
RCCDA: Adaptive Model Updates in the Presence of
Concept Drift under a Constrained Resource Budget

Adam Piaseczny
Purdue University

apiasecz@purdue.edu

Md Kamran Chowdhury Shisher
Purdue University

mshisher@purdue.edu

Shiqiang Wang
IBM Research

shiqiang.wang@ieee.org

Christopher G. Brinton
Purdue University
cgb@purdue.edu

Abstract

Machine learning (ML) algorithms deployed in real-world environments are often
faced with the challenge of adapting models to concept drift, where the task data
distributions are shifting over time. The problem becomes even more difficult
when model performance must be maintained under adherence to strict resource
constraints. Existing solutions often depend on drift-detection methods that pro-
duce high computational overhead for resource-constrained environments, and fail
to provide strict guarantees on resource usage or theoretical performance assur-
ances. To address these shortcomings, we propose RCCDA: a dynamic model
update policy that optimizes ML training dynamics while ensuring compliance
to predefined resource constraints, utilizing only past loss information and a tun-
able drift threshold. In developing our policy, we analytically characterize the
evolution of model loss under concept drift with arbitrary training update decisions.
Integrating these results into a Lyapunov drift-plus-penalty framework produces a
lightweight greedy-optimal policy that provably limits update frequency and cost.
Experimental results on four domain generalization datasets demonstrate that our
policy outperforms baseline methods in inference accuracy while adhering to strict
resource constraints under several schedules of concept drift, making our solution
uniquely suited for real-time ML deployments.

1 Introduction

In recent years, deep learning (DL) models have become popular in resource-constrained environments
[1, 2, 3, 4], e.g., on mobile devices, where computational power and memory are limited. These
settings typically assume static data distributions during inference, in part due to resource limitations
[5, 6, 7]. In practice, this poses a major challenge in the form of concept drift, which is a phenomenon
where the underlying relationships in data shift over time, causing model performance to degrade
[8, 9]. The computational demands of frequent updates that may be necessary to overcome rapid drifts
present a significant challenge in resource-constrained settings. As a result, effectively managing
model updates to adapt to such drift while adhering to resource constraints becomes a critical problem.

To address concept drift and mitigate model performance deterioration, researchers have proposed
a variety of adaptive learning methods [10, 11, 12]. These strategies are often tailored to different
operational contexts and environment characteristics [13, 14, 15, 16]. While most are heuristic,
validating their efficacy empirically [17, 18], certain techniques have offered convergence guarantees
to give principled insights into algorithm design, e.g., [19, 20]. Even so, these theoretical analyses
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often rely on specific assumptions about the drift, or require prior knowledge about the environment
that may not be readily available for decision-making.

Fundamental Challenges. The question of how to maintain strong performance in the presence
of concept drift under strict resource constraints remains largely unexplored. Existing lightweight
adaptation algorithms do not provably guarantee resource budgets will be met during drift adaptation.
On the other hand, established convergence guarantees depend on unconstrained updates: as we will
see, artificially restricting these algorithms to stay within the budget leads to suboptimal performance.
Thus, the fundamental challenge lies in developing a theoretically grounded scheme that guarantees
adherence to strict resource constraints while optimizing model performance — a long-standing open
problem in the field. To the best of our knowledge, no prior work has proposed or systematically
analyzed strategies that optimally address concept drift while prioritizing rigid resource constraints.
As a result, in this paper, we are motivated to answer the following question:

How can we develop a lightweight, resource-aware policy for dynamic model updates that (i)
effectively mitigates performance loss incurred by concept drift in real-time applications while (ii)
theoretically guaranteeing adherence to strict resource constraints?

Contributions. Through our investigation, we develop RCCDA (Resource-Constrained Concept
Drift Adaptation): a first-of-its-kind adaptive threshold-based policy that determines the optimal time
to update model parameters in the presence of concept drift, using only past loss information, and
ensuring strict bounds on constraint violations. Our contributions are summarized as follows:

• Convergence Analysis: We provide a rigorous analysis of how concept drift impacts a deployed
model’s convergence over time, focusing on the evolution of loss as data distributions shift.
Under mild assumptions, our bounds quantify the degradation caused by concept drift, implicitly
relating model performance to the retraining policy choice. This analysis lays the groundwork for
development of adaptive strategies in dynamic, resource-constrained settings.

• Optimal Policy Design: We formulate and solve an optimization problem to determine the optimal
times for updating a model, minimizing the loss induced by concept drift while satisfying resource
constraints. Leveraging the Lyapunov drift-plus-penalty framework [21], we develop RCCDA:
a threshold-based policy that triggers updates based on inference loss data and a virtual queue
tracking resource expenditure. The resulting lightweight algorithm relies solely on historical loss
data and a tunable drift threshold, making it efficient for real-time applications, while ensuring a
greedy-optimal balance between model performance and computational overhead.

• Empirical Validation: We evaluate RCCDA performance through experiments on four domain
generalization datasets: PACS, DigitsDG, OfficeHome, and MEMD-ABSA, simulating different
concept drift schedules. Our results demonstrate that our policy consistently outperforms four
baseline policies across a variety of drift settings while adhering to resource budgets. This highlights
our policy’s ability to adapt efficiently to data with time-varying distributions.

2 Related Work

Concept Drift. Many of the existing works on studying concept drift have placed an emphasis on
characterizing or detecting drift [22, 23, 24, 25, 26]. For instance, windowing techniques, such as
the Adaptive Windowing (ADWIN) algorithm [27], dynamically adjust the size of a data window to
monitor statistical changes, flagging drift when significant deviations occur. Alternatively, observing
performance indicators [28, 29, 30, 31, 32] involves tracking metrics like accuracy or error rates,
where a sudden decline may signal that the model no longer aligns with the current data distribution.
Additionally, machine learning models can be trained to detect drift by identifying shifts in feature
distributions or relationships among variables [33, 34]. Detecting drift is a crucial step in drift
adaptation, as it provides actionable insights into the optimal times to update or retrain the model
with fresh data [19, 35]. However, these methods do not consider operating under limited resource
budget, a problem that is addressed by the policy introduced in our paper.

Domain Generalization. Domain generalization (DG) techniques address the related problem
of training models to generalize well across multiple domains, aiming to improve robustness to
unseen target distributions during inference [36, 37, 38, 39]. Classical strategies include data/feature
augmentation [40, 41, 42] or leveraging domain-invariant features [43, 44, 45]. More recent works
have investigated temporal domain generalization [46, 47, 48] to adapt to time-varying distributions,
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as encountered during concept drift. In practice, however, these approaches demand significant
resources, such as continuous data monitoring and frequent model updates, making them impractical
for resource-constrained settings. Furthermore, these works have not explicitly considered adherence
to resource constraints, which is one of the key motivations of our paper.

Continual Learning. As mitigating concept drift involves retraining the model at strategic intervals
guided by a policy, the drift-adaptation problem shares similarities with continual learning (CL),
where the goal is to enable models to learn from a sequence of tasks over time [49, 50]. A major
hurdle in CL is the problem of catastrophic forgetting, where adapting to new tasks causes the model
to lose performance on previously learned ones [51, 52]. The problem studied in this paper prioritizes
a different objective than CL: optimizing model performance on the current data distribution at each
time step under resource constraints, i.e., immediate adaptability versus long-term memory retention.
As such, our work is applicable to settings where the concept drift does not exhibit cyclic patterns.

3 Methodology

3.1 System Model

We consider a system with an agent running an inference task using a machine learning model
within an environment that evolves over discrete time t ∈ {0, 1, . . . , T − 1} := T . The environment
is characterized by an underlying data distribution pt that changes over time due to concept drift.
Consequently, the agent’s available dataset, Dt ∼ pt, varies at each time step, resulting in changing
conditional distributions of the data:

Pr(yt | xt) ̸= Pr(yt′ | xt′), (1)

where (xt, yt) ∈ Dt and (xt′ , yt′) ∈ Dt′ are feature-target pairs sampled at different times t and t′.
We assume that the concept drift experienced by pt is bounded between any time steps t and t+ 1,
which is expressed by the time-varying bound δ(t) on natural-log-based KL-divergence between
consecutive data distributions:

DKL(Dt || Dt+1) ≤ δ(t) ∀t, δ(t) > 0. (2)

At any time t, the agent uses its current model, with parameters θt ∈ Rd, to perform the inference
task. The inference performance is measured using a local loss function, f : Rd × R|Dt|×|x| → R,
the definition of which remains fixed throughout the entire operation. By randomly sampling an
inference batch ξt (where |ξt| ≤ |Dt|) from Dt, the agent obtains an unbiased estimate of the loss,
f(θt−1, ξt) (s.t. Eξt∼Dt

[f(θt−1, ξt)] = f(θt−1,Dt), and θ−1 = θ0). Before the agent is deployed,
the agent’s model (with parameters θ0) is pretrained to be within some ε0 > 0 proximity to the initial
optimal model, i.e. ∥θ0 − θ∗0∥ ≤ ε0 for some ε0 > 0, where θ∗0 := argminθ∈Rd f(θ,D0), ensuring a
low initial inference loss estimate value.

Due to the concept drift experienced by the underlying distribution pt, the optimal model parameters,
θ∗t := argminθ f(θ,Dt), also change over time, resulting in the model experiencing a growing
inference loss and performance degradation. This problem is illustrated in Figure 1a.

To address this issue, the agent performs actions aimed at keeping the loss increase to a minimum in
the presence of concept drift. To achieve that, the agent follows a model update policy, where at any
time t, the model parameters θt can be updated with the data from the most recent dataset Dt, with
the number of updates constrained by the resources available. A single update is formulated as:

θt = θt−1 − η∇θf (θt−1, ζt) , (3)

where η > 0 is the learning rate and ζt ⊆ Dt ∼ pt is a uniformly sampled training batch of data
(independent of the ξt inference batch). The choice of policy affects the model performance over
time, as illustrated in Figure 1b.

Note that while the update in Equation (3) is formulated as a single gradient descent step, this
framework can be easily extended to allow for multiple update rounds per time step. This is achieved
by interpreting each gradient descent step as a sub-interval of a larger decision time frame, allowing
for more granular control over the effective update frequency.

Finally, each model update is associated with a time-varying resource cost λ(t) > 0. This cost
is an abstract measure and can represent a variety of factors, such as computational load, energy
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(a) Optimal point and model parameter drift (b) Effect of different policies on model performance

Figure 1: Interplay between policy design, concept drift, and model performance. (a) Optimal model
point movement over time due to drift. Different policies result in varying total distances to the
drifting optimal model. (b) Update timing influences average performance given set number of
updates.

consumption, wall-clock time, or monetary cost (details available in Appendix D). The cost relates
the effective frequency of updates to the pre-defined time-average cost budget λ̄, which corresponds
to the maximum average resources the agent can spend per time step over the entire horizon T .

3.2 Problem Formulation

To mitigate concept drift, the agent employs a model retraining policy. At any time t, the policy
decides on an action π(t) ∈ {0, 1}, where π(t) = 1 and π(t) = 0 correspond to a model update
and no update respectively. The resulting sequence of actions over the entire horizon is denoted by
the vector π = (π(0), . . . , π(T − 1)). This sequence is an element of the action sequence space
Π = {0, 1}T . Utilizing a retraining policy results in the following evolution of the model parameters
over time:

θt = θt−1 − π(t)η∇θf (θt−1, ζt) . (4)
For the sake of practicality and computational efficiency of our solution, we consider policies that
are causal and distribution ignorant, meaning (i) the decision maker neither evaluates nor knows
the data distributions p0, p1, . . . pT−1 and (ii) the decision maker decides on the action at time t
based on the history of expected losses of the past inference batches of data ξ0, ξ1, . . . , ξt, which
are available through running the inference task. This is an important distinction of our setting,
as any further modifications to the action space would result in an increased task overhead. For
example, trying to detect the concept drift requires performing operations on the dataset, which is
highly resource consuming (see Appendix D for more details). Using the inference loss to evaluate
the model performance is a common established strategy [53].

Given such a setup, the goal of the agent is to find a policy resulting in a set of actions π ∈ Π that
minimizes the expected loss over the entire time horizon, subject to the average cost of model updates
not exceeding λ̄:

min
π∈Π

1

T

T−1∑
t=0

Eπ

[
f(θt,Dt)

]
subject to

1

T

T−1∑
t=0

λ(t)π(t) ≤ λ̄. (5)

Optimality. Without resource constraints, the optimal solution to (5) would be to update the model
at every time t. However, finding an optimal update policy under the resource constraint presents
a fundamental challenge: obtaining such a policy requires knowledge of the dataset’s entire future
evolution, which is not practical. To address this, we pivot from the direct time-averaged loss objective
in (5) to a new objective based on the provable upper bound on the time-averaged gradient norm
(formally derived in Theorem 5.1). This pivot allows us to naturally decompose the problem into a
sum of per-time-step performance penalties. In the following section, we introduce the Lyapunov
drift-plus-penalty framework, which provides a mechanism to greedily minimize the upper bound on
these per-time-step penalties while provably upholding the long-term resource constraint.
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4 Policy Design

Idea and Overview. The central challenge of this work is adapting to changing conditions while
respecting resource constraints. This issue spans beyond machine learning, appearing in areas where
responsiveness and resource management must align, and requires strategies that balance performance
and efficiency across dynamic systems. Existing solutions often rely on computationally expensive
methods or fail to provide strict guarantees on resource usage and performance. To overcome these
limitations, we leverage the Lyapunov drift-plus-penalty framework [21], as it allows us to transform
an intractable long-term optimization problem into a series of greedy, per-time-step decisions. The
core intuition is to dynamically incorporate the long-term constraint into each per-time-step objective.
This is achieved by defining a “penalty” term, which represents our immediate objective (based on
minimizing the convergence bound), and a “drift” term, which measures how far the system deviates
from its long-term resource budget. By optimizing a bound on this combined drift-plus-penalty
expression at each time t, the agent is compelled to make greedy, online decisions that provably
balance these two competing factors. This process creates an explicit, online trade-off between short-
term performance and long-term budget adherence, allowing us to derive a principled, lightweight
policy with provable guarantees.

Algorithm 1: RCCDA
Input: model parameters θ0, update cost λ(t),

time-average cost λ̄, tunable weight V ,
learning rate η, estimator Ĝ

Output: Model parameters θt∀t
1 Virtual Queue Q(0)← 0

2 History VariablesHf ,Hg,Hπ ← {}, {}, {}
3 for t = 0 to T − 1 do
4 ft ← Eξt∼Dt [f(θt−1, ξt)]

5 Hf ← Hf ∪ {ft}
6 Ĝt ← Ĝ(Hf ,Hg,Hπ)

7 C(t)← λ(t)Q(t) + 1
2

[
λ(t)2 − 2λ̄λ(t)

]
8 if V Ĝt ≥ C(t) then
9 π(t)← 1

10 θt ← θt−1 − η∇f(θt−1, ζt)

11 Hg ← Hg ∪ {∇f(θt−1, ζt)}
12 else
13 π(t)← 0

14 θt ← θt−1

15 Hπ ← Hπ ∪ {π(t)}
16 Q(t+1)← max{0, Q(t)+λ(t)π(t)− λ̄}

By tailoring the Lyapunov framework to the
analyzed setting, we derive RCCDA (Algo-
rithm 1), a novel policy that dynamically de-
termines when to update the model based
on historical performance metrics, while ad-
hering to resource constraints. The algo-
rithm relies on a threshold-based rule, trig-
gering an update when a constructed expres-
sion exceeds a dynamic threshold influenced
by past decisions and constraints, reflecting
the performance-resource trade-off. This ap-
proach offers distinct benefits over traditional
methods: it avoids complex drift detection,
requires few assumptions about data behav-
ior, is simple to implement, and provably
guarantees adherence to resource constraints.

4.1 Policy Derivation

Lyapunov Analysis. To develop RCCDA,
we apply the Lyapunov framework to the per-
step penalty objective derived from our con-
vergence bound (Theorem 5.1), subject to the
resource constraint. The time-averaged sum
of these per-step penalties defines our core
objective:

1

T

T−1∑
t=0

(
f(θt, ξt)− f(θt+1, ξt+1)︸ ︷︷ ︸

model related loss difference

+ (1− π(t))∆fδ,ξ(t)︸ ︷︷ ︸
drift loss

)
, (6)

where for every time step t, f(θt, ξt)− f(θt+1, ξt+1) is an inference loss term associated with the
evolution of model parameters over time, which itself depends on the dataset evolution too, and
∆fδ,ξ(t) := f(θt, ξt+1)− f(θt, ξt) is the drift induced inference loss term that relates the evolution
of the data stream with the incurred loss. Note that this objective is derived from the right-hand side
of our convergence bound in Theorem 5.1, which will be presented in Section 5, and serves as a
proxy for minimizing the bound on time-averaged gradients, 1

T

∑T−1
t=0 ∥∇f(θt,Dt+1)∥2.

The practical objective in (6) introduces two key modifications from the theoretical bound. First,
it explicitly incorporates the policy decision by scaling the drift loss with 1 − π(t), isolating the
drift penalty to non-update steps. Second, while the theoretical bound is defined for losses over the
entire (and often inaccessible) datasets Dt, our objective employs the practical losses computed on
inference batches ξt for different times t.
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Virtual Queue. To enforce adherence to resource constraints over time, we introduce a virtual queue
Q(t), which evolves over time according to:

Q(t+ 1) = max
{
0, Q(t) + λ(t)π(t)− λ̄

}
, (7)

with Q(0) = 0. Intuitively, the virtual queue acts as a “debt accumulator,” which tracks the violations
of the resource constraint over time. When an update occurs, π(t) = 1, the queue grows in size
by λ(t), signaling resource expenditure; the subtraction of λ̄ reflects the permissible usage rate.
As a result, the queue evolves dynamically over time, signifying excessive updates when large, or
suggesting room for more updates when close to 0. This mechanism is central to the Lyapunov
framework: by seeking to keep the queue stable (i.e., minimizing its “drift”), the resulting optimization
ensures the average resource consumption aligns with λ̄ over time.

To formalize this, we first define the Lyapunov drift as ∆Q(t) := 1
2

(
Q(t+ 1)2 −Q(t)2

)
, which

corresponds to change in the “resource debt”. The core of the method is to greedily minimize a bound
on the single drift-plus-penalty expression at each time t, which is a weighted sum of this drift and
our performance objective:

E[∆Q(t)] + VΨ(t) , (8)
where Ψ(t) is the per-step penalty objective (the term inside the summation in Equation 6), and
V > 0 is a tunable parameter that weights the penalty term against the Lyapunov drift.

4.2 Our Algorithm

Decision-Making. Solving the optimization problem involves greedily minimizing the bound on the
drift-plus-penalty expression at each time step t. The result of the derivation, available in Appendix C,
is a theoretically greedily-optimal threshold-based policy at the core of RCCDA (Algorithm 1) that
dictates an update (π(t) = 1) if and only the following condition holds:

V

(
f(θt−1, ξt+1)− f(θt−1 − η∇f(θt−1, ζt), ξt)

)
+ V Jπ(t) ≥ λ(t)Q(t) +

1

2

[
λ(t)2 − 2λ̄λ(t)

]
,

(9)

where Jπ(t) := f(θt−1 − η∇f(θt−1, ζt) − π(t + 1)η∇f(θt−1 − η∇f(θt−1, ζt), ζt+1), ξt+1) −
f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1). The intuition behind the update rule is a direct trade-off.
The left-hand side, which we denote V G(t), represents the performance gain scaled by the trade-off
parameter V . The G(t) term is a complex, non-causal expression that accounts for the loss reduction
from the gradient step and the nested effects of how this action impacts the loss at time t+1, given the
optimal next action π(t+ 1). This scaled gain is compared against the right-hand side, denoted C(t),
which represents the effective resource cost. This cost term is fully known at time t and combines the
cost associated with the current resource debt, λ(t)Q(t), with the instantaneous cost of the update
itself. The resulting rule V G(t) ≥ C(t), dictates that the agent should update only when the scaled
performance benefit is greater than the resource cost.

Practical Policy and Estimator. While the threshold in (9) provides a per-time-step optimal solution,
it is intractable and non-causal, making it impossible to implement in practice. The performance
gain term G(t) directly depends on the future data distribution Dt+1, the optimal future action
π(t+ 1) (which itself creates a recursive dependency), and computations of various gradient terms
that cannot be performed without violating resource constraints. There are several strategies to
address this intractability, such as optimizing a looser convergence bound or truncating the multi-
step dependencies. In this work, however, we retain the structure of the ideal policy and instead
utilize a causal approximation of this rule. We define the practical policy for RCCDA by replacing
the intractable gain G(t) with a causal estimator function, Ĝ(Ht), which utilizes only historical
information Ht = {Hf0:t ,Hg0:t ,Hπ0:t

} available up to time t. The practical decision rule thus
becomes V Ĝ(Ht) ≥ C(t). While this design introduces an implicit estimation error that may affect
performance, it also establishes RCCDA as a flexible framework, allowing the specific choice of the
estimator Ĝ to be tailored to different problems.

RCCDA Operation. Based on this practical, estimator-based policy, the RCCDA algorithm (Algo-
rithm 1) operates over T = {0, . . . , T − 1}. After initializing the virtual queue Q(0) = 0 and history
variables H, the algorithm proceeds at each time step t by first computing the current inference loss
ft and updating the loss history Hf . It then uses its chosen estimator function Ĝ(Ht) to calculate
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the estimated scaled performance gain V Ĝ(Ht). This gain is compared to the known resource cost
threshold C(t) (the RHS of (9)) to make the update decision π(t). Based on this action, the model
parameters θt are either updated or kept constant, and the relevant histories are recorded. Finally,
the virtual queue is updated to Q(t+ 1) using the action taken, π(t), and its cost λ(t), carrying the
resource debt forward to the next time step.

5 Theoretical Analysis

In this section we conduct a theoretical analysis of the examined setting. In the analysis, we consider
a perfect estimator, i.e. Ĝ(Ht) = G(t), which achieves zero estimation error. This allows us to
derive performance bounds for the ideal policy, which serve as a theoretical benchmark for any
practical implementation. The analysis is structured as follows: We first introduce a set of common
assumptions required for the analysis. We then derive the general convergence rate bounds and
conduct and demonstrate the result of a stability analysis on the proposed update policy. The complete
proofs of our theorems are available in the appendix.

5.1 Convergence Analysis

Assumption 1 (Smoothness). The agent’s loss function is differentiable and L-smooth, i.e. ∀t0, t1, t2
it follows that ∥∇f(θt1 ,Dt0)−∇f(θt2 ,Dt0)∥ ≤ L ∥θt1 − θt2∥.

Assumption 2 (Bounded Variance). For all times t, the agent’s stochastic gradient ∇f(θt, ζt) is an
unbiased estimate of the true gradient, i.e. Eζt∼Dt [∇f(θt, ζt)] = ∇f(θt,Dt), and the variance of

the stochastic gradient is bounded as Eζt∼Dt

[
∥∇f(θt, ζt)−∇f(θt,Dt)∥2

]
≤ σ2.

Assumption 3 (Bounded Concept Drift). For all times t, the magnitude of the concept drift between
two data distributions pt and pt+1 is bounded, which corresponds to a bound on the KL-divergence
measure on datasets at two consecutive times defined as ∀t, ∃δ(t) > 0 s.t. DKL(Dt || Dt+1) ≤
δ(t) ≤ δ = sup {δ(0), . . . , δ(T )}.

Assumption 4 (Bounded Loss). For all times t, the magnitude of the loss f(θt,Dt) satisfies
0 ≤ f(θt,Dt) ≤ B.

Theorem 5.1. If Assumptions 1-2 hold and the learning rate is chosen such that η <
2Pπ

min

L , then the
time-averaged gradient satisfies

1

T

T−1∑
t=0

∥∇f(θt,Dt+1)∥2 ≤ 1

Tµ

(
f(θ0,D0)− f(θT ,DT ) +

T−1∑
t=0

∆fδ(t)

)
+

Lη

2Pπ
min − Lη

σ2,

(10)

where T is the total number of time steps, ∆fδ(t) = f(θt,Dt+1) − f(θt,Dt) is the time-varying

drift-induced loss change, µ =
(
ηPπ

min − Lη2

2

)
, and Pπ

min is the minimum probability of policy π(t)

being equal to 1 for all times t.

Corollary 5.2. Under Assumptions 3-4, by the result in Theorem 5.1, the time-averaged gradient
satisfies

1

T

T−1∑
t=0

∥∇f(θt,Dt+1)∥2 ≤ B

T
(
ηPπ

min − Lη2

2

) (1 +√
2

T−1∑
t=0

√
δ(t)

)
+

Lη

2Pπ
min − Lη

σ2 (11)

There are several key steps in our convergence proofs. By incorporating the drift-induced loss term
∆fδ(t), we are able to quantify the effect of shifting data distributions between time steps. Utilizing
Pinsker’s inequality allows us to bound E[∆fδ(t)] ≤ B

√
2δ(t), establishing an explicit connection

between the drift induced loss and the magnitude of concept drift. Conditioning on the past dataset
and model evolution allows us to model dependencies on past states, and decouple the policy action
from the evolution of loss over time. Finally, by directly considering the action π(t) in the model
update and introducing Pπ

min, we are able to integrate general policy information into the final bound.
A detailed proof is provided in Appendix B.
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Discussion. Theorem 5.1 provides a general bound on the time-averaged squared gradient norm,
quantifying the impact of concept drift and the update policy on convergence. The bound’s dependence
on the cumulative drift,

∑T−1
t=0 ∆fδ(t), reveals an important insight: the time-averaged gradient

only vanishes if the total drift grows sublinearly with T . Persistent, non-vanishing drift prevents the
gradients from converging. The policy’s role is twofold: it explicitly appears in Pπ

min, which inversely
scales both the drift-dependent term (via µ) and the error term O(σ2), highlighting the trade-off
where more frequent updates (a higher Pπ

min) lead to a tighter convergence bound, at the cost of more
computation. Implicitly, the policy also governs the parameter sequence (θt)

T
t=0, which determines

the loss evolution term f(θ0,D0)− f(θT ,DT ) +
∑T−1

t=0 ∆fδ(t). A more effective policy will yield
a more favorable loss evolution and thus a tighter overall convergence bound.

Corollary 5.2 demonstrates the relationship between convergence and magnitude of the drift. Without
any further assumptions on the drift, the gradients are not guaranteed to converge, even when σ = 0,
as it would require an increasing learning rate, which is bounded by η <

2Pπ
min

L . If Assumption 3
holds as t → ∞, then ∃δ = sup {δ(t) | t ∈ N ∪ {0}}, and the time averaged gradients are bounded
by O

(√
δ
)
+O

(
σ2
)
, suggesting that in environments with persistent but bounded drift, the model

achieves a “stable” performance by oscillating within a region proportional to
√
δ and σ2. Given

additional assumptions about the concept drift, it is possible to demonstrate convergence. Suppose∑T−1
t=0 δ(t) ∼ O(T 1−α) with α > 0. Then, if we use η = O(T−β) such that 0 < β < min (α, 1),

the bound converges as 1
T

∑T−1
t=0 E

[
∥∇f(θt,Dt+1)∥2

]
≤ O(T β−1) + O(T β−α) + O(T−β). In

practical scenarios, this corresponds to a decaying drift that eventually vanishes, allowing the
algorithm to successfully converge to a stationary point.

5.2 Stability Analysis

Now, we discuss how RCCDA 1 satisfies the resource constraint of the problem (5) by following the
threshold structure (9). In Theorem 5.3, we provide an upper bound on the constraint violation of our
algorithm. This upper bound goes to zero as T → ∞.

Theorem 5.3. If Assumptions 1-4 hold, then the policy following Algorithm 1, with zero-error
estimator, satisfies

1

T

T−1∑
t=0

λ(t)E [π(t)]− λ̄ ≤

√√√√ λ̄

T 2

T−1∑
t=0

λ(t)− λ̄2

T
+ 2V B

(
5

T
+

1

T 2

T−1∑
t=0

√
2δ(t)

)
. (12)

The proof of Theorem 5.3 proceeds in two key steps. First, we show that the constraint violation term
(the left hand-side of (12)) is upper bounded by the queue length Q(T ), for which an upper bound is
also provided. Second, we establish an upper bound for the drift term ∆Q(t) = 1/2(Q(t+ 1)2 −
Q(t)2). This bound is derived by comparing our policy with a stationary random policy that updates
at each time slot with probability min

(
λ̄/λ(t), 1

)
. A detailed proof can be found in Appendix C.2.

Discussion. Theorem 5.3 guarantees that RCCDA satisfies the resource constraint in (5) as T →
∞, provided the cumulative drift

∑T−1
t=0

√
δ(t) grows sublinearly in T and the update costs λ(t)

remain bounded, i.e., λ(t) ∼ O(1). This reflects a key strength of the Lyapunov drift-plus-penalty
framework [21]. For finite T , the violation bound can be tightened toward zero by tuning V optimally.
Additionally, under high but bounded drift rates (δ(t) ∼ O(1)), the constraint violation decays as
O(1/

√
T ), ensuring the policy adheres to the budget over long horizons without requiring drift to

vanish.

6 Experiments

Datasets. To represent concept drift, we utilize four widely used domain generalization datasets:
PACS [54], DigitsDG [55], and in the appendix OfficeHome [56], and MEMD-ABSA [57]. The drift
is simulated by introducing samples from different domains into the dataset. The model architectures
utilized are detailed in Appendix E.2. Initially, we pretrain the models on data from a single source
domain.
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Table 1: Average validation accuracy of policies across concept drift schedules for PACS and
DigitsDG datasets, mean update rate constraint: λ̄

λ = 0.1. We see that RCCDA consistently
outperforms others, with the largest improvement for Burst and Spikes drift schedules.

Policy PACS Digits-DG
Drift Schedule Burst Step Wave Spikes Burst Step Wave Spikes

RCCDA (ours) 72.8 ± 4.5 72.0 ± 8.1 67.0 ± 4.7 73.0 ± 3.6 77.6 ± 6.3 74.6 ± 7.0 65.0 ± 11.2 74.3 ± 7.3
Uniform 64.0 ± 2.2 65.3 ± 6.3 61.8 ± 7.3 60.8 ± 7.7 71.4 ± 5.0 73.1 ± 4.8 63.6 ± 7.5 67.0 ± 3.6
Periodic 65.1 ± 2.4 65.5 ± 7.1 61.0 ± 7.8 55.3 ± 4.0 69.8 ± 3.6 72.7 ± 4.6 63.5 ± 7.5 68.1 ± 6.8
Budget-Increase 59.1 ± 13.5 66.2 ± 9.9 58.3 ± 9.0 53.1 ± 16.4 65.9 ± 4.5 73.3 ± 5.6 63.5 ± 9.2 61.9 ± 5.8
Budget-Threshold 67.4 ± 14.9 71.7 ± 8.3 54.5 ± 7.0 58.4 ± 12.3 71.9 ± 3.7 72.8 ± 7.5 57.4 ± 5.3 67.3 ± 6.2

Drift Schedules. After the pretraining phase, the models are deployed at an agent with some fixed-
size dataset, initially comprised only of source domain data. Over time, the dataset experiences
concept drift, in the form of influx of data points from different domains, replacing existing data.
The incoming domains, drift rate, and time of drift are determined according to a drift schedule. We
consider 4 main drift schedules:

(i) Burst - at pre-determined times, bursts with high drift rate happen, replacing most of the
dataset with new domains. Otherwise, the dataset remains constant.

(ii) Step - initially the drift is 0, then at some point, new domains start incoming slowly into the
dataset, until the original is introduced back.

(iii) Wave - the drift is either 0, or new domain data is introduced at a low rate into the dataset
over some long interval periodically.

(iv) Spikes - At random times, new domain data is inserted for some time with a random drift
rate.

At each time, the agent runs an inference task, calculating inference loss on a separate, smaller holdout
dataset that evolves in the same way as the training dataset. The agent has access to a retraining
policy that decides when to update the model, as well as the desired time-average-cost λ̄. Each model
update is equivalent to taking nsteps SGD steps, with the gradients computed on batches sampled form
the local dataset, and as such we consider a constant update cost λ. The agent also sets the value of
λ̄ < λ. The entire framework runs for 250 time steps. The detailed experimental setup is available in
Appendix E.

Policies. We consider the following update policies.

• RCCDA: Our policy is provided in Algorithm 1. To implement the algorithm, we use a custom
estimation function Ĝ(Ht) = Kp(f(θt−1, ξt) − mini∈{0,...,t} f(θi−1, ξi)) + Kd(f(θt−1, ξt) −
f(θt−1, ξt−1)), where Kp and Kd are tunable constants.

• Uniform Random: The policy updates the model at every time slot with probability λ̄/λ. This
policy is motivated from [58].

• Periodic: This deterministic policy updates the model after every time interval λ/λ̄, i.e. πPeriodic = 1
if t = k⌈λ/λ̄⌉, k ∈ N ∪ {0}, and 0 otherwise. The policy is modified from [59].

• Budget-Increase: The policy keeps track of an update budget available over time, then if it detects
n ∈ N consecutive loss increases and if there is budget available, the model is updated. Based on
modified trend-detection methods in [60].

• Budget-Threshold: The policy keeps track of an update budget and a window of losses Wf . Then
if ft ≥ (1 + ϵ)maxfi∈Wf

fi and if there is budget available, the model is updated. Based on a
modified version of [10].

Given this setup, we evaluate the classification accuracy at all times on the holdout dataset, while keep-
ing track of the number of updates to monitor resource constraint satisfaction. Further experimentation
details are available in the supplemenal material section.

Results and Discussion. Table 1 presents the average model accuracy under mean update rate
constraint of 0.1. We observe that RCCDA consistently outperforms the baselines across all tested
configurations. Furthermore, Figure 2 illustrates the dynamic behavior of accuracy and update
rates, confirming that the robust performance is achieved while adhering to the long-term resource
constraints.
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Figure 2: Dynamics of model accuracy and update rate for proposed and baseline policies under
various concept drift schedules, with corresponding dataset composition over time. We see that the
proposed policy recovers the quickest after sharp transitions while adhering to resource constraints.

Key Observations. First, compared with the baselines, RCCDA is able to more effectively adapt
to concept drift. Figure 2 demonstrates that for fast drops in accuracy, the update rate increases
rapidly, leading to fast performance recovery. This quick adaptation results in performance gains
over the baseline polices. Notably, the Budget-Threshold policy also demonstrates a strongly reactive
capability, however it cannot adapt to low-drift settings, not updating the model when it could be
beneficial. Second, the drift schedule directly affects the performance difference between the policies.
For Burst, the rapid domain changes allow the model to quickly adapt to new data, resulting in high
average accuracy. RCCDA is able to adapt quickly to these changes, which is why its performance
gap is highest on Burst and Spikes. In contrast, the more gradual introduction of data in the Wave and
Step schedules contributes to a smaller performance gap. The low accuracy is most likely a result of
model capacity limitations, but the small performance difference suggest that at lower drift rates, the
time of the update might not be as significant as for higher drift rates.

Resource Utilization. Finally, RCCDA demonstrates its update rate converging towards the desired
constraint of 0.1 over time, all while maintaining robust performance. This lends further practical
significance to Theorem 5.3, and also suggests that in order to maximize model performance, the
policy maximally utilizes the available resources. In contrast, policies focused solely on resource
constraints (Uniform, Periodic) fail to update when beneficial for performance, while the budget-
based policies are not capable of modeling the complex drift behavior, leading to significant resource
under-utilization and lower average accuracy.

Additional Results and Ablation Studies. Additional experimental results, including more drift
schedules, different update rates, and more datasets, are available in Appendix F.

7 Conclusion and Limitations

In this paper, we proposed RCCDA: a novel model update policy for adapting to concept drift under
resource constraints. We first established convergence bounds under drift, then utilized Lyapunov
analysis to arrive at a policy that minimizes the bound on drift-plus-penalty term per each time slot.
We then derived stability bounds, provably demonstrating adherence to resource constraints. Finally,
we confirmed the effectiveness of our policy through experiments on various domain generalization
datasets, with improvements in accuracy and drift recovery time relative to baselines. A potential
limitation of our work is the estimation function Ĝ introduced in the algorithm, as its associated error
can affect the threshold policy performance. Future work can rigorously characterize this impact and
employ it to derive tighter performance bounds.
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[27] Fabian Hinder, André Artelt, and Barbara Hammer. Towards non-parametric drift detection
via dynamic adapting window independence drift detection (DAWIDD). In Hal Daumé III and
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A Societal Impact

RCCDA offers significant positive societal contributions by enabling artificial intelligence that is
more sustainable, adaptable, and private. By optimizing the efficiency of model updates, our policy
directly lowers the energy consumption of edge devices, reducing operational costs, increasing
operation times, and promoting environmental sustainability. Additionally, this resource efficiency
combined with RCCDA’s lightweight nature makes it possible to deploy sophisticated, adaptive
models on low-cost hardware, allowing for effective and reliable access to advanced technology even
in dynamic, resource-constrained environments. Furthermore, by ensuring this adaptation happens
directly on-device, RCCDA provides robust performance while fostering greater data privacy and
autonomy for its users.

However, the same adaptive capability that drives these benefits also introduces important consider-
ations for responsible deployment. Since the policy adapts to incoming data, it may inadvertently
reinforce harmful patterns, especially if the data stream contains biases. The reliance on incoming
data also creates a vulnerability to adversarial poisoning, where a malicious actor could inject data
designed to degrade model performance. Finally, continuous on-device personalization could bias the
model to favor one type of data, resulting in the creation of insulating “echo chambers,” potentially
narrowing a user’s exposure to different perspectives. As a result, deploying this system respon-
sibly requires integration of safeguards that ensure safe and fair operation, such as bias detection
mechanisms, data verification protocols, or regular performance audits.

B Convergence Proofs

B.1 Proof of Theorem 5.1

First, we note that

θt+1 − θt = −π(t+ 1)η∇θf(θt, ζt+1), (13)

where ζt+1 is a random batch sampled uniformly from the dataset Dt+1 at time t+ 1. For simplicity,
in the following analyses, we use a simplified gradient notation ∇f(θt, ζt+1) := ∇θf(θt, ζt+1).

The loss difference over two time steps is comprised of two parts:

f(θt+1,Dt+1)− f(θt,Dt) = [f(θt+1,Dt+1)− f(θt,Dt+1)]︸ ︷︷ ︸
model-induced loss

+ [f(θt,Dt+1)− f(θt,Dt)]︸ ︷︷ ︸
∆fδ(t)

. (14)

By definition, the second term is the drift-induced loss ∆fδ(t) := f(θt,Dt+1)− f(θt,Dt).

Next, by Assumption 1 and Equation 13, the first term f(θt+1,Dt+1)− f(θt,Dt+1) is bounded as:

f(θt+1,Dt+1)− f(θt,Dt+1) ≤ ⟨∇f(θt,Dt+1), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2 . (15)

Define the conditional expectation Et+1 [·] := Eπ(t+1) [· | Hθ(t),HD(t+ 1)], where Hθ(t) is a
variable containing model parameters θ0, θ1, . . . , θt across a time horizon {0, . . . , t}, and HD(t)
stores the evolution of the dataset D0,D1, . . . ,Dt+1 across {0, . . . , t+1}. As such, given the history
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variables Hθ(t),HD(t+ 1), we obtain:

Et+1[f(θt+1,Dt+1)− f(θt,Dt+1)]

(a)

≤ Et+1

[
⟨∇f(θt,Dt+1), θt+1 − θt⟩+

L

2
∥θt+1 − θt∥2

]
(b)
=

〈
∇f(θt,Dt+1),Et+1 [θt+1 − θt]

〉
+

L

2
Et+1

[
∥θt+1 − θt∥2

]
(c)
= −

〈
∇f(θt,Dt+1),Et+1 [π(t+ 1)η∇f(θt, ζt+1)]

〉
+

L

2
Et+1

[
η2π(t+ 1)2 ∥∇f(θt, ζt+1)∥2

]
(d)
= −

〈
∇f(θt,Dt+1), ηEt+1 [π(t+ 1)]Et+1 [∇f(θt, ζt+1)]

〉
+

Lη2

2
Et+1

[
π(t+ 1)2

]
Et+1

[
∥∇f(θt, ζt+1)∥2

]
(e)
= −ηEt+1[π(t+ 1)]

(〈
∇f(θt,Dt+1),Et+1 [∇f(θt, ζt+1))]

〉
− Lη

2
Et+1

[
∥∇f(θt, ζt+1)∥2

])
(f)
= −ηEt+1[π(t+ 1)]

(〈
∇f(θt,Dt+1),∇f(θt,Dt+1)

〉
− Lη

2
Et+1

[
∥∇f(θt, ζt+1)∥2

])
= −ηEt+1 [π(t+ 1)]

(
∥∇f(θt,Dt+1)∥2 −

Lη

2
Et+1

[
∥∇f(θt, ζt+1)∥2

])
,

where:

(a) follows from Equation 15.

(b) is true due to the fact that ∇f(θt,Dt+1) is (Hθ(t),HD(t+ 1))-measurable.

(c) follows from Equation 13.

(d) is valid because the policy’s action π(t+ 1) is independent of the training data batch ζt+1

conditioned on the past history.

(e) is true because Et+1[π(t+ 1)] = Et+1[π(t+ 1)2] since π(t) ∈ {0, 1}.

(f) follows from Assumption 2.

Next, define Pπ
min such that Pπ

min ≤ Et[π(t)] ∀t ∈ N ∪ {0} for a given policy π, which is interpreted
as the minimum probability of the policy π being equal to 1 at any time t, given the evolution of
model parameters and datasets up to times t and t + 1 respectively. Additionally, it is true that
Et[π(t)] ≤ 1 ∀t. Combining this fact with the derived result, it follows that:

Et+1[f(θt+1,Dt+1)− f(θt,Dt+1)] ≤ −ηPπ
min ∥∇f(θt,Dt+1)∥2 +

Lη2

2
Et+1

[
∥∇f(θt, ζt+1)∥2

]
.

(16)
By applying the law of total expectation to Equation (16), it follows that:

E[f(θt+1,Dt+1)− f(θt,Dt+1)] ≤ −ηPπ
minE ∥∇f(θt,Dt+1)∥2 +

Lη2

2
E
[
∥∇f(θt, ζt+1)∥2

]
= −ηPπ

minE ∥∇f(θt,Dt+1)∥2 +
Lη2

2
E
[
∥∇f(θt, ζt+1)−∇f(θt,Dt+1) +∇f(θt,Dt+1)∥2

]
≤ −ηPπ

minE ∥∇f(θt,Dt+1)∥2 +
Lη2

2

(
E ∥∇f(θt, ζt+1)−∇f(θt,Dt+1)∥2 + E ∥∇f(θt,Dt+1)∥2

)
(g)

≤ −ηPπ
minE ∥∇f(θt,Dt+1)∥2 +

Lη2

2
σ2 +

Lη2

2
E ∥∇f(θt,Dt+1)∥2

=

(
Lη2

2
− ηPπ

min

)
E ∥∇f(θt,Dt+1)∥2 +

Lη2

2
σ2, (17)

where (g) follows from Assumption 2 on the bounded variance of stochastic gradients.
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By adding E [f(θt,Dt+1)− f(θt,Dt)] = E [∆fδ(t)] on both sides of Equation (17), the expression
becomes:

E[f(θt+1,Dt+1)− f(θt,Dt)] ≤
(
Lη2

2
− ηPπ

min

)
E ∥∇f(θt,Dt+1)∥2 +

Lη2

2
σ2 + E [∆fδ(t)] .

(18)
Now note that all expectations are of values calculated for the entire dataset at every time, so it is
true that: E[f(θt+1,Dt+1)] = f(θt+1,Dt+1), E[f(θt,Dt)] = f(θt,Dt), E [∆fδ(t)] = ∆fδ(t), and
E ∥∇f(θt,Dt+1)∥2 = ∥∇f(θt,Dt+1)∥2.

Utilizing this fact and rearranging the terms, the bound on the gradient becomes:

∥∇f(θt,Dt+1)∥2 ≤ 1(
Pπ
minη − Lη2

2

) (f(θt,Dt)− f(θt+1,Dt+1))

+
∆fδ(t)(

Pπ
minη − Lη2

2

) +
Lη

2Pπ
min − Lη

σ2. (19)

Finally, using µ :=
(
Pπ
minη − Lη2

2

)
, by telescoping over and taking a time average, the expression

becomes:

1

T

T−1∑
t=0

∥∇f(θt,Dt+1)∥2 ≤ 1

µT

(
f(θ0,D0)− f(θT ,DT ) +

T−1∑
t=0

∆fδ(t)

)

+
Lη

2Pπ
min − Lη

σ2. (20)

proving Theorem 5.1.

B.2 Proof of Corollary 5.2

We can relate the drift-induced loss term with the dynamic bound on the concept drift as follows:

∆fδ(t) = f(θt,Dt+1)− f(θt,Dt)

(a)
= Eω∼Dt+1

[f(θt, ω)]− Eω∼Dt
[f(θt, ω)]

(b)
=
∑
ωi

PDt+1
(ωi)f(θt, ωi)−

∑
ωi

PDt
(ωi)f(θt, ωi)

(c)

≤
∑
ωi

∣∣PDt+1(ωi)− PDt(ωi)
∣∣B

(d)
=
∥∥PDt

−PDt+1

∥∥
1
B

(e)

≤ B
√

2DKL (Dt || Dt+1)

(f)

≤ B
√

2δ(t), (21)

where:

(a) follows from Assumption 2 on the unbiased estimate of the true gradient.
(b) uses the definition of expectation over a discrete probability space. The sample space {ωi}

is the set of all possible batches that can be formed from the union of all datasets
⋃T−1

t=0 Dt.
Since this union is finite, the set {ωi} is also finite. PDt(ωi) is the probability of sampling
batch ωi from the dataset Dt, where PDt(ωi) = 0 if ωi cannot be formed from Dt. This
probability distribution PDt

varies over time due to concept drift.
(c) is true by Assumption 4 on the boundedness of the loss, and the fact that ∀x ∈ R, x ≤ |x|.
(d) follows from the definition of the L1 loss, where PDt

is the probability distribution vector,
containing probabilities of sampling batches ωi ∀i from the dataset Dt.
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(e) is true by the Pinsker’s Inequality.
(f) follows from Assumption 3 on the boundedness of the concept drift at different times t.

Now, by Assumption 4 on the boundedness of the loss:

f(θ0,D0)− f(θT ,DT ) ≤ f(θ0,D0) ≤ B. (22)

By applying the results of Equations 21 and 22 to Theorem 5.1 and utilizing the definition of µ, the
bound becomes:

1

T

T−1∑
t=0

∥∇f(θt,Dt+1)∥2 ≤ B

T
(
ηPπ

min − Lη2

2

) (1 +√
2

T−1∑
t=0

√
δ(t)

)
+

Lη

2Pπ
min − Lη

σ2. (23)

This completes the proof of Corollary 5.2.

C Lyapunov Analysis

C.1 Lyapunov Drift-Plus-Penalty Framework

The convergence result depends on two key components bounding the loss gradients over time: the
telescoped loss f(θ0,D0)−f(θT ,DT ) and the drift-induced loss ∆fδ(t). By undoing the telescoping
step, and utilizing the inference losses (which are an unbiased estimate of the true loses that use the
entire dataset Dt for computation), we can define the effective policy, as a policy that solves the
following problem:

min
1

T

T−1∑
t=0

f(θt, ξt)−f(θt+1, ξt+1)︸ ︷︷ ︸
model evolution loss under drift

+(1− π(t))∆fδ,ξ(t)︸ ︷︷ ︸
drift loss

.

subject to
1

T

∑
λ(t)π(t) ≤ λ̄. (24)

Note that the sum utilized in this optimization problem differs from the one in Theorem 5.1, as we
use the inference losses, and we introduced a (1− π(t)) multiplier of ∆fδ,ξ(t). The inference losses
are used as that’s what the agent can access at different time steps t. The (1− π(t)) was introduced
for two reasons:

• It emphasizes the penalty associated with no update under strong drift, and rewards the
updates better.

• If the model is updated, ∆fδ(t) effectively corresponds to a theoretical loss increase
that would have happened had the model parameters not been updated. By introducing
(1− π(t)), we exclude this theoretical increase from optimization, placing emphasis only
on observed loss values.

While this modification results in a different policy compared to one derived from the unmodified
penalty, 1

T

∑T−1
t=0 f(θt,Dt) − f(θt+1,Dt+1) + ∆fδ(t), it is important to recognize that applying

the drift-plus-penalty framework to either problem formulation would not solve the long-term
minimization directly. The Lyapunov method, by design, converts a long-term stochastic optimization
problem into a series of deterministic, per-time-slot minimizations. This greedy, “one-shot” decision
is inherently an approximation of the true optimal policy that would minimize the sum over the entire
horizon T .

Given that the per-slot minimization is already a well-motivated heuristic, we are justified in designing
the per-slot penalty function to be a more effective proxy for our control goals. Our modification,
which explicitly isolates the drift-loss penalty to the π(t) = 0 (“no-update”) action, simply provides
a more targeted and intuitive objective for the greedy controller to optimize at each step.

With the modified penalty, the optimization problem we aim to solve is:

min
1

T

T−1∑
t=0

f(θt, ξt)− f(θt − π(t+ 1)η∇f(θt, ζt+1)︸ ︷︷ ︸
θt+1

, ξt+1) + (1− π(t))∆fδ,ξ(t),
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subject to
1

T

∑
λ(t)π(t) ≤ λ̄. (25)

Finding the optimal solution that minimizes entire sum is hard due to the evolving nature of the
environment. A truly optimal policy would require knowledge of the future, as given full information
about the evolution of the dataset over the entire time horizon, the optimal points to retrain will
depend on all t. This requirement makes the problem intractable to solve directly. As such, we utilize
the Lyapunov analysis framework to derive an online policy that does not require the knowledge of
the entire environment evolution. We begin by defining the virtual queue as:

Q(t+ 1) = max
{
0, Q(t) + λ(t)π(t)− λ̄

}
, (26)

from which it follows that the Lyapunov drift is:

∆Q(t) =
1

2

[
Q(t+ 1)2 −Q(t)2

]
≤

[
Q(t)

(
λ(t)π(t)− λ̄

)
+

(
λ(t)π(t)− λ̄

)2
2

]
. (27)

The drift-plus-penalty term is bounded as:

E [∆Q(t) | Q(t)] + V ×Ψ(t) ≤ E

[
Q(t)

(
λ(t)π(t)− λ̄

)
+

(
λ(t)π(t)− λ̄

)2
2

∣∣∣∣∣Q(t)

]

+ V

(
f(θt, ξt)− f(θt − π(t+ 1)η∇f(θt, ζt+1), ξt+1) + (1− π(t))∆fδ,ξ(t)

)
= E

[
Q(t)

(
λ(t)π(t)− λ̄

)
+

(
λ(t)π(t)− λ̄

)2
2

∣∣∣∣∣Q(t)

]
+ V f(θt, ξt)

− V f(θt − π(t+ 1)η∇f(θt, ζt+1), ξt+1) + V (1− π(t))f(θt, ξt+1)− V (1− π(t))f(θt, ξt)
(28)

where Ψ(t) is the penalty term at any time t, which corresponds to the inference loss increase due
to the evolution of the environment f(θt, ξt)− f(θt − π(t+ 1)η∇f(θt, ζt+1), ξt+1) combined with
the drift-induced inference loss increase when not updating the model (1− π(t))∆fδ,ξ(t).

Next, as is standard in Lyapunov analysis, we solve the problem on a per-time-slot basis. The problem
to solve at each time t becomes (note that the expectation is dropped, because for a given value of
π(t), all values in it are deterministic):

min
π∈{0,1}

Q(t)
(
λ(t)π(t)− λ̄

)
+

(
λ(t)π(t)− λ̄

)2
2

+ V f(θt, ξt)

− V f(θt − π(t+ 1)η∇f(θt, ζt+1), ξt+1) + (1− π(t))V∆fδ,ξ(t).

Then, if π(t) = 0, we have θt = θt−1 and the immediate bound becomes:

−λ̄Q(t) +
λ̄2

2
+ V f(θt−1, ξt+1)− V f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1).

Otherwise, if π(t) = 1, we have θt = θt−1 − η∇θf (θt−1, ζt) and the immediate bound becomes:

λ(t)Q(t)− λ̄Q(t) +
(λ(t)− λ̄)2

2
+ V f(θt−1 − η∇f(θt−1, ζt), ξt)

−V f(θt−1 − η∇f(θt−1, ζt)− π(t+ 1)η∇f(θt−1 − η∇f(θt−1, ζt), ζt+1), ξt+1).

By comparing the two resulting costs, the policy should update if the cost associated with not updating
is greater than or equal to the cost of updating:

−λ̄Q(t) +
λ̄2

2
+ V f(θt−1, ξt+1)− V f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1)

≥λ(t)Q(t)− λ̄Q(t) +
(λ(t)− λ̄)2

2
+ V f(θt−1 − η∇f(θt−1, ζt), ξt)

−V f(θt−1 − η∇f(θt−1, ζt)− π(t+ 1)η∇f(θt−1 − η∇f(θt−1, ζt), ζt+1), ξt+1)
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By rearranging, we get

V f(θt−1, ξt+1)− V f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1)

+ V f(θt−1 − η∇f(θt−1, ζt)− π(t+ 1)η∇f(θt−1 − η∇f(θt−1, ζt), ζt+1), ξt+1)

− V f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1)

≥λ(t)Q(t) +
1

2

[
λ(t)2 − 2λ̄λ(t)

]
.

For the simplicity of notations, we define

Jπ(t) :=f(θt−1 − η∇f(θt−1, ζt)− π(t+ 1)η∇f(θt−1 − η∇f(θt−1, ζt), ζt+1), ξt+1)

− f(θt−1 − π(t+ 1)η∇f(θt−1, ζt+1), ξt+1).

Further, by rearranging, we arrive at the update rule proposed in (9):

V

(
f(θt−1, ξt+1)− f(θt−1 − η∇f(θt−1, ζt), ξt)

)
+ V Jπ(t) ≥ λ(t)Q(t) +

1

2

[
λ(t)2 − 2λ̄λ(t)

]
.

This completes the analysis.

Note that Jπ(t) corresponds to the future impact on the loss of the current decision, π(t). The choice
of π(t) directly affects the virtual queue length Q(t+ 1), altering the state observed by the policy
at time t + 1 and influencing the next decision π(t + 1). This then changes the expected value
of the future model, E[θt+1]. As a result, Jπ(t) couples the immediate, greedy decision at time t
with its expected consequence on the loss at time t + 1. It is intractable to compute in a practical
online system, as it depends on future values of environmental variables. The same is true for the
f(θt−1, ξt+1)−f(θt−1−η∇f(θt−1, ζt), ξt) term (where while computing the gradient at every time
step t is feasible, it would violate the resource constraint). As a result, while both terms are crucial for
the theoretical derivation, in our practical implementation of this policy we use an approximation for(

f(θt−1, ξt+1)− f(θt−1 − η∇f(θt−1, ζt), ξt)

)
+ Jπ(t).

C.2 Stability Analysis: Proof of Theorem 5.3

Let π∗ denote our proposed policy. At each time slot t, the policy was chosen to minimize

Q(t)
(
λ(t)π(t)− λ̄

)
+

(
λ(t)π(t)− λ̄

)2
2

+ V f(θt, ξt)− V f(θt+1, ξt+1) + (1− π(t))V∆fδ,ξ(t).

Next, consider a policy πUniform such that πUniform(t) = 1 with probability min
(

λ̄
λ(t) , 1

)
Then, for all t, the following holds

E

[
Q(t)

(
λ(t)π∗(t)− λ̄

)
+

1

2

(
λ(t)π∗(t)− λ̄

)2
+ V f(θt, ξt)− V f(θt+1, ξt+1)

+ (1− π∗(t))V∆fδ,ξ(t)

]

≤E

[
Q(t)

(
λ(t)πUniform(t)− λ̄

)
+

1

2

(
λ(t)πUniform(t)− λ̄

)2
+ V f(θt, ξt)− V f(θt+1, ξt+1)

+ (1− πUniform(t))V∆fδ(t)

]
.

(29)

Next note that:

E
[
Q(t)

(
λ(t)πUniform(t)− λ̄

)
| Q(t)

]
= E [Q(t)λ(t)πUniform(t) | Q(t)]− E

[
Q(t)λ̄ | Q(t)

]
= Q(t)λ(t)E[πUniform(t) | Q(t)]− λ̄Q(t)

= Q(t)λ(t)
λ̄

λ(t)
− λ̄Q(t)
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= 0. (30)

Then, using the same principle as above, as well as the fact that E[π(t)] = E[π(t)2], it follows that:

E
[
1

2

(
λ(t)πUniform(t)− λ̄

)2 ∣∣∣∣Q(t)

]
=

1

2
λ̄
(
λ(t)− λ̄

)
.

Using the above, Assumptions 3-4, and introducing Eπ∗ [·] and EπUniform [·] as the expectation over the
drift-plus-penalty given Q(t) for policies π∗ and πUniform, respectively, the inequality becomes:

Eπ∗

[
Q(t)

(
λ(t)π∗(t)− λ̄

)
+

1

2

(
λ(t)π∗(t)− λ̄

)2]
≤ 1

2
λ̄
(
λ(t)− λ̄

)
− V Eπ∗ [f(θt, ξt)] + V Eπ∗ [f(θt+1, ξt+1)]

+ V EπUniform [f(θt, ξt)]− V EπUniform [f(θt+1, ξt+1)]

+ V EπUniform [∆fδ,ξ(t)]− V EπUniform

[
min

(
λ̄

λ(t)
, 1

)
∆fδ,ξ(t)

]
− V Eπ∗ [∆fδ,ξ(t)] + V Eπ∗ [π∗(t)∆fδ,ξ(t)]

≤ 1

2
λ̄
(
λ(t)− λ̄

)
+ 2V B + V B

√
2δ(t) + 3V B

=
1

2
λ̄
(
λ(t)− λ̄

)
+ 5V B + V B

√
2δ(t). (31)

By taking the total expectation, and by definition of the Lyapunov drift:

E[∆Q(t)] ≤ 1

2
λ̄
(
λ(t)− λ̄

)
+ 5V B + V B

√
2δ(t).

Next, we have

1

2
Q(T )2 − 1

2
Q(0)2 =

T−1∑
t=0

∆Q(t)

⇒1

2
E
[
Q(T )2

]
− 1

2
E
[
Q(0)2

]
=

T−1∑
t=0

E [∆Q(t)] ≤ 1

2
λ̄

(
T−1∑
t=0

λ(t)− T λ̄

)
+

(
5TV B + V B

T−1∑
t=0

√
2δ(t)

)

⇒E [Q(T )] ≤
√

E [Q(T )2] ≤

√√√√E[Q(0)] + λ̄

(
T−1∑
t=0

λ(t)− T λ̄

)
+ 2V B

(
5T +

T−1∑
t=0

√
2δ(t)

)
,

and assuming Q(0) = 0, we arrive at an intermediate bound on the expected queue length at time T :

E [Q(T )] ≤

√√√√λ̄

(
T−1∑
t=0

λ(t)− T λ̄

)
+ 2V B

(
5T +

T−1∑
t=0

√
2δ(t)

)
. (32)

Then, λ(t)π(t)− λ̄ ≤ Q(t+ 1)−Q(t) implies

1

T

T−1∑
t=0

λ(t)E [π(t)]− λ̄ ≤ 1

T
E[Q(T )] ≤

√√√√ λ̄

T 2

T−1∑
t=0

λ(t)− λ̄2

T
+ 2V B

(
5

T
+

1

T 2

T−1∑
t=0

√
2δ(t)

)
.

So, the final inequality becomes:

1

T

T−1∑
t=0

λ(t)E [π(t)]− λ̄ ≤

√√√√ λ̄

T 2

T−1∑
t=0

λ(t)− λ̄2

T
+ 2V B

(
5

T
+

1

T 2

T−1∑
t=0

√
2δ(t)

)
. (33)

This completes the proof Theorem 5.3.
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D Computational Resource Evaluation

In this section, we provide a detailed evaluation of the computational resources associated with the
operation of RCCDA. We first discuss the abstract nature of “resources” assumed in our framework
to demonstrate its generalization. We then conduct an overhead analysis to quantify the additional
resource consumption of RCCDA itself compared to the evaluated baseline policies and discuss its
efficiency relative to traditional drift detection methods.

D.1 Resource Abstraction and Generalizability

Throughout this paper, the concept a “resource” is treated abstractly. This is a deliberate design
choice to ensure that our framework is broadly applicable to a wide range of real-world, resource-
constrained scenarios. A resource can represent any quantifiable commodity that is consumed during
a model update and is subject to a limited budget. This could be computational cycles, FLOPs, power
consumption, data usage, or wall-clock time. At any time step t, the agent can perform a model
update, which incurs a general, time-varying cost, λ(t), associated with the considered resource type.
The agent’s operational constraint is a total resource budget over the entire time horizon, which is
enforced via the time-average resource constraint, λ̄, used to bound resource usage in Equation (5).
This is equivalent to ensuring the total amount of consumed resources,

∑T
t=0 λ(t)π(t), does not

exceed the total available resource budget, T λ̄.

To demonstrate that this approach is generalizable across different resource types, we conducted a
new empirical analysis to quantify the average resource usage per update for several distinct metrics.
In our setup, we utilized the same experimental settings as in our main experiments on the PACS
dataset, details available in Appendix E, averaging the results over 250 updates. We measured the
resource usage for a single model update across the following metrics: computation (GFLOPs), data
processed (GB), memory-time usage (GB-s), energy consumption (Joules), and wall-clock time (s).

Table 2 reports the empirically measured average cost per update λ(t), and the corresponding total
available resource budget T λ̄ for various metrics.

Table 2: Empirical analysis of resource consumption for different resource types for the main
experiment on the PACS dataset.

Resource Metric Type (Unit) Constant Average Update Cost Total Available Budget

Computation (GFLOPs) 11438.0± 0.0 285,951.0
Data Processed (GB) 0.11719± 0.0 2.92975
Memory-Time (GB-s) 20.11± 0.3 502.75
Energy (Joules) 626.67± 24.35 15,666.75
Wall-Clock Time (s) 2.174± 0.037 54.35

Note that RCCDA performs identically for all the resource metrics in Table 2, as the experiments
were configured to use the same ratio λ̄

λ(t) (with λ(t) set to a constant value λ), effectively defining
a target update frequency constraint. Since the decision logic in RCCDA is driven by this ratio
and the observed model loss, its behavior remains consistent regardless of how the “resource” is
defined. This result therefore confirms that our framework is generalizable to different resource
metrics, demonstrating that RCCDA is a versatile solution for resource-constrained adaptation.

D.2 Overhead Analysis of the RCCDA Policy

A critical aspect of designing a model update policy for resource-constrained environments is ensuring
the decision-making process itself does not introduce significant computational overhead. Many
existing approaches to mitigating concept drift rely on explicit drift detection mechanisms, which
makes them computationally intensive and ill-suited for real-time decision making.

To demonstrate the necessity for a lightweight policy that does not rely on explicit drift detection,
we conducted an empirical analysis comparing RCCDA against two established drift detection
methods: the Adaptive Windowing (ADWIN) [27] algorithm and the Kolmogorov-Smirnov (KS)
[61] test. Traditional drift detection methods like these typically require constant monitoring of
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the statistical properties of the entire incoming data stream (KS-Test) or sequentially processing
error rates (ADWIN). In contrast, RCCDA relies solely on the model’s inference loss, which is a
lightweight scalar value, often computed or estimated as part of the model’s primary task evaluation.
The reliance on a pre-existing simple signal makes our approach inherently efficient.

To quantify this efficiency, we measured the decision-making wall-clock time taken by RCCDA, and
compared it to a wall-clock time taken by ADWIN and KS-Test to finish performing drift detection
operations, which is a required step if using these algorithms for decision making. We assume all
necessary inputs (such as the inference loss for RCCDA, data windows for the others) are already
available through running the initial model evaluation. The experiment was conducted using the
PACS dataset with the setup detailed in Appendix E, averaging results over 4 domains and 3 different
seeds.

The results in Table 3 demonstrate the computational efficiency of our approach. RCCDA’s decision
time is negligible, measuring in the sub-microsecond range. In contrast, ADWIN is over three
orders of magnitude slower. While small in isolation, especially compared to the model inference
time, this latency would accumulate over a long operational horizon, increasing both response delay
and cumulative resource consumption. The KS-Test proves computationally prohibitive, exceeding
RCCDA’s decision time by over eight orders of magnitude due to the requirement of performing
statistical tests on the entire data window. These vast time disparities underscore a conclusion that
policies reliant on explicit drift detection introduce a temporal overhead that is unsustainable in many
resource-constrained scenarios, validating our lightweight, loss-driven approach.

Table 3: Comparison of additional decision-making time for RCCDA versus established drift detection
methods.

Algorithm Additional Decision Making Time (ms) Relative Slowdown (vs. RCCDA)
RCCDA 0.000744± 0.000142 1
ADWIN 1.845618± 0.469732 ∼ 2480
KS-Test 125996.5± 9605.7 ∼ 169, 350, 134

While this comparison demonstrates that the traditional drift detection methods add a significant
computational overhead from monitoring data streams or performance metrics, ADWIN and the
KS-Test are not policy algorithms by design, and therefore are not designed to operate under a strict
resource budget. As such, a more direct and informative benchmark for policy-specific overhead
comes from comparing RCCDA against the baseline methods from the main experiments, which
are explicitly designed for operation under resource constraints. These policies, such as Uniform or
Periodic updates, are inherently lightweight and serve as an excellent benchmark for verifying that
RCCDA does not introduce a prohibitive computational and resource cost relative to simple heuristics.
We therefore evaluated the total memory footprint, decision time, and theoretical complexity for each
policy to provide a comprehensive overhead analysis. The experiment was conducted on the PACS
dataset, with a window size of w = 40 used by Budget-Increase and Budget-Threshold policies. The
results are summarized in Table 4. As shown, RCCDA’s resource consumption is comparable to the
baseline policies on all evaluated metrics.

Table 4: Overhead comparison of RCCDA against baseline policies. All policies exhibit minimal
overhead, with RCCDA remaining competitive while providing robust adaptation.

Policy Total Memory (bytes) Wall-Clock Time (µs) Complexity
RCCDA 276 1.94 O(1)
Uniform Random 72 1.79 O(1)
Periodic 108 0.99 O(1)
Budget-Increase 212 + 32w 1.74 O(w)
Budget-Threshold 212 + 32w 1.68 O(w) (O(1) optimized)

This two-fold resource analysis demonstrates that RCCDA is both vastly superior to traditional
drift detectors and is competitively efficient against the lightweight baselines, confirming that our
policy successfully integrates an intelligent, adaptive decision-making mechanism without incurring
a prohibitive operational cost.
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E Detailed Experimental Setup

In this section, we describe the experimental setup in detail. Our main experiment consists of two
major phases. In the pretraining phase (described in E.3), we train the models on selected source
domains from the datasets until convergence. In the subsequent evaluation phase (described in E.4),
the agent deploys the pretrained model in an environment that simulates concept drift by introducing
new domains, and uses a retraining policy to mitigate that drift.

E.1 Datasets

To simulate concept drift in our experiments, we used 4 common domain generalization (DG) datasets:

• PACS [62]: PACS consists of images from 4 domains: Photo, Art Painting, Cartoon, and Sketch,
each with the 7 common categories: dog, elephant, giraffe, guitar, horse, house, and person. The
default size of the images is 224× 224. We transform all images into 128× 128.

• DigitsDG [55]: DigitsDG encompasses images of handwritten digits 0 to 9, sourced from 4
different domains: SVHN, SYN, MNIST, and MNIST-M. The image sizes are 32× 32.

• OfficeHome [56]: OfficeHome consists of images from four domains: Art, Clipart, Product,
and Real-World, each featuring 65 object categories commonly encountered in office and home
environments, including chairs, desks, and household items. The image sizes are 224× 224.

• MEMD-ABSA [57]: MEMD-ABSA is a multi-domain textual dataset for Aspect-Based Sentiment
Analysis (ABSA). It consists of approximately 20,000 sentences from 5 distinct domains: Books,
Clothing, Hotel, Laptop and Restaurant. Each sentence annotated with one or more sentiment
quadruples: aspect, category, opinion, and sentiment. The sentiment is then classified as positive,
negative, or neutral.

E.2 Models

Below, we specify the models employed for each dataset:

PACS. For the PACS dataset, we use PACSCNN, a custom convolutional neural network (CNN) with
skip connections. The model has 11,177,223 parameters, and its architecture is detailed below:

Layer Layer Description
1 Convolutional layer: 3 input channels, 64 output channels, kernel size 3, stride 1,

padding 1
2 Batch normalization layer
3 ReLU activation
4 Residual block: 64 input channels, 64 output channels, stride 1
5 Residual block: 64 input channels, 64 output channels, stride 1
6 Residual block: 64 input channels, 128 output channels, stride 2
7 Residual block: 128 input channels, 128 output channels, stride 1
8 Residual block: 128 input channels, 256 output channels, stride 2
9 Residual block: 256 input channels, 256 output channels, stride 1
10 Residual block: 256 input channels, 512 output channels, stride 2
11 Residual block: 512 input channels, 512 output channels, stride 1
12 Adaptive average pooling layer: reduces spatial dimensions to 1× 1
13 Flatten operation
14 Dropout layer: p = 0.5
15 Linear layer: 512 input features to 7 output classes

Each residual block has the following structure:
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Layer Layer Description
1 Convolutional layer: input channels to output channels, stride passed as argument,

kernel size 3, padding 1
2 Batch normalization layer
3 ReLU activation
4 Convolutional layer: output channels to output channels, kernel size 3, stride 1, padding 1
5 Batch normalization layer
6 Skip connection: identity mapping if input channels equal output channels

and stride=1; otherwise, a 1x1 convolutional projection with the given stride
followed by batch normalization

7 ReLU activation

DigitsDG. For the DigitsDG dataset, we use DigitsDGCNN, a CNN model with 1,907,146 parameters,
and the following architecture:

Layer Layer Description
1 Convolutional layer: 3 input channels, 64 output channels,

kernel size 3, stride 1, padding 1
2 Batch normalization layer
3 ReLU activation
4 Convolutional layer: 64 input channels, 64 output channels,

kernel size 1, stride 2, padding 0
5 Convolutional layer: 64 input channels, 128 output channels,

kernel size 3, stride 1, padding 1
6 Batch normalization layer
7 ReLU activation
8 Convolutional layer: 128 input channels, 128 output channels,

kernel size 1, stride 2, padding 0
9 Convolutional layer: 128 input channels, 256 output channels,

kernel size 3, stride 1, padding 1
10 Batch normalization layer
11 ReLU activation
12 Convolutional layer: 256 input channels, 256 output channels,

kernel size 1, stride 2, padding 0
13 Convolutional layer: 256 input channels, 512 output channels,

kernel size 3, stride 1, padding 1
14 Batch normalization layer
15 ReLU activation
16 Convolutional layer: 512 input channels, 512 output channels,

kernel size 1, stride 2, padding 0
17 Adaptive average pooling layer: reduces spatial dimensions to 1× 1
18 Flatten operation
19 Dropout layer: p = 0.5
20 Linear layer: 512 input features to 10 output classes

OfficeHome. For the OfficeHome dataset, we use OfficeHomeNet, a model based on a pretrained
ResNet-18 architecture [63]. To adapt the model for the dataset’s complexity, we replace the original
fully connected layer with a custom classification head. We fine-tune the model by training only the
final convolutional block (layer4) and our custom head, keeping all earlier layers frozen. This results
in a model with 8,541,761 trainable parameters out of 11,324,545 total. The custom head consists of:

Layer Layer Description
1 Linear layer: 512 input features to 256 output features
2 ReLU activation
3 Dropout layer: p = 0.5
4 Linear layer: 256 input features to 65 output classes

MEMD-ABSA. For the MEMD-ABSA dataset, we fine-tune a model based on the TinyBert
architecture[64], called TinyBertForSentiment. The model comprises 4,386,307 parameters, and has
the following structure:
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Layer Layer Description
1 Embeddings Layer: word embeddings (30522 vocab size, 128 dim),

position embeddings (512 max sequence length, 128 dim),
token type embeddings (2 types, 128 dim), layer norm, dropout layer (p = 0.1)

2 Encoder layer 1: transformer encoder block
3 Encoder layer 2: transformer encoder block
4 Pooler: linear layer (128 to 128), Tanh activation
5 Dropout layer: p = 0.1
6 Linear layer: 128 input features to 3 output classes

Each transformer encoder block is comprised of a 2-head self-attention mechanism with a hidden size
of 128 and GELU activation functions. We tokenize input text using a pretrained BERT tokenizer
that employs the WordPiece tokenization[65]. All sequences are subsequently padded or truncated to
a fixed length of 128 tokens.

E.3 Pretraining Phase

The pretraining phase begins by partitioning the entire dataset into training and holdout sets. We
utilize the 80:20 split and uniform random sampling for the image datasets, and adopt the predefined
training and validation (holdout) splits for the text dataset. We then filter both the training and holdout
sets to contain only samples from a single designated source domain. The resulting single-domain
training set is denoted by D.

A new agent with a custom model is then instantiated and the model is trained on D. Upon
initialization of the loss criterion and optimizer, the training loop begins. Within each iteration,
the agent employs the update steps method to refine the model parameters. Unlike traditional
epoch-based training, this method samples batches, each of size |ξ|, from the training set for nsteps
steps. For each batch, it computes the gradients and updates the model with the specified optimizer
and learning rate η. This process is repeated for a total of T updates.

After each training iteration, the agent evaluates the revised model on the single-domain holdout set.
For the image datasets, to prevent overfitting, we employ an early stopping mechanism that terminates
the training process if the holdout set validation accuracy exceeds a predefined threshold accthresh.
For the text dataset, we train for the full T iterations. Upon completion, we save the parameters of
the final model for the subsequent evaluation phase, which corresponds to the last updated model for
the image datasets and the best model for the text dataset.

All hyperparameters are detailed in Table 5. Their values were determined through a combination of
grid search and random search.

Table 5: Hyperparameter settings for the pretraining phase across PACS, DigitsDG, OfficeHome, and
MEMD-ABSA datasets.

Hyperparameter PACS DigitsDG OfficeHome MEMD-ABSA
Learning Rate (η) 0.005 0.05 0.05 5e-5
Batch Size (|ξ|) 128 128 256 32
# of Steps/Iter (nsteps) 10 10 20 60
Number of Iterations (T ) 200 200 100 10
Max Sequence Length N/A N/A N/A 128
Loss Cross Entropy Cross Entropy Cross Entropy Cross Entropy
Optimizer SGD SGD SGD AdamW
Momentum 0.9 0.9 0.9 N/A
accthresh 75% 75% 90% N/A

E.4 Evaluation Phase

Dataset and General Setup. The initial data partitioning and single-domain filtering for the
evaluation phase are identical to the pretraining phase. From these domain-specific splits, we
construct a training set, with a fixed size |Dset|, and a corresponding holdout set of size 0.25× |Dset|.

28



The size |Dset| is chosen to ensure that any single domain contains sufficient samples to fully populate
these sets after the initial partitioning.

We then initialize the agent and run a concept drift simulation for T = 250 time steps. The drift is
simulated by modeling a dynamic environment in which the data distributions change over time. At
each time step t, the agent’s model performance (e.g., loss and accuracy) is measured exclusively
on the holdout set. This performance information guides the agent’s update policy that determines
whether to retrain the model. If an update is triggered, the agent retrains its model on the training
set using the update steps method with nsteps steps, a batch size of |ξ|, and a learning rate η. The
policy operates under a budget constraint λ̄, which, given a constant update cost λ, results in an upper
bound on the effective update rate equal to λ̄

λ . All evaluation phase hyperparameters are summarized
in Table 6.

Table 6: Update hyperparameter settings for the evaluation phase across all datasets.
Hyperparameter PACS DigitsDG OfficeHome MEMD-ABSA
Training Set Size (|Dset|) 1024 1024 2048 1024
Learning Rate (η) 0.01 0.05 0.05 5e-5
Batch Size (|ξ|) 128 128 256 32
# of Steps/Update (nsteps) 5 1 5 60
Max Sequence Length N/A N/A N/A 128
Loss Cross Entropy Cross Entropy Cross Entropy Cross Entropy
Optimizer SGD SGD SGD AdamW

Drift Schedules. To simulate concept drift, we employ a drift scheduler. The scheduler alters the
domain composition of the training and holdout sets by replacing existing samples with data from
new target domains. For any given time t, this process is governed by a drift schedule, which defines
the specific pattern, timing, and rate of this change, including periods of no drift where the rate is
zero.

We implement a total of seven schedules: four are presented in the main paper, with three additional
schedules introduced in Appendix F.3. All schedules use a replace strategy, where a fraction of
the existing data is substituted with samples from the target domains. This ensures the dataset size
remains constant throughout the simulation.

The specific configurations are detailed below using the PACS dataset as an example. The setups for
DigitsDG, OfficeHome, and MEMD-ABSA are analogous, using their respective domains.

• Burst: Introduces new domains in periodic deterministic bursts. After an initial delay of 45 time
steps, the first burst starts at t = 45 (introducing Photo domain data) and the second starts at
t = 165 (introducing Cartoon). Each burst lasts for 3 time steps with a drift rate of 0.4, effectively
replacing the entire dataset.

• Step: Introduces domains in discrete steps with increasing drift rates. After an initial period of
no drift, the drift rate is set to 0.004 at t = 60 (introducing Sketch), changing to 0.006 at t = 120
(introducing Cartoon), and finally changing to 0.008 at t = 180 (introducing Art Painting).

• Wave: Consists of repeating cycles. After an initial delay of 50 time steps, a wave begins where
the domains are introduced at a rate of 0.032 for 30 time steps. This is followed by a 70-time-step
period of no drift. This 100-step cycle (30 drift and 70 no drift) then repeats. Domains cycle in the
order: Photo, Cartoon, Sketch.

• Spikes: Extends the Burst schedule with randomized characteristics. The spike interval is uniformly
random between 90 and 130 time steps. Similarly, the initial delay is between 30 and 60, the
duration is between 3 and 6 time steps, and the rate is between 0.3 and 0.6. Domains cycle in the
order: Photo, Cartoon, Sketch.

• Constant: The drift occurs at a constant rate of 0.016. The target domain cycles every 50 time
steps in the order: Sketch, Photo, Cartoon, Art Painting.

• Decaying Spikes: Modifies the Burst schedule with increasing intervals between spikes. After an
initial delay of 20 time steps, the first spike occurs. The interval to the next spike starts at 30 and
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increases by 10 after each subsequent spike. Each spike lasts for 3 time steps and has a drift rate of
0.35. Domains cycle in the order: Sketch, Photo, Cartoon.

• Seasonal Flux: Simulates cyclic drift. After an initial delay of 10 time steps, the schedule cycles
between the Photo and Sketch domains. A full cycle (e.g., from Photo to Sketch and back) takes
150 time steps. The drift rate varies sinusoidally between 0.001 and 0.016.

Update Policies We implement the proposed RCCDA policy and four baseline strategies, detailed
below.

• Uniform (Policy 1): Retrains randomly with a fixed probability λ̄
λ = π̄.

• Periodic (Policy 2): Retrains at fixed intervals λ
λ̄
= 1

π̄

• Budget-Increase (Policy 3): Retrains when the loss increases for three consecutive time steps at
the end of a sliding window of size w = 40, provided a sufficient budget is available. The budget
accumulates at a rate of λ̄

λ = π̄ per time step.
• Budget-Threshold (Policy 4): Retrains when the current loss exceeds the maximum loss over

a window of size w = 40 by a threshold ϵ = 0.1, provided a sufficient budget is available. The
budget accumulates at a rate of λ̄

λ = π̄ per time step.

• RCCDA (Policy 5): The proposed policy with estimation defined as Ĝ(Ht) = Kp(f(θt−1, ξt)−
mini∈{0,...,t} f(θi, ξi))+Kd(f(θi, ξi)−f(θt−1, ξt−1)). The update occurs if: V Kp(f(θt−1, ξt)−
mini∈{0,...,t} f(θi, ξi)) + V Kd(f(θi, ξi) − f(θt−1, ξt−1)) ≥ Q(t) + 0.5 − λ̄

λ . We set V = 10
constant across all experiments, and tune the Kp,Kd values for different settings and resource

constraints. The virtual queue is updated as Q(t + 1) = max
{
0, Q(t) + π(t)− λ̄

λ

}
, where

π(t) ∈ {0, 1} is the update decision at time t.

In Tables 7 and 8 we summarize the values of Kp,Kd used by RCCDA across the conducted
experiments.

Table 7: Optimal (Kp,Kd) parameters for RCCDA across various datasets and drift schedules. The
update rate was set to 0.1 for the image datasets and 0.01 for MEMD-ABSA.

Drift Schedule PACS DigitsDG OfficeHome MEMD-ABSA
Burst (1.0, 0.1) (2.5, 0.5) (1.0, 0.5) (0.1, 2.5)
Step (1.0, 0.1) (1.0, 0.5) (1.0, 0.5) N/A
Wave (0.5, 0.1) (1.0, 0.5) (1.0, 0.5) N/A
Spikes (0.75, 0.5) (2.0, 0.1) (1.0, 0.5) N/A
Constant (0.2, 0.1) (0.3, 0.25) N/A N/A
Decaying Spikes (0.5, 0.1) (0.5, 0.1) N/A N/A
Seasonal Flux (0.3, 0.25) (0.5, 0.1) N/A N/A

Table 8: (Kp,Kd) parameters used by RCCDA across different update rates for the Burst drift
schedule. Evaluated on the PACS and DigitsDG datasets

Update Rate λ̄
λ PACS DigitsDG

0.02 (0.06, 0.05) (0.1, 0.05)
0.03 (0.13, 0.05) (0.28, 0.05)
0.05 (0.5, 0.1) (0.55, 0.1)
0.07 (0.7, 0.1) (1.0, 0.2)
0.15 (4.0, 1.0) (4.0, 1.0)
0.20 (7.0, 2.5) (7.0, 2.0)
0.25 (10.0, 4.0) (14.0, 6.0)
0.30 (14.0, 5.5) (20.0, 8.0)

Evaluation Loop With this setup, we execute the evaluation loop for T = 250. At each time step t,
the loop executes the following operations:
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1. Apply Drift: The drift scheduler determines the current drift rate and target domains. Drift is then
applied to the agent’s training and holdout datasets.

2. Evaluate Performance: The agent’s model performance (current loss and accuracy) is computed
on the holdout set.

3. Policy Decision: The agent’s policy determines whether to retrain based on current and historical
performance metrics.

4. Retrain if Decided: If retraining is triggered, the agent updates its model parameters for nsteps
steps using the training set.

Results All results are averaged over multiple random seeds (10 for experiments in the main paper
and 3 for those in the Appendix). In Figure 2, we consider a single starting domain for each of the
drift schedules for the PACS dataset. For the numerical results in Table 1, we further average the
seed-averaged results across different starting domains. Specifically, we average the results for PACS
over starting domains: Photo, Art Painting, Cartoon, Sketch; for DigitsDG over starting domains:
MNIST, MNIST-M, and SVHN; for OfficeHome over starting domains: RealWorld, Product, Art;
and for MEMD-ABSA over starting domains: Books, Clothing, Hotel, Laptop and Restaurant. In all
cases, the reported accuracy is the average performance on the holdout set over the entire operational
period T .

F Additional Experimental Results

F.1 OfficeHome Dataset

In this section, we provide additional results on the OfficeHome [56] dataset, a domain generalization
benchmark consisting of four domains: Art, Clipart, Product, and Real-World.

The results are reported in Table 9. They are consistent with our findings on the PACS and DigitsDG
datasets (Sec. 6), with RCCDA achieving significant performance improvements for the Burst
schedule, moderate improvements for the Wave and Spikes schedules. On the Step schedule, it
achieves the highest accuracy, performing competitively with the other baselines. This further
demonstrates the effectiveness of our policy under resource constraints.

Table 9: Average validation accuracy (%) of policies across concept drift schedules for the OfficeHome
dataset. The mean update rate constraint is λ̄

λ = 0.1. The best-performing method for each
configuration is shown in bold.

Policy OfficeHome

Drift Schedule Burst Step Wave Spikes

RCCDA (ours) 86.9 ± 2.8 90.0 ± 1.8 87.5 ± 2.9 89.9 ± 2.9
Uniform 81.9 ± 3.3 88.9 ± 2.5 85.0 ± 3.0 85.8 ± 5.2
Periodic 82.8 ± 3.5 89.6 ± 2.2 86.3 ± 3.0 88.3 ± 4.8
Budget-Increase 70.7 ± 4.7 89.3 ± 2.2 85.4 ± 3.2 79.3 ± 3.7
Budget-Threshold 77.7 ± 5.2 85.4 ± 2.6 79.2 ± 7.5 87.7 ± 2.4

F.2 MEMD-ABSA Dataset - Textual Modality

In this section, we provide additional results on the MEMD-ABSA dataset [57], a multi-domain
benchmark for textual Aspect-Based Sentiment Analysis (ABSA) with reviews from five domains:
Books, Clothing, Hotel, Laptop and Restaurant. This experiment evaluates our method on a new,
textual, modality, and explores its performance in a setting with less severe concept drift.

Our theoretical analysis is general and not limited to a specific data modality. Consequently, our
policy is provably modality-invariant, with only its algorithmic constants being task-dependent.
Operationally, however, the efficacy of RCCDA strongly relies on the magnitude of performance
degradation detected during a distributional shift. On the MEMD-ABSA dataset, this degradation
is modest when transferring between domains, especially compared to the vision tasks, as we
demonstrate in Table 10. While the top-performing model for any given domain is the one trained
specifically on it, the performance drop from using models trained on other domains is not significant,
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with those models still achieving competitive classification accuracy. This strong generalization
suggests that, for the architecture used, the textual domains are not sufficiently distinct to generate a
concept drift as severe as that observed in our vision-based experiments.

Table 10: Cross-domain test accuracy (%) for TinyBERT on the MEMD-ABSA dataset. Each
column shows the performance of models pretrained on different source domains and evaluated on
the specified target domain.

Pretrained on Evaluated on

Books Clothing Hotel Laptop Restaurant

Books 81.7 ± 1.7 80.3 ± 0.6 88.2 ± 1.8 73.4 ± 1.6 73.6 ± 2.9
Clothing 75.0 ± 0.3 84.8 ± 0.6 88.8 ± 1.2 74.8 ± 1.6 74.5 ± 0.2
Hotel 72.0 ± 1.1 77.5 ± 0.9 95.8 ± 0.4 66.1 ± 1.8 72.6 ± 1.5
Laptop 70.7 ± 1.5 80.9 ± 1.2 84.2 ± 3.3 80.1 ± 0.2 73.8 ± 1.5
Restaurant 78.1 ± 1.4 81.3 ± 0.5 91.4 ± 1.4 75.6 ± 1.0 82.2 ± 0.3

Given this small inter-domain drift, we focused our evaluation on the Burst drift schedule, as it
demonstrated the most pronounced performance differences among the policies. The results, sum-
marized in Table 11, confirm that RCCDA still achieves the highest average accuracy, with a robust
1.4% improvement over the next-best performing baseline (Periodic). However, the performance gap
is less pronounced than in the vision-based tasks, which is expected given the smaller effective drift
magnitude. Notably, some baselines maintained high accuracy with a near-zero effective update rate
(e.g. 0.001), indicating that in this low-drift setting, the model’s inherent generalization ability was
more influential than the update strategy. This result highlights that while RCCDA is robust across
different modalities, the benefits of an intelligent update policy are most significant when the concept
drift is severe.

Table 11: Average validation accuracy (%) of evaluated policies for the Burst drift schedule on the
MEMD-ABSA dataset. The mean update rate constraint is λ̄

λ = 0.01. The best-performing method is
shown in bold.

Policy Average Validation Accuracy (%)
RCCDA (Ours) 81.4 ± 2.9
Uniform 79.8 ± 3.5
Periodic 80.0 ± 3.2
Budget-Increase 79.2 ± 3.6
Budget-Threshold 79.2 ± 4.2

F.3 Supplementary Concept Drift Schedules

In this section, we provide supplementary results on three additional drift schedules, designed to
further evaluate the robustness of our proposed method, RCCDA. These schedules simulate diverse
and challenging temporal distribution shifts:

(v) Constant - A steady drift where the target domain changes at a constant rate. The domains
cycle every set number of steps.

(vi) Decaying Spikes - A series of sudden drift events, modifying the Burst schedule. After an
initial delay, spikes occur at increasing intervals, becoming less frequent.

(vii) Seasonal Flux - A cyclical drift that simulates seasonal variations. The schedule alternates
between two domains following a sinusoidal pattern with a constant period, amplitude, and
offset.

Table 12 reports the average validation accuracy on the PACS and DigitsDG datasets for these new
schedules. The results are consistent with our findings for drift schedules (i)-(iv) presented in the
main paper, demonstrating that RCCDA consistently outperforms or matches all baseline methods
across these new drift configurations.
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Table 12: Average validation accuracy (%) of evaluated policies on the PACS and DigitsDG datasets
for three additional concept drift schedules. The mean update rate constraint is λ̄/λ = 0.1. The
best-performing method for each configuration is shown in bold.

Policy PACS Digits-DG
Constant Decaying Spikes Seasonal Flux Constant Decaying Spikes Seasonal Flux

RCCDA (ours) 54.1 ± 1.5 59.7 ± 3.3 63.4 ± 2.8 58.1 ± 9.4 54.5 ± 15.4 63.7 ± 9.6
Uniform 51.3 ± 1.3 48.0 ± 5.9 55.1 ± 6.0 56.2 ± 7.2 48.0 ± 12.7 61.9 ± 8.2
Periodic 48.4 ± 3.5 51.3 ± 4.4 57.9 ± 5.8 56.8 ± 8.2 49.6 ± 14.0 62.0 ± 8.3
Budget-Increase 47.4 ± 2.4 42.1 ± 6.1 53.3 ± 4.3 55.6 ± 9.3 45.1 ± 16.8 61.4 ± 9.9
Budget-Threshold 45.5 ± 3.7 44.6 ± 10.9 58.2 ± 14.5 52.3 ± 6.7 49.0 ± 14.8 61.5 ± 11.5

F.4 Varying Update Rate

Figure 3: Average validation accuracy of policies across different update rates for the burst drift
schedule, across PACS and DigitsDG datasets. The left column is the accuracy per real update rate,
and the right column is the accuracy per constrained update rate λ̄

λ .

In this section, we analyze the performance of RCCDA and baseline policies under various update
rate constraints λ̄

λ . The results for the Burst drift schedule om the PACS and DigitsDG datasets are
available in Figure 3. This study yields several key insights into the behavior of our proposed policy.

First, the results confirm that RCCDA effectively adheres to the specified resource constraints.
As demonstrated by comparing the left (effective update rate) and right (constrained update rate)
columns of Figure 3, the average update rate achieved by our policy closely matches the predefined
constraint λ̄

λ . This indicates that our policy utilizes its allocated budget more effectively, making
update decisions that lead to better model performance.
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Notably, the Budget-Threshold policy was able to marginally surpass RCCDA in accuracy for
effective update rates between 0.10 and 0.15 on the DigitsDG dataset. However, this observation
highlights a critical flaw in the baseline policy design: a lack of precise resource utilization control.
To achieve the effective update rate in this narrow range, the Budget-Threshold policy required a
significantly higher allowed resource constraint. Essentially, it only achieved this rate because its
update rule failed to spend the allocated (higher) budget, meaning it was operating under a much
looser resource constraint.

In contrast, RCCDA’s performance is achieved while strictly adhering to the specified time-average
resource constraint. As such, the baseline’s slight advantage is a result of its uncontrolled behavior; it
adhered to a higher λ̄

λ constraint to achieve the same effective update rate. RCCDA’s performance,
while slightly lower, is a more accurate reflection of its ability to maximize accuracy under a true,
enforced resource constraint.

F.5 Robustness under Uncertainty

Our framework assumes that the exact model inference loss, ft, can be accessed by our policy
at any time step t. While this is a standard assumption in supervised drift adaptation literature,
practical scenarios, especially ones involving small or partially labeled datasets, may only provide
a high-variance, noisy estimate of the true loss. To evaluate the robustness of RCCDA under such
conditions, we conducted an additional experiment quantifying the impact of a noisy loss estimate on
the policy’s performance.

The experiment was performed on the PACS dataset using the Burst drift schedule, with all hy-
perparameters and the environment identical to our main experiments (see Appendix E). The key
modification was the introduction of synthetic noise to the loss signal accessed by the policy. Specifi-
cally, at each time step t, the policy received a noisy loss estimate, f estimate

t , defined as:

f estimate
t = ft +N

(
0, (ku × ft)

2
)

(34)

where the additive noise is sampled from a zero-mean normal distribution N , with its standard
deviation proportional to the true loss ft via the uncertainty coefficient ku. We evaluated the policy’s
performance across several values of ku. For each degree of uncertainty, we re-tuned the policy’s
(Kp,Kd) parameters to ensure the effective update rate remained close to the target of λ̄

λ = 0.1.

Table 13: Performance of RCCDA on the PACS dataset given (Burst schedule) under varying degrees
of loss uncertainty.

Degree of Uncertainty (ku) Validation Accuracy (%) Effective Update Rate (Kp,Kd)
0.0 (certain) 79.4 ± 5.2 0.093 ± 0.030 (1.5, 0.3)
0.05 79.3 ± 6.1 0.099 ± 0.011 (0.7, 0.3)
0.1 79.2 ± 6.8 0.103 ± 0.009 (0.6, 0.25)
0.2 78.0 ± 7.0 0.103 ± 0.007 (0.4, 0.25)
0.3 77.4 ± 8.0 0.104 ± 0.004 (0.3, 0.25)

The results, available in Table 13, demonstrate that RCCDA is highly robust to noisy loss signals.
While the inference performance gradually degrades as the uncertainty coefficient ku increases, the
drop is modest compared to the uncertainty increase. Even with significant uncertainty (ku = 0.3),
the validation accuracy decreases by only 2.0% (a relative drop of ∼ 2.5%) compared to the certain
case. At the same time, the standard deviation of the validation accuracy increases with higher
uncertainty - an expected outcome given the noise introduces greater variability into the framework’s
behavior. Importantly, RCCDA successfully maintained an average effective update rate near the
target λ̄

λ = 0.1 across all uncertainty conditions, demonstrating its ability to effectively manage the
resource budget is resilient to loss signal perturbations. This analysis validates that RCCDA is a
practical solution for real-world scenarios where the loss signal may be imperfect.

F.6 Replay Buffer

As established by our theoretical analysis, RCCDA is designed to optimize an immediate, per-time-
step bound on convergence. This design prioritizes rapid, resource-efficient adaptation, making the
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policy highly effective in environments characterized by new, rarely-recurring concept drifts. As
a consequence of this focus, the policy is concentrated on adapting the model to the most recent
data distributions, which can lead to the gradual forgetting of past data representations. While this
objective is distinct from the explicit knowledge-retention goals of continual learning (see Section 2),
it can pose a practical challenge in real-world scenarios with recurring drifts, such as those with
seasonal or cyclical environmental changes, making recurring drifts a key consideration.

Table 14: Performance comparison of RCCDA with and without a replay buffer on a recurring drift
schedule. Accuracy (%) is reported for each domain at specific time steps.

Time Step Domain No Buffer (100% New) With Buffer (80% New, 20% Old)

50 photo 30.60 ± 9.58 30.60 ± 9.58
art painting 21.35 ± 2.31 21.35 ± 2.31
cartoon 80.08 ± 11.16 80.08 ± 11.16
sketch 26.43 ± 3.99 26.43 ± 3.99

150 photo 78.26 ± 3.26 71.74 ± 4.06
art painting 25.00 ± 1.99 27.60 ± 1.92
cartoon 20.31 ± 3.04 63.93 ± 2.71
sketch 18.49 ± 0.80 16.67 ± 6.63

250 photo 50.78 ± 2.76 57.29 ± 4.90
art painting 63.28 ± 3.31 57.03 ± 3.62
cartoon 36.33 ± 3.38 60.16 ± 3.76
sketch 22.01 ± 2.89 21.88 ± 2.41

350 photo 39.71 ± 4.61 58.07 ± 0.49
art painting 34.64 ± 3.81 43.75 ± 3.31
cartoon 70.31 ± 3.68 79.82 ± 5.94
sketch 30.60 ± 2.89 31.90 ± 1.92

450 photo 12.76 ± 3.41 48.44 ± 7.10
art painting 15.10 ± 4.47 38.93 ± 6.33
cartoon 28.39 ± 16.44 70.18 ± 6.20
sketch 58.07 ± 2.08 57.94 ± 2.96

550 photo 79.43 ± 0.80 79.04 ± 3.10
art painting 29.43 ± 2.71 41.41 ± 4.82
cartoon 14.45 ± 6.37 65.10 ± 7.91
sketch 18.49 ± 0.80 44.66 ± 10.80

650 photo 52.08 ± 2.17 53.52 ± 10.73
art painting 76.17 ± 10.13 58.59 ± 10.46
cartoon 38.28 ± 2.73 62.50 ± 6.99
sketch 29.30 ± 4.07 46.88 ± 6.27

750 photo 42.84 ± 6.95 57.16 ± 6.10
art painting 37.37 ± 2.31 52.21 ± 6.20
cartoon 73.83 ± 5.37 75.26 ± 8.60
sketch 30.86 ± 6.51 47.53 ± 5.12

850 photo 11.72 ± 3.08 55.08 ± 3.08
art painting 12.24 ± 1.44 39.58 ± 1.76
cartoon 15.89 ± 5.09 65.62 ± 4.98
sketch 64.58 ± 7.79 62.50 ± 12.77

950 photo 80.86 ± 4.47 85.29 ± 6.22
art painting 36.72 ± 1.94 49.35 ± 7.56
cartoon 23.57 ± 4.31 61.33 ± 9.13
sketch 18.62 ± 0.97 57.03 ± 7.94

To enhance long-term knowledge retention and adapt RCCDA for such environments, the framework
can be naturally extended with a replay buffer mechanism. The buffer stores a small, representative
subset of data from previously encountered distributions. When the policy triggers a model update,
the training batch is then composed of a majority of new data alongside a minority of data sampled
from this buffer. By systematically re-exposing the model to past concepts, this approach mitigates
the effects of catastrophic forgetting and preserves knowledge across recurring domains.
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To evaluate this extension, we conducted a preliminary experiment using a recurring burst schedule
on the PACS dataset, where the active domain was cycled every 100 time steps (starting with Cartoon,
then rotating Photo, Art Painting, Cartoon, Sketch in order). We compare two configurations: a
baseline “No Buffer” agent, where the training set shifts entirely to the new domain at each drift
event, and a “Buffer” agent. For the latter, at each drift event, the training set is recomposed such that
80% of the data is from the new target domain, while the remaining 20% forms a replay buffer. This
buffer is populated by sampling uniformly from all previously-seen majority domains. Note that we
utilized a fixed buffer size and a simple sampling strategy, as this experiment represents a preliminary
investigation. A detailed exploration of buffer management presents a compelling direction for future
work.

The results, presented in Table 14, show the model’s accuracy an each domain at key time steps just
before the next drift occurs. These findings reveal a clear trade-off between immediate adaptation
and long-term knowledge retention. The “No Buffer” agent achieves a higher peak accuracy when a
new target domain is introduced for the first time, such as for Photo at t = 150 (78.26% vs 71.74%)
or Art Painting at t = 250 (63.28% vs 57.03%), as it dedicates all training resources to the new
concept. In contrast, while the “Buffer” agent has a lower accuracy when a new domain is introduced,
it mitigates catastrophic forgetting by maintaining a significantly higher accuracy on previously seen
domains. For example, at t = 150, it achieves accuracy of 63.93% on the previous Cartoon domain,
compared to just 20.31% achieved by the “No Buffer” agent. In addition, this retained knowledge
proves advantageous when certain domains reappear, as evident with Cartoon at t = 350, where the
“Buffer” agent achieves 79.82% validation accuracy, significantly higher than the 70.31% achieved
by the “No Buffer” agent. This highlights a fundamental trade-off between maximizing immediate
performance on novel drifts and ensuring robust generalization across recurring domains, and offers
an interesting direction for future research.

F.7 Statistical Significance of the Results

As mentioned in Appendix E, the main result presented in Table 1 are averaged not only across
multiple random seeds but also across different starting domains for each dataset. While this provides
a high-level summary, it can also introduce high reported standard deviation, as the policy performance
over time will depend on the specific sequence of domains encountered. This variance can obscure
the statistical significance of performance differences between policies.

To provide a more statistically robust view, we included a deconstructed analysis of the results.
Table 15 breaks down the performance of all policies on the PACS dataset for the Burst drift schedule,
showing the average validation accuracy for each starting domain individually. The results are
averaged over 10 random seeds.

Table 15: Deconstructed validation accuracy (%) on the PACS dataset for the Burst schedule, by
starting domain.

Policy Starting Domain

Photo Cartoon Art Painting Sketch

RCCDA (ours) 80.6 ± 7.4 85.8 ± 2.1 73.8 ± 5.3 71.7 ± 1.6
Uniform 78.0 ± 5.0 70.0 ± 1.8 67.6 ± 6.3 51.7 ± 6.8
Periodic 77.1 ± 4.3 70.9 ± 1.7 69.7 ± 5.5 57.4 ± 1.8
Budget-Increase 72.0 ± 5.8 61.3 ± 5.6 66.5 ± 1.4 36.7 ± 5.6
Budget-Threshold 79.4 ± 6.4 79.3 ± 2.1 67.8 ± 3.4 43.0 ± 5.0

This per-domain analysis provides further insight into the aggregated results. The high standard
deviations reported in the main result can be attributed to high performance variations across the
different source domains. The updated standard deviations are lower in most cases compared to
the original result, with a few exceptions. Additionally, RCCDA again consistently outperforms all
baseline policies in each source domain, with statistically significant improvement achieved for all
domains except Photo. Notably, while original results suggested a potential performance overlap
between RCCDA and the Budget-Threshold policy, this breakdown reveals that RCCDA achieves a
higher mean accuracy in all cases, with the improvement being statistically significant in all domains
except for Photo. As such, this analysis explains the high variance in the main results and confirms
the statistical significance of our method’s improvements.
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G Code Documentation

In this section, we provide specific details on the code and hardware used for our experiments.

Code Description We wrote our code in Python 3.12.3, and utilized the following key imported
modules:

• PyTorch (2.3.0)

• torchvision (0.18.0)

• numpy (1.26.4)

• flwr_datasets [54]

• PIL (from Pillow 10.3.0)

• pandas (2.2.3)

• matplotlib (3.9.2)

• seaborn (0.13.2)

• transformers (via huggingface-hub 0.26.3; for BertForSequenceClassification and BertTok-
enizer in MEMD-ABSA)

• standard libraries such as: os, argparse, json, time, random, etc.

We implemented a custom package to streamline code operations. The package code is
available under Federated_Learning_Base_Toolkit_torch, and includes source code for
our core classes and methods, such as BaseNeuralNetwork with the update steps method,
DriftAgent, class DomainDrift, or the custom datahandlers and datasets. The code in
concept_drift_optimal_adaptation uses these methods to implement pre-training, drift
scheduling, update policies, and the policy evaluation code. We included the source code in the
supplemental materials. Further details are available in our implementation.

Executing Code These instructions assume a Unix-like system (Linux/macOS); for Windows, use
adjusted paths. The code can be executed through the following steps:

1. Assuming conda is installed, navigate to the directory with the code and run the commands:

conda env create -f cog_fl_llm_env.yml

conda activate cog_fl_llm_env

2. Navigate to directory Federated_Learning_Base_Toolkit_torch, and run the package
installation command:

python -m pip install .

3. To pretrain a model navigate to a dataset-specific directory, and run:

python3 pretrain_models_<dataset>.py --options

where <dataset> is the name of the corresponding dataset (PACS, DigitsDG, OfficeHome,
or MEMD-ABSA), and options specify various parameters of the pretraining, the details
are available in the code.

• PACS loads via fl_toolkit/PACSDataHandler (torchvision.datasets.PACS
with download=True); no manual download or root_dir needed.

• For DigitsDG, OfficeHome, and MEMD-ABSA, download the dataset from source and
update root_dir in code.

4. To evaluate a model, navigate to a dataset-specific directory, and run

python3 evaluate_policy_<dataset>.py --options

where options specify various parameters of the evaluation process, the policy evaluated,
the setting used, and the drift schedule.

• Uses the models from the pretraining step.
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• For DigitsDG, OfficeHome, and MEMD-ABSA datasets, a root directory with the
downloaded dataset has to be specified in order for the code to work.

Our entire codebase is available at:
https://github.com/Adampi210/RCCDA resource constrained concept drift adaptation code.

Hardware. For each experiment, we utilized 14 Intel Xeon Platinum 8480+ CPU cores and 1 NVIDIA
H100 GPU. CPU memory was allocated proportionally to the core request, with approximately 9
GB per core, yielding about 126 GB of CPU memory per job. The H100 GPU provided 80 GB of
dedicated memory. The GPU executed all seeds concurrently for a given experimental configuration.
The upper time limit for pretraining was set to 2 days, and for each evaluation job was set to 6 hours.
In practice, the pretraining took at most 2 hours per configuration. Notably, the evaluation execution
time varied by dataset, with the DigitsDG dataset taking 5 minutes per configuration on average,
PACS evaluations averaging 15 minutes (up to 20 minutes), and OfficeHome evaluations averaging
around 30 minutes per configuration.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract clearly states the contributions regarding the proposed policy.
These claims are supported by the theoretical analysis in 5, the experimental results in 6, as
well as the proofs in Appendix A and B.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the infeasibility of implementing the exact policy, then propose
using estimation techniques. We discuss different techniques in Appendix C. We point out
that our assumption about loss availability is a realistic one. Finally, in our conclusion we
mention how using the estimator limits the theoretical effectiveness of the proposed policy.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We introduce two theories and a corollary. The assumptions and theoretical
results are clearly stated in section 5. The proofs and derivations are available in the
Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

40



Answer: [Yes]
Justification: We detail our experimental setup in section 6. The exact hyperparameters,
models, and settings are available in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code used to run the experiments is provided in the supplemental material.
The datasets utilized are discussed in 6, and are widely popular and easily accessible datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Available in the supplemental material section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Figure 2, we display standard deviation around the plotted lines for each of
the policies. We also add standard deviation values to the results reported in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The entire experimental setup is included in supplemental material section.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper and code included are fully anatomized to the best of our knowledge.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the best of our knowledge, deriving a model update policy under drift
does not have a direct societal impact. The policy derived is applicable to general resource-
constrained settings where a deep learning model is deployed and experiences

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, derivation of an optimal retrain policy in
environments under drift poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all experiments we conduct our experiments on in 6. In supplemental
materials we further credit the authors of modules used, authors of used models (excluding
custom ones), an dprovide lincense and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets, including the written code, simulation results, and the corre-
sponding documentation, are included in the supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

45

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	System Model
	Problem Formulation

	Policy Design
	Policy Derivation
	Our Algorithm

	Theoretical Analysis
	Convergence Analysis
	Stability Analysis

	Experiments
	Conclusion and Limitations
	Societal Impact
	Convergence Proofs
	Proof of Theorem 5.1
	Proof of Corollary 5.2

	Lyapunov Analysis
	Lyapunov Drift-Plus-Penalty Framework
	Stability Analysis: Proof of Theorem 5.3

	Computational Resource Evaluation
	Resource Abstraction and Generalizability
	Overhead Analysis of the RCCDA Policy

	Detailed Experimental Setup
	Datasets
	Models
	Pretraining Phase
	Evaluation Phase

	Additional Experimental Results
	OfficeHome Dataset
	MEMD-ABSA Dataset - Textual Modality
	Supplementary Concept Drift Schedules
	Varying Update Rate
	Robustness under Uncertainty
	Replay Buffer
	Statistical Significance of the Results

	Code Documentation

