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Abstract

Understanding the predictions made by deep learning models remains a central
challenge, especially in high-stakes applications. A promising approach is to
equip models with the ability to answer counterfactual questions — hypothetical
“what if?” scenarios that go beyond the observed data and provide insight into a
model reasoning. In this work, we introduce the notion of causal interpretability,
which formalizes when counterfactual queries can be evaluated from a specific
class of models and observational data. We analyze two common model classes
— blackbox and concept-based predictors — and show that neither is causally in-
terpretable in general. To address this gap, we develop a framework for building
models that are causally interpretable by design. Specifically, we derive a complete
graphical criterion that determines whether a given model architecture supports a
given counterfactual query. This leads to a fundamental tradeoff between causal
interpretability and predictive accuracy, which we characterize by identifying the
unique maximal set of features that yields an interpretable model with maximal
predictive expressiveness. Experiments corroborate the theoretical findings.

1 Introduction

Despite the remarkable success of deep learning models across a wide range of tasks — including
image recognition [7, 16], natural language processing [3, 35], and reinforcement learning [32, 34] —
these models remain fundamentally opaque. Although they are highly effective at predicting labels
based on statistical correlations in the data, they lack the capacity to explain the reasoning behind their
predictions, earning them the colloquial label of “black boxes.” In other words, current models are
difficult to interpret: they lack the ability to justify why a particular decision was made, identify which
input factors were most influential, or reason about how outcomes might differ under alternative,
counterfactual conditions. This interpretability gap raises concerns in high-stakes domains such as
healthcare, law, and scientific discovery, where understanding how and why a model makes a decision
is as important as the decision itself.

A rich body of research on explainable AI (XAI) has been developed to better understand the behavior
of learned models. For instance, post-hoc explanation methods such as LIME [30], SHAP [20], and
Grad-CAM [31] generate local or visual attributions in terms of pixels or extracted features to help
interpret predictions. Other approaches aim to build intrinsically interpretable models, such as those
that impose sparsity constraints [22], restrict final layers [38], or leverage decision tree structures [37],
often trading off model complexity for greater transparency. While these techniques offer useful
insights, they fail to bridge the gap between low-level features and high-level, human-understandable
features that might explain the behavior of a model.

One promising avenue for bridging this gap is counterfactual reasoning. Answering what if questions
— such as “Would the diagnosis have changed if a different treatment had been administered?” or
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Figure 1: (a) Illustration of different model classes: counterfactually consistent models (blue) and
blackbox/concept-based models (yellow). (b) Original input image and corresponding predictions
from each model. (c) Counterfactual predictions: models in the top row predict consistently across
instantiations within the class, while those in the bottom row produce inconsistent predictions.

“Would the person have been classified differently if their income were higher?” — plays a central
role in human reasoning and forms the basis of many explanatory and decision-making processes
[1, 26, 27]. Enabling Al systems to reason counterfactually opens the door to more interpretable
models — ones that can not only predict outcomes accurately but also explain their decisions in a
meaningful, human-aligned way.

Recently, concept-based prediction models [15, 23] have been proposed to improve interpretability by
enabling reasoning over human-understandable features. These models aim to answer counterfactual
queries of the form: “Given an input x, how would the model’s prediction change if a feature W were
modified from w to w’?” Such queries allow users to explore the influence of high-level features —
like the presence of a smile or the existence of a tumor — on a model’s prediction, providing a possible
route to assess whether the model reasoning aligns with human expectations.

Despite their appeal, existing concept-based approaches are oblivious to the causal relationships
between features. As a result, they may not reflect the real-world mechanisms or incorporate common-
sense knowledge faithfully. While some recent methods attempt to introduce causal structure into
concept-based models [4], they frequently lack guarantees of counterfactual consistency — that is, the
property that models within the exact class yield consistent answers to the same counterfactual query.

To illustrate this limitation, consider a task of predicting facial attractiveness. Suppose two models, C
and D, from the same concept-based class, represented by the yellow circle in Fig. 1-(a), are trained
on the same dataset. They first will have the identical attribute prediction, for example, both will
predict a lower attractiveness score for the given image (Fig. 1-(c), yellow). However, when they
evaluate the counterfactual question “What would the attractiveness be had the person smiled?”,
model C will maintain the low attractiveness score while model D will raise the attractiveness score
(Fig. 1-(c), yellow). This discrepancy reveals a deeper issue: the model class is not counterfactually
interpretable, as it does not constrain the space of counterfactual responses. In such cases, users have
no principled way to determine which answer to trust, rendering the query effectively unanswerable.
In contrast, the model class in blue is desirable since any pair of models — such as model A and B —
will give the exact same answer for both attribute and counterfactual predictions. In this case, one
can assert that the attractiveness would be raised had the person smiled, which indicates the model
made the decision based on the feature “Smile” and this is aligned with human understanding [8].



In this work, we introduce the notion of causal interpretability, which concerns whether a prediction
model can be interpreted consistently across counterfactual scenarios — drawing a connection between
XAI and causal inference [ 1, 26]. Intuitively, a model class is said to be causally interpretable if all
models within the class yield consistent predictions under counterfactual interventions, as illustrated
in blue in Fig. 1. We then show that a blackbox model, which maps inputs directly to labels, is
never causally interpretable. That is, such models fundamentally lack the structure needed to answer
counterfactual questions. We also demonstrate theoretically that concept-based models [15], which
rely on all observed features for prediction, are also not guaranteed to be causally interpretable.
Interestingly, we show that causal interpretability can be recovered by constraining the model to use
only a certain subset of features.

Against this background, we develop a general approach for building causally interpretable models
that can answer counterfactual queries consistently by design. Specifically, we propose a complete
graphical criterion for determining whether a model that uses a given set of features for prediction
is causally interpretable with respect to a counterfactual query. This enables the understanding of
(i) which counterfactual questions a given model can answer, and (ii) which models can answer a
given counterfactual question. Our framework also reveals a fundamental tradeoff between causal
interpretability and predictive accuracy. We characterize the unique maximal set of features that
preserves causal interpretability, thereby providing a principled method for building models with
maximal expressive power under interpretability constraints. A notable practical implication is that
our approach does not require full specification of the causal graph or modeling of unobserved
confounders; it only involves the descendants of the target features in the counterfactual query.
Experimental results corroborate the proposed theory. More specifically, our contributions are as
follows:

* (Sec. 2) We introduce the notion of causal interpretability (Def. 2), which states whether we can
evaluate the prediction of the model under counterfactual conditions from observational data. Based
on this formulation, we show that a blackbox model is never interpretable (Prop. 1), whereas a
concept-based model is also not interpretable in general, in contrast to prior belief.

* (Sec. 3) We develop a graphical criterion that determines whether the model is causally interpretable
with respect to the query (Thm. 1). We characterize the unique maximal set of features yielding
interpretable architecture (Thm. 2) and provide a practical way of evaluating such queries from the
data (Thm. 3). Finally, these results reveal a fundamental tradeoff between the causal interpretability
and predictive accuracy (Thm. 4).

Preliminary. Here, we introduce notations and terminologies used in the paper. We use bold letters
to denote a set of random variables or their assignments. We use capital letters to denote a random
variable or a random vector (e.g., X) and lower case letters to denote their assignments (e.g., X).
x U Z denotes the subset of x corresponding to variables in Z and x \ Z denotes the value of X \ Z
consistent with x.

We employ a structural causal model [1, 26] as our semantical framework. A structural causal
model (SCM) M is a 4-tuple (U, V, F, P(U)), where U is a set of exogenous variables, V =
{V1,--+,V,} is a set of endogenous variables, F = { fy,, - - fy, } is a set of functions determining
VasV; « fy,(Pay,, Uy, ), where Pay, C V \ {V;} and Uy, C U forall V; € V, and P(U)
is a distribution over U. An SCM M induces a causal diagram G and a distribution over the
endogenous P(V). We use graphical kinship to represent the relationships between the variables.
ND(W) denotes non-descendants of a variable W, and ND(W) := Ny, ew N D(W;) denotes
non-descendants of a set of variables W. We now define an SCM that describes a generative process

that includes images X and labels prediction Y [24].

Definition 1 (Augmented SCM). An augmented SCM (ASCM) over a generative level SCM My =
(U, Vo, Fo, P°(Uy)) is a tuple M = (U, {V, X, Y}, F, P(U)) such that

(1) exogenous variables U = {Uy, Ux };

(2) V = Vg are labeled observed endogenous variables, X is an m-dimensional mixture variable,
andY is a (predicted) label;

(3) F = {Fo, fx, fy}, where fx maps from (the respective domains of) V.U Ux to X and a
classifier fo maps from (the respective domains of) the subset of {V, X} to Y: and

(4) P(Uy) = P°(Uy).



(a) Blackbox prediction (BP). (b) Concept-based prediction (CP). (¢) Generalized CP (GCP).

Figure 2: Causal diagrams for different types of predictive models.

An ASCM M represents a sequential generative procedure of latent generative factors (i.e., concepts)
V, the image X, and the label prediction Y. First, the latent features V are generated by the
underlying M. The induced causal diagram Gy is called a latent causal graph (LCG). The high-
dimensional mixture X (e.g., image) is then generated from V (and Ux), and subsequently, Y is
generated from the subset of {V, X}, where fg is a classifier that predicts the label. We let (2 :=
{M : ASCM over M} be the space of ASCMs. Omitted proofs are provided in Appendix A.2.

2 Causal Intepretability — Foundations

In this section, we formalize the notion of causal interpretability and examine whether existing
approaches could elicit counterfactual questions consistently in a valid manner.

We start by analyzing two important classes of predictive models: blackbox and concept-based
models. As illustrated in Fig. 2a, blackbox prediction (BP) models make a prediction on the label

~

from the image pixels X (i.e., fp : D(X) — D(Y')). In contrast, concept-based prediction (CP)
models predict the label based on the generative factors of the image (i.e., fy : D(V) — D(Y)), as
illustrated in Fig. 2b. In other words, the classifier of a concept-based model uses the features to

make the predictions, instead of the image itself. Formally, a class of BP models and a class of CP
models are respectively denoted as Q2gp and 2cp, where Qpp = {M € Q| fp : D(X) — D(Y)}
and Qcp = {M € Q| fp : D(V) — D(Y)}. The following examples illustrate the generative
process of BP and CP models.

Example 1 (Blackbox Model). Consider a task of estimating the attractiveness of a human face
represented in an image X. Augmented generative process (ASCM) of the prediction by a BP model

is given as Mgp = (U = {Up,Us,Uc,, Uc,, Ux }, {{F, S,C}, X, Y}, FB PBP(U)), where

F+Upr®Ug
S+ Ug

FBP = C+ (=SAUc) @ (SAUg,) (1)
X + fx(F,S,C,Ux)

Y« fo(X),

Y is the label (attractiveness) prediction, the exogenous variables Ur,Us, Uc, ,Uc, are independent
binary variables, and PB?(Up = 1) = 0.4, PPP(Us = 1) = 0.6, P2’ (Ug, = 1) = 0.3, PP’ (U¢, =
1) = 0.6. The exogenous variable Ux (representing other generative factors) can include (or be
correlated 10) {Ur,Us,Uc,,Uc, }. The causal diagram induced by Mgp is shown in Fig. 2a.

In terms of prediction, the process of obtaining Y has three steps. First, latent generative features
F (gender), S (smiling), and C (high cheekbones) are generated. Then, fx maps the observed
generative features { F, S, C'} and unobserved generative factors Ux to the images X in the pixel

levels. Finally, the predictor fy takes these pixels as input to estimate Y in the corresponding model.
The functions fx and f¢ can be aggregated as Y « Iy o [x(F,S,C,Ux). This illustrates that the

prediction of % by a BP model is made based on all observed features {F, S, C'} and unobserved
features Ux. |



\ PP )L o%=0 ) \ =P )L o0 )

N N
Data distribution QLEry Data distribution QLEry

Figure 3: (Left) Q' is causally interpretable if a query can be uniquely computed from the observa-
tional data. (Right) A query cannot be uniquely computed from the observational data if £’ is not
causally interpretable.

Example 2 (Concept-based Model). The main difference between the class of CP models Qcp and
the class of BP models Qgp is the form of the classifier fo. Consider the same generative process

of observed features Vo = {F,S,C}!' and the image X in Ex. 1. Let us consider a CP model
Mcp = (U = {Up,Us,Uc,,Uc,, Ux}, {{F,S,C}, X, Y}, FP PCP(U)), where the generative
process of F, S, C, X is the same as Eq. (1), Y is generated as

Y « fo(F,S,0), )

and P°?(U) is equal to PPP(U) in Ex. 1. In words, this means that instead of predicting Y based on

pixels (i.e., image X), the classifier f¢ directly predicts Y based on observed features F', S, C. The
causal diagram induced by Mcp is shown in Fig. 2b. |

Examples | and 2 illustrate two different types of predictive models, where the classifier predicts
the label directly from the image X (i.e., {2gp) or from the generative features V (i.e., Qcp). While
both types have showcased their capability to achieve reasonably high predictive accuracy in many
domains [5, 7, 10, 11, 14-16, 23, 33, 40], it is unclear at this moment whether we can interpret how
they would predict under counterfactual scenarios, such as “how attractive the person would be had
the one been smiling ?””. The following notion of causal interpretability formally states whether the
counterfactual questions can be answered from the model.

Definition 2 (Causal Interpretability). Consider a specific model class ' C Q, where Q is the
space of ASCMs. We say the class Q' is causally interpretable w.r.t. a query Q if Q™ = QM2 for

VM, My € Q' s.t. PMi(V,X,Y) = PM2(V, X, Y).

In words, €’ denotes a certain design choice of the models for predicting the label, that is, it is a
space of prediction model candidates (i.e., model class). €', for instance, can be Q2gp, when we want
to predict the label directly from the image (Fig. 2a), or {2cp, when the classifier uses all observed
features (Fig. 2b). For a query (), we are concerned with the counterfactual questions such as “What
if the person had smiled?”, which is written in counterfactual notion as P(Ys—=1 | X = x), and more
generally as Q(W) := P(Yw | X).?

In other words, the notion of causal interpretability states whether one can understand the behavior
of the model under different counterfactual conditions. If the model is causally interpretable, the
counterfactuals can be evaluated from the observational data (Fig. 3, left). Otherwise, the model
fundamentally cannot answer the counterfactual question from observational data, and thus, we cannot
interpret their behavior under counterfactual scenarios (Fig. 3, right). We now analyze two types of

'In practice, the annotations of the features are provided in many real-world datasets across various domains,
e.g., human face [19], medical images [21], and animal species [36]. Otherwise, the common practice is to
extract their annotations with vision-language models [29], which is shown to be effective [23, 39].

Note that the definition is general in terms of the query @, which could vary across different domains, e.g.,
natural direct effect in fairness analysis [28].



predictive models discussed above (i.e., BP model in Ex. 1 and CP model in Ex. 2) and examine their
causal interpretability, i.e., whether they can evaluate counterfactuals from observational data.

Example 3 (Continued from Ex. 1). Consider the BP model Mpgp in Ex. 1. Let Ux includes another
independent variable Ug, namely, Ux = {Ug, Uy }, where Ug L U \ Ug; let the observational
quantity P(F = 0,5 = 1,C = 1 | X = x) = 1, which means that the face is of a male (F = 0),
who is smiling (S = 1 ) and wzth the cheekbones high (C' = 1), given in an image X = x. The
generative process of Y is as Y + fy o fx(F,S,C,Ux) = 1[S > 0.5].

Consider another BP model Mjp with the same generative process of Mpgp, but for in My, the
classifier f;A, is given by: Y « Iy o fx(F,S,C,Ux) = 1[Us > 0.5]. Since S = Ug, the two BP
models Mgp and Myp agrees with the observational data, i.e., P (V,X,Y) = PMw(V,X,Y),
which will lead to the same predictions (and corresponding accuracy).

Now, consider the counterfactual quantity "Given the image X = X, would the prediction still be
attractive ()A’ = 1) had the person not smiled (S = 0)?", namely, Q(S) = P(?S:O =1]X=x).
Intuitively, a smaller value of P(ffszo = 1| X = x) implies the model is more reliable since
changing a face to non-smiling reduces the attractiveness in general based on common sense
knowledge [8]. For the first BP model Mgp, Q(S) evaluates as PMB"(}A/SZO =1|X=x)=
1[S = 0 > 0.5] = 0. However, for the second BP model Miyp, Q(S) evaluates as PMir(Yg_o =
1| X =x)=1[Us =1 > 0.5] = 1. Details for these derivations are provided in Appendix A.

Note that each BP model evaluates the counterfactual query in a completely different way, and
the two models are somewhat inconsistent. In practice, if one chooses the class of BP models
Qpp for this prediction task, the above counterfactual question cannot be answered correctly, since
two BP models can give an exact opposite answer even if the two models agree perfectly with
the observational distribution and their predictions. In other words, the blackbox model class
cannot answer counterfactual Q(S) consistently from observational data, and its behavior cannot be
interpreted under corresponding counterfactual conditions. |

One may surmise that Ex. 3 is a pathological case, which for some reason does not allow the
evaluation of counterfactual queries in a consistent manner. The next result shows that this is not the
case for an arbitrary query (W) and a latent causal graph Gy .

Proposition 1 (Non-interpretability of BP). For any latent causal graph Gv, Qgp is not causally
interpretable w.r.t. Q(W) for any W C V.

Given this impossibility results for the class of blackbox models, one may be tempted to believe that
a CP architecture is causally interpretable, as it predicts the label directly from the features where the
unobserved factors Ux are filtered out. However, the following illustrates that this is not the case.
Example 4 (Continued from Ex. 2). Consider the CP model M cp in Ex. 2. Similar to Ex. 3, consider
an observational quantity P(F = 0,5 =1,C = 1| X =x) = 1. Y is generated as follows:

Y « fo(F,5,C)=1[S + C > 0.5]. 3)

Now consider another CP model M that is the same as Mcp, except for C < f&(S,Uc,) =
(SVUe,)AUc, and P(Ug, = 1) = 0.5. We have PMer(V, X, Y) = PMer(V, X, Y) and Mip is
compatible with the graphical constraints in Fig. 2b. Now consider the same counterfactual quantity
P(Ys—o = 1| X =x) in Ex. 3. For Mcp, we have PMc»(Yg_y =1 | X = x) = PMer(Cg_g =
1| F=0,8=1,C =1) = 0.3. However, for the second CP model, PM/CP(}/}SZO =1|X=
X) = PMer(Cg_g = 1| F = 0,8 = 1,C = 1) = 0.5. This implies that the two CP models
are also inconsistent w.r.t Q(S). In other words, even prediction using features V, not pixels X,
counterfactual queries induced by the CP models can still differ from each other. |

3 A Causal Approach Towards More Interpretable Models

In this section, we establish a principled way of understanding causal interpretability from a graphical
point of view and propose a generalized framework for building causally interpretable models.



3.1 Generalized Concept-based Models

We first define generalized concept-based prediction (GCP) models, a broader class that predicts the
label from an arbitrary set of observed features.

Definition 3 (Generalized Concept-based Prediction). Let T C 'V be a set of features that is used as
a predictor of the label. That is, a classifier fo makes a prediction on a label based on 'T. We say
such predictive models as generalized concept-based models. A class of GCP models that employ the

features T for prediction is denoted as Qgcpry = {M € Q| fp : D(T) — D(}/})}

Compared to CP models, GCP models employ a selected set of features T C 'V as a predictor of the
label, which relaxes the requirement of CP where all features are considered.

The selection of the features T in a GCP model should be specified during the model building stage,
and our goal is to understand the implications of different choices of T and which ones could lead
to causally interpretable models (i.e., satisfying Def. 2). To answer this question systematically, we
introduce a graphical criterion for determining whether a model satisfies causal interpretability.

Theorem 1 (Graphical Criterion). Consider GCP models that employ a set of features 'T' as a predictor
of the label. Qgcp(t) is causally interpretable w.r.t. a query Q(W) if and only if T C W UND(W).

In words, this result says that a query QQ(W) can be evaluated if the model uses the features among
‘W or non-descendants of W to make a prediction on the label. In other words, the models that use
any descendant of W cannot answer counterfactual question and no guarantee can be provided on
how they would make predictions under the corresponding counterfactual scenarios.”

Thm. | enables one to identify the architectures (associated with T') that are causally interpretable
with respect to given counterfactual queries. Interestingly, the models that are potentially causally
interpretable are not unique. The following formalizes the notion of admissible architectures.

Definition 4 (T-Admissible Set). We say T is T-admissible w.r.t. W, = {W1, Wy, -} if Qgep(T)
is interpretable w.r.t. Q(W,;) for all W; € W . A set of T-admissible sets w.r.t. W, is denoted as
T-Ad(W,).

To illustrate, T-admissible set represents model architectures that can answer (potentially multiple)
counterfactual queries Q(W1), Q(Ws), - - -. For example, in Fig. 2, eligible models that one can
evaluate Q(.5) is GCP models whose classifier employs {S}, {F'}, or {S, F'} as a predictor of the
label, i.e., T-admissible set corresponds to the query Q({S}) is TTAd({S}) = {{S}, {F}.{S, F}}.

Given the multiplicity of admissible models, our goal is to find the models that use as many features

as possible to predict the label }A/' i.e., maximal T, as it would be beneficial in terms of predictive
accuracy. We denote it as a maximal T-admissible set, which is formally defined below.

Definition 5 (Maximal T-Admissible Set). Suppose S € T-Ad(W,.) and S' & T-Ad(W.,) for any
S’ D S. We denote such S as Max-T-Ad(W,,).

In other words, a maximal T-admissible set is a T-admissible set that would cease to be T-admissible
if any additional variable were added to it. Note that once a set is not T-admissible, adding more
variables never makes it T-admissible again by Thm. 1. Identifying a maximal T-admissible set would
lead to a model with maximal predictive power while retaining causal interpretability. One might
suspect that multiple maximal T-admissible sets could exist, making it unclear which to select to
maximize the predictive expressiveness. However, the next result says that this is not the case, since
we can establish the uniqueness of the maximal T-admissible set.

Theorem 2 (Uniqueness of Maximal T-Admissible Set). For the queries Q(W.), a maximal T-
admissible set is unique and can be written as:

Max-T-Ad(W,) = Nw,ew, (W; UND(W,)). )
Also, T € T-Ad(W..) if and only if T C Max-T-Ad(W,) .

3Note that for the case of X = T, Qgp is not interpretable w.r.t. any Q(W) since X is a descendant of W
for any W C V, generalizing Prop. 1. Similarly, Qgcp(r) is also never interpretable if X € T, i.e., hybrid
models that make predictions based on the combination of the image and features.
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Figure 4: (Left) As we want a model to answer more counterfactual queries (W' C W?2), the predic-
tive power would decrease (Max-T-Ad(W?2) C Max-T-Ad(W1)). (Right) As the predictive power
increases (T; C T'»), interpretable counterfactuals would decrease (W-Ad(T2) C W-Ad(T)).

To illustrate, for the group of queries Q(W1), Q(W3), - - -, the maximal T-admissible set is unique
and it is the intersection of non-descendants of W; plus W. Interestingly, identifying a maximal
T-admissible set only requires the descendants of W and does not rely on the full specification of the
causal graph. For example, given the features {cheekbone, smiling, gender} and the query “What
if the person had smiled?”, it only requires the knowledge of descendants of "smiling", which is
“cheekbone”. This does not rely on the full latent causal graph, which is often challenging to obtain.

An important practical implication of Thms 1 and 2 is that, given a query QQ(W), one could incor-
porate additional features as long as they are non-descendants of W, which would help improve
accuracy while retaining the causal interpretability w.r.t. P(}/}W | X). For example, given the
T-admissible set {smiling, gender} and the query “Would the person be attractive had they smiled?”,
one can incorporate additional features, e.g., age or hair color, that are non-descendants of smiling.

So far, we have described how to find causally interpretable models that can answer counterfactual
queries. We now describe a practical way of evaluating such queries from the data.

Theorem 3 (Closed Form). If Qgcp(r) is causally interpretable w.r.t. Q(W), the following holds:
P(Yy |x)=> PY | W NT,t\W)P(t|x). (5)
t

This implies that the counterfactual quantity can be elicited from a two-step prediction — (1) a
classifier P(Y | T) and (2) a feature extractor P(T | X). For example, Q() introduced in Ex. 3
can be computed using observational data and the maximal T-admissible set {S, F} as: P(}Afszo |
X) =2 s P(Y | S=0,f)P(s, f | X). Specifically, {S, F} are extracted from P(S, F | X) and

the prediction is made by classifying P(}A/ | S =0, F), conditioning S = 0. Note that Eq. (5) only
holds when the model is causally interpretable, and it does not hold for non-interpretable ones.

3.2 Fundamental Trade-Off between Causal Interpretability and Accuracy

So far, we have developed the machinery for building causally interpretable models that can answer
counterfactual queries. Now, we discuss which queries can be read from the given predictive model
architecture. The following formalizes such notions of admissible queries.

Definition 6 (W-Admissible Set). We say W is W-admissible w.r.t. T if Qgep(T) is causally
interpretable w.r.t. Q(W). A set of W-admissible sets w.r.t. T is denoted as W-Ad(T).

For example, in Fig. 2b, CP model that uses the features {F), S, C'} as the predictor of the label
can answer counterfactual queries Q({F'}), Q({C}), Q({F, S}),Q{F,C}) and Q({F, S,C}), i.e.,
W-Ad({F,S,C}) = {{F},{C},{F,S},{F,C},{F,S,C}} by applying Thm. 1. Similarly, in
Fig. 2c, we have W-Ad({S,C}) = {{F},{S},{C}, {F, S},{F,C},{S,C},{F,S,C}}. Here, one
might notice that the model using a larger set of features can answer a smaller number of counterfactual
questions. Our next result establishes a trade-off between accuracy and causal interpretability.

Theorem 4 (Causal Interpretability-Accuracy Trade-Off). The following holds:
(i) If Ty C Ty, then W-Ad(T3) C W-Ad(T).
(ii) f WL C W2, then Max-T-Ad(W?) C Max-T-Ad(W}).
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Figure 5: (a) Example images of BarMNIST dataset. (b) Causal diagram of GCP models. Red arrows
represent the possible usage for predicting the label. (c) Causal interpretability-accuracy trade-off.
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Figure 6: Estimation of counterfactual queries. Blue dots and orange marks denote estimation of
counterfactual queries and ground truth value, respectively.

In other words, Thm. 4-(i) states that the counterfactuals that can be evaluated from the model
decrease (W-Ad(T3) C W-Ad(T)) as the predictors increase (T; C Ts). Similarly, Thm. 4-(ii)
states that the predictive power would decrease (Max-T-Ad(W?2) C Max-T-Ad(W})) as we want
the models to answer more counterfactual queries (W. C W?). This reveals a fundamental trade-off
between causal interpretability and accuracy, where better predictive power would compromise the
interpretability, and vice versa, as illustrated in Fig. 4.

4 Experiments

In this section, we evaluate our framework for estimating counterfactuals and compare it with prior
approaches. Experimental details and additional experimental results are provided in Appendix B.

4.1 Synthetic datasets

We design the BarMNIST dataset [17, 24] where the digits are colored and a bar appears at the top of
the image, as shown in Fig. 5a. Specifically, we consider the features “bar” (B), “digit” (D), and
“color” (C'), where D, C' are correlated and D has a direct causal effect on B, as illustrated in Fig. 5b.
The true label is generated from all of the features and unobserved factors.

The dataset allows us to compare the estimation of counterfactuals from each model with the ground-
truth. We trained 4 different models, each using T = {B,D,C}, {B, D}, {D,C}, and {D} as
the predictor of the label. As shown in Fig. 5c, the model using T = {B, D, C'} achieves the best
accuracy, followed by T = {B,D} and T = {D, C}, and the model using T = {D} shows the
lowest accuracy. On the other hand, the best model (T = {B, D, C}) in terms of accuracy shows a
high estimation error on the counterfactual query of changing the digit. Thm. | suggests that any
estimation using observed data cannot capture the true counterfactual prediction of this model, since it
uses B, which is the descendant of D. For the same reason, T = {B, D} is not causally interpretable,
in contrast to T = {D,C} and T = {D}. Our theory (Thm. 2) also suggests that there exists a
unique maximal set of features that maintains causal interpretability, in this case, T = {D, C}.

In Fig. 6, we take a closer look at how these models estimate counterfactuals. As shown in Fig. 6a,
T = {D,C} and T = {D} are admissible models for the counterfactual query of changing the
digit. On the other hand, for changing color (Fig. 6b), all models are admissible and output a correct
estimate of the counterfactual query, since C' is not a descendant of any other features.
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Figure 7: Visualization of interpreting counterfactual predictions on CelebA examples.

4.2 Real-world datasets

CelebA dataset [19] contains human face images with the annotations on facial expressions and
attributes, such as “smiling”, “age”, “gender”, etc. We consider a model predicting the label
“attractiveness” and examine how a model makes a prediction under counterfactual conditions
“Would the person look attractive had they smiled?”. In the real world, it is impossible to observe a
counterfactual outcome, but our theory allows us to interpret the behavior of (causally interpretable)
models under counterfactual conditions. Based on Thm. 1, we choose the features that are not
the descendants of smiling. Fig. 7 illustrates the counterfactual prediction of the model using
non-descendant features (i.e., “smiling” and “gender”’). We can interpret its behavior under the
counterfactual condition that it predicts a higher attractiveness had the one smiled, which is aligned

with human common sense.

5 Conclusion

In this work, we introduced the notion of causal interpretability, which states whether counterfactual
queries can be evaluated from a model and observational data. By examining commonly used
model classes — blackbox and concept-based models — we demonstrated that neither is causally
interpretable. To this end, we developed a graphical criterion that determines whether the model is
causally interpretable with respect to the query (Thm. 1). We characterize the unique maximal set
of features yielding interpretable architecture (Thm. 2) and provide a practical way of evaluating
such queries from the data (Thm. 3). Our results reveal a fundamental tradeoff between the causal
interpretability and predictive accuracy (Thm. 4). Theoretical findings are corroborated by the
experimental results. Additional discussions and limitations are provided in Appendix C.
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A Proofs and Additional Examples

A.1 Derivations in Examples
A.1.1 Derivation in Ex. 3

In Ex. 3, for the first BP model Mgp, we evaluate Q(S) from Magp as follows:

PMr (Yoo =1 X =x)

=S PMu(Ysg=1|F=f5=5C=cX=x)PM(F=fS=s5C=c|X=x)
fis,c

=PMr(Ys_g=1|F=0,8=1,0=1,X=x)

=P (fp 0 fx(F,8,C, Ux)s—0 =0 F=0,§=1,C =1,X = x)

=PM(1[S > 0.5]5—0=0| F=0,S=1,C =1,X = x),

=1[S=0>0.5] = 0.

However, for the second BP model, we evaluate Q(S) from Mpp as:

PMir (Yoo =1|X =x)
=PMir(fL o fx(F,S,C,Ux)s—0 =0 F=0,§=1,C =1,X =x)
=PMir(1[Us > 0.5]5—0 =0 | F=0,5=1,C =1,X = x)
:ZPMQP(I[US > 0.5]g—0 = 0| u)PMer(u| F=0,§=1,C=1,X=x)) (summing over U)

=PMer(1[Ug > 0.5]9—0 = 0 | Ug = 1) (S =Us)
=1[Us =1> 0.5 = 1.
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A.1.2 Derivation in Ex. 4
In Ex. 4, for Mcp,

PMe(Vo_g=1|X =x)
:PMCP(S}S:O:l | F:O’S: 1,0:17X:X)
—PMe (Vg g =1|F=0,8=1,C=1) (Y LX|V)

=Y " PM(Voog=1|Csg = ) P (Cs—g =c| F=0,8=1,C =1)
=Y " PMo(Vog=1|Csg = ) PM"(Cs—g=c| F=0,8=1,C=1)

ZPMCP(CS=0:1 ‘F:O7S:1’C:1) (Eq 3)
=0.3

A.2  Omitted Proofs

In this section, we present the proofs of our theoretical results in Sec. 2 and 3. We first formally
introduce the causal diagram induced by an SCM.

Definition 7 (Causal Diagram [, Def. 13]). Consider an SCM M = (U, V| F, P(U)). We construct
a graph G using M as follows:

(1) add a vertex for every variable in V,

(2) add a directed edge (V; — V;) for every V;,V; € V if V; appears as an argument of
fv. e F,

(3) add a bidirected edge (V; <—— V) for every Vi, V; € V if the corresponding Uy, Uy, C
U are not independent or if fy, and fv, share some U € U as an argument.

We refer to G as the causal diagram induced by M (or “causal diagram of M” for short). |
We then formally introduce the identifiability of a counterfactual query given an observational

distribution and a causal diagram G.

Definition 8 (Counterfactual Identification). A counterfactual query P(yi[x,], Y2[x,], ---) is said to be
identifiable from P(V) and G, if P(yY1[x,]> Y2[x] ---) is uniquely computable from the distributions
P(V) in any SCM that induces G.

Then we start from two lemmas as a tool for the proof of Thm. 1.

Lemma 1. Consider an SCM M over V. Suppose that there exists a path made entirely of bi-directed
edges between V;, V; € V in G. Consider two sets A,B C Vand ANB = (0. Let the intervened
values are not consistent with the factual values, namely, b ¢ v. Then the query P(ay | v) is
identifiable from P(V') and G if and only if A C ND(B), where ND(B) = Np,eg ND(B;).

Proof. (=) Suppose A C ND(B). We have P(ay | v) = P(a | v) = 1[a = v] which implies that
P(ayp, | v) is uniquely computable.

(<) Suppose there exists A € A such that A € Des(B). By Correa et al. [2, Thm. 3], P(ap | v) is
an inconsistent factor since B C V and b C v, and thus, it is not identifiable from P(V). O

Lemma 2 (Correa et al. [2, Lemma. 1]). Consider an SCM over V induce observational distribution
P(V) and diagram G. Suppose A takes input as Ay. Then Zal P(Aib,], A2[by], ---) is identifiable
if and only if P(Aqb,], Aaby), ---) is identifiable.

Now, we are ready to proceed to the proof of Thm. 1.

Theorem 1 (Graphical Criterion). Consider GCP models that employ a set of features 'T' as a predictor
of the label. Qgcp() is causally interpretable w.r.t. a query Q(W) if and only if T € WUN D(W).
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Figure 9: Diagrams used in the proof of Prop. 1.

Proof. According to Defs 2, 3 and 8, this is equivalent to prove that query P (4w | X) is identifiable
iff T C ND(W) U W given the observational distribution P(V,X,Y") and the diagram GA!& over
{V,X,Y} (shown in Fig. 8). To illustrate, the diagram G over V is an arbitrary given DAG; for any

V: € V, V; point to X and bi-directed connected to X; only a subset T C V point to Y. Denote
Z =T\W.

P(yw | %)
= Z P(Yw | v,x)P(v | x) (summing over V)
= i P(Gw |t v,x)P(th, | v,x)P(v |x)  (summing over Ty in My, world)
vt
= P@w | tw) Pty | v, x)P(v | x) (Yor L{V,X} | Tw)  (6)
vt
= P(fw | 24)P (2, | v, X)P(v | x) (consistency)  (7)
= Z Py |z, w')P(zy, | v,x)P(v | x) (do-calculus [25])  (8)

Eq. (6) holds since ?w are independent with X and V since all parents of ?w/ (which is T,/) are
conditioned on. Eq. (7) holds since the T N W should be consistent with the intervened value in w

(and the remaining variables Z in T taking z”. Eq. (8) holds due to Y1 W | T in Gw, where gﬂ
is the graph removing outgoing edge of W. Using do-calculus, we have:

P(Yuw' | 24:) = P(7 | 2", w'). ©)

We will prove that Eq. (8) is identifiable if and only if T C N D(W)UW, which is equivalent to prove
Egq. (8) is identifiable iff Z C N D(W) since Z = T\ W. According to Eq. (8), the only undermined
term is P(z.,, | v,x). Since V and X are bi-directly connected, Lemma 1 suggests P(z,,, | v,x)
is identifiable iff Z C ND(W). Then, P(y | z",w')P(zy,, | v,x)P(v | x) is identifiable iff
Z C ND(W). According to Lemma 2, Eq. (8) is identifiable iff T C ND(W)U W. O

Proposition 1 (Non-interpretability of BP). For any latent causal graph Gy, Qpp is not causally
interpretable w.r.t. Q(W) for any W C V.
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Proof. Since the observational P(X) is identifiable, we will prove that P(gy,x) is not identifiable
given a blackbox model structure and observational distribution P(X, Y, V).

P(Z//\w’a X)
= Z PG, Xy, X) (summing over X, )
= Z P4 ) P (X}, %) (consistency and Yy L {X, Xw'})
= Z P(yx) Z P(x,,x,w) (summing over W)

(10)

P(x%,,,x,w) is not identifiable according to Lemma 1. Then Lemma 2 suggests that P(yw, X) is
not identifiable.

Theorem 2 (Uniqueness of Maximal T-Admissible Set). For the queries Q(W,), a maximal T-
admissible set is unique and can be written as:

Max-T-Ad(W,.) = Nw,ew, (W; U ND(W,)). 4)
Also, T € T-Ad(W,) if and only if T C Max-T-Ad(W,,) .

Proof. (i) First, we will show that S = Nw,ew, (W; UND(W;,)) is a T-admissible set w.r.t
Q(W,). For each W; € W, we have

Nw,ew, (Wi U ND(Wl)) C W;UND(W,).

Therefore, by Thm. 1, Nw,ew, (W; U ND(W;)) is a T-admissible set w.r.t Q(W;) for all W; €
‘W,. Thus, we have S € T-Ad(W,,).
(ii) Now, we will show that S is a maximal T-admissible set w.r.t W . Suppose there exists S’ such
that S’ € T-Ad(W,) and S’ D S. Since 8’ € T-Ad(W,.), S’ € T-Ad(W,) for all W; €¢ W,.
Hence,

S'"CW,UND(W,;) forallW; e W,.
Therefore, S’ C Nw,ew, (W; UND(W;)) = S, which contradicts 8’ 2 S. Therefore, S is a
maximal T-admissible set w.r.t W,.

(iii) Now, we will show that S is a unique maximal T-admissible set. Suppose there exists another
maximal T-admissible set S’. Since S’ € T-Ad(W,,), we have S’ C S by the same reason in (ii).
If S’ C S, then it contradicts that S’ is a maximal T-admissible set, since S is a T-admissible set.
Therefore, we have S = S’. In other words, a maximal T-admissible set is unique and can be written
as Max-T-Ad(W,.) = Nw,ew, (W; U ND(W,)).

(iv) Now, we will show that T € T-Ad(W,) if and only if T C Max-T-Ad(W,). Suppose
T € T-Ad(W,). Then, by (ii), we have T C Nw,ew, (W; U ND(W;)). Also, we showed
that Max-T-Ad(W..) = Nw,ew, (W; U ND(W;)). Therefore, we have T C Max-T-Ad(W,.).
Now, suppose that T C Max-T-Ad(W,). We have T C Nw,ew, (W; U ND(W;)), and thus,
T C W, U ND(W,) for all W; € W,.. Therefore, T € T-Ad(W;) for all W,; € W,, and thus,
T € T-Ad(W,). O

Theorem 3 (Closed Form). If Qgep(r) is causally interpretable w.r.t. Q(W), the following holds:

P(Yy |x)=> PY | W NT,t\W)P(t|x). (5)

Proof. From Eq. (8), we have

P(yw | x) = ZPy|z w)P(zl, | v,x)P(v | x). (11)

v,z
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Note that this equation is identifiable if only if Z C W U N D(W). Then

=Y PG|z w)P(zg | v,x)P(v]|x)

= Z P(y|z", wlz" = v|P(v|x) (Lemma. 1)

= EP@I t\w,w)P(v|x) (where z = (t \ w) € v)

:z‘,:P(§|t\w7w'ﬂt)P(v|x) (Y LW\T|T)

= ijp(m t\w,w Nt)P(t|x). (12)
©

This conclude P(Yy, | x) = PN P(Y | w'NT,t\ W)P(t | x) since Eq. 12 holds for any t, w. [
Theorem 4 (Causal Interpretability-Accuracy Trade-Off). The following holds:
(i) IfT1 C Ty, then W—Ad(Tg) - W-Ad(Tl)
(ii) I WL C W2, then Max-T-Ad(W?) C Max-T-Ad(W}).
Proof. (i) Let T1 C T5. Suppose W € W-Ad(T3). By Def. 6 and Thm. 1, we have
Ty CWUND(W).

Since Ty C T, it follows that Ty C W U ND(W). Therefore, by Def. 6 and Thm. 1, W €
W-Ad(T;). Thus, for all W € W-Ad(T;), we have W € W-Ad(T). Hence, we have

W-Ad(T5) € W-Ad(T).

(ii) Let W. C W2, Then, we have
Nw,ewz (Wi UND(W;)) C Nw,ew: (W; UND(W,)).
Therefore, we have Max-T-Ad(W?2) C Max-T-Ad(W}) by Thm. 2. O

A.3 Additional Examples

The following example illustrates how GCP and CP models compare.

Example 5 (GCP). Consider the generative process of observed concepts Vo = {F, S,C} and the
image X, as in Ex. 1 (BP model) and Ex. 2 (CP model). Consider a GCP model Mgcp = (U =

{Ur,Us,Uc,,Uc,, Ux}, {{F,S,C},X, Y}, FOP PGCP(U)), where

F+UroUg
S+ Ug
FGCP _ ) C <+ (=S ANUqc,) ® (SAUg,) (13)
X+ fx(F,S,C,Ux)
Y « [9(S, F)
and POCP(U) is equal to PF(U) in Ex. 2. The causal diagram induced by GCP model Mgcp is
shown in Fig. 2c. To illustrate, instead of predicting the label based on pixels in images X (BP

models) or all observed features {F, S,C} (CP models), GCP model makes a prediction using a
selected subset of features T = {S, F'} (i.e., smiling and gender) in this case. |

The following example illustrates the case where the GCP
. . P(F,S8,0)=1
model is causal interpretable.
0.168
0.072
0.096
0.144
0.112
0.048
0.144
0.216

Example 6 (Continued from Ex. 5). Consider Qcp in Ex. 4.
Thm. 1 suggests Qlcp is not interpretable w.r.t. to query
Q(S) P(Ys—o | X). This is because C € De(S), where
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Table 1: Probability table in Ex. 6.



W = {8}, i.e., the prediction of Y is made based on C, a
descendant of S. In contrast, Qgep({s,ry) in Ex. 5 is said
to be causally interpretable w.r.t. to query P(Ys—o | X)
since fgCP only takes T = {S,F} C SU ND(S) as
input. To illustrate, let us consider the GCP model Mcp
in Ex. 5. Similar to Examples 3 and 4, let the observational
quantity P(F = 0,5 =1,C = 1| X =x) = 1 and let f3 be:

Y « f9P(S,F) =1[S+ F > 0.5]. (14)

Now, consider another GCP model

/GCP = <U/ = {U1/77 U,ls’la U,/S‘I ) Uél ) U/CQ ) U/)(}7 {{Fa Sa C}a X7 }/}}a ‘FGCP/’ PGCP/ (U)>7 (15)
where
F+ Up
S+ ((~Up) NUs,) & (Up A Us,)
FOP = L O+ (~SAUL,) @ (SAUL,) (16)
X + fx(F,S,C,Ux)
Y « 1[S+ F > 0.5]
and P(Uj, = 1) = 0.52, P(U}, = 1) = 0.5, P(U4, = 1) = 9/13, P(U}, = 1) = 0.5, P(U},, =
1) = 0.6. It is verifiable that PMocr (V) = PMacr (V) as shown in Table 1. Since fy is the same in
both Mgcp and Ml;p, PMocr (V) Y) = PMacr(V,Y). Let the distribution of Ux satisifies that
PMeer(V X,Y) = PMacr (V,X,Y). M p is compatible the graphical constraints induced by

the model in Fig. 2b. Notice that [, f&, f( in Mgcp are totally different to fr, fs, fc in Mgcp.
For the first GCP model Mgcp,

PMocr (Vo g =1|X=x)=PMor(Fg_y=1|F=0,5=1,C=1)=0.
Similarly, for the second GCP model M p,
PMeer(Yg_g=1|X =x) = PMocr(Cy_g=1|F=0,8=1,C=1)=0.

This shows that the two GCP models are consistent with the query. In other words, if one uses the

features {S, F'} to predict Y , the model architecture in Fig. 2c is guaranteed to provide a unique
answer for the counterfactual question "What would the attractiveness prediction be had the person
not smiled?" (i.e., P(Ys—q | X)). Then one can trust the counterfactual quantities induced by any
model with this architecture. |

B Experiments

In this section, we describe the details for the experiments and provide additional experimental
results.

B.1 Dataset

B.1.1 BarMNIST
For BarMNIST experiment discussed in Sec. 4.1, the data generating process is as follows:

D+ Up
C+—Up®dUc
F={ B+ (Up, AD)® (Up, NUp,)® ((-Up,) ANUp,) (17)
X + fx(B,D,C,Ux)
Y + (D& C)V B) & Uy,
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P(Dg-0=1|C=0,B=1) P(Dg-o=1|C=1,B=1)

1.0 1.0
—
0.8 0.8
0.6 0.6
0.4 0.4
0.2 e Estimated 0.2
—— Ground Truth
0.0 0.0
Baseline Ours Baseline Ours
(a) Causal diagram. (b) Estimation of counterfactuals.

Figure 10: (a) Causal diagram of GCP models. Red arrows represent the possible usage for predicting
the label. (b) Estimation of counterfactual queries. Blue dots and orange marks denote estimation of
counterfactual queries and ground truth value, respectively.

the exogenous variables Up, Uc, Up, , Up,, Up,, Uy are independent binary variables, and P(Up
1) = 05,P(Uc = 1) = 04,P(Ug, = 1) = 09,P(Up, = 1) = 1/18, P(Up, = 1)
0.5,P(Uy =1) =0.1.

Following this process, we generated 60,000 images and corresponding labels, where each image is

annotated with 3 binary features, i.e., bar (B), color (C), and digit (D). Here, D = 0 represents the
digits from O to 4 and D = 1 represents the digits from 5 to 9.

B.1.2 CelebA

CelebA dataset [19] contains 202,599 celebrity facial images, where each image is annotated with 40
different attributes. In our experiments, we used the attribute “attractiveness” as the label, where the
label and all other features are binary.

B.2 Experimental Details

In BarMNIST, we used ResNet18 for the feature extractor. For the classifier, we used a three-layer
MLP with the hidden dimension of 32 and leakyrelu activation. We set the batch size to 1024 and
trained the models for 100 epoch. We used Adam optimizer with a learning rate of 0.0003.

In CelebA, we used ResNet34 for the feature extractor and used linear classifier. We set the batch
size to 512 and trained the models for 100 epochs. We used SGD optimizer with the learning rate of
0.001. We resized the image with center crop into 64x64 for training.

For the training of our model and baselines, we used binary classification loss for both the feature
extractor and the classifier, where they are trained simultaneously in an end-to-end manner. All
experimental results are averaged over 5 independent runs. We report a standard error as the error
bar in Figs. 6, 10 and 11. All experiments are conducted on a single NVIDIA A100 GPU. For
the implementation, we utilized publicly available code from Espinosa Zarlenga et al. [6]. We
used GPT-40 to generate the counterfactual images shown in Figs. 7 and 11 to provide an intuitive
understanding of the counterfactual questions.

B.3 Additional Experimental Results
B.3.1 BarMNIST

To validate our theory with a different graph structure, we consider a causal diagram in Fig. 10a
where the goal is to predict the digit D from the image. The data generating process is as follows:
B+ Up

C<+BVUc, @Ug,
D+ (BvC)®Up

X + fx(B,D,C,Ux),

(18)

where the exogenous variables Up, Uc, , Ug,, Up are independent binary variables, where P(Up =
1)=0.6,P(Ugc, =1)=0.5,P(Uc, =1)=0.1,P(Up =1) =0.1.
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(a) Query & causal prior (c) Instance-level examples
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Figure 11: (a) We examine the prediction of the models under counterfactual condition. We use
causal prior knowledge that smiling has causal effects on the features “cheekbones” and “opened
mouth”. (b) Average difference between the estimated counterfactual prediction and the prediction
on the observed (factual) image. (c) Qualitative examples for our model and baselines.

The baseline model uses the features B and C' for predicting the label, and our model uses B for
making a prediction. Our theory (Thm. 1) suggests that our model is causally interpretable, but not
the baseline which uses C', a descendant of B. We compare our model and baselines for estimating

the counterfactual prediction of the model, where the query is to change the bar, i.e., P(B B=0 | X).

Fig. 10b illustrates the estimation of counterfactual queries (blue dots) and ground truth values
(orange marks). This shows that our model correctly estimates counterfactual queries. In contrast, the
estimation of the baseline significantly differs from the ground truth. This corroborates our theory
that our estimation can properly interpret the counterfactual behavior of the causally interpretable
models, but it is not possible for non-interpretable ones.

B.3.2 CelebA

Here, we provide a detailed analysis of CelebA experiments in Sec. 4.2. Fig. 11-(a) illustrates the
counterfactual question and causal prior we utilized to construct our model. Specifically, we leverage
the common-sense knowledge that smiling has direct causal influence to the features “cheekbones”
and “opened mouth”. To construct our model, we choose features that are non-descendants of smiling,
specifically “smile” and “gender” as feature set V. Baselines include descendant features. In Fig. 11,

CLINNT3

baseline 1 uses the features “smiling”, “gender”, and “cheekbones” and baseline 2 uses the features

9% ¢ 3% G

“smiling”, “gender”, “cheekbones”, and “opened mouth”.

Fig. 11-(b) shows the average difference between the estimated counterfactual prediction and the
prediction on the observed image. Fig. 11-(c) shows qualitative examples comparing our method and
baselines. The first column in Fig. 11-(c) shows the input image, and the second column illustrates
the counterfactual image, as a reference to provide a better understanding of the counterfactual query.
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The theory suggests that a causally interpretable model can properly estimate its prediction under
counterfactual conditions. As shown in Fig. 11-(b) and (c), our model, which is causally interpretable,
consistently increases the attractiveness across the instances, which is also aligned with human
reasoning. In contrast, as illustrated in Fig. 11-(c), the estimation of the baselines (which use similar
feature set as ours) shows that smiling often does not increase attractiveness (red boxes). In fact, our
theory suggests that it is not possible to interpret the counterfactual behavior of non-interpretable
models using only observational data, and any attempts to estimate it would lead to inconsistent
results.

C Additional Discussions, Limitations, and Future Work

Estimation of the concepts. In the closed-form formula in Eq. (5), the concepts W and T are
ground-truth concepts. Since the labels of ground-truth concepts are available, one can estimate
P(T | X) over ground truth concept T. For clarity, let us denote this estimated distribution as

13(T | X). In the prediction stage, the true concepts W and T of an image instance X are not given
directly. Instead, the predicted concepts W and T are sampled through the estimated P(T | X).

When ﬁ(T | X) is accurate, the sampled (predicted) concepts are expected to align closely with the
ground-truth concepts. However, if the estimation has an error, the predicted concepts may deviate
from the true ones, and this error will naturally propagate into the counterfactual evaluation via

Eq. (5).

Our goal with this formulation is to formally characterize how these counterfactual quantities can be
computed from the observational distribution under ideal conditions (i.e., accurate estimation). The
challenge of robustly estimating P(T | X) from finite data is indeed fundamental and highly relevant
to practice, but falls outside the scope of this work. Nevertheless, it would be a valuable direction
for future investigation, particularly in light of ongoing research in counterfactual estimation within
the causal inference literature [12, 13] and the importance of creating more interpretable methods in
practice.

Causal graph. Our work reveals that understanding and harnessing causal relationships among
the generative features are crucial for building interpretable models that can properly evaluate
counterfactual questions. It is important to note that our framework only requires the causal prior on
the descendants, and this is a much relaxed assumption compared to the conventional assumption in
causal inference, where the full specification of the causal graph is needed [9, 18].

Real-world datasets. In real-world datasets, it is infeasible to evaluate the actual value of the
counterfactual query because the underlying ground-truth data-generating process for real-world
datasets is not given, specifically, the mechanisms of V are not known. For example, it is unknown
how nature decides the generation process of human facial features. Due to this inevitable restriction,
we thoroughly validated our theory in BarMNIST datasets (where we have the ground-truth SCM),
including causal interpretability-accuracy tradeoff.

Still, our theory allows us to understand the interplay between causal interpretability and accuracy in
real-world datasets. For example, given T-admissible set smiling, gender and the query “Would the
person be attractive had they smiled?”, if one wants to incorporate additional query “Would the person
be attractive had they be a men?”, we know the model using this T maintains causal interpretability
w.r.t. both queries, and thus, would not compromise accuracy.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state our main claims. Theoretical results are
presented in Sec. 2 and 3 and experimental results are presented in Sec. 4.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation section is provided in Appendix C.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs are provided in Appendix A.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experimental details are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We provide the experimental details in Appendix B.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Fig. 6 includes error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experimental details are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the code of ethics and followed it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts in Appendix C.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cited the original paper of the dataset or code.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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