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ABSTRACT
Sequential recommender systems (SRS) are designed to predict
users’ future behaviors based on their historical interaction data.
Recent research has increasingly utilized contrastive learning (CL)
to leverage unsupervised signals to alleviate the data sparsity issue
in SRS. In general, CL-based SRS first augments the raw sequential
interaction data by using data augmentation strategies and employs
a contrastive training scheme to enforce the representations of
those sequences from the same raw interaction data to be similar.
Despite the growing popularity of CL, data augmentation, as a basic
component of CL, has not received sufficient attention. This raises
the question: Is data augmentation sufficient to achieve superior
recommendation results? To answer this question, we benchmark a
large amount of data augmentation strategies, as well as state-of-
the-art CL-based SRS methods, on four real-world datasets under
both warm- and cold-start settings. Intriguingly, the conclusion
drawn from our study is that data augmentation is sufficient and CL
may not be necessarily required. In fact, utilizing augmentation alone
can significantly alleviate the data sparsity issue and certain data
augmentation can achieve similar or even superior performance
compared with CL-based methods. We hope that our study can
further inspire more fundamental studies on the key functional
components of complex CL techniques. Our processed datasets and
codes will be released once our paper is accepted.
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1 INTRODUCTION
Sequential recommender systems (SRS) play a crucial role in various
domains, such as e-commerce [1, 3, 41], video [7, 20], music [8, 26]
and social media [12, 15]. The goal of these SRS is to predict the
next item that a user is likely to interact with based on his/her
historical behavior. One predominant obstacle in developing SRS
is the data sparsity issue, where user-item interaction data is typ-
ically limited compared with a large number of users and items,
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Figure 1: (a) Direct data augmentation for sequential recom-
mendation; (b) Contrastive learning for sequential recom-
mendation.

leading to insufficient training signals to learn informative item
representations for the downstream recommendations.

Recently, contrastive learning for recommendation has attracted
increasing attention due to its remarkable capability to enhance
item representations by extracting self-supervised signals from
raw user-item interaction data. Consequently, various contrastive
learning-based SRS, such as CL4SRec [38], CoSeRec [22], ICLRec [4]
and DuoRec [28], have been proposed. The core idea of these meth-
ods can be summarized into two interrelated steps: (1) generat-
ing positive views and negative views through data augmentation
strategies; and (2) minimizing (resp. maximizing) the distance be-
tween positive (resp. negative) views using a contrastive loss func-
tion (such as InfoNCE [25]). As shown in Fig. 1, in these methods,
data augmentation strategies are applied solely to the auxiliary
tasks designed for contrastive learning rather than directly applied
to the recommendation task itself. Such practice naturally raises
two critical questions: How is the recommendation performance
when only data augmentation strategies are directly applied to the
recommendation task? Can the performance of SRS be improved by
solely relying on data augmentation (i.e., the first step) without using
contrastive learning paradigm (i.e., the second step)?

To answer these questions is crucial for revisiting the role of
data augmentation strategies in sequential recommendation tasks.
However, so far, the direct application of data augmentation to
mitigate the data sparsity issue in sequential recommendation has
not received sufficient attention. Only one study [30] has explored
the effects of four augmentation strategies on sequential recom-
mendation. Nevertheless, it still suffers from following limitations:
First, the augmentation strategies compared are not comprehen-
sive. For instance, strategies like reorder and delete, commonly
used in contrastive learning for sequential recommendation (SR),
can also be employed as standalone data augmentation methods.
Second, comparison with contrastive learning methods are not
conducted, which is essential for revisiting the effectiveness of con-
trastive learning in the sequential recommendation research. Third,
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Figure 2: Eight widely used sequence-level data augmentation strategies.

insights or analysis regarding the factors that led to varying perfor-
mance results of different augmentation strategies are not provided.
Therefore, there is an urgent need to conduct a more systematic
empirical study to thoroughly investigate the effectiveness of data
augmentation in improving the performance of SRS.

To bridge this research gap, we conduct a comprehensive ex-
perimental study to compare the performance of SRS based on
data augmentation only and that of SRS based on full contrastive
learning. To be specific, we focus on investigating the effectiveness
of eight popular sequence-level augmentation strategies: insert,
replace, crop, delete, mask, reorder, subset-split, and slide-window.
These augmentation strategies have been widely adopted in con-
trastive learning-based SRS over the past five years. Specifically, we
decouple these sequence-level data augmentation strategies from
contrastive learning methods and directly apply them to augment
the training sequences. Both the original sequences and the aug-
mented sequences are input together to backbone models (such as
SASRec [16]) for training. Afterward, we benchmark these eight
sequence-level data augmentation strategies and three state-of-the-
art contrastive learning-based SRS on four widely used datasets.
We also simulate different cold-start scenarios to further evaluate
the applicability of sequence-level data augmentation. Furthermore,
we conduct in-depth analysis on the impact of the size of data
augmentations, as well as the computational efficiency of various
augmentation strategies and contrastive learning methods.

The experimental results demonstrate that, when using SASRec
as the backbone, certain sequence-level augmentation strategies
can achieve comparative or even superior performance compared
to contrastive learning-based methods, while requiring less training
and inference time. This finding not only validates the feasibility of
directly using sequence-level augmentation to alleviate data spar-
sity issue, but also suggests that the current research community
might underestimate the effectiveness of simple sequence-level
augmentation and overly emphasize the necessity of contrastive
learning in sequential recommendation tasks.

The contribution of this paper can be summarized as follows:

• We decouple sequence-level augmentation strategies from
contrastive learning methods and to benchmark these strate-
gies in the context of sequential recommendation tasks.

• We explore the synergistic effects between slide-window
strategy and other data augmentation techniques. We also
verify that CL-based methods can benefit from slide-window
strategy.

• Our experimental results demonstrate that employing spe-
cific sequence-level augmentation strategies can effectively
mitigate the problem of data sparsity in sequential recom-
mender systems. Moreover, these strategies require less train-
ing and inference time compared to CL-based methods.

2 PROBLEM FORMULATION
LetU, I denote the sets of users and items, respectively. For a user
𝑢 ∈ U, the historical interactions of this user can be represented
as S𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
|S𝑢 | ], where 𝑣

𝑢
𝑖

∈ I is the i-th interaction
in the chronologically ordered sequence S𝑢 and |S𝑢 | denotes the
sequence length. The set of users’ actions can be represented as
S = {S1,S2, . . . ,S |U | }, where |U| is the number of users. Given
the historical interaction sequence S𝑢 of user 𝑢, the goal of sequen-
tial recommendation is to predict the next item 𝑣𝑛𝑒𝑥𝑡 ∈ I that
user 𝑢 will interact with at the ( |S𝑢 | + 1)-th time step, denoted as
𝑝 (𝑣𝑛𝑒𝑥𝑡 | S𝑢 ).

3 SEQUENCE-LEVEL DATA AUGMENTATION
STRATEGIES

Our experiments include multiple common rule-based sequence-
level data augmentation strategies. All of them can be viewed as
operators that create augmented sequences by performing certain
transformations to the original sequence. Fig. 2 illustrates how to
augment each interaction sequence using these operators.

3.1 Item Insert
The "insert" action begins by selecting an insertion position, fol-
lowed by the insertion of a chosen item from the item pool, resulting
in an augmented sequence. For the user’s interaction sequence S𝑢 ,
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let 𝑖 be an insertion position, and 𝑡 be a chosen item from the item
set I. The augmented sequence S𝑢′

can be represented as:

S𝑢′
= [𝑣𝑢1 , . . . , 𝑣

𝑢
𝑖−1, 𝑡, 𝑣

𝑢
𝑖 , . . . , 𝑣

𝑢
|S𝑢 | ] . (1)

3.2 Item Delete
The "delete" action randomly selects an item from the sequence for
removal, thereby generating an augmented sequence. For S𝑢 and a
randomly chosen item at position 𝑘 , the augmented sequence S𝑢′

is:
S𝑢′

= []𝑣𝑢1 , . . . , 𝑣
𝑢
𝑘−1, 𝑣

𝑢
𝑘+1, . . . , 𝑣

𝑢
|S𝑢 | ] . (2)

3.3 Item Replace
The "replace" action begins by selecting the item in the sequence
that will be replaced, followed by selecting an item from the item
pool to substitute the chosen item, resulting in an augmented se-
quence. For S𝑢 , let 𝑗 be a position of the item to be replaced, and
𝑡 ′ be a chosen item from I. The augmented sequence S𝑢′

is:

S𝑢′
= [𝑣𝑢1 , . . . , 𝑣

𝑢
𝑗−1, 𝑡

′, 𝑣𝑢𝑗+1, . . . , 𝑣
𝑢
|S𝑢 | ] . (3)

3.4 Item Crop
The "crop" action initially selects a cutoff position, from which a
continuous series of items with a specified length are extracted as
an augmented sequence. Let 𝑐 be the cutoff position and 𝑙 be the
length of the cropped sequence. The augmented sequence S𝑢′

is:

S𝑢′
= [𝑣𝑢𝑐 , 𝑣𝑢𝑐+1, . . . , 𝑣

𝑢
𝑐+𝑙−1] . (4)

3.5 Item Mask
The "mask" action initially chooses an item from the sequence and
subsequently masks the ID of the selected item using a predefined
mask symbol. Let 𝑚 be the position of the chosen item from se-
quence S𝑢 . If ` is the predefined mask symbol, the sequence after
masking can be given as:

S𝑢′
= [𝑣𝑢1 , . . . , 𝑣

𝑢
𝑚−1, `, 𝑣

𝑢
𝑚+1, . . . , 𝑣

𝑢
|S𝑢 | ] . (5)

3.6 Item Reorder
The "reorder" action initially selects a sub-sequence of a specific
length and subsequently shuffles the order of the items within that
sub-sequence. The sub-sequence and the remaining parts of the
original sequence are then combined according to their original
order, resulting in an augmented sequence. Consider a sub-sequence
of length 𝑟 starting at position 𝑑 from S𝑢 . Let shuffle(𝑥) denote a
function that shuffles the order of the elements in 𝑥 . The augmented
sequence S𝑢′

after shuffling this sub-sequence is:

S𝑢′
= [𝑣𝑢1 , . . . , 𝑣

𝑢
𝑑−1, shuffle(𝑣𝑢

𝑑
, . . . , 𝑣𝑢

𝑑+𝑟−1), 𝑣
𝑢
𝑑+𝑟 , . . . , 𝑣

𝑢
|S𝑢 | ] . (6)

3.7 Subset Split
Similar to the dropout mechanism [31], for subset split method,
each item 𝑣𝑢

𝑖
in the original sequence S𝑢 will be included in S𝑢′

with a probability of 1 − \ and the probability of discarding is \ :

𝑣𝑢
′

𝑖 =

{
𝑣𝑢
𝑖
, 𝑃 = 1 − \

discarded, 𝑃 = \
(7)

Table 1: Statistics of the datasets after preprocessing.

Dataset Beauty Sports ML-1m Yelp

# Users 22,363 35,598 6,041 30,499
# Items 12,101 18,357 3,407 20,068
# Avg. Actions / User 8.9 8.3 165.5 10.4
# Avg. Actions / Item 16.4 16.1 292.6 15.8
# Actions 198,502 296,337 999,611 317,182
Sparsity 99.93% 99.95% 95.15% 99.95%

Thus, the augmented sequence S𝑢′
is essentially a "subset" of the

original sequence S𝑢 , which can be mathematically represented as:

S𝑢′
= [𝑣𝑢

′
1 , 𝑣

𝑢′
2 , . . . , 𝑣

𝑢′

|S𝑢′ | ] . (8)

Note that the length of the augmented sequence |S𝑢′ | can vary due
to the random discarding process and is likely to be less than or
equal to |S𝑢 |.

3.8 Slide-window
The slide-window strategy employs a window of a designated
length, denoted as L, to extract a cropped sequence of augmented
items at each step. The window initiates sliding with its right edge
positioned to the left of the first item, and the sliding process con-
cludes when the right edge reaches the last item. For a givenwindow
length 𝐿, at each step 𝑡 , the cropped sequence of augmented items
from S𝑢 is:

S𝑢′
𝑡 = [𝑣𝑢𝑡 , 𝑣𝑢𝑡+1, . . . , 𝑣

𝑢
𝑡+𝐿−1], (9)

where the sliding process iterating until 𝑡 + 𝐿 − 1 = |S𝑢 |.
The selection of augmentation positions and augmented items

in the aforementioned data augmentation strategies is obtained
through random sampling according to a uniform distribution. For
the slide-window strategy, the size of augmentations depends on
the original sequence length and window length. For other aug-
mentation strategies, their size of augmentations is regarded as a
hyperparameter 𝑛. We discuss the impact of the size of augmenta-
tions 𝑛 in Sec. 4.4.

4 EXPERIMENT
In this section, we conduct comprehensive experiments to answer
the following key research questions:

• RQ1: How do different sequence-level augmentation strate-
gies compare against state-of-the-art contrastive learning
based SR methods?

• RQ2: How do sequence-level augmentation and contrastive
learning methods perform in cold-start scenarios?

• RQ3: Why some direct data augmentation methods, such
as slide-window, can achieve better performances compared
with contrastive learning-based methods?

• RQ4: Does the size of augmentations , sampling strategy,
slide-window size and model architecture affect the perfor-
mance of sequence-level augmentation?

• RQ5: How does the training time and inference time of
sequence-level data augmentation compare to contrastive
learning methods?
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Table 2: Comparison of different data augmentation strategies and contrastive learning-based SR methods. Cells are blue if the
augmentation strategy boosts SASRec performance, and orange if the augmentation hurts the performance.

Beauty Sports Yelp ML-1m
Recall NDCG Recall NDCG Recall NDCG Recall NDCGModel

@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20
SASRec 4.52±0.04 6.47±0.13 2.24±0.03 2.73±0.05 2.32±0.08 3.41±0.08 1.18±0.05 1.46±0.05 3.51±0.07 4.68±0.09 2.32±0.03 2.61±0.04 5.63±0.40 8.45±0.30 2.79±0.15 3.50±0.12
+ subset-split 4.78±0.08 6.98±0.14 2.40±0.02 2.95±0.03 2.61±0.08 3.89±0.07 1.32±0.07 1.65±0.07 3.77±0.04 5.17±0.11 2.43±0.07 2.78±0.05 7.57±0.56 11.09±0.60 3.68±0.26 4.57±0.26
+ crop 5.28±0.10 7.72±0.05 2.61±0.05 3.22±0.04 2.86±0.03 4.28±0.04 1.41±0.03 1.77±0.03 4.17±0.14 5.79±0.13 2.69±0.05 3.10±0.03 9.08±0.42 13.51±0.48 4.23±0.18 5.35±0.19
+ delete 4.83±0.12 7.10±0.04 2.39±0.09 2.96±0.06 2.52±0.06 3.80±0.08 1.26±0.04 1.59±0.05 3.73±0.08 5.11±0.13 2.42±0.03 2.76±0.01 6.75±0.12 9.59±0.26 3.29±0.03 4.01±0.09
+ mask 4.26±0.06 6.29±0.21 2.07±0.05 2.58±0.08 2.13±0.04 3.17±0.04 1.06±0.03 1.32±0.03 3.28±0.11 4.38±0.13 2.30±0.05 2.58±0.04 6.05±0.10 8.86±0.08 2.87±0.03 3.58±0.04
+ reorder 4.67±0.08 6.87±0.08 2.28±0.06 2.83±0.06 2.45±0.05 3.67±0.08 1.22±0.01 1.53±0.02 3.60±0.07 4.95±0.10 2.42±0.07 2.76±0.05 5.84±0.19 8.54±0.33 2.8±0.08 3.47±0.10
+ insert 4.62±0.12 6.79±0.11 2.28±0.05 2.83±0.05 2.38±0.09 3.54±0.13 1.17±0.07 1.46±0.08 3.62±0.05 4.87±0.05 2.46±0.12 2.78±0.11 6.67±0.54 9.76±0.27 3.23±0.24 4.01±0.16
+ replace 4.26±0.09 6.20±0.09 2.08±0.05 2.57±0.04 2.05±0.07 3.07±0.09 1.01±0.03 1.26±0.04 3.23±0.06 4.22±0.05 2.33±0.04 2.57±0.04 5.90±0.15 8.64±0.16 2.79±0.05 3.48±0.04
+ slide-window 7.81±0.05 11.41±0.19 3.82±0.06 4.74±0.09 5.00±0.08 7.43±0.15 2.30±0.03 2.92±0.05 5.85±0.05 8.47±0.09 3.73±0.04 4.39±0.04 19.78±0.32 28.9±0.30 10.37±0.23 12.67±0.20
CL4SRec 5.20±0.13 7.87±0.15 2.65±0.02 3.32±0.03 3.32±0.07 5.10±0.09 1.66±0.05 2.11±0.05 4.04±0.07 5.88±0.11 2.53±0.05 2.99±0.06 4.74±0.33 7.4±0.27 2.33±0.14 3±0.13
CoSeRec 4.72±0.06 7.01±0.07 2.31±0.04 2.89±0.04 2.71±0.06 4.12±0.03 1.33±0.03 1.68±0.01 4.03±0.07 5.53±0.10 2.65±0.03 3.03±0.03 5.83±0.21 8.47±0.29 2.82±0.09 3.49±0.11
ICLRec 4.84±0.05 7.14±0.12 2.42±0.05 3.01±0.06 2.66±0.03 4.00±0.09 1.30±0.03 1.64±0.03 3.46±0.04 4.53±0.06 2.37±0.02 2.64±0.03 5.87±0.1 8.74±0.2 2.78±0.03 3.5±0.08

Table 3: Comparison of slide-window (SW) combined with different data augmentation strategies or contrastive learning
methods. Cells are blue if the combination boosts SASRec performance, and orange if the combination hurts the performance.

Beauty Sports Yelp ML-1m
Recall NDCG Recall NDCG Recall NDCG Recall NDCGModel

@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20
SASRec + SW 7.81±0.05 11.41±0.19 3.82±0.06 4.74±0.09 5±0.08 7.43±0.15 2.30±0.03 2.92±0.05 5.85±0.05 8.47±0.09 3.73±0.04 4.39±0.04 19.78±0.32 28.9±0.30 10.37±0.23 12.67±0.20
+ subset-split 8.27±0.18 12.05±0.23 4.12±0.11 5.07±0.12 5.43±0.10 8.11±0.06 2.53±0.04 3.20±0.04 6.18±0.05 9.08±0.06 3.85±0.02 4.58±0.03 19.87±0.18 28.59±0.29 10.38±0.13 12.57±0.16
+ crop 7.29±0.17 10.5±0.11 3.70±0.10 4.51±0.10 4.55±0.09 6.84±0.11 2.12±0.03 2.70±0.03 5.23±0.07 7.38±0.08 3.44±0.04 3.98±0.03 17.36±0.30 25.58±0.25 8.97±0.18 11.04±0.17
+ delete 8.22±0.18 11.97±0.15 4.08±0.11 5.02±0.09 5.19±0.14 7.84±0.21 2.38±0.06 3.05±0.08 5.98±0.14 8.75±0.06 3.75±0.06 4.44±0.03 20.33±0.17 29.39±0.27 10.57±0.13 12.86±0.14
+ mask 7.47±0.11 10.96±0.11 3.65±0.06 4.52±0.06 4.4±0.07 6.78±0.12 2.01±0.04 2.61±0.05 5.51±0.12 8.04±0.14 3.53±0.06 4.17±0.07 20.22±0.20 29.32±0.12 10.50±0.20 12.80±0.19
+ reorder 7.84±0.13 11.49±0.17 3.80±0.06 4.72±0.07 4.82±0.10 7.39±0.10 2.19±0.05 2.84±0.05 5.99±0.08 8.66±0.06 3.78±0.05 4.44±0.04 20.33±0.25 29.34±0.42 10.66±0.22 12.94±0.24
+ insert 8.08±0.15 11.80±0.17 4.03±0.10 4.96±0.11 5.24±0.06 7.98±0.13 2.42±0.03 3.10±0.06 6.18±0.09 9.05±0.17 3.83±0.04 4.55±0.06 19.59±0.48 28.22±0.13 10.27±0.23 12.45±0.13
+ replace 7.08±0.08 10.33±0.19 3.50±0.06 4.31±0.06 4.14±0.08 6.40±0.06 1.90±0.04 2.47±0.03 5.27±0.01 7.63±0.06 3.40±0.02 3.99±0.02 20.07±0.33 29.21±0.46 10.56±0.1 12.86±0.16
CL4SRec + SW 7.72±0.10 11.47±0.21 3.79±0.04 4.74±0.04 5.1±0.03 7.86±0.08 2.51±0.02 3.21±0.02 6.25±0.07 9.37±0.06 3.56±0.03 4.34±0.04 22.00±0.55 33.41±0.77 11.20±0.33 14.08±0.37
CoSeRec + SW 8.08±0.11 11.74±0.19 3.85±0.07 4.77±0.07 5.11±0.03 7.82±0.04 2.34±0.01 3.02±0.02 7.04±0.16 10.24±0.06 4.24±0.08 5.04±0.05 21.85±0.41 31.48±0.88 10.82±0.7 13.25±0.57
ICLRec + SW 8.11±0.09 11.75±0.06 3.82±0.04 4.73±0.04 5.34±0.10 8.09±0.16 2.42±0.04 3.12±0.05 6.52±0.07 9.46±0.09 3.98±0.05 4.72±0.05 22.68±0.36 31.74±0.37 12.24±0.32 14.53±0.33

4.1 Experimental Settings
4.1.1 Dataset. We conduct experiments on four widely used bench-
mark datasets with diverse distributions: Beauty and Sports is
constructed from Amazon review datasets1 [24]; Yelp2 is a famous
business recommendation dataset; ML-1m3 is a famous movie rat-
ing dataset comprising 1 million ratings from 6,000 users on 4,000
movies. We pre-process these datasets in the same way follow-
ing [16, 22, 34, 42, 43, 46] by removing items and users that occur
less than 5 times. Tab. 1 shows dataset statistics after pre-processing.

4.1.2 Evaluation Metrics. Following previous works [4, 22, 32, 39],
we use two widely adopted metrics to evaluate the performance
of SR models: top-𝐾 Recall (Recall@𝐾 ) and top-𝐾 Normalized Dis-
counted Cumulative Gain (NDCG@𝐾 ) with 𝐾 chosen from {10, 20}.
For each user’s interaction sequence, we reserve the last two items
for validation and testing, respectively, and use the rest to train
SR models. As suggested in [5, 18], we report the ranking results
obtained over the whole item set for a fair comparison.

4.1.3 Baseline Models. The performance of eight data augmen-
tation strategies is evaluated based on SASRec [16]. The details
of these data augmentation strategies have been described in Sec
3. Additionally, three state-of-the-art contrastive learning-based
sequential recommendation methods are chosen as baselines: (1)
CL4SRec [38]: An invariant CL-based SR model that employs three
sequence-level augmentation operators to generate positive pairs;
(2) CoSeRec [22]: A SR model that introduces two informative

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset
3https://grouplens.org/datasets/movielens/1m/

augmentation operators leveraging item correlations to create high-
quality views for invariant contrastive learning; (3) ICLRec [4]: A
general learning paradigm that leverages the clustered latent intent
factor and contrastive self-supervised learning to optimize SR.

4.1.4 Implementation Details. To ensure a fair comparison, all base-
lines are implemented and evaluated using the popular recommen-
dation framework RecBole [45] under identical settings. The models
are trained with the Adam optimizer for 300 epochs, employing a
batch size of 1024 and a learning rate of 0.001. For Beauty, Sports,
and Yelp datasets, the maximum sequence length is set to 50, while
for the ML-1m dataset, it is set to 200 due to its longer average
sequence length. For attention-based methods, the dropout rate
on the embedding matrix and attention matrix is set to 0.5 and we
perform grid search on other hyper-parameters to find the best
combination. The searching space is: number of self-attention lay-
ers ∈ {2, 3}, number of self-attention heads ∈ {2, 4}, hidden size
∈ {64, 128, 256} and embedding ∈ {64, 128, 256}. Regarding data
augmentation approaches, the slide-window has a length of 50 for
Beauty, Sports, and Yelp, and 200 for ML-1m to accommodate the
varying average sequence lengths 4. Other hyperparameters for
data augmentation are as follows: for "insert," "replace," "delete,"
and "mask," a single item is inserted, replaced, deleted, or masked;
the dropout factor \ of subset split is set to 0.25; the length of sub-
sequence in "crop" and "reorder" is set to 2. Both baselines and our
method are carefully tuned on the used datasets for best perfor-
mance. Additionally, we report the results based on experiments
on 5 different random seeds. Mean ± std are reported in this paper.

4Here we set the window length to be equal to the maximum sequence length, and
leave the investigation of the window length’s impact for future study.
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4.2 Overall Performance (RQ1)
4.2.1 Performance of single data augmentation strategy. In this
section, we explore the impact of eight sequence-level augmentation
strategies on recommendation performance and compare themwith
three classic contrastive learning-based SR models. Specifically, for
each sequence-level augmentation strategy, we select SASRec as the
backbone. Each instance in the training set undergoes augmentation
twice using the corresponding strategy. The results are presented
in Tab. 2, and we draw the following observations:
Most sequence-level data augmentations can improve the
performance of SASRec. Among the eight augmentation strate-
gies, slide-window yields the best results, followed by crop. Specifi-
cally, slide-window achieves average relative performance improve-
ments of 91.7% and 80.6% in terms of Recall@20 and NDCG@20,
respectively, on datasets with shorter average sequence lengths
(Beauty, Sports, and Yelp). Furthermore, on the ML-1m dataset with
longer sequences, slide-window demonstrates more significant im-
provements, with Recall@20 and NDCG@20 increasing by 2.4x
and 2.6x. Conversely, mask and replace perform poorly as data
augmentation methods, reducing the performance of SASRec on
Beauty, Sports, and Yelp datasets. This can be attributed to the
detrimental impact of noise introduced by these methods on model
training, particularly in shorter sequences.
Some sequence-level data augmentation strategies outper-
form contrastive learning-based SR models. Among them,
slide-window performs better than all contrastive learning methods,
while cropping achieves performance close to or even surpassing
that of contrastive learning methods in most cases. It is worth not-
ing that, on the ML-1m dataset with longer sequence lengths, all
sequence-level data augmentation strategies can achieve perfor-
mance comparable to or even superior to contrastive learning-based
methods.

4.2.2 Performance of combined data augmentation strategy. Fur-
thermore, we evaluate the performance of combining slide-window
with other sequence-level augmentation strategies or contrastive
learning methods, and summarize the results in Tab. 3. We observe
that, in most cases, the performance of slide-window + crop/mask
/replace is inferior to that of using slide-window alone. However,
the combination of slide-window with the other four augmentation
strategies, namely subset-split, delete, reorder, and insert, leads to
an improvement in recommendation performance, highlighting
the synergistic effect between these strategies. Particularly, on the
Beauty and Sports datasets, the slide-window + subset-split achieves
the highest performance among all augmentation combinations,
with an average relative improvement of 7.2% in Recall@20 and
8.3% in NDCG@20 compared to using slide-window alone.

Contrastive learning methods also exhibit notable performance
improvements when integrated with the slide-window strategy. For
instance, on the Yelp dataset, the combination of CoSeRec and
the slide-window strategy outperforms the use of CoSeRec alone,
achieving increases of 84.4% in Recall@20 and 66.3% in NDCG@20.
Similarly, on the ML-1m dataset, the combination of ICLRec and
the slide-window strategy achieves the best performance in most
cases, leading to improvements of 2.6x in Recall@20 and 3.1x in
NDCG@20 compared to using ICLRec alone. These results indicate

RQ1: How do different sequence-level augmentation techniques compare against state-of-
the-art contrastive learning based SR methods?
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Figure 3: Performance improvements (Recall@20) of each
data augmentation strategy over backbone model (i.e. SAS-
Rec) on Amazon Beauty dataset.

RQ1: How do different sequence-level augmentation techniques compare against state-of-
the-art contrastive learning based SR methods?
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Figure 4: Performance ranking variations of two data aug-
mentation strategies and three contrastive learning methods
in various cold-start scenarios.

that integrating the slide-window strategy with various sequence-
level augmentation techniques or contrastive learning-based SR
methods can further boost recommendation performance. It is note-
worthy that contrastive learning methods exhibit significant perfor-
mance improvements over pure data augmentation methods only
when employed in conjunction with the slide-window strategy. Oth-
erwise, contrastive learning methods demonstrate comparable or
even inferior performance compared to certain data augmentation
strategies.

4.3 Cold-start Performance (RQ2)
To compare different data augmentation strategies and contrastive
learning methods in the cold-start scenario, we first simulate dif-
ferent levels of cold-start by randomly sampling the training data
at proportions of [0.1, 0.2, 0.3, 0.4, 0.5]. Then, we apply each data
augmentation strategy or contrastive learning-based SR method
to the sampled training set and train the models using the aug-
mented data. Finally, we assess the performance of all models on
the original test set. Fig. 3 illustrates the relative performance im-
provement ratios of the different methods compared to SASRec (No
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Figure 5: Performance comparison of different data augmentation and contrastive learning methods under different item
popularity. For each dataset, we select the top-performing three data augmentation methods for comparison. Baseline denotes
no augmentation is utilized.

Figure 6: Performance comparison of slide-window augmentation and baseline (no augmentation) w.r.t. the change of the
popularity of target items. The x-axis denotes the average number of target item from test set as the target item in the training
set. The text next to the scatters denote which popularity interval it belongs to. For example, for the Amazon Beauty dataset,
"0" denotes popularity interval 0-50, "1" represents interval 50-100, and so on.

augmentation) on Amazon Beauty dataset. We observe that in most
cases, the less training data available, the more significant the rela-
tive performance improvement brought by different augmentation
strategies.

Furthermore, we rank different contrastive learning methods
and sequence-level augmentation methods (slide-window and crop)
based on their performance (Recall@20) in various cold-start sce-
narios and depict the changes in their rankings in Fig 4. It is evident
that slide-window consistently outperforms other sequence-level
augmentation methods and contrastive learning methods across
all five cold-start settings. Interestingly, while crop performs less
favorably than contrastive learning methods on the original train-
ing set (i.e., sampling ratio equals 100%), it surpasses all contrastive
learning methods when the sampling ratios are reduced to 10% and
20%.

4.4 Discussion on the Improved Performance
(RQ3)

We compare the top-performing data augmentation methods and
contrastive learning-based methods under varying item popularity
on four benchmark datasets, using Recall@20 as the performance
metric. In this work, the item popularity is defined as the frequency
of each item as the target item in the training set. With such stan-
dard, the partition of sequences with different popularity is fixed
and all data augmentation methods can be evaluated and fairly
compared using the same test sequences. As shown in Fig 5, we can
observe that all these methods, no matter direct data augmentation

or contrastive learning-based ones, tend to perform better when
the target item has higher popularity. To further explore how sim-
ple data augmentation methods can have significant performance
gains, we use the slide-window method as an example to test the
effect of item popularity change on the model performance. In Fig 6,
the ticks on the x-axis denote the average number of target item
from test set as the target item in the training set. Addtionally,
the text next to the scatters denotes which popularity interval it
belongs to, and scatter with same number indicates they belong
to the same target item popularity interval (e.g., scatters with text
"0" in Amazon Sports denotes they come from the first popularity
interval, namely 0-50, of Amazon Sports shown in Fig 5. As shown
in Fig 6, the variation in model performance with the number of
target items is approximately linear in the beginning, and then we
can observe marginal utility of the performance improvement (in
ML-1m dataset). This result, to some extent, indicates the model
performance improvement brought by slide-window is obtaine by
increasing the number of target item from test set as the target item
in augmented training set.

4.5 In-depth Analysis (RQ4&5)
Impact of the size of data augmentations 𝑛.We compare the
Recall@20 for different augmentation strategies when 𝑛 is set to 2,
3, 5, and 10. Fig 7 presents the results on the Amazon Beauty dataset,
where the left plot shows the results using a single sequence aug-
mentation, and the right plot shows the results of slide-window
augmentation combined with other augmentation strategies. We
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RQ: How do the size of data augmentation strategies affect model performance 
differently?
What are the impacts of the hyper-parameters on sequence-level augmentation 
techniques? 
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RQ: Is simple sequence-level augmentation applicable and effective across 
different model architectures?
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Figure 8: Effectiveness of slide-window on different model
architectures.

observe that when using a single strategy, the Recall@20 for most
augmentation strategies increases with the number of augmenta-
tions. However, when combined with slide-window augmentation,
more than half of the augmentation strategies show a decrease in
Recall@20 with larger size of augmentations. This could be attrib-
uted to the fact that excessive random augmentations introduce too
much random noise during model training, resulting in the model’s
inability to accurately capture user interests.
Impact of the sampling strategy.Memory-based sampling strate-
gies consistently outperform baseline and random-based sampling
strategies, as demonstrated in Fig 10. We could observe that the per-
formance gap between memory-based methods and random-based
methods remains as the memory-based sampling could provide
high-quality samples by utilizing correlation in memory rather
than random. Also, the replacement strategy shows a fluctuating
curve compared with the baseline while the insertion achieves sta-
ble enhancement. This is consistent with our observation in Tab 2.
Impact of the slide-window size. For slide-window augmenta-
tion, we also explore the impact of slide window size on recom-
mendation performance. Due to space limitation, we only present
the results on the beauty dataset. As shown in Fig. 9, we observe
that different slide window sizes do not have a significant impact
on recommendation performance, which may be due to the short
average sequence length of the beauty dataset.

Figure 9: Effectiveness of sliding window size on Beauty.

Figure 10: Comparison of augmentation sampling strategy.

Whether different model architectures can benefit from the
slide-window strategy? We select three classic sequential rec-
ommendation models: SASRec[16], Caser[34], and GRU4Rec [10],
representing transformer-based, CNN-based, and RNN-based SR
models, respectively. For each model architecture, we conduct train-
ing using the original training set and the training set augmented
with slide-window separately. The performance of these models
is shown in Fig 8. We find that after augmentation with the slide-
window, the performance of the three model architectures signifi-
cantly improves on all four datasets, particularly on ML-1m, where
slide-window provides a 3x to 4x performance improvement for
the three models. This indicates that the slide-window sequence
augmentation strategy is highly applicable and can provide more
effective supervision signals for model training.
Training and inference time. As shown in Tab. 4, although the
utilization of single or combined data augmentation strategies in-
evitably increases the volume of training data, their training time
is still lower than contrastive learning methods. This is because
contrastive learning methods usually introduce auxiliary tasks and
complex positive view construction strategies, which increase com-
putational overhead. Additionally, sequence-level augmentation
strategies do not increase the model’s inference time, as they only
affect the training phase of the backbone model.

5 RELATEDWORK
5.1 Sequential Recommendation
Intensive studies about recommender systems of various real-world
scenarios found that sequential behaviors are important signals
to model user preferences. And many efforts have been devoted
to leveraging sequential behaviors to better capture behavior pat-
terns. The very early and the most intuitive method is adopting the
Markov Chain assumption for sequential recommendation [9, 29],
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Table 4: Comparison of training time and inference time be-
tween different data augmentation strategies and contrastive
learning methods.

Alone +SWMethods Recall@20 Training time (s) Recall@20 Training time (s) Test time (s)

No aug. 0.065 335.76 0.114 691.72 0.20
slide-window 0.114 691.72 - - -
subset-split 0.070 463.32 0.120 1232.58 0.20
replace 0.062 495.05 0.103 1443.56 0.20
reorder 0.069 453.19 0.114 1766.25 0.19
mask 0.063 510.61 0.109 1064.83 0.20
insert 0.068 431.12 0.118 2023.55 0.20
delete 0.071 467.31 0.119 2642.98 0.19
crop 0.077 539.55 0.105 1894.35 0.19
CoSeRec 0.070 4650.78 0.117 13800.46 0.25
CL4SRec 0.079 3321.12 0.114 8941.15 0.20
ICLRec 0.071 1436.71 0.117 4055.04 0.26

where the next interaction is conditional on the past few interac-
tions. Later, with the population of deep learning, many DL-based
models were proposed tomodel sequential behaviors. GRU4Rec [10]
is one of the most well-known SRmodels, of which Gated Recurrent
Unit (GRU) is first introduced to model sequential behaviors. In
addition, many other deep learning models were also introduced
to seek better performance, such as Recurrent Neural Network
(RNN) [21], Convolutional Neural Network (CNN) [35], Graph Neu-
ral Network (GNN) [2], and Multilayer Perceptron (MLP) [47]. Ex-
cept for the aforementioned models, attention-based models are
being intensively studied and arewidely being adopted in sequential
recommendation tasks [17, 32]. Besides, there are many interest-
ing ongoing works focusing on other techniques like contrastive
learning [4, 22, 38], reinforcement learning [40], and relation aware-
ness [13].

5.2 Contrastive Learning for Recommendation
Contrastive Learning (CL) aims to improve the quality of represen-
tations by reducing the distance between positive views generated
from the same data instance while separating them from negative
views in a latent space. In the field of sequential recommenda-
tion, sequence-level data augmentation or feature-level data aug-
mentation is often used to create positive views, with augmented
views of other data instances in the same training batch serv-
ing as negative views. For instance, CL4SRec [38] employed three
sequence-level data augmentation techniques, namely cropping,
masking, and reordering, to construct positive views. Subsequently,
CoSeRec [22] proposed to generate robust augmented sequences
based on item correlations. To mitigate the representation degra-
dation, DuoRec [28] utilized feature-level augmentation based on
dropout to better maintain semantic consistency between positive
views. Despite these methods claiming that contrastive learning
can significantly enhance the performance of recommender sys-
tems, they do not consider direct data augmentation as a baseline
and thus cannot ascertain whether contrastive learning has a dis-
tinct advantage in mitigating data sparsity compared direct data
augmentation.

5.3 Data Augmentation for Recommendation
Data augmentation is an effective method to improve the perfor-
mance of DL-based models, particularly when the training data

is scarce. In CV and NLP, data augmentation has drawn much at-
tention and is widely adopted in model training. However, as for
recommender systems, compared with CV or NLP, studies regard-
ing data augmentation are still at a rather rudimentary stage.

For sequential recommendation tasks, basic data augmentation
approaches create augmented sequences out of the original se-
quences themselves through simple transformations (e.g., crop,
reorder), small perbulation (e.g., noise/redundancy injection, syn-
onym replacement [30]), or subset selection (e.g., slide-window [35],
subset split [33], and item masking [30]). Recent works regarding
the aforementioned approaches focus on time-aware approaches,
which better retain time coherence between the augmented se-
quences and the original ones, and further enhance the model’s per-
formance [6, 27]. Except for the aforementioned basic approaches,
some data augmentation approaches choose to create highly plausi-
ble sequences by synthesizing and injecting/prepending fake sam-
ples into the original sequence [11, 14, 23], or modeling counter-
factual data distribution [37, 44]. Apart from being applied in the
sequential recommendation, data augmentation techniques are also
applied in collaborative filtering to alleviate the data sparsity prob-
lem [36] or bypass negative sampling [19] during the model train-
ing.

The work most related to ours is [30], which explored the impact
of four augmentation strategies on sequential recommendation,
namely noise injection, redundancy injection, item masking, and
synonym replacement. Different from it, our work benchmarked
various direct data augmentation methods and contrastive learning
methods, providing comprehensive analysis of the effectiveness of
sequence-level data augmentation in sequential recommendation
research, and offers insights into the improvements achieved.

6 CONCLUSION AND FUTUREWORK
In this paper, we benchmark eight widely used sequence-level data
augmentation strategies, as well as three state-of-the-art contrastive
learning SR methods, on four real datasets under both full data and
cold-start settings. The results reveal that the performance of SRS
can be improved by solely relying on data augmentation with-
out using contrastive learning paradigm. Therefore, the current
research community might underestimate the effectiveness of sim-
ple sequence-level augmentation and excessively emphasize the
necessity of contrastive learning for sequential recommendation
tasks. In the future, we will extend the scope of benchmarking to
include a broader range of data augmentation strategies and con-
trastive learning methods, providing theoretical justification for
the effectiveness of sequence augmentation.
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