
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARNESSING BAYESIAN OPTIMISM WITH DUAL POLI-
CIES IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) algorithms for continuous control tasks often
struggle with a trade-off between exploration and exploitation. The exploitation
objective of a RL policy is to approximate the optimal strategy that maximises
the expected cumulative return based on its current beliefs of the environment.
However, the same policy must also concurrently perform exploration to gather
new samples which are essential for refining the underlying function approxima-
tors. Contemporary RL algorithms often entrust a single policy with both be-
haviours. However, these two behaviours are not always aligned; tasking a single
policy with this dual mandate may lead to a suboptimal compromise, resulting
in inefficient exploration or hesitant exploitation. Whilst state-of-the-art methods
focus on alleviating this trade-off between exploration and exploitation to pre-
vent catastrophic failures, they may inadvertently sacrifice the potential benefits
of optimism that drives exploration. To address this challenge, we propose a new
algorithm based on training two distinct policies to disentangle exploration and
exploitation for continuous control and aims to strike a balance between robust
exploration and exploitation. The first policy is trained to explore the environ-
ment more optimistically, maximising the upper confidence bound (UCB) of the
expected return, with the uncertainty estimates for the bound derived from an ap-
proximate Bayesian framework. Concurrently, the second policy is trained for
exploitation with conservative value estimates based on established value estima-
tion techniques. We empirically verify that our proposed algorithm, combined
with TD3 or SAC, significantly outperforms existing approaches across various
benchmark tasks, demonstrating improved performance.

1 INTRODUCTION

An important phenomenon in reinforcement learning (RL) that has a complex relationship with the
trade-off between exploration and exploitation (Sutton & Barto, 2018) is the overestimation bias
(Thrun & Schwartz, 1993; Lan et al., 2020). State-of-the-art actor-critic RL algorithms propose to
alleviate the overestimation bias to achieve better performance (Kuznetsov et al., 2020; Chen et al.,
2021; Hiraoka et al., 2022), because it is often less catastrophic to underestimate the bias rather
than overestimate it (Hasselt et al., 2016; Fujimoto et al., 2018). On the other hand, this bias may
be viewed as a form of optimism in the face of uncertainty, potentially encouraging the policy to
explore and take actions that may have benefits in the long run.

The trade-off between exploration and exploitation stems from demanding two distinct behaviours
from a single policy. These two behaviours may often be in direct conflict; effective exploita-
tion typically demands a near-deterministic adherence to high-value actions according to its beliefs,
whereas effective exploration necessitates stochasticity and a willingness to probe seemingly subop-
timal pathways. To tackle this problem, prior works have considered disentangling policies for ex-
ploration and exploitation whilst adding other techniques, such as incorporating exploration bonuses
(Colas et al., 2018; Whitney et al., 2021; Schäfer et al., 2022) or using a Upper Confidence Bound
(UCB) style exploration (O’Donoghue et al., 2018; Ciosek et al., 2019), or use disentangled policy
trained for evaluation with off-policy RL and distribution correction (Li et al., 2022).

This work is focused on continuous control tasks. Recent works suggest that state-of-the-art RL
algorithms might have been leading to too conservative value estimates, thus resulting in insufficient

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

exploration of the environment, especially during the initial stages of training, and suggest to amend
algorithms with some optimistic value estimations (Ji et al., 2024; Omura et al., 2025). However,
calculating optimistic value estimations are usually not straightforward for algorithms designed for
continuous control tasks. Instead, recent works has taken inspiration from offline RL (Ji et al., 2024;
Omura et al., 2025), calculates the Bellman Optimality Operator using samples from the replay
buffer.

updateupdate 

rollout data

replay buffer

stochastically select
every timestep

maximise UCB-based 
objective 

maximise task
reward

interact

Figure 1: Schematics of our proposed method.

Our proposed algorithm tackles the problem
from another direction. We introduce two dis-
tinct policies following the generic framework
of disentangling policy learning; one trained
to explore the environment optimistically and
one trained to alleviate the overestimation bias
by using conservative value estimates. Further-
more, instead of calculating optimistic value es-
timates from the replay buffer (i.e. the Bellman
Optimality Operator), by disentangling the ex-
ploration and exploitation policies, we may nat-
urally introduce optimistic state-action pairs di-
rectly into the replay buffer.

Our main idea is that we may utilise an ap-
proximate UCB to introduce more optimistic
Q-value estimates to steer the exploration pol-
icy. We may achieve efficient exploration that
cannot be achieved by simply using Gaussian noise exploration as is commonly done. Furthermore,
our approach deviates from employing a weighted average of the optimistic and conservative Q-
value estimates. We propose to stochastically sample from and alternate between the optimistically
and conservatively trained policies during the training process. The main motivation for this design
is to ensure that a capacity for exploration is retained throughout all stages of learning. This allows
the policy to periodically engage in optimistic behaviours even late in the training, further preventing
premature convergence to a purely exploitative policy. The schematics of our proposed method is in
Figure 1.

We term our proposed method BOXD (Bayesian Optimism eXploration with Dual Policies).
The main contribution of this work is as follows.

• We propose an algorithm that disentangles exploration and exploitation policies based
on the Bayesian UCB principles for continuous control tasks. We utilise dropout in
the Q-functions to estimate its epistemic uncertainty, and show that by calculating the
maximum of Q-functions we may approximate UCB.

• We propose to stochastically sample from and alternate between the optimistic and
conservative trained policies during the training process, via an annealing policy con-
ditioning scheme, to create a mixture of optimistic and conservative samples in the
replay buffer.

• We demonstrated that BOXD built on top of TD3 and SAC achieves considerably
better performance than widely used algorithms in continuous action tasks. We ar-
gue that this outperformance stems from the usage of more optimistic exploration
introduced by the disentangled exploration policy.

2 PRELIMINARIES

A standard RL problem is defined as an infinite-horizon Markov Decision Process MDP = 〈S, A,
P , R, γ〉, where the RL agent at time t observes a state st from a set of states S, chooses an action
a from a set of actions A, and receives a reward r according to a mapping of the reward function
R, r : S × A → R. The environment then transitions into a state st+1 with a transition probability
function P (st+1|st, at) and the interaction continues. We also define the replay bufferD containing
the state, action, reward, and next state at timestep t as D = (st, at, rt, st+1). The objective of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

an RL agent is to maximise the discounted expected return Eπ[
∑∞

t=0 γtR(st, at)], which is the
expected cumulative sum of rewards when following the policy in the MDP, and the importance of
the horizon is determined by a discount factor γ ∈ [0, 1). Consequently, the goal is to find a policy
π that maximises the discounted expected return.

The Bellman Equation. In continuous RL, the Bellman equation (Richard, 1957; Sutton & Barto,
2018) play a fundamental role in defining the iterative updates for value functions in MDPs. For
a given policy π, the Bellman equation describes a fundamental relationship between the value
of a state-action pair (s, a) and the value of the subsequent state-action pair (s′, a′): Q(s, a) =
r + γE(s′,a′)[Q(s′, a′)],where a′ ∼ π(·|s′). In an actor-critic setting, the learning target value y is
set as: y = r + γQϕ(s

′, a′), a′ ∼ π(·|s′) and the critic objective minimisation is often calculated
using Mean Squared Error (MSE) as E(y −Qϕ(s, a))

2.

Bayesian Optimisation and the Upper Confidence Bound. In Bayesian optimisation, the objec-
tive function f(x) is assumed to be unknown, and the goal is to identify optimal x∗ ∈ X that
maximises f(x), given a set of observations {xi, yi}Ni=1 where yi = f(xi). The main challenge
in Bayesian optimisation lies in effectively exploring the parameter space X whilst collecting infor-
mative samples. To this end, candidate points are typically selected by maximising an acquisition
function U(x). A widely used acquisition function is the upper confidence bound (UCB), defined
as

U(x) = µ(x) + cσ(x) (1)

where µ(x) and σ(x) denote the predictive mean and standard deviation of f(x), respectively, and
c is a trade-off parameter and its strength may determine the the strength of the more optimistic or
conservative estimation.

In classical reinforcement learning, it has been noted that exploration using UCB often performs
well in discrete state–action spaces Sutton & Barto (2018). However, in continuous state–action
spaces, estimating the mean and standard deviation of the expected return is non-trivial, and there-
fore exploration based on the UCB principles is not readily employed in recent deep RL methods.

Using n Q-functions. Contemporary actor-critic reinforcement learning algorithms for continuous
control are predicated upon training an ensemble of n independently initialised Q-functions Qj for
j = 1, 2...n. For the computation of the target value y, the minimum value amongst these functions
is employed: y = r + γ minj=1,...,n Qj(s

′, a′), a′ ∼ π(·|s′). This calculation engenders more
conservative Q-value estimates (Hasselt et al., 2016; Fujimoto et al., 2018; Ciosek et al., 2019;
Haarnoja et al., 2018; An et al., 2021; Chen et al., 2021; Hiraoka et al., 2022) in order to mitigate
overestimation bias.

3 MOTIVATION: PRELIMINARY EXPERIMENTS

s0

s1

s2

s3

s4

a1 / 1.5

a2 / 1.0

a1 / 0.5

a2 / -0.5

a1 / 0.5

a2 / -0.5

Simple MDP

0 20000 40000 60000 80000 100000
Environment Steps

0.0

0.5

1.0

1.5

2.0

Q
(s

0,
a 0

/a
1)

Q-value estimates

Optimal Q(s0, a0)
Optimal Q(s0, a1)
SARSA
SARSA

UCB 10.0
UCB 10.0
annealing 10.0
annealing 10.0

Figure 2: Left: A simple toy environment
MDP. Right: The estimated values of Q(s0, a0)
and Q(s0, a1) when using tabular actor-critic with
a SARSA-based critic update, UCB-based update
and annealing update. In the right sub-figure, the
learning curve including the UCB may approxi-
mate the optimal value more swiftly.

To provide an empirical example, we conducted
an experiment in an illustrative toy environ-
ment, as depicted in the left side of Figure 2,
with the goal of evaluating the convergence
rate of training Q-values towards their opti-
mal values. A reward rk is obtained upon
reaching state sk, whilst the episode termi-
nates when the agent reaches either state s3
or s4. For this simplified scenario, the dis-
count rate γ is set to 0.9. Both the Q-values
and the policy logits θs,a are stored in re-
spective tabular tables, and we use two dif-
ferently initialised Q-tables. The UCB is cal-
culated as the variance between the two esti-
mates, as shown in Equation (1). The Q val-
ues were updated using a temporal difference
rule analogous to that of SARSA: Q(s, a) ←
Q(s, a)+α (r + γEa′∼π[Q(s′, a′)]), whilst the
policy was updated using a policy gradient

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

method (θs,a ← θs,a + α∇θ log πθ(a|s) Q(s, a)), where α represents the step size. Some addi-
tional details about this toy example can be found in Appendix B.

We train two tabular Q-tables to learn the optimal Q-value for each states in the MDP in an ideal
scenario (right sub-figure) without modelling noisy functional approximators. We calculate the
Bayesian UCB based on the mean and the variance of two Q-tables. To obtain the best of both
worlds,we also include a scheme where Qannealing = wQUCB + (1−w)QSARSA that transitions from
UCB to SARSA Q with w decays linearly from 1.0 to 0.0.

As demonstrated in the right sub-figure in Figure 2, we may observe that SARSA-based Q updates
(in grey) are less biased but potentially sacrifices convergence rate. By performing UCB-principled
optimistic estimation (in red), we may obtain faster convergence to the optimal Q-value, potentially
improve sampling efficiency. it is natural to use some kind of transition from optimistic UCB Q
values into the less biased SARSA Q-values (in blue), as shown in the left sub-figure.

4 BAYESIAN OPTIMISM LEARNING WITH DUAL POLICIES

Our proposed method, Bayesian Optimism eXploration with Dual Policies (BOXD), entails train-
ing two distinct policies: an optimistic policy πexplore and a conservative policy πtask. The optimistic
policy is trained by approximating the Bayesian UCB principles. Furthermore, each policy is associ-
ated with a distinct set of Q-functions, designated as Qexplore and Qtask respectively. Unless specified
otherwise, Qexplore is assumed to comprise an ensemble of n Q-functions, and Qtask contains two
Q-functions.

We describe how the exploration policy πexplore is trained below. The conservative policy πtask is
trained in direct accordance with the chosen base algorithm (e.g. TD3 (Fujimoto et al., 2018) or SAC
(Haarnoja et al., 2018)). The pseudocode of our proposed algorithm is presented in Algorithm 1.

4.1 OPTIMISTICALLY TRAINED EXPLORATION POLICY

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

700

800

av
er

ag
e 

re
tu

rn

oac
sac
sac+BOXD
sac+DERL
td3
td3+BOXD
td3+DERL

Figure 3: Best average return for 11 DM Control
tasks of our proposed method versus baselines.
Our proposed algorithm significantly outperforms
baselines.

Our goal is to estimate the mean and standard
deviation of the Q-function in order to calcu-
late the UCB for a more optimistic Q-value es-
timation. However, in practice, directly approx-
imating the mean and standard deviation of the
Q-function is not straightforward.

Specifically, assume two samples are gener-
ated as Gaussian Q1, Q2 ∼ N (µ, σ). Al-
though computing the mean and standard devi-
ation from the generated samples is relatively
simple, it may be computationally expensive.
To address this, we exploit the properties of
samples drawn from a Gaussian distribution. It
is known that max(Q1, Q2) follows an extreme
value distribution, and its expectation is given
by

E[max(Q1, Q2)] = µ+
σ√
π
, (2)

where π is the circle constant (Arnold et al.,
1992). Leveraging this relationship, the UCB
acquisition function may be approximated
without the need for explicitly estimating the
mean and standard deviation.

This relationship in equation 2 may be gener-
alised to the maximum of n samples. Each Q-function may be reformulated as Qj(s, a) =
µ(s, a) + σ(s, a)Zj (s, a) where Zj ∼ N (0, 1), the expected value of the maximum taken across

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

an ensemble of n Q-functions may be expressed as:

E[max(Q1(s, a), Q2(s, a), ..., Qn(s, a))] (3)
= E[max(µ+ σZ1(s, a), µ+ σZ2(s, a), ..., µ+ σZn(s, a))] (4)
= µ+ E[max(Z1, , . . . , Zn)]σ(s, a) (5)

= µ+

∫ ∞

−∞
z · n[Φ(z)]n−1ϕ(z) dz σ(s, a) (6)

≈ µ+Φ−1
(

n−0.375
n+0.25

)
σ(s, a), from (Blom, 1958; Arnold et al., 1992)

where Φ(z) denotes the standard normal cumulative distribution function (CDF) and ϕ(z) denotes
the standard normal probability density function (PDF).

Practically, inspired by DroQ (Hiraoka et al., 2022), a recently proposed actor-critic algorithm that
add dropout (Srivastava et al., 2014) into Q-functions, we model the Q-functions as stochastic func-
tions by introducing dropout layers. We may view this use of dropout as a Bayesian approximation
in Gaussian Processes (Gal & Ghahramani, 2016). Each estimate, utilising a different randomly
generated dropout mask, effectively draws a sample from an approximate posterior distribution over
the network’s weights.

By estimating each Q-function Qj for k times, both µ(s, a) and σ(s, a) may be more stably esti-
mated and tuned. By the derivations in Equation (3), with a′ ∼ πexplore(·|s′) we therefore train our
optimistic policy πexplore by taking the maximum as:

Qexplore
max (s′, a′) = max(Ek[Q

explore
1 (s′, a′)],Ek[Q

explore
2 (s′, a′)], ...Ek[Q

explore
n (s′, a′)]), (7)

where Ek[Q
explore
j (s′, a′)] denotes the mean of the k estimates sampled from the j-th Q-function

Qexplore
j . These estimated Q-value estimates may therefore be leveraged to construct further opti-

mistic Q-value estimates, formulated in accordance with the UCB principle, to guide the exploration
policy πexplore. The respective target value y becomes:

y = r(s, a) + γ Qexplore
max (s′, a′) (8)

Whilst the UCB exploration constant c is typically tuned to balance exploration and exploitation
in Bayesian optimisation, in our framework the degree of optimism in the Q-value estimates can
instead be controlled by the number of Q-functions n in the ensemble, as well as by the number
of estimates k generated by each Qj function. A comprehensive description of all implementation-
specific details is provided in Appendix C.

4.2 ANNEALING POLICY CONDITIONING WHEN INTERACTING WITH THE ENVIRONMENT

The interacting policy πact is chosen between πexplore and πtask at each timestep, instead of exclu-
sively employing the optimistic policy πexplore to interact with the environment. We propose an an-
nealing scheme to govern this process, designed to balance the needs of exploration and exploitation
during learning. This scheme begins by utilising the exploratory policy πexplore at the early stages of
training to ensure a rich and diverse set of samples are included in the replay buffer, before gradu-
ally transitioning to the more conservative task policy πtask as learning progresses. This transition is
governed by a threshold s, which increases linearly over the course of training in Equation (9).

Given a maximum training duration of T timesteps and ⌊·⌋ denoting the floor function, our proposed
annealing policy conditioning at the current timestep t is expressed as:

s = ⌊10t
T
⌋/10, samples p ∼ U(0, 1), πact =

{
πexplore if p > s

πtask otherwise
(9)

As a result, the replay buffer D becomes populated with a mixture of state-action pairs originating
from both optimistic and conservative policies. This consolidated replay buffer is subsequently
utilised for the training of both the Qexplore and Qtask ensembles.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 BOXD
Initialise policy networks πexplore and πtask, N Q-function parameters ϕj , j = 1, ..., N , and empty
replay buffer D. Set target parameters ϕ̄j ← ϕj , for j = 1, ..., N .

while initial collection steps ≤ t ≤ T do
Take action at ∼ πact(·|st) according to annealing policy selection Equation (9). Observe reward
rt, next state st+1; D ← D

⋃
(st, at, rt, st+1).

Sample a mini-batch B = {(si, ai, ri, s′i)}Ni=1 from D.

✠ Update optimistic critic Qexplore
ϕ

Compute the target value for Qexplore
ϕ by sampling k times (Equation (7)):

yexplore
i = r + γ maxj=1,...,N Ek[Q

explore
ϕj

(s′i, a
′
i)], a′i ∼ πexplore(·|s′i)

Update Qexplore
ϕ by minimising N−1

∑N
i=1(y

explore
i −Qexplore

ϕ (si, ai))
2

✠ Update conservative critic Qtask
ϕ

Compute the target value for Qtask
ϕ :

ytask
i = r + γ minj=1,...,N Qtask

ϕj
(s′i, a

′
i), a′i ∼ πtask(·|s′)

Update Qtask
ϕ by minimising N−1

∑N
i=1(y

task
i −Qtask

ϕ (si, ai))
2

✠ Update optimistic policy πexplore via base algorithm using Qexplore

✠ Update conservative policy πtask via base algorithm using Qtask

✠ Update target networks if applicable, depending on the base algorithm

end

This cross-collection of state-action pairs compels the conservative Q-functions to account for poten-
tially high-reward exploratory actions, whilst simultaneously grounding the optimistic Q-functions
with samples from more reliable trajectories, thereby enhancing overall learning stability. The key
advantage of this methodology is that it yields less exploitative samples than would arise from inter-
acting with the environment exclusively on samples from πtask, whilst producing a more tempered
UCB compared to one trained solely on samples generated by πexplore.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of BOXD, comparing it to previous related
online RL approaches on a variety of challenging tasks. We show that BOXD outperforms previous
baselines. We also provide analyses on BOXD’s design choices and including ablation studies in
the appendices. Detailed hyperparameters and implementation details used in our experiments are
shown in Appendix C.

5.1 EXPERIMENTAL SETUPS

Baselines. The proposed algorithm, BOXD, is implemented upon the foundations of two widely
used benchmarking algorithms for continuous control: TD3 (Fujimoto et al., 2018) and SAC
(Haarnoja et al., 2018), whilst adding dropout (Srivastava et al., 2014) and layernorm (Ba et al.,
2016) into Q-functions, following DroQ (Hiraoka et al., 2022). For all our algorithm, a uniform
dropout rate of p = 0.001 is applied to all tasks.

In addition to direct comparisons with these base algorithms, we provide a comparative performance
analysis against two other related methods. The first is an approach analogous to DERL (Schäfer
et al., 2022), a framework which is conceptually similar in that it also disentangles exploration and
exploitation policies whilst adding exploration bonuses to the exploration policy. For DERL, we
also combine it with both TD3 and SAC, whilst for the exploration bonus we used RND (Burda
et al., 2019). The second is OAC (Ciosek et al., 2019), a SAC-based algorithm notable for its use of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

oac
sac
sac+BOXD
sac+DERL
td3
td3+BOXD
td3+DERL

Figure 4: The average return for each task in DM Control of our proposed method versus base-
lines. Our proposed method generally achieve the best or on-par performances, whilst significantly
outperforms in some tasks such as fish-swim, hopper-hop, humanoid-tasks and quadruped-walk.

optimistic Q-value estimation by UCB principles whilst addressing the directionally uninformedness
of action sampled from the policy.

Benchmark and Evaluation Method. We evaluate on 11 challenging tasks in the commonly used
benchmark DeepMind Control (DM control) Suite (Tunyasuvunakool et al., 2020), where the maxi-
mum achievable return for these tasks is 1000. We train 10 seeds, seeds= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
for all tasks and train for 3 million timesteps whilst evaluating every 10000 timesteps. We run 20
episodes for each evaluation, and calculate inter-quantile mean (IQM) with shaded area as the IQM-
std (std of inter-quantile samples) according to best practices (Agarwal et al., 2021). The results are
shown in the next subsection.

5.2 RESULTS AND Q&AS

Our experiments aim to answer the following questions.

Q: What is the performance of BOXD?
A: Our proposed BOXD achieves the best or near-best performance on most tasks, especially in
tasks where state space is larger and more exploration is desired.

The aggregated average return across 11 tasks in DM Control is shown in Figure 3, and the average
return for each task are shown in Figure 4.

Compared with baselines, we find that BOXD generally achieves better performance or on-par with
benchmarking methods. Especially in the hopper tasks and humanoid tasks, the average return of our
proposed BOXD (paired with TD3 or with SAC) significantly increases. We hypothesise that this
is because these tasks have larger state dimensions, thus requiring stronger exploration mechanism
in the algorithms. Whereas for cheetah-run, we hypothesise that a single mode is good enough to
achieve strong performance, therefore stronger exploration mechanism is not helpful for this task.

OAC may achieve good performance on certain tasks such as cheetah-run, but underperform in some
tasks such as hopper-hop. DERL paired with TD3 does not exhibit strong performance, whilst its
SAC counterpart struggles at similar tasks as OAC such as hopper-hop. On the other hand, BOXD
works well with both deterministic policy TD3 and stochastic policy SAC.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

An interesting phenomenon may be observed that in the humanoid-run, humanoid-stand and
humanoid-walk tasks. Our proposed method exhibits a delayed performance improvement when
compared to the SAC baseline. For these tasks, this initial performance lag suggests that the sam-
ples collected during the early, exploration-focused phase do not yield immediate benefits for ex-
ploitation. However, these exploration samples prove to be important in the later stages of training.
Collectively, these findings underscore a key insight: enhancing the exploratory process during the
initial phases of training may ultimately lead to superior asymptotic performance and improved
overall sample efficiency.

Q: What is the effect of annealing policy conditioning? Can we not just use πexplore?
A: We can, and it performs well in general. However, without transitioning from the exploration
policy πexplore to the exploitation policy πtask (i.e. annealing policy conditioning), the performance
will saturate at some point.

To verify the effectiveness of our proposed annealing policy conditioning, we trained additionally
on all tasks with three more patterns. Firstly, with no conditioning, where we always use πexplore

as acting policy πact (i.e. setting s = 0 as threshold); secondly, a fixed probability conditioning of
0.1 probability to use πtask for sampling the action policy πact (i.e. setting s = 0.1 as threshold);
and finally, a 50-50 probability conditioning (i.e. setting s = 0.5 as threshold) to choose between
πtask and πact. The aggregated average return over all 11 tasks is shown in Figure 5, and individual
performance for each task and be found in Appendix E. For these experiments, we use fixed k = 2
and n = 2 for easier comparisons.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

700

800

av
er

ag
e 

re
tu

rn

td3
td3+BOXD
td3+BOXD, 50-50
td3+BOXD, fixed conditioning
td3+BOXD, no conditioning

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

700

800

av
er

ag
e 

re
tu

rn

sac
sac+BOXD
sac+BOXD, 50-50
sac+BOXD, fixed conditioning
sac+BOXD, no conditioning

Figure 5: The average return for 11 DM Control tasks of
our proposed method with or without annealing condition-
ing. Left: TD3-based. Right: SAC-based. Our proposed
annealing strategy proves to be important. No conditioning
or fixed conditioning show performance saturation.

We may observe that without the
annealing conditioning strategy, the
performance will stagnate or decay at
the later stages of the training. We
hypothesise that this is because the
replay buffer will contain fewer sam-
ples that are aligned with exploitation
objective, whilst having too much
exploration-aligned samples. Some
form of transitioning from πexplore to
πtask may be beneficial, also shown in
the toy example Section 3. To our
surprise, a strategy of 50-50 proba-
bility sampling between the two ex-
ploration and exploitation policies
performs remarkably well. Never-
theless, even without the annealing
conditioning strategy, our proposed
method outperforms baseline algo-
rithms.

Q: What are the important hyperparameters of BOXD?
A: The most important hyperparameter is the number of sampling times, k, for the Q-value esti-
mates. In general, setting it to k = 2 is good enough.

The main hyperparameter introduced by our method is the number of sampling times k utilised for
the computation of the optimistic Q-value estimate, Qexplore

j . Empirically, we find that a value of
k = 2 is sufficient for obtaining a robust estimate. For the conservative counterpart, Qtask

j , a single
sample is employed (i.e. k = 1), a configuration consistent with standard practice in related algo-
rithms when dropout is used (e.g. DroQ (Hiraoka et al., 2022)). The second hyperparameter related
to optimism is the number of Q-functions n used in calculating the optimistic Q-value estimates.
Generally we find that setting n = 2 (i.e. the same as Qtask) is a good start.

We provide a comprehensive ablation studies regarding the number of critic samples k and the num-
ber of Q-functions n in Appendix D. We stress that there is not much need to tune hyperparameters
for each individual tasks, as the default performance already outperforms baselines. For complete-
ness, the result using default hyperparameter values (n = 2, k = 2) are also shown in Appendix D.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Q: What are the additional computational costs?
A: Although additional computational costs are required for the dual policies, it is worth noting that,
in our experiments under the default settings, TD3+BOXD can run at a similar speed to SAC.

6 RELATED WORKS

Disentangle Exploration and Exploitation. Several works have previously explored the idea of
disentangling exploration and exploitation policies, by adding exploration bonuses to the exploration
policy (DERL) (Colas et al., 2018; Schäfer et al., 2022), by UCB principles (OAC) (Ciosek et al.,
2019), or by changing different objectives (Whitney et al., 2021). The work of Beyer et al. (2019)
is similar to ours where they train multiple policies and choose different policies to interact with
the environment. In meta-RL, (Liu et al., 2021; Norman & Clune, 2024) decouples exploration
and exploitation policies where exploration and exploitation is not done concurrently rather as a
prerequisite for meta-RL tasks, whilst (Liu et al., 2021) constructed separated exploitation objective
from exploration, whilst automatically identify and recover task-relevant information. Similarly, in
offline RL settings, Mark et al. (2023) experimented using offline data to enable faster exploration
in online RL settings, disentangling exploration and exploitation in terms of phases of training.
Furthermore, decoupling policies is also considered in multi-arm bandit problems (Avner et al.,
2012). These works differ from our work in that is done in pure online RL settings without meta-
RL.

Optimistic state-action value estimates. One line of work is to integrate ideas from offline-RL
algorithms to obtain more optimal Q-value estimates. In particular, (Ji et al., 2024; Luo et al., 2024;
Omura et al., 2025) adopted IQL (Kostrikov et al., 2022) to learn the Bellman Optimality Operator,
which are known to accelerate training speed albeit being more biased compared to the Bellman
SARSA Operator. These works offer different strategies to blend them into policy updates, by either
merging the estimates (Ji et al., 2024) or use an annealing schedule (Omura et al., 2025). Our
work differs from these line of work, where we trained disentangled policies and use them to obtain
mixture of both optimistic and conservative state-action pairs into the replay buffer, whilst they use
the conservative replay buffer to estimate optimal values. These works, similar to ours, introduces
additional networks for training.

7 LIMITATION AND CONCLUSION

This work introduces BOXD, a novel algorithm predicated on the principle of disentangling explo-
ration and exploitation. Our proposed method leverages the established interpretation of dropout as
a Bayesian approximation, allowing for the quantification of epistemic uncertainty from the model.
Utilising the UCB principle, we propose training a dedicated exploration policy πexplore guided by
an UCB that may be directly estimated from this uncertainty, thereby enabling a more effective ex-
ploration of the state-action space. Furthermore, we propose a strategy to annealing condition which
policy to use to interact with the environment. This annealing strategy may improve stability by in-
troducing both exploration and exploitation samples into the replay buffer directly. We have shown
that our proposed method significantly outperforms baselines and related works in challenging tasks.

A primary limitation of our proposed BOXD stems from the additional computational costs. This
overhead is a direct result of: 1) the k estimates required to compute the maximum due to different
dropout masks; 2) maintaining a separate neural network for the optimistic policy πexplore; and 3)
maintaining the corresponding ensemble of n of Q-functions Qexplore. Whilst our empirical results
demonstrate that effective performance may be achieved with a minimal number of these functions
(i.e., k=2, n=2), the introduction of these supplementary networks inevitably increases both memory
and computational requirements. One potential future work direction is to incorporate more sophis-
ticated strategies to sample the optimistic and conservative samples from the replay buffer, such
as using Prioritised Experience Replay (PER) (Schaul et al., 2015) or Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017), in order to further make use of these optimistic and conservative
samples obtained by disentangling exploration and exploitation policies. Another potential future
work is to blend the optimistic and conservative value estimates directly into updating Q values and
build direct upon our work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We implement our method in JAX (Bradbury et al., 2018). Details on implementation including the
hyperparameters helpful for reproduction of our method are included in Appendix C. A compre-
hensive ablation study of design choices may be found in Appendix D. We have also included the
source code used for our experiments in the supplementary material for reference.

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018. URL https://arxiv.org/abs/1803.08375.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline rein-
forcement learning with diversified q-ensemble. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Barry C. Arnold, N. Balakrishnan, and Hari Nagaraja. A First Course in Order Statistics. SIAM,
Philadelphia, PA, 1992.

Orly Avner, Shie Mannor, and Ohad Shamir. Decoupling exploration and exploitation in multi-
armed bandits. In International Conference on Machine Learning (ICML), 2012.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

Lucas Beyer, Damien Vincent, Olivier Teboul, Sylvain Gelly, Matthieu Geist, and Olivier Pietquin.
Mulex: Disentangling exploitation from exploration in deep rl, 2019. URL https://arxiv.
org/abs/1907.00868.

Gunnar Blom. Statistical Estimates and Transformed Beta-Variables. John Wiley & Sons, New
York, 1958. ISBN 9780471080157.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://github.com/openai/gym.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations (ICLR), 2019.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions (ICLR), 2021.

Kamil Ciosek, Quan Vuong, Giovanni D’Oro, Brian McWilliams, Simon Giguere, Andrei A Rusu,
Alexander Pritzel, Oriol Vinyals, and Timothy Lillicrap. Better exploration with optimistic actor-
critic. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. In International Conference on Machine
Learning (ICML), 2018.

10

https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1907.00868
https://arxiv.org/abs/1907.00868
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://github.com/openai/gym


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In International Conference on Learning Representations (ICLR), 2023.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing model
uncertainty in deep learning. In International Conference on Machine Learning (ICML), 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI Conference on Artificial Intelligence (AAAI), 2016.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. In International Conference on
Learning Representations (ICLR), 2022.

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing serendip-
ity: Exploiting the value of past success in off-policy actor-critic. In International Conference on
Machine Learning (ICML), 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations (ICLR), 2022.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning (ICML), 2020.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the
estimation bias of q-learning. In International Conference on Learning Representations (ICLR),
2020.

Jiachen Li, Shuo Cheng, Zhenyu Liao, Huayan Wang, William Yang Wang, and Qinxun Bai. Off-
policy reinforcement learning with optimistic exploration and distribution correction, 2022. URL
https://arxiv.org/abs/2110.12081.

Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International Conference on
Machine Learning (ICML), 2021.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. In Interna-
tional Conference on Machine Learning (ICML), 2024.

Max Sobol Mark, Archit Sharma, Fahim Tajwar, Rafael Rafailov, Sergey Levine, and Chelsea Finn.
Offline retraining for online rl: Decoupled policy learning to mitigate exploration bias. arXiv
preprint arXiv:2310.08558, 2023. URL https://arxiv.org/abs/2310.08558.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning (ICML), 2016.

Ben Norman and Jeff Clune. First-explore, then exploit: Meta-learning to solve hard exploration-
exploitation trade-offs. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In International Conference on Machine Learning (ICML), 2018.

11

https://arxiv.org/abs/2110.12081
https://arxiv.org/abs/2310.08558


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Motoki Omura, Kazuki Ota, Takayuki Osa, Yusuke Mukuta, and Tatsuya Harada. Gradual transi-
tion from bellman optimality operator to bellman operator in online reinforcement learning. In
International Conference on Machine Learning (ICML), 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Bellmann Richard. Dynamic Programming. Princeton University Press, 1957.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay,
2015.

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Stefano V. Albrecht. Decoupled rein-
forcement learning to stabilise intrinsically-motivated exploration. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2022.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. In Journal of Machine Learn-
ing Research (JMLR), 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school, 1993.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. In Software Impacts, 2020.

William F. Whitney, Michael Bloesch, Jost Tobias Springenberg, Abbas Abdolmaleki, and Mar-
tin A. Riedmiller. Rethinking exploration for sample-efficient policy learning. In International
Conference on Machine Learning (ICML), 2021.

12

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LARGE LANGUAGE MODELS USAGE DISCLOSURE

We have utilised Large Language Models (LLM) in the writing of this work to help with word
polishing and grammar checking.

B PRELIMINARY EXPERIMENTS DETAILS

In the preliminary toy experiment in Section 3, we compared SARSA-based updates in actor-critic
models using the environment shown in left sub-figure of Figure 2. We compared the optimistic
UCB Q-values and the annealing counterpart to the default SARSA-based update. The critic stores
the estimated Q-values for each state-action pair in a table and updates them based on either UCB or
SARSA. The policy manages logits for each state-action pair in a table, calculates the distribution
using the softmax function, and samples actions from this distribution. The policy may be expressed
as follows:

πθ(a | s) =
exp

(
θs,a

)∑
b

exp
(
θs,b

) (10)

The update of these logits is performed using the policy gradient method, with the update equation
given as follows:

θ ← θ + α∇θ log πθ(at | st)Q(st, at),

∇θs,a′ log πθ(a | s) = δa,a′ − πθ(a
′ | s),

(11)

where δa,a′ is the Kronecker delta. The step size α used for updates in both the critic and the policy
was set to 5e-4. This step size was chosen because it yields smoother learning curves. Whilst
increasing the step size accelerates learning, the observation that UCB-based updates can converge
faster than SARSA-based updates remained consistent. The initial state was randomly selected from
s0, s1, and s2 with equal probability. Additionally, a probability of 10% of taking random actions,
akin to an ϵ-greedy policy, was introduced. We run the toy example for 20 times, and plot the mean
and the std of Q-table.

C EXPERIMENTS IMPLEMENTATION DETAILS & HYPERPARAMETERS

Our implementation and experiments are done in JAX (Bradbury et al., 2018). Specifically, the
versions of important libraries we use in our experiments are: JAX 0.4.30, (Bradbury et al., 2018),
MuJoCo 3.3.5 Todorov et al. (2012), Deepmind Control Suite 1.0.31, (Tunyasuvunakool et al., 2020)
and gym 0.23.1 (Brockman et al., 2016). Nevertheless, we do not expect a lot of empirical perfor-
mance even if the library versions do not follow exactly ours.

Shared across all algorithms. The replay buffer size is set to 106, and the discount factor γ is set to
0.99. The target update rate τ for target network(s) is 0.005. We have initial random collect steps of
10000. To ensure a fair comparison, all methods employ a batch size of 256, and all neural networks
used two hidden layers consisting of 256 units each. All methods use ReLU (Agarap, 2018) as
activation function. We use Adam (Kingma & Ba, 2015) as optimiser for all neural networks with
the learning rate set to 0.0003.

TD3 and SAC. For baselines, TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) are both
implemented closely following excellent public repositories such as JAXRL https://github.
com/ikostrikov/jaxrl, high-replay-ratio (D’Oro et al., 2023) https://github.com/
proceduralia/high_replay_ratio_continuous_control and annealing-q-learning
(Omura et al., 2025), (https://github.com/motokiomura/annealed-q-learning).
We use the default hyperparameters provided in these algorithms.

BOXD. Our proposed method closely follow DroQ based on SAC and TD3. For each Q-function
we add dropout (Srivastava et al., 2014) and layernorm (Ba et al., 2016) consequently after each
linear layer (i.e. linear→ dropout→ layernorm→ activation), except to the last linear layer. For
our proposed method, in all experiments and our proposed method, the dropout probability rate set
to p = 0.001 and is the same across all tasks. we include in Table 1 the tuned number of critics n

13

https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/proceduralia/high_replay_ratio_continuous_control
https://github.com/proceduralia/high_replay_ratio_continuous_control
https://github.com/motokiomura/annealed-q-learning


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and number of samples k from the critics is used for each task. However, as shown in Appendix D,
we can achieve good performance by setting to default values k = 2, n = 2.

Table 1: numbers of critics n and numbers of samples k used in our experiments.

Algorithm TD3+BOXD SAC+BOXD
Task n k n k

cheetah-run 2 2 2 2
finger-turn hard 2 2 2 2

fish-swim 2 2 2 2
hopper-hop 10 2 10 2

hopper-stand 2 2 2 2
humanoid-run 2 2 2 3

humanoid-stand 2 4 2 3
humanoid-walk 2 2 2 4
quadruped-run 2 10 2 3

quadruped-walk 2 2 2 3
walker-run 2 2 2 2

OAC. For OAC, which was officially implemented in PyTorch (Paszke et al., 2019), we re-
implemented into JAX. For hyperparameters, we followed the publicly released official implementa-
tion (https://github.com/microsoft/oac-explore/) and use βub = 4.66. Addition-
ally, for OAC (Ciosek et al., 2019), we explored with its UCB-related hyperparameter βub = {3, 6},
but we did not find significant performance differences. An ablation study on βub = {3, 6} is
included in Appendix D.

DERL framework based algorithm. For DERL, the original work is experimented in discrete
tasks with A2C (Mnih et al., 2016) as base algorithm. We adapt its framework of disentangling
exploration and exploitation policies to continuous control, and add intrinsic reward bonuses to the
exploration policy. The policies are trained with TD3 and SAC as base algorithm. Specifically, in our
experiments we add RND (Burda et al., 2019) as the intrinsic reward, and experimented with various
coefficients = {0.1, 1.0, 5.0} when adding the bonus to the extrinsic reward (from the environment).
Only the best result is presented.

D ABLATION STUDIES

As described in the main manuscript, we introduce two additional hyperparameters in estimating the
approximate UCB, namely the number of sampling times k of each Q-function, and the number of
Q-functions n to train πexplore. We first show that generally setting n = 2 k = 2 is a good start, and
if given more computational costs (e.g. setting k = 4) for some tasks we may get further enhanced
performance. The number of n also affect optimism, and we show that for some tasks where further
optimism is desired, setting n higher may be beneficial. On the other hand, for some tasks, being too
optimistic is disadvantageous. We aim to answer the following questions for our ablation studies.
Additionally, we performed an ablation on the UCB hyperparameter of OAC (Ciosek et al., 2019).

Q: Ablation: How is the results for default n = 2, k = 2?
A: Only a few tasks are significantly affected by even more optimism (i.e. setting higher k or higher
n), namely hopper-hop. Other tasks are only slightly affected.

We show results using default values of n = 2 and k = 2. Only for the task hopper-hop we
see significant difference. For other tasks, the results are similar with higher k and sometimes
decays for higher n (especially for humanoid tasks, where too much optimism will cause degrading
performance). The results are shown in Figure 6 and Figure 7.

Q: Ablation: How does the number of times of Q sampling k affect performance?
A: Depending on the tasks. We recommend to use k = 2 as a starting point.

We additionally train k = {3, 4, 10} for our algorithm based on TD3 and SAC. Similar trends may
be observed in both TD3-based and SAC-based results. Generally speaking, using k = 2 is a good
start. For tasks that requires more exploration such as hopper-hop, using higher k may result in better

14

https://github.com/microsoft/oac-explore/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

700

800

av
er

ag
e 

re
tu

rn

oac
sac
sac+BOXD
sac+DERL
td3
td3+BOXD
td3+DERL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

700

800

av
er

ag
e 

re
tu

rn

oac
sac
sac+BOXD
sac+DERL
td3
td3+BOXD
td3+DERL

Figure 6: Left: Best average return for 11 DM Control tasks of our proposed method versus base-
lines. Right: Average return of our proposed method using k = 2, n = 2 versus baselines.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

oac
sac
sac+BOXD
sac+DERL
td3
td3+BOXD
td3+DERL

Figure 7: Results for using default hyperparameters n = 2, k = 2. Generally speaking there is not a
significant performance difference compared to tuned hyperparameters version in Figure 4, except
for the task hopper-hop.

performance. Higher k generally does not make the performance decay. The results for TD3-base
and the results for SAC-base are shown in Figure 8.

Q: Ablation: How does the number of Q-functions n affect performance?
A: Depending on the tasks. Generally speaking, same as contemporary actor-critic algorithms, using
n = 2 is a good starting point.

The number of critics greatly affects the UCB trade-off parameter cn, as shown in Equation (from
(Blom, 1958; Arnold et al., 1992)). We include in Table 2 the approximate values of cn for n =

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

Critic sampling k: td3 vs td3+BOXD

td3
td3+BOXD
td3+BOXD, k=10
td3+BOXD, k=3
td3+BOXD, k=4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

Critic sampling k: sac vs sac+BOXD

sac
sac+BOXD
sac+BOXD, k=10
sac+BOXD, k=3
sac+BOXD, k=4

Figure 8: Top: Ablation results based on TD3 of the number of critic samples k. Bottom: Ablation
results based on SAC of the number of critic samples k. Generally, we do not observe much perfor-
mance difference when increasing k, except hopper-hop where the benefit of higher k is notable.

{2, 3, 4, 10}. We additionally train n = {3, 4, 10} for our algorithm based on TD3 and SAC. For
hopper-hop, similarly as using higher k, more optimism may be beneficial. However, for humanoid
tasks, too much exploration is disadvantageous in both TD3-based SAC-based results. The results
for TD3-base and the results for SAC-base are shown in Figure 9.

Q: How is OAC affected by its UCB hyperparameter βub?
A: It does not significantly affect performance.

Generally, the performance is not significantly affected except for the task hopper-hop. Thus we use
the official value βub = 4.66 for all experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Approximate values for UCB trade-off parameter cn, depending on the number of critics n.

n 2 3 4 10
cn 0.564 0.846 1.029 1.539

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

Number of Qs n: td3 vs td3+BOXD

td3
td3+BOXD
td3+BOXD, n=10
td3+BOXD, n=3
td3+BOXD, n=4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

600

av
er

ag
e 

re
tu

rn
hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

Number of Qs n: sac vs sac+BOXD

sac
sac+BOXD
sac+BOXD, n=10
sac+BOXD, n=3
sac+BOXD, n=4

Figure 9: Top: Ablation results based on TD3 of the number of Q-functions n. Bottom: Ablation
results based on SAC of the number of Q-functions n. Increasing n may induce more optimism,
which may be beneficial in some tasks (namely hopper-hop) but disadvantageous for humanoid
tasks.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

100

200

300

400

500

600

700

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

350

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

OAC betas

oac
oac, beta=3.0
oac, beta=6.0

Figure 10: Ablation results based on OAC of its UCB hyperparameter βub. Generally, the perfor-
mances are not really affected.

E ANNEALING RESULTS

In the main manuscript, we described our strategy of annealing conditioning to select the action
policy πact to interact with the environment. We showed the aggregated average return in the main
manuscript, and here we include results on the 11 individual tasks regarding the way annealing
policy conditioning is used. Using a 50-50 conditioning strategy is generally good as well.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000
av

er
ag

e 
re

tu
rn

walker-run

Conditioning strategy: td3 vs td3+BOXD

td3
td3+BOXD
td3+BOXD, 50-50
td3+BOXD, fixed conditioning
td3+BOXD, no conditioning

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

200

400

600

800

av
er

ag
e 

re
tu

rn

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

100

200

300

400

500

av
er

ag
e 

re
tu

rn

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

hopper-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

50

100

150

200

250

300

av
er

ag
e 

re
tu

rn

humanoid-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

humanoid-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

quadruped-walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
env interactions 1e6

0

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

walker-run

Conditioning strategy: sac vs sac+BOXD

sac
sac+BOXD
sac+BOXD, 50-50
sac+BOXD, fixed conditioning
sac+BOXD, no conditioning

Figure 11: Top: Our proposed algorithm with TD3. Bottom: Our proposed algorithm with SAC.
Our proposed annealing policy conditioning achieves generally the best performance among condi-
tioning strategies. Using a fixed conditioning or no conditioning strategy will make the acting policy
saturate.

19


	Introduction
	Preliminaries
	Motivation: Preliminary Experiments
	Bayesian Optimism Learning with Dual Policies
	Optimistically Trained Exploration Policy
	Annealing Policy Conditioning When Interacting with the Environment

	Experiments
	Experimental Setups
	Results and Q&As

	Related Works
	Limitation and Conclusion
	Large Language Models Usage Disclosure
	Preliminary Experiments Details
	Experiments Implementation Details & Hyperparameters
	Ablation Studies
	Annealing Results

