of n independently initialised Q-functions Qj for
j = 1, 2...n. For the computation of the target value y, the minimum value amongst these functions
is employed: y = r + γ minj=1,...,n Qj(s

′, a′), a′ ∼ π(·|s′). This calculation engenders more
conservative Q-value estimates (Hasselt et al., 2016; Fujimoto et al., 2018; Ciosek et al., 2019;
Haarnoja et al., 2018; An et al., 2021; Chen et al., 2021; Hiraoka et al., 2022) in order to mitigate
overestimation bias.

3 MOTIVATION: PRELIMINARY EXPERIMENTS
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Figure 2: Left: A simple toy environment
MDP. Right: The estimated values of Q(s0, a0)
and Q(s0, a1) when using tabular actor-critic with
a SARSA-based critic update, UCB-based update
and annealing update. In the right sub-figure, the
learning curve including the UCB may approxi-
mate the optimal value more swiftly.

To provide an empirical example, we conducted
an experiment in an illustrative toy environ-
ment, as depicted in the left side of Figure 2,
with the goal of evaluating the convergence
rate of training Q-values towards their opti-
mal values. A reward rk is obtained upon
reaching state sk, whilst the episode termi-
nates when the agent reaches either state s3
or s4. For this simplified scenario, the dis-
count rate γ is set to 0.9. Both the Q-values
and the policy logits θs,a are stored in re-
spective tabular tables, and we use two dif-
ferently initialised Q-tables. The UCB is cal-
culated as the variance between the two esti-
mates, as shown in Equation (1). The Q val-
ues were updated using a temporal difference
rule analogous to that of SARSA: Q(s, a) ←
Q(s, a)+α (r + γEa′∼π[Q(s′, a′)]), whilst the
policy was updated using a policy gradient
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method (θs,a ← θs,a + α∇θ log πθ(a|s) Q(s, a)), where α represents the step size. Some addi-
tional details about this toy example can be found in Appendix B.

We train two tabular Q-tables to learn the optimal Q-value for each states in the MDP in an ideal
scenario (right sub-figure) without modelling noisy functional approximators. We calculate the
Bayesian UCB based on the mean and the variance of two Q-tables. To obtain the best of both
worlds,we also include a scheme where Qannealing = wQUCB + (1−w)QSARSA that transitions from
UCB to SARSA Q with w decays linearly from 1.0 to 0.0.

As demonstrated in the right sub-figure in Figure 2, we may observe that SARSA-based Q updates
(in grey) are less biased but potentially sacrifices convergence rate. By performing UCB-principled
optimistic estimation (in red), we may obtain faster convergence to the optimal Q-value, potentially
improve sampling efficiency. it is natural to use some kind of transition from optimistic UCB Q
values into the less biased SARSA Q-values (in blue), as shown in the left sub-figure.

4 BAYESIAN OPTIMISM LEARNING WITH DUAL POLICIES

Our proposed method, Bayesian Optimism eXploration with Dual Policies (BOXD), entails train-
ing two distinct policies: an optimistic policy πexplore and a conservative policy πtask. The optimistic
policy is trained by approximating the Bayesian UCB principles. Furthermore, each policy is associ-
ated with a distinct set of Q-functions, designated as Qexplore and Qtask respectively. Unless specified
otherwise, Qexplore is assumed to comprise an ensemble of n Q-functions, and Qtask contains two
Q-functions.

We describe how the exploration policy πexplore is trained below. The conservative policy πtask is
trained in direct accordance with the chosen base algorithm (e.g. TD3 (Fujimoto et al., 2018) or SAC
(Haarnoja et al., 2018)). The pseudocode of our proposed algorithm is presented in Algorithm 1.

4.1 OPTIMISTICALLY TRAINED EXPLORATION POLICY
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Figure 3: Best average return for 11 DM Control
tasks of our proposed method versus baselines.
Our proposed algorithm significantly outperforms
baselines.

Our goal is to estimate the mean and standard
deviation of the Q-function in order to calcu-
late the UCB for a more optimistic Q-value es-
timation. However, in practice, directly approx-
imating the mean and standard deviation of the
Q-function is not straightforward.

Specifically, assume two samples are gener-
ated as Gaussian Q1, Q2 ∼ N (µ, σ). Al-
though computing the mean and standard devi-
ation from the generated samples is relatively
simple, it may be computationally expensive.
To address this, we exploit the properties of
samples drawn from a Gaussian distribution. It
is known that max(Q1, Q2) follows an extreme
value distribution, and its expectation is given
by

E[max(Q1, Q2)] = µ+
σ√
π
, (2)

where π is the circle constant (Arnold et al.,
1992). Leveraging this relationship, the UCB
acquisition function may be approximated
without the need for explicitly estimating the
mean and standard deviation.

This relationship in equation 2 may be gener-
alised to the maximum of n samples. Each Q-function may be reformulated as Qj(s, a) =
µ(s, a) + σ(s, a)Zj (s, a) where Zj ∼ N (0, 1), the expected value of the maximum taken across
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an ensemble of n Q-functions may be expressed as:

E[max(Q1(s, a), Q2(s, a), ..., Qn(s, a))] (3)
= E[max(µ+ σZ1(s, a), µ+ σZ2(s, a), ..., µ+ σZn(s, a))] (4)
= µ+ E[max(Z1, , . . . , Zn)]σ(s, a) (5)

= µ+

∫ ∞

−∞
z · n[Φ(z)]n−1ϕ(z) dz σ(s, a) (6)

≈ µ+Φ−1
(

n−0.375
n+0.25

)
σ(s, a), from (Blom, 1958; Arnold et al., 1992)

where Φ(z) denotes the standard normal cumulative distribution function (CDF) and ϕ(z) denotes
the standard normal probability density function (PDF).

Practically, inspired by DroQ (Hiraoka et al., 2022), a recently proposed actor-critic algorithm that
add dropout (Srivastava et al., 2014) into Q-functions, we model the Q-functions as stochastic func-
tions by introducing dropout layers. We may view this use of dropout as a Bayesian approximation
in Gaussian Processes (Gal & Ghahramani, 2016). Each estimate, utilising a different randomly
generated dropout mask, effectively draws a sample from an approximate posterior distribution over
the network’s weights.

By estimating each Q-function Qj for k times, both µ(s, a) and σ(s, a) may be more stably esti-
mated and tuned. By the derivations in Equation (3), with a′ ∼ πexplore(·|s′) we therefore train our
optimistic policy πexplore by taking the maximum as:

Qexplore
max (s′, a′) = max(Ek[Q

explore
1 (s′, a′)],Ek[Q

explore
2 (s′, a′)], ...Ek[Q

explore
n (s′, a′)]), (7)

where Ek[Q
explore
j (s′, a′)] denotes the mean of the k estimates sampled from the j-th Q-function

Qexplore
j . These estimated Q-value estimates may therefore be leveraged to construct further opti-

mistic Q-value estimates, formulated in accordance with the UCB principle, to guide the exploration
policy πexplore. The respective target value y becomes:

y = r(s, a) + γ Qexplore
max (s′, a′) (8)

Whilst the UCB exploration constant c is typically tuned to balance exploration and exploitation
in Bayesian optimisation, in our framework the degree of optimism in the Q-value estimates can
instead be controlled by the number of Q-functions n in the ensemble, as well as by the number
of estimates k generated by each Qj function. A comprehensive description of all implementation-
specific details is provided in Appendix C.

4.2 ANNEALING POLICY CONDITIONING WHEN INTERACTING WITH THE ENVIRONMENT

The interacting policy πact is chosen between πexplore and πtask at each timestep, instead of exclu-
sively employing the optimistic policy πexplore to interact with the environment. We propose an an-
nealing scheme to govern this process, designed to balance the needs of exploration and exploitation
during learning. This scheme begins by utilising the exploratory policy πexplore at the early stages of
training to ensure a rich and diverse set of samples are included in the replay buffer, before gradu-
ally transitioning to the more conservative task policy πtask as learning progresses. This transition is
governed by a threshold s, which increases linearly over the course of training in Equation (9).

Given a maximum training duration of T timesteps and ⌊·⌋ denoting the floor function, our proposed
annealing policy conditioning at the current timestep t is expressed as:

s = ⌊10t
T
⌋/10, samples p ∼ U(0, 1), πact =

{
πexplore if p > s

πtask otherwise
(9)

As a result, the replay buffer D becomes populated with a mixture of state-action pairs originating
from both optimistic and conservative policies. This consolidated replay buffer is subsequently
utilised for the training of both the Qexplore and Qtask ensembles.

5
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Algorithm 1 BOXD
Initialise policy networks πexplore and πtask, N Q-function parameters ϕj , j = 1, ..., N , and empty
replay buffer D. Set target parameters ϕ̄j ← ϕj , for j = 1, ..., N .

while initial collection steps ≤ t ≤ T do
Take action at ∼ πact(·|st) according to annealing policy selection Equation (9). Observe reward
rt, next state st+1; D ← D

⋃
(st, at, rt, st+1).

Sample a mini-batch B = {(si, ai, ri, s′i)}Ni=1 from D.

✠ Update optimistic critic Qexplore
ϕ

Compute the target value for Qexplore
ϕ by sampling k times (Equation (7)):

yexplore
i = r + γ maxj=1,...,N Ek[Q

explore
ϕj

(s′i, a
′
i)], a′i ∼ πexplore(·|s′i)

Update Qexplore
ϕ by minimising N−1

∑N
i=1(y

explore
i −Qexplore

ϕ (si, ai))
2

✠ Update conservative critic Qtask
ϕ

Compute the target value for Qtask
ϕ :

ytask
i = r + γ minj=1,...,N Qtask

ϕj
(s′i, a

′
i), a′i ∼ πtask(·|s′)

Update Qtask
ϕ by minimising N−1

∑N
i=1(y

task
i −Qtask

ϕ (si, ai))
2

✠ Update optimistic policy πexplore via base algorithm using Qexplore

✠ Update conservative policy πtask via base algorithm using Qtask

✠ Update target networks if applicable, depending on the base algorithm

end

This cross-collection of state-action pairs compels the conservative Q-functions to account for poten-
tially high-reward exploratory actions, whilst simultaneously grounding the optimistic Q-functions
with samples from more reliable trajectories, thereby enhancing overall learning stability. The key
advantage of this methodology is that it yields less exploitative samples than would arise from inter-
acting with the environment exclusively on samples from πtask, whilst producing a more tempered
UCB compared to one trained solely on samples generated by πexplore.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of BOXD, comparing it to previous related
online RL approaches on a variety of challenging tasks. We show that BOXD outperforms previous
baselines. We also provide analyses on BOXD’s design choices and including ablation studies in
the appendices. Detailed hyperparameters and implementation details used in our experiments are
shown in Appendix C.

5.1 EXPERIMENTAL SETUPS

Baselines. The proposed algorithm, BOXD, is implemented upon the foundations of two widely
used benchmarking algorithms for continuous control: TD3 (Fujimoto et al., 2018) and SAC
(Haarnoja et al., 2018), whilst adding dropout (Srivastava et al., 2014) and layernorm (Ba et al.,
2016) into Q-functions, following DroQ (Hiraoka et al., 2022). For all our algorithm, a uniform
dropout rate of p = 0.001 is applied to all tasks.

In addition to direct comparisons with these base algorithms, we provide a comparative performance
analysis against two other related methods. The first is an approach analogous to DERL (Schäfer
et al., 2022), a framework which is conceptually similar in that it also disentangles exploration and
exploitation policies whilst adding exploration bonuses to the exploration policy. For DERL, we
also combine it with both TD3 and SAC, whilst for the exploration bonus we used RND (Burda
et al., 2019). The second is OAC (Ciosek et al., 2019), a SAC-based algorithm notable for its use of

6
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Figure 4: The average return for each task in DM Control of our proposed method versus base-
lines. Our proposed method generally achieve the best or on-par performances, whilst significantly
outperforms in some tasks such as fish-swim, hopper-hop, humanoid-tasks and quadruped-walk.

optimistic Q-value estimation by UCB principles whilst addressing the directionally uninformedness
of action sampled from the policy.

Benchmark and Evaluation Method. We evaluate on 11 challenging tasks in the commonly used
benchmark DeepMind Control (DM control) Suite (Tunyasuvunakool et al., 2020), where the maxi-
mum achievable return for these tasks is 1000. We train 10 seeds, seeds= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
for all tasks and train for 3 million timesteps whilst evaluating every 10000 timesteps. We run 20
episodes for each evaluation, and calculate inter-quantile mean (IQM) with shaded area as the IQM-
std (std of inter-quantile samples) according to best practices (Agarwal et al., 2021). The results are
shown in the next subsection.

5.2 RESULTS AND Q&AS

Our experiments aim to answer the following questions.

Q: What is the performance of BOXD?
A: Our proposed BOXD achieves the best or near-best performance on most tasks, especially in
tasks where state space is larger and more exploration is desired.

The aggregated average return across 11 tasks in DM Control is shown in Figure 3, and the average
return for each task are shown in Figure 4.

Compared with baselines, we find that BOXD generally achieves better performance or on-par with
benchmarking methods. Especially in the hopper tasks and humanoid tasks, the average return of our
proposed BOXD (paired with TD3 or with SAC) significantly increases. We hypothesise that this
is because these tasks have larger state dimensions, thus requiring stronger exploration mechanism
in the algorithms. Whereas for cheetah-run, we hypothesise that a single mode is good enough to
achieve strong performance, therefore stronger exploration mechanism is not helpful for this task.

OAC may achieve good performance on certain tasks such as cheetah-run, but underperform in some
tasks such as hopper-hop. DERL paired with TD3 does not exhibit strong performance, whilst its
SAC counterpart struggles at similar tasks as OAC such as hopper-hop. On the other hand, BOXD
works well with both deterministic policy TD3 and stochastic policy SAC.
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An interesting phenomenon may be observed that in the humanoid-run, humanoid-stand and
humanoid-walk tasks. Our proposed method exhibits a delayed performance improvement when
compared to the SAC baseline. For these tasks, this initial performance lag suggests that the sam-
ples collected during the early, exploration-focused phase do not yield immediate benefits for ex-
ploitation. However, these exploration samples prove to be important in the later stages of training.
Collectively, these findings underscore a key insight: enhancing the exploratory process during the
initial phases of training may ultimately lead to superior asymptotic performance and improved
overall sample efficiency.

Q: What is the effect of annealing policy conditioning? Can we not just use πexplore?
A: We can, and it performs well in general. However, without transitioning from the exploration
policy πexplore to the exploitation policy πtask (i.e. annealing policy conditioning), the performance
will saturate at some point.

To verify the effectiveness of our proposed annealing policy conditioning, we trained additionally
on all tasks with three more patterns. Firstly, with no conditioning, where we always use πexplore

as acting policy πact (i.e. setting s = 0 as threshold); secondly, a fixed probability conditioning of
0.1 probability to use πtask for sampling the action policy πact (i.e. setting s = 0.1 as threshold);
and finally, a 50-50 probability conditioning (i.e. setting s = 0.5 as threshold) to choose between
πtask and πact. The aggregated average return over all 11 tasks is shown in Figure 5, and individual
performance for each task and be found in Appendix E. For these experiments, we use fixed k = 2
and n = 2 for easier comparisons.
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Figure 5: The average return for 11 DM Control tasks of
our proposed method with or without annealing condition-
ing. Left: TD3-based. Right: SAC-based. Our proposed
annealing strategy proves to be important. No conditioning
or fixed conditioning show performance saturation.

We may observe that without the
annealing conditioning strategy, the
performance will stagnate or decay at
the later stages of the training. We
hypothesise that this is because the
replay buffer will contain fewer sam-
ples that are aligned with exploitation
objective, whilst having too much
exploration-aligned samples. Some
form of transitioning from πexplore to
πtask may be beneficial, also shown in
the toy example Section 3. To our
surprise, a strategy of 50-50 proba-
bility sampling between the two ex-
ploration and exploitation policies
performs remarkably well. Never-
theless, even without the annealing
conditioning strategy, our proposed
method outperforms baseline algo-
rithms.

Q: What are the important hyperparameters of BOXD?
A: The most important hyperparameter is the number of sampling times, k, for the Q-value esti-
mates. In general, setting it to k = 2 is good enough.

The main hyperparameter introduced by our method is the number of sampling times k utilised for
the computation of the optimistic Q-value estimate, Qexplore

j . Empirically, we find that a value of
k = 2 is sufficient for obtaining a robust estimate. For the conservative counterpart, Qtask

j , a single
sample is employed (i.e. k = 1), a configuration consistent with standard practice in related algo-
rithms when dropout is used (e.g. DroQ (Hiraoka et al., 2022)). The second hyperparameter related
to optimism is the number of Q-functions n used in calculating the optimistic Q-value estimates.
Generally we find that setting n = 2 (i.e. the same as Qtask) is a good start.

We provide a comprehensive ablation studies regarding the number of critic samples k and the num-
ber of Q-functions n in Appendix D. We stress that there is not much need to tune hyperparameters
for each individual tasks, as the default performance already outperforms baselines. For complete-
ness, the result using default hyperparameter values (n = 2, k = 2) are also shown in Appendix D.
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Q: What are the additional computational costs?
A: Although additional computational costs are required for the dual policies, it is worth noting that,
in our experiments under the default settings, TD3+BOXD can run at a similar speed to SAC.

6 RELATED WORKS

Disentangle Exploration and Exploitation. Several works have previously explored the idea of
disentangling exploration and exploitation policies, by adding exploration bonuses to the exploration
policy (DERL) (Colas et al., 2018; Schäfer et al., 2022), by UCB principles (OAC) (Ciosek et al.,
2019), or by changing different objectives (Whitney et al., 2021). The work of Beyer et al. (2019)
is similar to ours where they train multiple policies and choose different policies to interact with
the environment. In meta-RL, (Liu et al., 2021; Norman & Clune, 2024) decouples exploration
and exploitation policies where exploration and exploitation is not done concurrently rather as a
prerequisite for meta-RL tasks, whilst (Liu et al., 2021) constructed separated exploitation objective
from exploration, whilst automatically identify and recover task-relevant information. Similarly, in
offline RL settings, Mark et al. (2023) experimented using offline data to enable faster exploration
in online RL settings, disentangling exploration and exploitation in terms of phases of training.
Furthermore, decoupling policies is also considered in multi-arm bandit problems (Avner et al.,
2012). These works differ from our work in that is done in pure online RL settings without meta-
RL.

Optimistic state-action value estimates. One line of work is to integrate ideas from offline-RL
algorithms to obtain more optimal Q-value estimates. In particular, (Ji et al., 2024; Luo et al., 2024;
Omura et al., 2025) adopted IQL (Kostrikov et al., 2022) to learn the Bellman Optimality Operator,
which are known to accelerate training speed albeit being more biased compared to the Bellman
SARSA Operator. These works offer different strategies to blend them into policy updates, by either
merging the estimates (Ji et al., 2024) or use an annealing schedule (Omura et al., 2025). Our
work differs from these line of work, where we trained disentangled policies and use them to obtain
mixture of both optimistic and conservative state-action pairs into the replay buffer, whilst they use
the conservative replay buffer to estimate optimal values. These works, similar to ours, introduces
additional networks for training.

7 LIMITATION AND CONCLUSION

This work introduces BOXD, a novel algorithm predicated on the principle of disentangling explo-
ration and exploitation. Our proposed method leverages the established interpretation of dropout as
a Bayesian approximation, allowing for the quantification of epistemic uncertainty from the model.
Utilising the UCB principle, we propose training a dedicated exploration policy πexplore guided by
an UCB that may be directly estimated from this uncertainty, thereby enabling a more effective ex-
ploration of the state-action space. Furthermore, we propose a strategy to annealing condition which
policy to use to interact with the environment. This annealing strategy may improve stability by in-
troducing both exploration and exploitation samples into the replay buffer directly. We have shown
that our proposed method significantly outperforms baselines and related works in challenging tasks.

A primary limitation of our proposed BOXD stems from the additional computational costs. This
overhead is a direct result of: 1) the k estimates required to compute the maximum due to different
dropout masks; 2) maintaining a separate neural network for the optimistic policy πexplore; and 3)
maintaining the corresponding ensemble of n of Q-functions Qexplore. Whilst our empirical results
demonstrate that effective performance may be achieved with a minimal number of these functions
(i.e., k=2, n=2), the introduction of these supplementary networks inevitably increases both memory
and computational requirements. One potential future work direction is to incorporate more sophis-
ticated strategies to sample the optimistic and conservative samples from the replay buffer, such
as using Prioritised Experience Replay (PER) (Schaul et al., 2015) or Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017), in order to further make use of these optimistic and conservative
samples obtained by disentangling exploration and exploitation policies. Another potential future
work is to blend the optimistic and conservative value estimates directly into updating Q values and
build direct upon our work.
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REPRODUCIBILITY STATEMENT

We implement our method in JAX (Bradbury et al., 2018). Details on implementation including the
hyperparameters helpful for reproduction of our method are included in Appendix C. A compre-
hensive ablation study of design choices may be found in Appendix D. We have also included the
source code used for our experiments in the supplementary material for reference.
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A LARGE LANGUAGE MODELS USAGE DISCLOSURE

We have utilised Large Language Models (LLM) in the writing of this work to help with word
polishing and grammar checking.

B PRELIMINARY EXPERIMENTS DETAILS

In the preliminary toy experiment in Section 3, we compared SARSA-based updates in actor-critic
models using the environment shown in left sub-figure of Figure 2. We compared the optimistic
UCB Q-values and the annealing counterpart to the default SARSA-based update. The critic stores
the estimated Q-values for each state-action pair in a table and updates them based on either UCB or
SARSA. The policy manages logits for each state-action pair in a table, calculates the distribution
using the softmax function, and samples actions from this distribution. The policy may be expressed
as follows:

πθ(a | s) =
exp

(
θs,a

)∑
b

exp
(
θs,b

) (10)

The update of these logits is performed using the policy gradient method, with the update equation
given as follows:

θ ← θ + α∇θ log πθ(at | st)Q(st, at),

∇θs,a′ log πθ(a | s) = δa,a′ − πθ(a
′ | s),

(11)

where δa,a′ is the Kronecker delta. The step size α used for updates in both the critic and the policy
was set to 5e-4. This step size was chosen because it yields smoother learning curves. Whilst
increasing the step size accelerates learning, the observation that UCB-based updates can converge
faster than SARSA-based updates remained consistent. The initial state was randomly selected from
s0, s1, and s2 with equal probability. Additionally, a probability of 10% of taking random actions,
akin to an ϵ-greedy policy, was introduced. We run the toy example for 20 times, and plot the mean
and the std of Q-table.

C EXPERIMENTS IMPLEMENTATION DETAILS & HYPERPARAMETERS

Our implementation and experiments are done in JAX (Bradbury et al., 2018). Specifically, the
versions of important libraries we use in our experiments are: JAX 0.4.30, (Bradbury et al., 2018),
MuJoCo 3.3.5 Todorov et al. (2012), Deepmind Control Suite 1.0.31, (Tunyasuvunakool et al., 2020)
and gym 0.23.1 (Brockman et al., 2016). Nevertheless, we do not expect a lot of empirical perfor-
mance even if the library versions do not follow exactly ours.

Shared across all algorithms. The replay buffer size is set to 106, and the discount factor γ is set to
0.99. The target update rate τ for target network(s) is 0.005. We have initial random collect steps of
10000. To ensure a fair comparison, all methods employ a batch size of 256, and all neural networks
used two hidden layers consisting of 256 units each. All methods use ReLU (Agarap, 2018) as
activation function. We use Adam (Kingma & Ba, 2015) as optimiser for all neural networks with
the learning rate set to 0.0003.

TD3 and SAC. For baselines, TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) are both
implemented closely following excellent public repositories such as JAXRL https://github.
com/ikostrikov/jaxrl, high-replay-ratio (D’Oro et al., 2023) https://github.com/
proceduralia/high_replay_ratio_continuous_control and annealing-q-learning
(Omura et al., 2025), (https://github.com/motokiomura/annealed-q-learning).
We use the default hyperparameters provided in these algorithms.

BOXD. Our proposed method closely follow DroQ based on SAC and TD3. For each Q-function
we add dropout (Srivastava et al., 2014) and layernorm (Ba et al., 2016) consequently after each
linear layer (i.e. linear→ dropout→ layernorm→ activation), except to the last linear layer. For
our proposed method, in all experiments and our proposed method, the dropout probability rate set
to p = 0.001 and is the same across all tasks. we include in Table 1 the tuned number of critics n
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and number of samples k from the critics is used for each task. However, as shown in Appendix D,
we can achieve good performance by setting to default values k = 2, n = 2.

Table 1: numbers of critics n and numbers of samples k used in our experiments.

Algorithm TD3+BOXD SAC+BOXD
Task n k n k

cheetah-run 2 2 2 2
finger-turn hard 2 2 2 2

fish-swim 2 2 2 2
hopper-hop 10 2 10 2

hopper-stand 2 2 2 2
humanoid-run 2 2 2 3

humanoid-stand 2 4 2 3
humanoid-walk 2 2 2 4
quadruped-run 2 10 2 3

quadruped-walk 2 2 2 3
walker-run 2 2 2 2

OAC. For OAC, which was officially implemented in PyTorch (Paszke et al., 2019), we re-
implemented into JAX. For hyperparameters, we followed the publicly released official implementa-
tion (https://github.com/microsoft/oac-explore/) and use βub = 4.66. Addition-
ally, for OAC (Ciosek et al., 2019), we explored with its UCB-related hyperparameter βub = {3, 6},
but we did not find significant performance differences. An ablation study on βub = {3, 6} is
included in Appendix D.

DERL framework based algorithm. For DERL, the original work is experimented in discrete
tasks with A2C (Mnih et al., 2016) as base algorithm. We adapt its framework of disentangling
exploration and exploitation policies to continuous control, and add intrinsic reward bonuses to the
exploration policy. The policies are trained with TD3 and SAC as base algorithm. Specifically, in our
experiments we add RND (Burda et al., 2019) as the intrinsic reward, and experimented with various
coefficients = {0.1, 1.0, 5.0} when adding the bonus to the extrinsic reward (from the environment).
Only the best result is presented.

D ABLATION STUDIES

As described in the main manuscript, we introduce two additional hyperparameters in estimating the
approximate UCB, namely the number of sampling times k of each Q-function, and the number of
Q-functions n to train πexplore. We first show that generally setting n = 2 k = 2 is a good start, and
if given more computational costs (e.g. setting k = 4) for some tasks we may get further enhanced
performance. The number of n also affect optimism, and we show that for some tasks where further
optimism is desired, setting n higher may be beneficial. On the other hand, for some tasks, being too
optimistic is disadvantageous. We aim to answer the following questions for our ablation studies.
Additionally, we performed an ablation on the UCB hyperparameter of OAC (Ciosek et al., 2019).

Q: Ablation: How is the results for default n = 2, k = 2?
A: Only a few tasks are significantly affected by even more optimism (i.e. setting higher k or higher
n), namely hopper-hop. Other tasks are only slightly affected.

We show results using default values of n = 2 and k = 2. Only for the task hopper-hop we
see significant difference. For other tasks, the results are similar with higher k and sometimes
decays for higher n (especially for humanoid tasks, where too much optimism will cause degrading
performance). The results are shown in Figure 6 and Figure 7.

Q: Ablation: How does the number of times of Q sampling k affect performance?
A: Depending on the tasks. We recommend to use k = 2 as a starting point.

We additionally train k = {3, 4, 10} for our algorithm based on TD3 and SAC. Similar trends may
be observed in both TD3-based and SAC-based results. Generally speaking, using k = 2 is a good
start. For tasks that requires more exploration such as hopper-hop, using higher k may result in better

14
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Figure 6: Left: Best average return for 11 DM Control tasks of our proposed method versus base-
lines. Right: Average return of our proposed method using k = 2, n = 2 versus baselines.
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Figure 7: Results for using default hyperparameters n = 2, k = 2. Generally speaking there is not a
significant performance difference compared to tuned hyperparameters version in Figure 4, except
for the task hopper-hop.

performance. Higher k generally does not make the performance decay. The results for TD3-base
and the results for SAC-base are shown in Figure 8.

Q: Ablation: How does the number of Q-functions n affect performance?
A: Depending on the tasks. Generally speaking, same as contemporary actor-critic algorithms, using
n = 2 is a good starting point.

The number of critics greatly affects the UCB trade-off parameter cn, as shown in Equation (from
(Blom, 1958; Arnold et al., 1992)). We include in Table 2 the approximate values of cn for n =
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Figure 8: Top: Ablation results based on TD3 of the number of critic samples k. Bottom: Ablation
results based on SAC of the number of critic samples k. Generally, we do not observe much perfor-
mance difference when increasing k, except hopper-hop where the benefit of higher k is notable.

{2, 3, 4, 10}. We additionally train n = {3, 4, 10} for our algorithm based on TD3 and SAC. For
hopper-hop, similarly as using higher k, more optimism may be beneficial. However, for humanoid
tasks, too much exploration is disadvantageous in both TD3-based SAC-based results. The results
for TD3-base and the results for SAC-base are shown in Figure 9.

Q: How is OAC affected by its UCB hyperparameter βub?
A: It does not significantly affect performance.

Generally, the performance is not significantly affected except for the task hopper-hop. Thus we use
the official value βub = 4.66 for all experiments.
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Table 2: Approximate values for UCB trade-off parameter cn, depending on the number of critics n.

n 2 3 4 10
cn 0.564 0.846 1.029 1.539
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Figure 9: Top: Ablation results based on TD3 of the number of Q-functions n. Bottom: Ablation
results based on SAC of the number of Q-functions n. Increasing n may induce more optimism,
which may be beneficial in some tasks (namely hopper-hop) but disadvantageous for humanoid
tasks.
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Figure 10: Ablation results based on OAC of its UCB hyperparameter βub. Generally, the perfor-
mances are not really affected.

E ANNEALING RESULTS

In the main manuscript, we described our strategy of annealing conditioning to select the action
policy πact to interact with the environment. We showed the aggregated average return in the main
manuscript, and here we include results on the 11 individual tasks regarding the way annealing
policy conditioning is used. Using a 50-50 conditioning strategy is generally good as well.
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Figure 11: Top: Our proposed algorithm with TD3. Bottom: Our proposed algorithm with SAC.
Our proposed annealing policy conditioning achieves generally the best performance among condi-
tioning strategies. Using a fixed conditioning or no conditioning strategy will make the acting policy
saturate.
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