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Abstract

Computational materials discovery relies on the generation of plausible crystal
structures. The plausibility is typically judged through density functional theory
methods which, while typically accurate at zero Kelvin, often favor low-energy
structures that are not experimentally accessible. We develop a combined com-
positional and structural synthesizability score which provides an accurate way
of predicting which compounds can actually be synthesized in a laboratory. We
use it to evaluate non-synthesized structures from the Materials Project, GNoME,
and Alexandria, and identified several hundred highly synthesizable candidates.
We then predict synthesis pathways, conduct corresponding experiments, and char-
acterize the products across 16 targets, successfully synthesizing 7 of 16. The
entire experimental process was completed in only three days. Our results highlight
omissions in lists of known synthesized structures, deliver insights into the practical
utility of current materials databases, and showcase the central role synthesizability
prediction can play in materials discovery.

1 Introduction

Discovery of new inorganic materials is a central goal of solid-state chemistry and, when achieved,
can usher in enormous scientific and technological advancements. The development of machine-
learning–accelerated, ultra-fast in-silico screening [Batzner et al., 2022, Chen and Ong, 2022, Wood
et al., 2025, Rhodes et al., 2025] has unlocked vast databases of predicted candidate structures. Efforts
such as the Materials Project [Horton et al., 2025], GNoME [Merchant et al., 2023], and Alexandria
[Schmidt et al., 2023] contain structures predicted using active learning and a mix of composition-
and structure-based models to propose candidate structures, which are subsequently assessed by
density functional theory (DFT) simulations. Analogous to virtual libraries in drug discovery [Zdrazil
et al., 2024, Tingle et al., 2023], these resources provide initial property estimates alongside full
crystallographic descriptions of putative phases.

The number of proposed inorganic crystals now exceeds the number of experimentally synthesized
compounds by more than an order of magnitude [Belsky et al., 2002]. The current challenge is to
determine which of these predicted materials can be fabricated. This has historically been addressed
by computing convex-hull stabilities with DFT [Lee et al., 2022]. While this approach constitutes a
useful first filter, it typically overlooks finite-temperature effects, namely entropic and kinetic factors,
that govern synthetic accessibility [Bartel, 2022]. As a result, it has become increasingly difficult
to distinguish purported stable structures from truly synthesizable ones. For example, the Materials
Project lists 21 SiO2 structures within 0.01 eV of the convex hull (as of August 2025). The second
most common phase SiO2, cristobalite (β-quartz), is not among these 21. Overall, there is a pressing
need for accurate synthesizability assessments to efficiently steer scientists and engineers toward
compounds that are readily accessible in the laboratory [Park et al., 2025].



Given the abundance of predicted near-stable crystal structures, procedures are needed to decide which
candidates to attempt to synthesize and under which conditions these syntheses should be carried
out (process parameters). So far, several data-driven approaches have been introduced, including
graph-based structural models and composition-based models [Lee et al., 2022, Antoniuk et al., 2023,
Song et al., 2025, Davariashtiyani et al., 2021, Zhu et al., 2023, Gleaves et al., 2023, Amariamir
et al., 2025]. These approaches consider composition and structure in isolation and, to date, have
not convincingly demonstrated that they can drive the experimental synthesis of novel compounds.
Here, we propose and implement a unified, synthesis-aware prioritization framework that integrates
complementary signals from composition and crystal structure. Composition signals may be governed
by elemental chemistry, precursor availability, redox and volatility constraints, whereas structural
signals capture local coordination, motif stability, and packing. Our unified model demonstrates state-
of-the-art performance. We apply our framework to more than 4.4 million simulated crystal structures,
yielding 24 candidates predicted to be highly synthesizable. Subsequently, we employ neural models
trained on literature-mined synthesis recipes to predict process parameters and subsequently carry
out syntheses on the proposed candidates in an automated solid-state laboratory. Of the 16 samples
we successfully characterized, seven matched the target structure, including one completely novel
and one previously unreported structure.

2 Methods

Fig. 1 outlines our synthesizability-guided pipeline. We first screened a pool of 4.4 million compu-
tational structures, of which 1.3 million were calculated to be synthesizable (detailed distributions
Fig, 4 and Fig. 5). We then focused only on highly synthesizable (0.95 rank-average per our synthe-
sizability score) materials and removed compounds containing platinoid group elements, yielding
approximately 15,000 candidates. Finally, we reduced the candidates by removing non-oxides and
toxic compounds, yielding approximately 500 final structures. We applied retrosynthetic planning on
these prioritized structures to generate feasible routes, of which a subset (see Section 2.2) was then
executed in a high-throughput laboratory platform. The resulting products were verified automatically
by X-ray diffraction (XRD) (see Appendix for details).

Figure 1: Our pipeline for selecting synthesizable candidates, predicting their recipe, carrying out the
synthesis, and characterizing their structure.

2.1 Synthesizability Model

We define synthesizability as the probability that a compound can be prepared in the laboratory
using currently available synthetic methods. Machine-learning efforts to predict this outcome largely
fall into two families: (i) composition-only models that operate on stoichiometry or engineered
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composition descriptors [Lee et al., 2022, Antoniuk et al., 2023]; and (ii) structure-aware models that
leverage crystal-structure graphs [Song et al., 2025, Davariashtiyani et al., 2021, Zhu et al., 2023,
Gleaves et al., 2023, Amariamir et al., 2025].

Problem Formulation Let each candidate material be represented by its composition xc and a
relaxed crystal structure xs. We denote the input as x = (xc, xs) and the label y ∈ {0, 1} indicating
whether the compound has been experimentally synthesized. The goal is to learn a score s(x) ∈ [0, 1]
that estimates a compound’s synthesizability.

Data Curation We built our training dataset from the Materials Project [Jain et al., 2013]. This
ensures consistency between composition and structure in order to obtain supervision without
inheriting artifacts common in experimental entries encountered e.g. in the Inorganic Crystal Structure
Database (ICSD) [Hellenbrandt, 2004], such as non-stoichiometry, dopants or partial occupancies.
We assigned labels according to the Materials Project’s “theoretical” field, a flag which corresponds to
whether ICSD entries exist for a given structure. We labeled a composition as unsynthesizable (y = 0)
if all polymorphs of that composition are flagged as theoretical. Conversely, we labeled a composition
as synthesizable (y = 1) if there exists any polymorph that is not flagged as theoretical. The final
dataset comprised 49,318 synthesizable compositions and 129,306 unsynthesizable compositions,
stratified into train/validation/test splits.

Model Our model integrates complementary signals from composition and structure via two
encoders, learning a binary classification task:

zc = fc(xc; θc), zs = fs(xs; θs),

where fc is a fine-tuned compositional MTEncoder transformer [Prein et al., 2023] and fs is a graph
neural network fine-tuned from the JMP model [Shoghi et al., 2023] on the crystal structure xs.
Both encoders are extensively pretrained and each feeds a small MLP head that outputs a separate
synthesizability score. During training, we fine-tune all parameters end-to-end on an NVIDIA H200
cluster. We minimize binary cross-entropy with early stopping on validation AUPRC.

Usage in Screening At inference, each model outputs a synthesizability probability for candidate xi.
To obtain an enhanced ranking across candidates, we aggregate both predictions via a rank-average
ensemble (Borda fusion). Specifically, we convert probabilities to ranks and define

RankAvg(i) =
1

2N

∑
m∈{c,s}

1 +

N∑
j=1

1
[
sm(j) < sm(i)

] .

Here i ∈ {1, . . . , N} indexes candidates. N is the total number of candidates in the screening pool.
The index m ∈ {c, s} refers to the composition and structure models, and sm(i) ∈ [0, 1] is the
synthesizability probability predicted by model m for candidate i. By construction, RankAvg(i) ∈
[1/N, 1], with larger values indicating greater predicted synthesizability. Consequently, we rank
candidates by RankAvg rather than applying probability thresholds.

Synthesis Planning After identifying high-priority candidates with the rank-based screening, we
generated synthesis recipes in two stages. First, we applied Retro-Rank-In [Prein et al., 2025a], a
precursor-suggestion model, to produce a ranked list of viable solid-state precursors for each target.
Second, we selected the top-ranked precursor pairs and use SyntMTE [Prein et al., 2025b] to predict
the calcination temperature required to form the target phase. We then balanced the reaction and
compute the corresponding precursor quantities. Both models are trained on literature-mined corpora
of solid-state synthesis [Kononova et al., 2019].

2.2 Experimental Synthesis and Characterization

Of the ca. 500 candidates shown in Fig. 1, we selected the experimental candidates by a combination
of a web-searching LLM to judge whether each candidate was likely to have been synthesized
before, followed by an expert judgment to remove targets with unrealistic oxidation states given an
oxygenated furnace (e.g. BaTe2O) and those with common formulas (e.g. DyO2) as these compounds
are likely to be well-explored. This yielded a final list of 80 targets.
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Figure 2: Test-set performance of the compositional, structural, and ensemble models. (a) Precision,
recall, and F1 scores for identifying the target "theoretical" labels in the materials project. (b) ROC
curves (AUC shown in the legend). The convex-hull baseline classifies compounds within 50meV
above the hull as synthesizable.

Next, based on recipe similarity, we automatically selected 24 targets across two batches of 12, such
that all 12 experiments in one batch could be carried out in the furnace at the same time. Finally, the
samples were weighed, ground and calcined in a Thermo Scientific Thermolyne Benchtop Muffle
Furnace in our high-throughput laboratory (see Appendix for further experimental details). Eight
of the 24 samples strongly bonded to their crucibles during synthesis and therefore could not be
subjected to further characterization. The remaining 16 samples could be milled after synthesis and
were subsequently characterized using a Malvern Panalytical Aeris benchtop X-ray diffractometer.
The X-ray spectra were automatically analyzed, then expert analysis was used to confirm the presence
of the target compared to existing phases.

3 Results

3.1 Model Performance

We benchmark our approach against two baselines: SynthNN, a recent structure-aware synthesizability
model Antoniuk et al. [2023], and a convex-hull classifier that labels compounds as synthesizable
when their Materials Project energy above the hull is ≤ 50meV/atom. While both baselines attain
competitive recall, they suffer from markedly lower precision than our method, which causes them
to over-prioritize many compositions that are unlikely to be synthesizable (Fig. 2). Specifically,
SynthNN achieves R = 0.823 but only P = 0.428, and the convex-hull heuristic reaches R = 0.797
with P = 0.534.

To isolate the contributions inside our ensemble approach, we compare the compositional and the
structural part with the final rank–average ensemble. As summarized in Fig. 2 (a,b), the structural
model improves upon the compositional baseline across all metrics P = 0.736 vs. 0.684, R = 0.813
vs. 0.809, and F1 = 0.773 vs. 0.741 and the ensemble performs best overall, reaching P = 0.764,
R = 0.816, and F1 = 0.789. Recall remains tightly clustered across our three variants, indicating
that the bulk of improvement comes from higher precision. Since our final ensemble ranking lacks a
meaningful global threshold, we calibrate each model’s threshold to maximize its F1 score to ensure
comparability.
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We hypothesize that the compositional model’s competitiveness reflects that much of the synthe-
sizability signal resides in elemental chemistry rather than exact atomic geometry, charge balance,
valence matching, redox windows, and volatility constraints are inherently compositional. These
signals recover many true positives from the unlabeled pool, boosting recall, but also inflate false
positives for stoichiometries that appear feasible yet cannot form stable coordination networks. By
encoding local coordination and connectivity, the structural model suppresses precisely these spurious
cases, recovering precision with minimal cost in recall. The final rank–average ensemble inherits
the compositional coverage while recapturing most of the lost precision, yielding the best overall
balance.

Case Illustrations Let scomp denote the compositional prediction and sstruct the structural predic-
tion for the same candidate structure.

• N2: scomp = 0.709, sstruct = 1.10 × 10−4. While the composition looks plausible
in isolation, with nitrogen-rich formulas occurring near many synthesized nitrides, the
candidate is a molecular solid likely requiring non-ambient conditions. The structure
encoder down-weights such graphs because they lack robust inorganic connectivity under
our solid-state synthesis domain.

• Cu6Te2Mo2H2Cl4O15: scomp = 0.858, sstruct = 1.66 × 10−3. The composition sits near
known oxyhalides and oxychalcogenides, leading to high scomp, but the proposed structure
mixes competing anions and volatile species that are difficult to stabilize in a single phase
via high-temperature calcination. The structure model captures this through unfavorable
coordination and packing cues, yielding a low sstruct.

Because our supervision stems from positive-unlabeled (PU) entries with reports of synthesized
materials being treated as positives, while all others are unlabeled rather than true negatives, the
precision values above should be viewed as conservative. In PU settings, many predicted positives
inside the unlabeled pool are plausible true positives, thus the observed increases in precision from
structure and ensembling represent lower bounds on their practical utility. Conversely, recall is
computed on labeled positives and is therefore less sensitive to unlabeled contamination, explaining
the narrow spread in recall across models.

3.2 Experimental Results

The targets, synthesis results, along with an example XRD spectrum and structure, are provided in
Fig. 3. Of the 16 characterized samples, we successfully synthesized the target seven times, (44%),
synthesized a predicted or known polymorphs two times (12%), and failed to synthesize the target 7
times (44%) (Fig. 3a). Of the nine syntheses where either the target or a polymorph was synthesized,
three were subsequently identified to be nearly identical to a structure already in the Materials Project
(and ICSD) that is listed as synthesized. These structures were therefore effectively present in the
training data. Of the remaining six, a similar structure was present in the ICSD for three compounds,
although these compounds were erroneously classed as theoretical in the Materials Project database.

We synthesized three compounds with no known structure reported in ICSD:

• Y2MnFeO6 (Alexandria): Three polymorphs with the composition have been synthesized,
while one theoretical structure is available both in Materials Project and Alexandria. We
detected our target polymorph at a low (3.3%) concentration in addition to observing a phase
mixture of the other two known polymorphs (see Appendix for XRD fit).

• Nd3BTeO9 (GNoME): We found a paper listing its synthesis but without a CIF file [Zhou
and Li, 2023]. Our refined structure is isostructural to Bi3BTeO9, with a P63 space group
and a = 8.761 Å and c = 5.553 Å. We achieved near full purity, with < 5% of intensity
accounted for by an unknown phase that we could not identify.

• Eu2WO6 (Alexandria): A CIF file for this structure exists in the ICSD, but with significantly
(ca. 5%) different lattice parameters. The observed orthorhombic polymorph was different
than the original target and was formed with ca. 88% purity.
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Figure 3: a. Identified highly synthesizable (RankAvg > 0.95) targets and the results of performed
experiments. For Eu2WO6, a non-target polymorph was synthesized that had the same space group as
a known structure but with significantly different lattice parameters. For Sr4Al6MoO16, a compound
with the target composition was synthesized. However, due to low purity we could not rule out
formation of one of the three known polymorphs. Several compounds, while listed as theoretical in
Materials Project, do have similar structures reported, mostly in the ICSD. b. XRD scan, fit, and
difference for Nd3BTeO9. A second unknown phase is present and accounts for <5% of total intensity.
c. Refined hexagonal unit cell for Nd3BTeO9. The unit cell is hexagonal with the lattice parameters
a = 8.761 Å and c = 5.553 Å

4 Discussion

4.1 Synthesis of Novel Compounds

The successful one-shot synthesis of (a) novel compounds and (b) known compounds excluded from
our training set highlights the promise of our approach as well as the broader value of machine-
learning-based synthesizability screening methods. Given current trends, we expect the number and
diversity of predicted inorganic structures to continue to grow. We expect many of these structures
to be stable according to DFT-derived metrics but ultimately unsynthesizable due to high kinetic
barriers or stability only under unusual or wholly impractical conditions. With our approach, we
enjoyed a 44% success rate in selecting synthesizable structures from millions of possible candidates.
Presumably, some candidates in the remaining 56% may be synthesizable under different conditions
or through the use of alternative synthesis methods.

Still, our successes carry with them strong caveats. First, most of the successful synthesis candidates
were isostructural to other known compounds. This might reflect our greedy selection of candidates
with only the highest synthesizability probabilities. It may also arise from data limitations and the
challenges to build models that generalize to exotic, never-before-seen structures. Furthermore,
many of our successful syntheses were in fact not novel compounds, despite being marked as purely
theoretical in Materials Project. Clearly, our automated screening to find unsynthesized compounds
can be significantly improved. Although our results are encouraging as far as model performance is
concerned, it also motivates efforts to provide more comprehensive and accurate data for training
synthesizability models.
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Finally, we would like to emphasize the importance of both the structural and compositional com-
ponents of the model. In preliminary work, we attempted the synthesis of nine candidates selected
using a composition-only model but formed none of the targets. Upon evaluating the candidates,
we noted that the majority were unrealistic polymorphs of well-established compounds. In addi-
tion, we observed a tendency to up-rank materials with complex ordering of transition metals (e.g.
ScTa5Nb6Tc12). These structures are rarely experimentally achieved due to entropic effects but tend
to be overrepresented in DFT-derived materials datasets. These findings motivated trials with a purely
structure-based model. The use of a structure-based model eliminated the aforementioned candidates
but favored compounds with unrealistic chemistries (e.g. AsH4F7). In the end, synthesizing the
complementary signals of composition-based and structure-based models led to superior overall
performance in predicting synthesizability, in this context, all of the candidates we tried in the lab
achieved high scores in both modalities.

Figure 4: Joint principal component analyses on MTEncoder embeddings shown in the same latent
space for a. Materials Project, b. GNoME, and c. Alexandria. Top row: density of structures
by embedding. Middle row: average synthesizability by embedding. Bottom row: distribution of
rank-average synthesizabilities within each dataset.

4.2 Dataset-level Insights

With a robust score for synthesizability in hand, we can better understand the distribution of synthesiz-
abilities for the roughly 4.4 million materials available in Materials Project, GNoME, and Alexandria.
To do this, we generated MTEncoder [Prein et al., 2023] embeddings for all compositions contained
within these datasets then carried out principal component analysis (PCA). Dataset metrics are plotted
with respect to the first two principal components in Fig. 4. We find that these datasets cover quite
distinct regions in principal component space. Materials Project contains a relatively diverse set of
materials, distributed across the space, while the materials contained in GNoME and Alexandria are
concentrated in comparatively narrow regions.

For each database, we computed mean synthesizability across principal component space. Certain
regions in Materials Project boast fairly high average synthesizability while others do not. The
existence of “patches” of synthesizability is unsurprising, as we would expect a complex relationship
between principal components and any material property. For GNoME and Alexandria, we observe a
roughly inverse relationship between the number of materials and mean synthesizability in a given
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region. A number of possible factors could give rise to this trend. One intuitive reason is that, in
the drive to explore more diverse structures and compositions, the GNoME and Alexandria projects
have generated less synthesizable materials. For example, compounds containing a greater number of
elements are less likely to have been synthesized, on average. In addition, the simplest structures
and compositions have likely already been synthesized, and therefore are not present in GNoME
or Alexandria. Finally, this trend may simply reflect differences in the data distribution between
Materials Project – the source of our positive labels – and other databases. Overall, this highlights the
need to critically judge predicted crystal structures for synthesizability, especially as the total number
of predicted structures continues to grow.

4.3 Data Limitations

As noted above, data limitations, specifically a lack of a fully unified and accurate database containing
all known synthesized structures combining published literature, ICSD, and Materials Project entries
result in our most synthesizable structures being already synthesized. Additional unification of
this database, as well as separation of whether such structures have been made using solid-state or
hydrothermal methods, and under ambient or high pressures would enable the development of highly
accurate solid-state synthesizability score. This is especially important as solid-state methods make
up the bulk of industrial processing for inorganic compounds. Accordingly, we treat the Materials
Project “theoretical” designation as our proxy for a discovery setting.

5 Conclusion

Crystal generation could enable a paradigm shift in the development of novel materials, but judging
the plausibility of structures is increasingly important as the number of generated plausible structures
increases. Our synthesizability-guided pipeline for materials discovery was able to reliably identify
both novel materials and recover materials mislabeled as theoretical in our datasets. Of the 16 targets,
we successfully synthesized seven, formed two polymorphs, and failed in the remaining seven cases.
Our high success rate (44%) was achieved with only one experiment per target.

To our knowledge, this work is among the first demonstrations in which machine-learned synthe-
sizability predictions guided experimental target selection and resulted in previously unreported
compounds. Starting from a corpus of 4.4 million candidate structures, our integrated screening
prioritized candidates with high predicted synthesizability. Focusing effort on these targets minimized
time spent on unrealistic compositions and accelerated laboratory progress toward highest priority
materials. Together, these results underscore the practical impact of synthesizability-aware screening
in directing material discovery.
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A Technical Appendices and Supplementary Material

Symbol Meaning / Type

xc Composition (stoichiometric descriptor/vector over elements)
xs Relaxed crystal structure (atomic positions + lattice); input structure
x = (xc, xs) Full input for a candidate material
y ∈ {0, 1} Label: 1 if structure is reported synthesized; 0 otherwise
fc(·; θc) Composition encoder (MTEncoder); parameters θc
fs(·; θs) Structure encoder (GNN fine-tuned from JMP); parameters θs
zc Composition embedding = fc(xc; θc) ∈ Rdc

zs Structure embedding = fs(xs; θs) ∈ Rds

sc(x) Synthesizability probability from the composition head, in [0, 1]
ss(x) Synthesizability probability from the structure head, in [0, 1]

Table 1: Notation used in the ML formulation and evaluation.

A.1 Classification Metrics

We cast synthesizability prediction as a class-imbalanced binary classification task with definitive positive and
negative labels. Let TP,FP,TN,FN denote true/false positives/negatives computed at a decision threshold τ
on the predicted probability s(x) ∈ [0, 1].

Thresholded metrics. We report precision, recall (a.k.a. true positive rate), and their harmonic mean F1:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2Precision · Recall

Precision + Recall
.

A.2 Additional Synthesizability Prediction Results

Figure 5: Synthesizability by compound class. Computed from entries in the Materials Project.

A.3 Additional Experimental Details

The experiments were conducted in our high-throughput laboratory. The proportions of precursor materials
were selected to match stoichiometry without consideration for the differing volatility of different precursors.
As some precursors are more volatile and therefore disproportionately more ’lost’ during the reaction, some
purity is likely lost in this non-optimized process. All precursors were combined together and milled for 10

0Here s(i) denotes the model probability used in the loss (e.g., per-head); later ranking uses RankAvg.
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Figure 6: Experimental details for the 16 targets, including precursors, processing temperatures, and
times.

minutes using a Hauschild Speedmixer Smart Dac 400.3 FVZ to reduce particle size and thoroughly mix the
components. Subsequently, the powders were placed in alumina crucibles and placed in a Thermo Scientific
Thermolyne Benchtop Muffle Furnace for a specified time at a specified temperature. The precursors, times,
and temperatures are listed below in Fig. 6. The samples were subsequently characterized using a Malvern
Panalytical Aeris benchtop X-ray diffractometer. The fitting of the XRD spectra was done using an in-house
code package that uses a BGMN Rietveld refinement as a final step Doebelin and Kleeberg [2015]. The exact
fitting procedure is discussed in the Appendix.

Originally, there were 24 targets, of which 8 samples, while fully undergoing synthesis, were not able to be
extracted out of their crucibles for XRD analysis. These samples will subsequently be processed and evaluated
using the same pipeline, and as such, we do not consider them failed attempts, but rather attempts in progress.
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A.4 XRD Fits for Experiments

To perform the XRD fits, we used an in-house phase-identification algorithm that picked likely phases from the
ICSD, Materials Project, GNoME, and Alexandria. These were weighted based on thermodynamic likelihood.
These were then human-validated, before an automated Rietveld refinement procedure was performed using
BGMN [Doebelin and Kleeberg, 2015], a robust automated Rietveld refinement algorithm. These results were
compared against alternative models with different phases to perform an additional qualitative assessment of the
model fit.

We provide XRD fits for all of the claimed successful syntheses below.

Y2MnFeO6:

Figure 7: XRD fit for Y2MnFeO6. The small inset rectangle contains phases present (Y2O3, Fe2O3,
and several disordered phases of Y2MnFeO6. a. Fit with the target phase (labeled Aagm003224503)
present versus b. without the target phase present. A notable improvement in Rwp is observed, as
well as multiple previously unfitted peaks being fitted, strongly suggesting the presence of the target
structure. Known Y-Mn-Fe-O compounds (including two and three metal compounds) did not fit the
target peaks.
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Eu2WO6:

Figure 8: XRD fit for Eu2WO6. The target phase is observed at too low a percentage (<1.5% to be
plausible. Instead a polymorph (88% purity) with a C2/m with a=14.29 Å, b=3.649 Å, c = 8.876 Å,
and β = 100.4◦ unit cell is observed instead. Some intensity, likely a complex tungsten oxide, could
not be fitted.

DyAl3(BO3)4:

Figure 9: XRD fit for DyAl3(BO3)4. The target phase is observed at 62%. An unknown orthorhombic
phase that does not correspond to known structures was observed at 4%.
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Nd3Mn2Sb3O14:

Figure 10: XRD fit for Nd3Mn2Sb3O14. The target phase is listed DG310527 and has 72% purity.

Y2MnCoO6:

Figure 11: XRD fit for Y2MnCoO6.
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Sm3BWO9:

Figure 12: XRD fit for Sm3BWO9. The target phase is listed Aagm003237328.

Sr4Al6MoO16:

Figure 13: XRD fit for Sr4Al6MoO16. The target phase is listed Aagm003234610.
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TbFeO3:

Figure 14: XRD fit for TbFeO3. The target phase is listed Aagm005245801.

Ba2Gd(CuO2)4: (provided as an example of a failed synthesis)

Figure 15: XRD fit for Ba2Gd(CuO2)4. Ba2GdCu3O7 was made instead.
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A.5 CIF File for Nd3BTeO9

data_Nd3BTeO9
_symmetry_space_group_name_H-M ’P 1’
_cell_length_a 8.76075
_cell_length_b 8.76075
_cell_length_c 5.55533
_cell_angle_alpha 90.000
_cell_angle_beta 90.000
_cell_angle_gamma 120.000
_symmetry_Int_Tables_number 1
_chemical_formula_structural Nd3BTeO9
_chemical_formula_sum ’Nd6 B2 Te2 O18’
_cell_volume 369.25218
_cell_formula_units_Z 2
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 ’x, y, z’

loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Nd Nd0 1 0.351800 0.072868 0.204851 1
Nd Nd1 1 0.927133 0.278934 0.204851 1
Nd Nd2 1 0.721067 0.648200 0.204851 1
Nd Nd3 1 0.278934 0.351801 0.704850 1
Nd Nd4 1 0.072867 0.721067 0.704850 1
Nd Nd5 1 0.648200 0.927133 0.704850 1
B B6 1 0.000000 0.000000 0.373877 1
B B7 1 0.000000 0.000000 0.873876 1
Te Te8 1 0.333334 0.666667 0.246297 1
Te Te9 1 0.666666 0.333334 0.746298 1
O O10 1 0.537430 0.753814 0.045933 1
O O11 1 0.246186 0.783615 0.045933 1
O O12 1 0.216386 0.462571 0.045935 1
O O13 1 0.129442 0.173277 0.365463 1
O O14 1 0.043835 0.870558 0.365463 1
O O15 1 0.826722 0.956164 0.365463 1
O O16 1 0.132779 0.527094 0.461794 1
O O17 1 0.472906 0.605685 0.461794 1
O O18 1 0.394315 0.867220 0.461794 1
O O19 1 0.753814 0.216385 0.545934 1
O O20 1 0.462570 0.246185 0.545934 1
O O21 1 0.783614 0.537430 0.545934 1
O O22 1 0.173277 0.043835 0.865464 1
O O23 1 0.956164 0.129442 0.865464 1
O O24 1 0.870558 0.826722 0.865464 1
O O25 1 0.605684 0.132779 0.961792 1
O O26 1 0.867220 0.472905 0.961792 1
O O27 1 0.527094 0.394314 0.961794 1
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