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Abstract

Generalized Additive Models (GAMs) have re-
cently experienced a resurgence in popularity, par-
ticularly in high-stakes domains such as health-
care. GAMs are favored due to their interpretabil-
ity, which arises from expressing the target value
as a sum of non-linear functions of the predic-
tors. Despite the current enthusiasm for GAMs,
their susceptibility to concurvity – i.e., (possibly
non-linear) dependencies between the predictors
– has hitherto been largely overlooked. Here, we
demonstrate how concurvity can severly impair
the interpretability of GAMs and propose a rem-
edy: a conceptually simple, yet effective regular-
izer which penalizes pairwise correlations of the
non-linearly transformed feature variables. This
procedure is applicable to any gradient-based fit-
ting of differentiable additive models, such as
Neural Additive Models or NeuralProphet, and
enhances interpretability by eliminating ambigu-
ities due to self-canceling feature contributions.
We validate the effectiveness of our regularizer
in experiments on synthetic as well as real-world
datasets for time-series and tabular data. Our ex-
periments show that concurvity in GAMs can be
reduced without significantly compromising pre-
diction quality, improving interpretability and re-
ducing variance in the feature importances.

1. Introduction
Interpretability has emerged as a critical requirement of ma-
chine learning models in domains involving high-stakes de-
cisions and regulatory constraints, such as healthcare. In this
domain, it is of vital importance to ensure transparency and
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accountability of decisions (e.g., for or against medical in-
tervention) as well as to ensure that biases and confounding
effects in existing data are well-understood (Caruana et al.,
2015; Zhang et al., 2022; Chang et al., 2021). Similar con-
cerns affect applications such as loan approvals (Arun et al.,
2016) and hiring practices (Dattner et al., 2019), among
others (Barocas & Selbst, 2016; Rudin et al., 2022). In
the healthcare sector in particular, the clarity of interpreta-
tion can often be a major hurdle in securing approval for
medical devices from medical authorities like the FDA or
EMA, because doctors are required to justify their decisions.
Therefore, the ability to clearly interpret a model might
be given priority over its predictive accuracy, as described
in Letham et al. (2015)

A popular model class for interpretable machine learning
is Generalized Additive Models (GAMs) (Hastie & Tibshi-
rani, 1987), in which the target variable is expressed as
a sum of non-linearly transformed features. GAMs com-
bine the interpretability of (generalized) linear models with
the flexibility to capture non-linear dependencies between
the features and the target. GAMs have recently seen a
resurgence in interest with prominent examples being Neu-
ral Additive Models (NAMs) (Agarwal et al., 2021) and its
variants (Chang et al., 2022; Dubey et al., 2022; Radenovic
et al., 2022; Xu et al., 2022; Enouen & Liu, 2022) for tabular
data, as well as Prophet (Taylor & Letham, 2018) and Neu-
ralProphet (Triebe et al., 2021) for time-series forecasting.
Both domains will be further explored in our experiments.

A significant obstacle to the interpretability of additive mod-
els is the phenomenon of concurvity (Buja et al., 1989). As
a non-linear analog to multicollinearity, concurvity refers to
the presence of strong correlations among the non-linearly
transformed feature variables. Similarly to multicollinear-
ity, concurvity can impair interpretability because param-
eter estimates become unstable when features are corre-
lated (Ramsay et al., 2003), resulting in highly disparate
interpretations of the data depending on the model initializa-
tion. Although this issue is known and addressed by various
techniques such as variable selection (Kovács, 2022) in tra-
ditional GAMs, it has been overlooked in more recent works.
Unlike the prevalent GAM package mgcv (Wood, 2001), we
are not aware of any differentiable GAM implementations
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Figure 1. Concurvity in a NeuralProphet model: Fitting a time series composed of daily and weekly seasonalities, each represented by
Fourier terms. (left) Using few Fourier terms results in uncorrelated components but a poor fit; (middle) A more complex model improves
the fit but sacrifices interpretability due to self-canceling high-frequency terms; (right) The same complex model, but with our regularizer,
achieves both good predictive performance and interpretable (decorrelated) components. See Appendix D.2 for details.

that include concurvity metrics.

In this work, we propose a novel regularizer for reducing
concurvity in GAMs by penalizing pairwise correlations
of the non-linearly transformed features. Reducing con-
curvity improves interpretability because it promotes the
isolation of feature contributions to the target by eliminating
potentially correlated or self-canceling transformed feature
combinations. As a result, the model becomes easier to
inspect by clearly separating individual feature contribu-
tions. In addition, our regularizer encourages the model
to learn more consistent feature importances across model
initializations, which increases interpretability. The trade-
off between increased interpretability and prediction quality
will be further explored in Section 4.

The example depicted in Figure 1 provides a first intuition
of the practical implications of concurvity and how these
can be addressed by our regularizer. We use the additive
time series model NeuralProphet (Triebe et al., 2021). For
this particular example, we have limited the model to in-
corporate only daily and weekly seasonality components.
These components are modeled using periodic functions
whose complexity can be adjusted as needed. More details
on the experiment can be found in Appendix D.2. We find
that while the default NeuralProphet parameters effectively
mitigate concurvity by producing a very simple model, they

provide a worse fit to the data than the more complex models.
However, if left unregularized, a more complex model is sub-
ject to strong correlation between the seasonalities, an effect
visually apparent in self-canceling periodic components in
the middle column of Figure 1. In contrast, when using our
regularization, the seasonalities are less correlated, resulting
in a clearer separation between the components. While the
predictive performance of the two complex models is com-
parable, the regularized model is more interpretable because
daily and weekly effects are clearly separated. We argue that
in general, a GAM with lower concurvity is preferable to a
GAM with similar prediction quality but higher concurvity.

Our main contributions are:

1. We showcase the susceptibility of modern additive
models to concurvity and present a revised formal defi-
nition of the concept.

2. We propose a concurvity regularizer applicable to any
differentiable GAM.

3. We validate our approach experimentally using a vari-
ety of synthetic as well as real-world data, investigating
the trade-off between concurvity and prediction quality,
as well as the impact of regularization on interpretabil-
ity.
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2. Background
2.1. Generalized Additive Models

Generalized Additive Models (GAMs) (Hastie & Tibshirani,
1987) form a class of statistical models that extends Gen-
eralized Linear Models (Nelder & Wedderburn, 1972) by
incorporating non-linear transformations of each feature.
Following Hastie & Tibshirani (1987), GAMs can be ex-
pressed as:

g
(
E(Y |X)

)
= β +

∑p

i=1
fi(Xi) , (GAM)

where Y = (y1, . . . , yN ) ∈ RN is a vector of N observed
values of a target (random) variable, X = [X1, . . . , Xp] ∈
RN×p assembles the observed feature variables Xi =
(xi,1, . . . , xi,N ) ∈ RN , and fi : R → R are univariate,
continuous shape functions modeling the individual feature
transformations.1 Furthermore, β ∈ R is a learnable global
offset and g : R → R is the link function that relates the
(expected) target value to the feature variables, e.g. the logit
function in binary classification or the identity function in
regression. The shape functions fi precisely describe the
contribution of each individual feature variable in GAMs,
and can be visualized and interpreted similarly to coeffi-
cients in a linear model. This allows practitioners to fully
understand the learned prediction rule and gain further in-
sights into the underlying data.

Whereas early GAMs primarily used splines (Hastie & Tib-
shirani, 1987) or boosted decision trees (Lou et al., 2012;
2013; Caruana et al., 2015) to model fi, more recent GAMs
such as Neural Additive Models (NAMs) (Agarwal et al.,
2021) use multilayer perceptrons (MLPs) to fit the functions
fi, benefitting from the universal approximation capacity of
neural networks (Cybenko, 1989) as well as the support of
automatic differentiation frameworks (Paszke et al., 2019;
Bradbury et al., 2018; Abadi et al., 2016) and hardware ac-
celeration. As a result, one can now solve the GAM fitting
problem

min
(f1,...,fp)∈H

1
N

∑N

l=1
L
(
Y, β +

∑p
i=1 fi(Xi)

)
(GAM-Fit)

by common deep learning optimization techniques such
as mini-batch stochastic gradient descent (SGD). Here,
L : R× R → R is a loss function and H ⊂ {(f1, . . . , fp) |
fi : R → R} any function class with differentiable parame-
ters, e.g., MLPs or periodic functions like in NeuralProphet
(Triebe et al., 2021).

2.2. Multicollinearity and Concurvity

Multicollinearity refers to a situation in which two or more
feature variables within a linear statistical model are strongly

1As usual, when fi or g are applied to a vector, their effect is
understood elementwise.

correlated. Formally, this reads as follows:

Definition 2.1 (Multicollinearity). Let X1, . . . , Xp ∈ RN

be a set of feature variables where Xi = (xi,1, . . . , xi,N ) ∈
RN represents N observed values. We say that X1, . . . , Xp

are (perfectly) multicollinear if there exist c0, c1, . . . , cp ∈
R, not all zero, such that c0 +

∑p
i=1 ciXi = 0.

According to the above definition, every suitable linear com-
bination of features can be modified by adding a trivial
linear combination c0 +

∑p
i=1 ciXi = 0. This can make

individual effects of the features on a target variable diffi-
cult to disambiguate, impairing the interpretability of the
fitted model. However, even in the absence of perfect mul-
ticollinearity, difficulties may arise.2 For example, if two
features are strongly correlated, estimating their individual
contributions becomes challenging and highly sensitive to
external noise. This typically results in inflated variance es-
timates for the linear regression coefficients (Ramsay et al.,
2003), among other problems (Dormann et al., 2013).

The notion of concurvity was originally introduced in the
context of GAMs to extend multicollinearity to non-linear
feature transformations (Buja et al., 1989). In analogy with
our definition of multicollinearity, we propose the following
definition of concurvity:

Definition 2.2 (Concurvity). Let X1, . . . , Xp ∈ RN be a set
of feature variables and let H ⊂ {(f1, . . . , fp) | fi : R →
R} be a class of functions. We have (perfect) concurvity
w.r.t. X1, . . . , Xp and H if there exist (g1, . . . , gp) ∈ H
and c0 ∈ R such that c0 +

∑p
i=1 gi(Xi) = 0 with

c0, g1(X1), . . . , gN (XN ) not all zero.

Technically, concurvity simply amounts to the collinearity
of the transformed feature variables, and Definition 2.1 is
recovered when H is restricted to affine linear functions.
Concurvity poses analogous challenges to multicollinearity:
Any non-trivial zero-combination of features can be added
to a solution of (GAM-Fit), rendering the fitted model less
interpretable as each feature’s contribution to the target is
not immediately apparent. For further technical remarks on
concurvity, we refer to Appendix A.2.

3. Concurvity Regularizer
Concurvity easily arises in relatively flexible GAMs, such
as NAMs, since the mutual relationships between the func-
tions fi are not constrained while fitting (GAM-Fit). This
results in a large, degenerate search space with possibly
infinitely many equivalent solutions. To remedy this prob-
lem, it appears natural to constrain the function space H
of (GAM-Fit) such that the shape functions fi do not ex-

2Informally, non-perfect multicollinearity describes situations
where

∑p
i=1 ciXi ≈ 0. However, a formal definition would also

require an appropriate correlation or distance metric.
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hibit spurious mutual dependencies. Here, our key insight is
that pairwise uncorrelatedness is sufficient to rule out con-
curvity. Indeed, using H from Definition 2.2, let us consider
the subclass

H⊥ :=
{
(f1, . . . , fp) ∈ H

∣∣ Corr(fi(Xi), fj(Xj)
)
= 0,

∀ i ̸= j
}
⊂ H ,

where Corr(·, ·) is the Pearson correlation coefficient. It is
not hard to see that concurvity w.r.t. X1, . . . , Xp and H⊥
is impossible, regardless of the choice of H (for a proof,
see Appendix A.1). From a geometric perspective, H⊥
imposes an orthogonality constraint on the feature vectors.
The absence of concurvity follows from the fact that an
orthogonal system of vectors is also linearly independent.
However, it is not immediately apparent how to efficiently
constrain the optimization domain of (GAM-Fit) to H⊥.
Therefore, we rephrase the above idea as an unconstrained
optimization problem:

min
(f1,...,fp)∈H

1
N

∑N

l=1
L
(
Y, β +

∑p
i=1 fi(Xi)

)
+

λ ·R⊥({fi}i, {Xi}i) ,
(GAM-Fit⊥)

where R⊥ : H × RN×p → [0, 1] denotes our proposed
concurvity regularizer:

R⊥
(
{fi}i,{Xi}i

)
:=

1
p(p−1)/2

p∑
i=1

p∑
j=i+1

∣∣Corr(fi(Xi), fj(Xj)
)∣∣ .

Using the proposed regularizer, (GAM-Fit⊥) simultane-
ously minimizes the loss function and the distance to the
decorrelation space H⊥. In situations where high accuracy
and elimination of concurvity cannot be achieved simulta-
neously, a trade-off between the two objectives occurs, with
the regularization parameter λ ≥ 0 determining the rela-
tive importance of each objective. An empirical evaluation
of this objective trade-off is presented in the subsequent
experimental section.

Since R⊥ is differentiable almost everywhere, (GAM-Fit⊥)
can be optimized with gradient descent and automatic dif-
ferentiation. Additional computational costs arise from the
quadratic scaling of R⊥ in the number of additive compo-
nents, although this can be efficiently addressed by paral-
lelization. A notable difference to traditional regularizers
like ℓ1- or ℓ2-penalties is the dependency of R⊥ on the data
{Xi}i. As a consequence, the regularizer is also affected
by the batch size and hence becomes more accurate with
larger batches. An additional remark on our regularizer can
be found in Appendix A.2.

Our concurvity regularizer is agnostic to the function class
of fi, hence the mostly spline-based concurvity metrics

proposed in the literature (Wood, 2001; Kovács, 2022) are
not directly applicable. Similarly to Ramsay et al. (2003),
we decide to report the average R⊥({fi}i, {Xi}i) ∈ [0, 1]
as our metric of concurvity.

4. Experimental Evaluation
In order to investigate the effectiveness of our proposed reg-
ularizer, we will conduct evaluations using both synthetic
and real-world datasets, with a particular focus on the ubiq-
uitous applications of GAMs: tabular and time-series data.
For the experiments involving synthetic and tabular data,
we have chosen to use Neural Additive Models (NAMs), as
they are differentiable and hence amenable to our regularizer.
For time series data, we investigate NeuralProphet models
which contain an additive component modeling seasonality.
Further elaboration on our experimental setup, including
detailed specifications and parameters, can be found in Ap-
pendix C.

4.1. Toy Examples

In the following, we design and investigate two instructive
toy examples to facilitate a deeper comprehension of the
proposed regularizer as well as the relationship between
the regularization strength λ and the corresponding model
accuracy.

Toy Example 1: Concurvity regularization with and
without multicollinearity To compare the influence of
concurvity regularization on model training in the presence
of multicollinearity, we generate synthetic data according
to the linear model Y = 1 ·X1 + 0 ·X2. We focus on two
settings where the features X1 and X2 are either indepen-
dently sampled from a uniform distribution (stochastically
independent case) or fixed to identical samples (perfectly
correlated case).

We first investigate the influence of concurvity regulariza-
tion on the contribution of each feature to the target by mea-
suring the correlation of the transformed features f1(X1),
f2(X2) with the target variable Y . The results are shown in
Figure 2b. In the stochastically independent case, the NAM
accurately captures the relationship between input features
and the target variable regardless of the regularization set-
ting, as observed by the high correlation for f1(X1) and zero
correlation for f2(X2) with the target. This result empha-
sizes the minimal impact of the regularizer when features
are uncorrelated (c.f. Appendix A.2 for details). In the per-
fectly correlated case, the NAM trained without concurvity
regularization displays a high correlation for both f1(X1)
and f2(X2) with the target, thus using both features for its
predictions. In contrast, when concurvity regularization is
applied, the NAM is pushed towards approximately orthog-
onal fi, which encourages feature selection, as indicated by
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Figure 2. Results for Toy Example 1.

high correlation of either f1(X1) or f2(X2) with the target
as there is no natural preference. This nicely illustrates the
impact of the proposed regularization on correlated feature
contributions. We further investigate the decorrelation under
perfectly correlated features in Appendix D.1.

Secondly, and perhaps most importantly, we examine the
trade-off between the validation RMSE and concurvity R⊥
in Figure 2a. Our findings suggest that with moderate reg-
ularization strengths λ, we can effectively eradicate con-
curvity without compromising the accuracy of the model. It
is only when the regularization strength is considerably high
that the RMSE is adversely affected, without any further
reduction in the measured concurvity.

Toy Example 2: Concurvity regularization in the case of
non-linearly dependent features Next, we evaluate our
regularizer in the case of non-linear relationships between
features, a setting to which it is equally applicable. To this
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(a) Trade-Off Curve between model accuracy (validation RMSE)
and measured concurvity (R⊥).
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(b) Comparison of transformed feature correlation with and with-
out concurvity regularization.

Figure 3. Results for Toy Example 2.

end, we design an experiment with feature variables that
are uncorrelated, but not stochastically independent due to a
non-linear relationship. We choose X1 = Z and X2 = |Z|
where Z is a standard Gaussian, and let Y = X2 be the
target variable. In this case, there is no multicollinearity by
design, but the model may still learn perfectly correlated
feature transformations. For example, a NAM could learn
f1 = | · | and f2 = id, then f1(X1) = f2(X2), which are
fully correlated, yet provide a perfect fit. For our experi-
ment, we use the same NAM model configuration as in the
previous toy example.

The transformed features for the NAM fitted with and with-
out regularization are visualized in Figure 3b. We find that
the regularizer has effectively led the NAM to learn decor-
related feature transformations f1 and f2, reflected in the
severe difference in feature correlation (Corr = −0.03 for
the regularized NAM compared to Corr = 0.92 for the un-
regularized model). Moreover, these results suggest that the
regularized model seems to have learned the relationship
between the features, where f2(X2) seems to approximate
|f1(X1)|.

Finally, a trade-off curve of the validation RMSE and R⊥
is shown in Figure 3a, illustrating that even in the case of
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non-linearly dependent features, our proposed regularizer
effectively mitigates the measured concurvity R⊥ with min-
imal impact on the model’s accuracy as measured by the
RMSE.

4.2. Tabular Data

In our final series of experiments, we investigate the benefits
of the proposed regularizer when applied to NAMs trained
on real-world tabular datasets – a data type ubiquitous in the
healthcare domain and often tackled with conventional ma-
chine learning methods such as random forests or gradient
boosting. We concentrate our analysis on four well-studied
datasets: MIMIC-II (Lee et al., 2011), MIMIC-III (Johnson
et al., 2016), California Housing (Pace & Barry, 1997) and
Adult (Dua & Graff, 2017). The datasets were selected with
the aim of covering different dataset sizes as well as tar-
get variables (regression for California Housing and binary
classification for the rest). NAMs are used throughout the
evaluation, subject to a distinct hyperparameter optimization
for each dataset. Details are presented in Appendix B, and
additional results for Boston Housing (Harrison Jr & Rubin-
feld, 1978) and Support2 in are provided in Appendix D.3.

First, we explore the trade-off between the concurvity mea-
sure R⊥ and validation fit quality when employing the pro-
posed concurvity regularization. Figure 4 displays the re-
sults for the tabular datasets. It is clear that the concurvity
regularizer effectively reduces the concurvity measure R⊥
without significantly compromising the model fit quality
across all considered datasets, in particular in case of small
to moderate regularization strengths. For example, on the
California Housing dataset, we are able to reduce R⊥ by
almost an order of magnitude from around 0.2 to 0.05, while
increasing the validation RMSE by about 10% from 0.59
to 0.66. Additionally, we observe the variation in the scale
of R⊥ across the datasets, exemplified by the MIMIC-III
dataset where the transformed features show low correlation
without regularization, as well as a rather small reduction in
concurvity caused by regularization. In practice, trade-off
curves between concurvity and model accuracy can serve
as a valuable tool for identifying the optimal level of regu-
larization strength, e.g. via the elbow technique (Thorndike,
1953).

Case study: MIMIC-II Our preceding experiments
demonstrated that concurvity reduction can be achieved
when training NAMs on tabular data. However, the practical
significance of this observation in relation to interpretability
remains unclear. To address this, we perform a more de-
tailed analysis of NAMs trained on the MIMIC-II dataset,
a publicly available critical care dataset used for predicting
mortality risk from a number of demographic and biophysi-
cal indcators. In the following analysis, we compare NAMs
trained with and without concurvity regularization. More

specifically, we evaluate λ = 1.0 (determined based on
Figure 4) and λ = 0.0 both for 64 random weight initializa-
tions.

First, we assess the effect of the regularizer on the model fit,
finding that regularization increases the mean test ROC AUC
by about 5% from about 0.80 to 0.84 and slightly increases
the spread between the seeds, as shown in Figure 6b. Note
that the result in the non-regularized case is on par with the
original NAM evaluation (Chang et al., 2022) serving as a
sanity check of our experimental setup.

Second, we juxtapose the feature correlations of non-linearly
transformed features for models trained with and without
regularization. The results, as displayed in Figure 5a (upper
right triangular matrices), are contrasted with the raw input
feature correlations (lower left triangular matrices). It is
evident that without regularization, high input correlations
tend to result in correlated transformed features, as seen in
the left correlation matrix. Conversely, the right correlation
matrix reveals that concurvity regularization effectively re-
duces the correlation of transformed features. This effect
is especially pronounced for previously pairwise correlated
features such as Urea, Renal and K.

Third, we investigate how concurvity impacts the estima-
tion of the individual feature importances, which is of key
interest for interpretable models such as NAMs. Follow-
ing Agarwal et al. (2021), we measure the importance of
feature i as 1

N

∑N
j=1|fi(xij) − fi| where fi denotes the

average of shape function fi over the training datapoints.
We visualize the distribution of feature importances over
our regularized and unregularized ensembles of NAMs in
Figure 5b. Interestingly, regularization seems to enforce
sparsity in the feature importances, pushing several features
towards zero importance while a few stronger features grow
in importance. Though sparsity is not necessarily an effect
of concurvity regularization, decorrelation can lead to fea-
ture selection in the case of mutual dependencies between
features. See Appendix D.3.1 for an analogous analysis of
the California Housing dataset, showing partially different
effects of regularization on feature importances.

With regards to the varying effect of regularization on the
respective features, two observations are particularly inter-
esting: (1) Features that are mostly uncorrelated remain
unaffected by regularization – an effect we have previously
seen in Toy Example 1 – which can, for example, be ob-
served in the case of the Metastatic Cancer feature. (2)
Input correlations in this case lead to a clear feature selec-
tion: the importances of Urea and K are effectively pruned
from the model whereas Renal, with which they both cor-
relate, gains in importance with regularization. Similarly
to Toy Example 1, we see that the regularizer encourages
feature selection for correlated feature pairs.

6



Curve your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

0.300 0.325
Val. BCE

0.01

0.02

0.03

0.04

0.05

V
al

. R
MIMIC2

0.275 0.300
Val. BCE

0.02

0.03

0.04

0.05

MIMIC3

0.3 0.4
Val. BCE

0.025

0.050

0.075

0.100
Adult

0.6 0.8 1.0
Val. RMSE [100k $]

0.1

0.2

California Housing

Individual seeds
Seed average

10 6

10 4

10 2

100

Figure 4. Trade-off curves between model fit quality and measured concurvity R⊥ for 50 levels of concurvity regularization strength λ.
Each regularization strength is evaluated over 10 initialization seeds to account for training variability.
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Figure 5. Results for the MIMIC-II dataset.

Finally, to visualize the impact of the regularization on
model interpretability in more detail, the shape functions
of three features are shown in Figure 6. Here, the features
K and Urea are positively correlated in the input space but
negatively correlated in the output space (c.f. Figure 5a),
indicating possible self-canceling behaviour. This prob-
lem is effectively mitigated by the proposed regularization,
removing opposing contributions. Instead, we see an in-
creased effect of Renal, correlated with both features in the
input space. For comparison, the contribution of the less
strongly correlated Age feature remains virtually unchanged
by the regularization. Similar behavior can be observed for
the remaining feature contributions, which are depicted in
Appendix D.3.

In summary, our case study on MIMIC-II illustrates that
concurvity regularization produces more compact represen-
tations in a NAM in terms of shape functions and feature
importance, whilst maintaining high model accuracy. Based
on the data alone we can only obtain correlational results
and potential causal links between the features and target
may require the evaluation of a domain expert, i.e., a doctor,

which is outside the scope of the current work. However,
concurvity regularization ensures that we are not putting
flawed questions to the experts because of misleading corre-
lations in the transformed features.

5. Related Work
Classical works on concurvity in GAMs The term con-
curvity was first introduced by Buja et al. (1989); for a
well-written introduction to concurvity we refer the reader
to Ramsay et al. (2003). Numerous subsequent works have
developed techniques to address concurvity, such as improv-
ing numerical stability in spline-based GAM fitting (Wood,
2008; He, 2004) and adapting Lasso regularization for
GAMs (Avalos et al., 2003). Partial GAMs (Gu et al., 2010)
were proposed to address concurvity through sequential
maximization of Mutual Information between response vari-
ables and covariates. More recently, Kovács (2022) com-
pared several feature selection algorithms for GAMs and
found algorithms selecting a larger feature set to be more
susceptible to concurvity, a property first noticed by Hall
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Figure 6. Results for the MIMIC-II dataset.

(1999). In addition, Kovács (2022) proposes a novel feature
selection algorithm that chooses a minimal subset to deal
with concurvity. In contrast, our proposed regularizer adds
no additional constraints on the feature set size and does
not specifically enforce feature sparsity. We refer to Kovács
(2022) for a comparison of different concurvity metrics.

Modern neural approaches to GAMs Recent advance-
ments in neural approaches to GAMs, such as NAMs (Agar-
wal et al., 2021) and NeuralProphet (Triebe et al., 2021),
have provided more flexible and powerful alternatives to
classical methods (Hastie & Tibshirani, 1987). These have
spurred interest in the subject leading to several extensions
of NAMs (Chang et al., 2022; Dubey et al., 2022; Raden-
ovic et al., 2022; Xu et al., 2022; Enouen & Liu, 2022). Our
approach is compatible with the existing methodologies,
and can be readily integrated if they are implemented in an
automatic differentiation framework.

Regularization via decorrelation Similar types of decor-
relation regularizers have previously been proposed in
the machine learning literature but in different contexts.
Cogswell et al. (2016) found that regularizing the cross-
covariance of hidden activations significantly increases
generalization performance and proposed DeCov. Or-
thoReg (Rodrı́guez et al., 2017) was proposed to regularize
negatively correlated features to increase generalization per-
formance by reducing redundancy in the network. Similarly,
Xie et al. (2017) propose to add a regularizer enforcing
orthonormal columns in weight matrices. More recent ap-
proaches, such as Barlow Twins (Zbontar et al., 2021), uti-
lize decorrelation as a self-supervised learning technique to
learn representations that are invariant to different transfor-
mations of the input data.

6. Conclusion
In this paper, we have introduced a differentiable concurvity
regularizer, designed to mitigate the often overlooked issue

of concurvity in differentiable Generalized Additive Models
(GAMs). Through comprehensive empirical evaluations,
we demonstrated that our regularizer effectively reduces
concurvity in differentiable GAMs such as Neural Addi-
tive Models and NeuralProphet. This in turn significantly
enhances the interpretability and reliability of the learned
feature functions, a vital attribute in various safety-critical
and strongly regulated applications. Importantly, our regu-
larizer achieves these improvements while maintaining high
prediction quality, provided it is carefully applied. We under-
score that while the interpretability-accuracy trade-off is an
inherent aspect of concurvity regularization, the benefits of
increased interpretability and consistent feature importances
across model initializations are substantial, particularly in
real-world decision-making scenarios.

An intriguing avenue for future work could be to examine
the impact of our regularizer on fairness in GAMs. While
prior work (Chang et al., 2021) suggests that GAMs with
high feature sparsity can miss patterns in the data and be
unfair to minorities, our concurvity regularizer does not di-
rectly enforce feature sparsity. Thus, a comparison between
sparsity regularizers and our concurvity regularizer in un-
balanced datasets would be of high interest. In addition,
future work could explore how the joint optimization of con-
curvity and model fit could be improved by framing it as a
multi-objective problem. Moreover, it would be interesting
to see how the concurvity regularizer works in NAMs that
incorporate pairwise interactions. Specifically, contrasting
this with the ANOVA decomposition proposed by Lengerich
et al. (2020), in terms of single and pairwise interactions,
could unveil some interesting results.

We conclude by encouraging researchers and practitioners to
“curve your enthusiasm” – that is, to seriously consider con-
curvity in GAM modeling workflows. We believe this will
lead to more interpretable models and hence more reliable
and robust analyses, potentially avoiding false conclusions.
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A. Additional Remarks and Theoretical Results for the Proposed Regularizer
A.1. The Decorrelation Space H⊥ Rules Out Concurvity

In this section, we formalize our claim from Section 3 that the space H⊥ provably rules out concurvity. In the following, ⟨·, ·⟩
and ∥ · ∥2 denote the Euclidean scalar product and norm, respectively. For v = (v1, . . . , vN ) ∈ RN , we set v̄ := 1

N

∑N
l=1 vl

and denote the all-one vector by 1 := (1, . . . , 1) ∈ RN . The standard Pearson’s correlation coefficient is then given by3

Corr(v, w) :=

{
⟨v−v̄1,w−w̄1⟩

∥v−v̄1∥2·∥w−w̄1∥2
if v and w are non-constant,

∞ otherwise,
v, w ∈ RN .

Lemma A.1. Let X1, . . . , Xp ∈ RN be a set of feature variables with p > 1 and let H ⊂ {(f1, . . . , fp) | fi : R → R} be
a class of functions. Consider the following subclass of H:

H⊥ := {(f1, . . . , fp) ∈ H | Corr(fi(Xi), fj(Xj)) = 0 for all i ̸= j } ⊂ H .

Then we do not have concurvity w.r.t. X1, . . . , Xp and H⊥.

Proof. Towards a contradiction, assume that there are (g1, . . . , gp) ∈ H⊥ and c0 ∈ R such that c01+
∑p

i=1 gi(Xi) = 0.

We set vi := gi(Xi) and trivially add the mean vectors to the linear combination:

0 = c01+

p∑
i=1

vi =
(
c0 +

p∑
i=1

v̄i

)
1+

p∑
i=1

(vi − v̄i1) .

Using that Corr(vi, vj) = 0 for i ̸= j, we then obtain

0 = ⟨0, vj − v̄j1⟩ =
(
c0 +

p∑
i=1

v̄i

)
⟨1, vj − v̄j1⟩+

p∑
i=1

⟨vi − v̄i1, vj − v̄j1⟩

=
(
c0 +

p∑
i=1

v̄i

)
· (Nv̄j −Nv̄j) + ∥vj − v̄j1∥22 = ∥vj − v̄j1∥22 .

We conclude that vj = v̄j1, i.e., vj is a constant vector. But this contradicts the definition of H⊥ because we would have
Corr(vi, vj) = ∞ with any i ̸= j.

A.2. Additional Remarks on Concurvity and our Regularizer

(1) The definitions of multicollinearity (Definition 2.1) and concurvity (Definition 2.2) are based on a fixed (deterministic)
feature design, but one could also formulate probabilistic versions, cf. (Signoretto et al., 2008). The latter typically facilitates
a theoretical analysis, which, however, is not the focus of our work. Moreover, a probabilistic definition would not cover an
important practical source of multicollinearity, namely underdetermined systems where N < K.

(2) Although closely related, multicollinearity does not necessarily imply concurvity and vice versa. Indeed, one can
easily come up with setups where perfectly correlated features become decorrelated after a non-linear transform. Similarly,
uncorrelated input features can be made perfectly correlated with a non-linearity. Two simple (toy) examples are presented
in Section 4.1.

(3) Our concurvity regularizer R⊥ does not automatically affect the predictive performance of a GAM. For example,
assuming that the input features are drawn from stochastically independent random variables, we can conclude that
Corr(fi(Xi), fj(Xj)) ≈ 0 for a large enough sample size N , since non-linear transforms of independent random variables
remain independent. Consequently, we have that R⊥({fi}i, {Xi}i) ≈ 0, so that no (in this case undesirable) regularization
takes effect.

3The special case of constant vectors could be treated differently, e.g., by setting the correlation to 0. The version we use here is most
convenient for our purposes as it excludes the treatment of additional special cases in Lemma A.1.
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Hyperparameter Value / Range Scaling

Learning Rate [1e-4, 1e-1] log
Weight Decay [1e-6, 1] log
Activation [ELU, GELU, ReLU] cat.
# of neurons per layer [2, 256] linear
# of hidden layers [1, 6] linear
Num. Epochs [10, 500] linear

Table 1. Hyperparameter Search Space

Hyperparameter Value

Learning Rate 1e-3
Weight Decay 0.0
Activation GELU
# of neurons per layer 128
# of hidden layers 3
Num. Epochs 50
Batch Size 128
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(a) Toy Example 1&2

Hyperparameter Value

Learning Rate 7.93e-4
Weight Decay 1.79e-2
Activation ELU
# of neurons per layer 75
# of hidden layers 6
Num. Epochs 91
Batch Size 128
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(b) Boston Housing

Hyperparameter Value

Learning Rate 9.46e-3
Weight Decay 3.73e-3
Activation ReLU
# of neurons per layer 72
# of hidden layers 5
Num. Epochs 39
Batch Size 512
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(c) California Housing

Hyperparameter Value

Learning Rate 2.64e-3
Weight Decay 1.64e-3
Activation GELU
# of neurons per layer 204
# of hidden layers 4
Num. Epochs 200
Batch Size 512
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(d) Adult
Hyperparameter Value

Learning Rate 3.31e-3
Weight Decay 1.08e-3
Activation GELU
# of neurons per layer 190
# of hidden layers 3
Num. Epochs 20
Batch Size 512
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(e) MIMIC-II

Hyperparameter Value

Learning Rate 3.88e-3
Weight Decay 1.10e-3
Activation GELU
# of neurons per layer 168
# of hidden layers 3
Num. Epochs 23
Batch Size 512
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(f) MIMIC-III

Hyperparameter Value

Learning Rate 3.42e-3
Weight Decay 1.05e-2
Activation GELU
# of neurons per layer 127
# of hidden layers 3
Num. Epochs 30
Batch Size 512
Correlation Denominator Eps 1e-12
Start Conc. Reg. after x% of steps 5

(g) Support2

Figure 7. Hyperparameters per dataset for NAM experiments.

B. Hyperparameter Optimization
B.1. Tabular Datasets

For hyperparameter optimization we use Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) as implemented in
Optuna (Akiba et al., 2019). We run the optimization for a budget of 500 function evaluations and optimize w.r.t. validation
RMSE for Boston Housing and California Housing or validation binary cross entropy loss for Adult.

The hyperparameter space and default parameters are shown in Table 1 and the hyperparameters per dataset are shown in
Figure 7.

C. Experimental Details
C.1. NAM experiments

In all of our NAM experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2019) and adjust our learning rate
using Cosine Annealing (Loshchilov & Hutter, 2017) and decay to 0. For all regression problems we use the Mean Squared
Error (MSE) and for all binary classfication problems the Binary Cross Entropy (BCE) as loss function L.

In all of our experiments, we add the concurvity regularization only after 5% of the total optimization steps for stability
reasons.
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C.2. Toy Examples

We sample 10000 datapoints from the model and use 7000, 2000, 1000 for training, validation and testing respectively. We
use the validation split to find adequate hyperparameters via a small manual search. Our NAM has 3 layers per feature NN
with 128 hidden units and uses the GeLU (Hendrycks & Gimpel, 2016) activation function. We use no weight decay, train
for 50 epochs at an initial learning rate of 1e-3 and a batch size of 128. Otherwise the experimental setup is the same as
described earlier in Section C.1.

D. Additional results
D.1. Toy Example 1

(a) w/o concurvity regularization (b) w/ concurvity regularization (λ = 0.1)

Figure 8. (Toy Example 1) Pair plot demonstrating the difference in shape functions learned without and with concurvity regularization.
The features x1 and x2 are fully correlated in this example.

In figure 8, we further visualize the decorrelation under perfectly correlated features for Toy Example 1. The figure shows
an additional scatter plot comparing contributions of the transformed features.

D.2. Time-Series Data

In this section, we provide context and additional results for the motivational example in Figure 1 on time-series forecasting
using NeuralProphet (Triebe et al., 2021) which decomposes a time-series into various additive components such as
seasonality or trend. In NeuralProphet, each seasonality Sp is modeled using periodic functions as

Sp(t) =
∑k

j=1
aj cos (2πjt/p) + bj sin (2πjt/p)

where k denotes the number of Fourier terms, p the periodicity, and aj , bj the trainable parameters of the model. In the
motivational example depicted in Figure 1, we restrict the NeuralProphet model to two components, namely a weekly and
daily seasonality. Our overall reduced NeuralProphet model is hence given by:

ŷt = S24h(t) + S7d(t) .

If k is sufficiently large, it can cause the frequency ranges of S24h and S7d to overlap, leading to concurvity in the model.
The default values of k provided by NeuralProphet for S24h (k = 6) and S7d (k = 3) are intentionally kept low to avert such
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Figure 9. Trade-off curve for NeuralProphet model trained on step-function data.
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Figure 10. Tradeoff curves for Support2 and Boston Housing.

frequency overlap, as demonstrated in Figure 1 (left). However, this safety measure comes at the cost of model accuracy due
to reduced model complexity.

Analogously to the previous examples, we present a trade-off curve between RMSE and concurvity, averaging over 10
random initialization seeds per regularization strength λ. In this experiment, we choose k = 400 components for both daily
and weekly seasonality, to allow concurvity to occur and fit the data almost exactly. Our findings are identical to the toy
examples, demonstrating a steep decline in concurvity when increasing λ with only a small increase in RMSE.

Finally, we note that concurvity can often be identified by visual inspection for additive univariate time-series models as
each component is a function of the same variable, c.f. Figure 1. In contrast, on multivariate tabular data, concurvity may go
unnoticed if left unmeasured and hence lead to false conclusions, as we investigate next.

D.3. Tabular Data

Additional trade-off curves for Support2 and Boston Housing are depicted in Figure 10. We also show the remaining shape
functions for MIMIC-II in figure 11 that were not included in the case study before.

D.3.1. CASE STUDY: CALIFORNIA HOUSING

This section contains a more detailed analysis of NAMs trained on the California Housing dataset. In the following analysis,
we compare NAMs trained with and without concurvity regularization. More specifically, we evaluate λ = 0.1 (determined
based on Figure 4) and λ = 0.0 both for 60 random weight initializations.

First, we assess the effect of the regularizer on the model fit, finding that regularization increases the mean test RMSE by
about 10% from about 0.58 to 0.64 and slightly decreases the spread between the seeds, as shown in Figure 13b. Note that
the result in the non-regularized case is on par with the original NAM evaluation (Agarwal et al., 2021) serving as a sanity
check of our experimental setup.

Second, we juxtapose the feature correlations of non-linearly transformed features for models trained with and without
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Figure 11. Additional average and individual shape functions for MIMIC-II. A kernel density estimate of the training data distribution is
depicted on top.
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Figure 12. Results in the case of the California Housing dataset.
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Figure 13. Results in the case of the California Housing dataset. The considered NAMs were trained with and without concurvity
regularization using 60 model initialization seeds each.

regularization. The results, as displayed in Figure 12a (upper right triangular matrices), are contrasted with the raw input
feature correlations (lower left triangular matrices). It is evident that without regularization, high input correlations tend
to result in correlated transformed features, as seen in the left correlation matrix. Conversely, the right correlation matrix
reveals that concurvity regularization effectively reduces the correlation of transformed features. This effect is especially
pronounced for previously highly correlated features such as Longitude and Latitude, or Total Bedrooms and Households.

Third, we investigate how concurvity impacts the estimation of the individual feature importances, which is of key interest
for interpretable models such as NAMs. Following (Agarwal et al., 2021), we measure the importance of feature i as
1
N

∑N
j=1|fi(xij) − fi| where fi denotes the average of shape function fi over the training datapoints. We visualize the

distribution of feature importances over our regularized and unregularized ensembles of NAMs in Figure 12b. It is apparent
that feature importances tend to have a larger variance in the unregularized case compared to the regularized case, a
pattern which is particularly clear for the strongly correlated features which we identified in Figure 12a. Such variance
in feature importance can detrimentally impair the interpretability of the models, due to potential inconsistencies arising
in absolute importance orders. However, our proposed concurvity regularizer effectively counteracts this issue, resulting
in more consistent and compact feature importances across different random seeds. With regards to the varying effect
of regularization on the respective features, two observations are particularly interesting: (1) Features that are mostly
uncorrelated remain unaffected by the regularization – an effect we have previously seen in Toy Example 1 – which can, for
example, be observed in the case of the Median income feature. (2) Input correlations lead to a bi-modal distribution in the
corresponding feature importance as for example observable in the case of the Longitude and Latitude or Total bedrooms
and Households features. Similarly to Toy Example 1, we see that the regularizer encourages feature selection for correlated
feature pairs.
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Finally, to visualize the impact of the regularization on model interpretability in more detail, the shape functions of three
features are shown in Figure 13. Here, the features Households and Population are strongly negatively correlated (c.f.
Figure 12a) which leads to their feature contributions largely canceling each other out. This problem is effectively mitigated
by the proposed regularization, revealing naturally low contributions for both features. For comparison, the contribution of
the mostly non-correlated Median income feature remains virtually unchanged by the regularization. Similar behavior can
be observed for the remaining feature contributions, which are depicted in Appendix D.3.

In summary, our case study on the California Housing dataset establishes that concurvity regularization significantly
enhances interpretability and consistency of a GAM in terms of shape functions and feature importance, whilst maintaining
high model accuracy.

Additional results for California Housing are depicted in Figure 14.

E. Dataset Details
Boston Housing The Boston Housing Dataset (Harrison Jr & Rubinfeld, 1978), compiled by Harrison and Rubinfeld
in the 1970s, is a benchmark dataset employed in machine learning and statistical modeling for housing price prediction.
Consisting of 506 neighborhoods in the Boston metropolitan area, it features 13 attributes, including crime rate, zoning
information, industrial acreage, Charles River proximity, air quality, housing characteristics, accessibility to employment
centers, highways, and education, as well as demographic factors. The primary objective is to predict the median value of
owner-occupied homes using these features.

California Housing The California Housing Dataset (Pace & Barry, 1997) is a widely-used benchmark dataset for
machine learning and statistical modeling, particularly in the domain of housing price prediction. Originally derived from
the 1990 California Census, it consists of 20,640 samples, each representing a census block group. The dataset contains
information on various housing-related attributes, such as median income, housing median age, average number of rooms,
average number of bedrooms, population and average household size. It also includes the geographical location (latitude
and longitude) of each block group. The objective is to predict the median house value. We obtained the dataset from Dua &
Graff (2017).

Adult The Adult Dataset (Dua & Graff, 2017) is also known as the ”Census Income” dataset. Extracted from the 1994
United States Census Bureau data, it comprises 48,842 records, each representing an individual. The dataset contains 14
features, including age, work class, education, marital status, occupation, relationship, race, sex, capital gain, capital loss,
hours worked per week, and native country. The objective is to predict whether an individual’s annual income exceeds
$50,000.

MIMIC-II The MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) dataset (Lee et al., 2011) is a public
database, offering clinical data from a multitude of Intensive Care Unit (ICU) patients. It is managed by the MIT Lab for
Computational Physiology and encompasses a wide variety of data points, such as patient demographics, vital signs, lab
test results, medications, procedures, caregiver notes, and imaging reports, as well as mortality rates both in and out of the
hospital.

MIMIC-III MIMIC-III (Medical Information Mart for Intensive Care III) (Johnson et al., 2016) is the successor to the
MIMIC-II database. It contains additional, more recent patient records and provides more detailed data, including free-text
interpretation of imaging reports, allowing for more granular research and improved application in areas like machine
learning, health informatics, and predictive modeling.

SUPPORT 2 The SUPPORT 2 (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments)
dataset is a clinical database that contains detailed medical information from a large cohort of seriously ill hospitalized
adults. The dataset was created as part of a multi-center study designed to understand the outcomes of decisions made in
the course of medical treatment. It provides extensive variables, including demographic data, physiological measurements,
diagnostic information, treatment plans, and outcomes such as survival and quality of life. The data collected span a diverse
set of medical conditions, making the SUPPORT 2 dataset a valuable resource for researchers seeking to study clinical
decision-making, prognosis evaluation, and healthcare outcomes.
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Figure 14. Shape functions of all input features in the case of the California Housing dataset. Depicted are the average as well as individual
contributions with and without concurvity regularization using 60 initialization seeds each.
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