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Abstract

Organic chemistry underpins small-molecule drug discovery, yet—unlike structural1

biology—it lacks large, unbiased datasets for training broadly generalizable mod-2

els. We report the largest microliter-scale high-throughput experimentation (HTE)3

campaign to date: 200,000 reactions spanning three workhorse classes (Amide4

Coupling, Suzuki Coupling, Buchwald–Hartwig Coupling) involving 30,000 prod-5

ucts—over 4× larger than the largest publicly disclosed dataset to date. This6

scale and diversity enable reaction-outcome predictors that generalize to unseen7

substrates. We introduce UniReact, a molecule-attention Transformer built on pre-8

trained molecular encoders. Across the three reaction classes, our models achieve9

PR-AUC 2–3× over random and ROC-AUC in the 70–86% range. We further10

establish scaling laws for reaction-outcome prediction spanning three orders of11

magnitude of HTE data, and for one class up to 100,000 reactions—to our knowl-12

edge, the broadest HTE scaling study to date. In a human study on Suzuki coupling13

prioritization, our models outperform PhD-level chemists (precision 87.1% at 50%14

recall vs. 60.8%). Finally, we show the first, to our best knowledge, demonstration15

of zero-shot transfer to an external HTE dataset. Taken together, these results16

support scaled HTE as a viable path to broadly applicable predictors of chem-17

ical reactivity that surpass human intuition and ultimately help discover novel18

chemistry.19

1 Introduction20

The long-term ambition of synthetic chemistry is universal synthesis—the ability to make any physi-21

cally realizable molecule. Unlocking broader chemical space requires two advances: discovering22

new reactions and developing robust models for synthesis planning and reaction-outcome prediction.23

Today, however, drug discovery remains constrained to compounds that are easy to synthesize [Blake-24

more et al., 2018].25

The discovery of the Nobel Prize-winning Suzuki coupling in the 1980s reshaped medicinal chemistry.26

Drug hunters were able to form carbon–carbon bonds between sp2 carbons. This invention plausibly27

contributed to the proliferation of small-molecule drugs rich in such bonds after the 1980s [Leeson28

et al., 2021].29

Despite our mastery of organic chemistry, humans have relatively limited accuracy in predicting30

the outcomes of chemical reactions. This is evidenced by the high failure rate of human-executed31

experiments, reaching up to 40% [Buitrago Santanilla et al., 2015, Raghavan et al., 2024].1 In many32

1This may stem from limited feedback: unlike domains like chess, chemists perform only thousands of
reactions in a lifetime, with most learning happening offline from textbooks, papers, and colleagues. These
sources rarely report failed experiments, and the experiments performed are highly biased toward successes and
chemist intuition.
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cases, this is due to issues beyond intrinsic reactivity, such as substrate instability, workup effects33

on the product, poor solubility, or unforeseen side reactions. Chemists routinely troubleshoot such34

situations [Frontier, 2025].35

Limited predictive power is a pressing issue. Automation remains limited, and many small molecules36

in early-stage drug discovery are synthesized in countries with lower labor costs. This manifest in37

the fact that organic synthesis accounts for roughly 40% of the cost of discovering a drug and is a38

significant contributor to long delays [Paul et al., 2010].39

High-throughput experimentation (HTE) is a natural way to generate large, relatively unbiased40

reaction datasets, unlocking both the discovery of novel chemistry and the training of robust predictive41

models. In other fields, major AI advances have closely followed the availability of large-scale42

datasets—for example, the Protein Data Bank enabled breakthroughs in structure prediction such as43

AlphaFold [PDB, 2022, 2025, Jumper et al., 2021]; Internet-scale corpora unlocked few-shot language44

models [Brown et al., 2020]; and massive labeled image collections made possible Transformer-based45

vision systems [Dosovitskiy et al., 2021]. Chemistry lacks an equivalent resource.46

Most chemical HTE campaigns to date have focused on a narrow product scope, optimizing yields for47

a small number of products by varying conditions (e.g., temperature, time) [Shevlin, 2017, Mennen48

et al., 2019, Krska et al., 2017]. Such targeted designs provide limited data for learning about the49

broader chemical space, which is vast—the number of drug-like molecules exceeds 1060. See also50

Figure 1.51

We report the largest microliter-scale reaction campaign to date, spanning three key medicinal52

chemistry reaction classes: Amide Coupling, Suzuki Coupling, and Buchwald–Hartwig Coupling.53

These classes account for approximately 56.8% of reported large-scale syntheses [Brown and Boström,54

2016]. The dataset comprises 200, 000 microliter-scale reactions, > 1, 000 unique substrates, and55

30, 000 unique products.56

This chemical diversity and scale enable training of robust, superhuman models that predict outcomes57

on unseen substrates. Our main contributions are:58

1. We show robust generalization to unseen building blocks on the largest HTE dataset across59

three workhorse reaction classes. We achieve PR-AUC 2–3× over a random baseline and60

ROC-AUC in the 70–86% range. We also present the first scaling laws for reaction-outcome61

prediction across three orders of magnitude of microliter-scale HTE data, with smooth62

power-law trends.63

2. We show that our models outperform PhD-level synthetic chemists on Suzuki coupling64

prioritization (precision 87.1% at 50% recall vs. 60.8% for humans).65

3. We introduce UniReact: a molecular-attention Transformer that surpasses a strong graph-66

based model on the largest subset of our dataset and exhibits complementary inductive67

biases that improve performance when ensembled.68

4. We show the first, to our best knowledge, demonstration of zero-shot generalization to an69

external HTE dataset. We show a model trained on our subset of Amide Couplings achieves70

70% ROC-AUC on the dataset from [Zhang et al., 2025].71

2 Related work72

Published reaction databases (textbooks, papers, patents, etc.) are heavily biased toward successful73

outcomes and seldom report negative or low-yield reactions. For example, Angello et al. [2022]74

attempted to mine the literature for general Suzuki–Miyaura conditions and explicitly noted that75

their ML approach “failed” in part because of “a lack of published (or otherwise accessibly archived)76

negative results.” Saebi et al. [2023] likewise emphasize that the “lack of publicly available, large,77

and unbiased datasets” is a key roadblock for ML in chemistry. Efforts like the Open Reaction78

Database (ORD) [Kearnes et al., 2021] aim to standardize and share reaction data, but existing79

large collections (CAS, Reaxys, USPTO, commercial patent databases, etc.) often contain the same80

literature-derived chemistry. Indeed, King-Smith et al. [2024] note that datasets such as CAS, Reaxys,81

USPTO and even the ORD have “a high level of overlap” with published reactions, rendering their82

internal “reactomes” largely indistinguishable from the literature’s. These observations underscore83
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Figure 1: Summary of our microliter-scale HTE dataset.

the need for new experimental data sources (especially including failed experiments) to train robust84

predictive models.85

High-throughput experimentation (HTE) campaigns provide one such source. Chemical high-86

throughput experimentation (HTE) has evolved from early plate-based condition screens to a routine87

tool in pharmaceutical process and medicinal chemistry [Shevlin, 2017, Mennen et al., 2019, Krska88

et al., 2017]. Historically, most HTE campaigns have focused on optimizing reaction conditions,89

often leveraging Bayesian Optimization to sequentially prioritize experiments [Shields et al., 2021].90

This focus is driven by the practical need to maximize yield in synthesis, from small to large scale.91

As a result, HTE has become a standard technique in commercial laboratories.92

In contrast, relatively few studies have conducted HTE campaigns that target broad regions of93

chemical space. For instance, a recent study sought to identify a set of conditions effective across a94

wide range of products [Angello et al., 2022], but tested fewer than 100 unique products—limiting95

the generalizability of any models trained on this data. Another effort [King-Smith et al., 2024]96

reported 39, 000 chemical reactions spanning various reaction classes, yet included only 290 unique97

products. The largest HTE study reported to date is a 50, 000-reaction screen of the Ugi (3-component)98

reaction [Götz et al., 2025], which involved 171 building blocks, but was performed under a single99

set of conditions. Key datasets are summarized in Figure 1. [Zhang et al., 2025]100

Machine learning for reaction outcomes has made rapid progress, but is indeed largely limited by101

data. Early work (e.g., Ahneman et al. [2018a]) showed that models like random forests or simple102

neural nets could predict yields for narrowly defined coupling reactions. More recently, message-103

passing graph neural networks have become popular (e.g., the Chemprop framework [Yang et al.,104

2019]) for chemical property prediction, including reaction success. However, these models typically105

assume relatively small, domain-specific datasets and often fail to generalize beyond their training106

chemistries.107

HTE coupled with automation and AI is also enabling autonomous discovery. Mahjour et al. [2024]108

proposed new multicomponent reactions via an automated workflow and confirmed two by robotic109

parallel experiments. Angello et al. [2022] used a closed-loop robotic system guided by ML to identify110

general Suzuki conditions. In contrast, purely theoretical approaches (e.g., quantum calculations) can111

illuminate mechanisms and catalyst design but are too resource-intensive for broad screening [Hayashi112

et al., 2023]. Overall, unbiased, high-throughput experimental data will be essential for training ML113

models that surpass human intuition.114

3 Methods115

3.1 High-throughput Experimentation116

We begin by outlining our high-throughput experimentation (HTE) program.117
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While fields like structural biology and AI have advanced rapidly thanks to large, high-quality datasets118

such as the Protein Data Bank PDB [2022, 2025] and the Internet, chemistry still lacks a comparable119

resource. We see HTE as the key to building such a dataset, but it must be specifically designed to120

support broad, generalizable applications.121

Our goal is to develop models with a broad, generalizable understanding of chemistry that can be122

readily fine-tuned for diverse downstream applications. To this end, our approach differs from much123

of the prior literature in several key ways:124

1. We prioritize a wide diversity of substrates, while keeping the number of screened condition125

sets small (4–10);126

2. We aim for 10× to 100× larger number of unique products than most previous studies;127

3. We aim for semi-quantitative yield estimation using proprietary analytical software.128

We conduct reactions at the microliter scale and millimolar concentrations. This scale offers a129

practical compromise: it is small enough for high-throughput, yet large enough to ensure reliable,130

high-quality data. Reagents are prepared as stock solutions in DMSO, with solubility checked by131

hand. Reactions are set up on 96-well plates using Opentrons pipetting robots. After reformatting,132

quenching, and workup, we analyze products by LC/MS, using autosampling from 384-well plates.133

At the core of our workflow is proprietary software for processing analytical chemistry data. Unlike134

previous approaches, we use spectra curated by analytical chemists to train our software. This135

enables more accurate peak assignment and integration, producing a robust yield estimator. For136

semi-quantitative yield assessment, we calibrate the method on a held-out set of product standards.137

The entire process is orchestrated by software. A centralized metadata store acts as the source of138

truth for both models and chemists. Analytical results are processed automatically and saved to cloud139

storage. These automation steps are crucial—they minimize human error and keep the operation140

running quickly.141

3.2 UniReact: a model for scaled HTE142

Models with minimal inductive bias, such as the Vision Transformer [Dosovitskiy et al., 2021], often143

outperform specialized architectures on large datasets. However, HTE datasets have historically144

favored models with stronger domain-specific assumptions [Ahneman et al., 2018b, Shields et al.,145

2021, Saebi et al., 2023].146

Motivated by the scale of our dataset, we introduce UniReact: it embeds substrates and products147

using pretrained UniMolV2 [Zhou et al., 2024], processes each molecule with the Relative Molecule148

Attention Transformer (RMAT) [Maziarka et al., 2024], and aggregates per-compound representations149

into a reaction embedding. Figure 2 summarizes the architecture.150

Let Ni denote the number of atoms in the ith molecule. Each UniMolV2 layer l operates on an151

atomic representation xl ∈ RNi×da and a pair representation pl ∈ RNi×Ni×dp . Following [Zhou152

et al., 2024], we compute the initial x0 and p0 using RDKit and graph features and the molecular153

conformation.154

Updating the pair representation scales computationally as O(N2
i dp). To alleviate this computational155

cost, we only keep the first k layers of the encoder and process the molecular representation further156

with a computationally cheaper Relative Molecule Attention Transformer (RMAT).157

RMAT extends standard Transformer self-attention by incorporating molecular graph information158

directly into the attention computation. For a molecule with atom feature matrix X and pairwise159

features pl, the attention mechanism is further biased as follows:160

A(X,pl) = Softmax

(
QK>√

dk
+ fdist(D) + fadj(A) + fpair(p

l)

)
V, (1)

where Q = XWQ, K = XWK , and V = XWV are the usual query, key, and value projections;161

D encodes pairwise atomic distances, A encodes adjacency (bond) information, and fdist, fadj, and162

fpair are learned or fixed functions mapping these features to attention biases. The term fpair(p
l)163

specifically injects the pairwise representations from UniMolV2 as an additional bias to the attention164

logits.165
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Figure 2: UniReact architecture. Each molecule is processed by pretrained UniMolV2 encoders to
produce atom and pair embeddings. Relative Molecule Attention Transformer (RMAT) operates per
molecule to yield a per-compound embedding; per-compound embeddings are averaged to obtain the
reaction embedding hreact, which feeds K prediction heads.

Finally, the representation of the first token (atom) is averaged across input molecules. The final166

classification is made by a separate MLP head for each set of conditions.167

By default, we use 2D conformers to represent molecules to skip the costly 3D embedding procedure,168

which improves throughput without degrading performance empirically. We hypothesize that the169

pretrained UniMolV2 has the capability to quickly learn to update the conformation.170

4 Experiments171

Our primary objective is to develop models that can assist in planning syntheses during early-stage172

drug discovery. This goal shapes several key choices in our evaluation strategy.173

We evaluate models on reactions where both substrates and the product are held out from training.174

This scenario closely mirrors real-world synthesis, where chemists typically encounter novel products175

and substrates due to the vastness of chemical space.176

Because our focus is on early discovery, we consider the practical context: new structures are177

experimentally validated using only small amounts of product (typically milligrams). Therefore,178

achieving even modest yields is sufficient and cost-effective. In our experiments, we set a 5% yield179

threshold and frame the task as a classification problem.180

For evaluation, we use the Precision Area Under the Curve (PR-AUC) as our primary metric. PR-AUC181

quantifies the average precision when reactions are prioritized by the model. For reference, a random182

baseline achieves a PR-AUC equal to the proportion of positive reactions in the dataset.183

Our central claim is that scaling high-throughput experimentation enables the development of robust184

models for reaction outcome prediction. This principle underpins the design of our experiments.185

4.1 Robust generalization to unseen substrates186

We compare UniReact to Chemprop, a widely used graph-based model [Heid et al., 2023]. For each187

of the three reaction classes, we evaluate models for predicting reaction outcomes for both novel188

substrates and products.189

Unless noted otherwise, we use the UniMolV2-84M pretrained encoder. RMAT is configured with 2190

layers and 8 attention heads (dropout 0.1), with hidden size tied to the UniMol embedding.191

For UniReact, we train with learning rate in {1.2× 10−5, 2.5× 10−5} and the number of compound192

encoder layers in {2, 3, 4}. For Chemprop, we train with hidden sizes in {250, 500}, depths in {2, 3},193

and learning rates in {2× 10−4, 5× 10−3}, testing 12 hyperparameter combinations for Chemprop194

and 6 for UniReact. To evaluate generalization to unseen substrates, we exclude 40 boronic acids and195

40 halides from the training set; the validation split remains random. We evaluate an ensemble of196

models trained with different hyperparameters, which we observe to achieve better performance on197

the out-of-distribution test set than tuning hyperparameters based on the validation set. All models198

use early stopping based on the ROC-AUC metric on the validation set.199

Table 1 summarizes the results for all three reaction classes.200
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Method Suzuki Amide Buchwald-Hartwig
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC

Random 13% ± 1% 50% 43% ± 4% 50% 19% ± 5% 50%
Chemprop 48.8% ± 5% 84.9% ± 3% 69.8% ± 8% 75.3% ± 2% 35% ± 14% 66% ± 5%
UniReact 52.8% ± 2% 86.2% ± 2% 69.5% ± 13% 74.5% ± 14% 34% ± 12% 66% ± 7%
Ensemble 53.8% ± 10% 86.0% ± 2% 70.8% ± 8% 75.9% ± 2% 36% ± 14% 68% ± 7%

Table 1: Performance comparison of methods on three reaction datasets, with error bars indicating
standard deviation across 3 runs. Random baseline shows expected performance for random predic-
tions. Best results for each column are in bold. Ensemble combines Chemprop and UniReact models
with all hyperparameter configurations.

Both models demonstrate strong generalization to unseen building blocks, achieving PR-AUC scores201

that are 2–4× higher than the random baseline.202

On the largest dataset (Suzuki coupling, N ≈ 100,000 reactions), UniReact achieves a PR-AUC203

of 52.8%± 2% and ROC-AUC of 86.2%± 2%, outperforming Chemprop (PR-AUC 48.8%± 5%,204

ROC-AUC 84.9% ± 3%). This result supports our hypothesis that more expressive models excel205

as dataset size increases. To our knowledge, this is the first demonstration of a Transformer-based206

model surpassing a graph-based model on a high-throughput reaction dataset with unseen substrates.207

On the Buchwald-Hartwig coupling dataset (N ≈ 30,000 reactions), Chemprop achieves a PR-AUC208

of 35%± 14% and ROC-AUC of 66%± 5%, while UniReact achieves a PR-AUC of 34%± 12%209

and ROC-AUC of 66%± 7%. For the amide coupling dataset (N ≈ 45,000 reactions), both models210

perform similarly: UniReact achieves a PR-AUC of 69.5%± 13% and ROC-AUC of 74.5%± 14%,211

while Chemprop achieves a PR-AUC of 69.8%± 8% and ROC-AUC of 75.3%± 2%.212

We hypothesize that UniReact and Chemprop exhibit complementary inductive biases. Motivated213

by this, we also compare the performance of UniReact to an ensemble of Chemprop and UniReact.214

We average predictions of all models with all hyperparameter configurations. We observe that the215

ensemble outperforms both models across all datasets.216

4.2 Scaling laws for reaction outcome prediction across three orders of magnitude217

The large scale of our datasets raises a natural research question: does scaling to the order of 100, 000218

individual reactions improve generalization and robustness?219

To investigate this, we trained UniReact on the Suzuki coupling subset of our dataset, varying220

training set sizes from approximately 1, 000 to 100, 000 reactions. For each training configuration,221

we optimized the learning rate from the set {1 × 10−4, 2 × 10−4, 4 × 10−4}. Performance was222

averaged over 4 random seeds with repeated train-test splits. We evaluated on reactions with both223

unseen substrates and unseen products. The results are summarized in Fig. 3.224

Performance as measured by PR-AUC increased from 20% to 50%, representing a 2.5× improvement225

in precision across different recall values. ROC-AUC increased from 57% to 81%.226

4.3 Superhuman performance in classifying Suzuki coupling reactions227

Next, we evaluated our models against human experts. Three PhD-level synthetic chemists were asked228

to classify Suzuki coupling reactions as achieving 10% or higher LC/MS yield. Their predictions229

were averaged across all participants.230

We evaluated a set of 100 Suzuki coupling reactions, randomly sampled from our dataset and balanced231

to ensure approximately 50% were successful.232

We use precision at 50% recall as our metric. Chemists are routinely asked to prioritize reactions233

based on their likelihood of success, e.g., when preparing quotations for a synthesis. This metric234

reflects that scenario by measuring the ability to prioritize reactions more likely to succeed when235

allowed to reject 50% of reactions.236

Figure 4 shows the results. Chemprop outperforms the chemists, achieving 87.1% precision compared237

to 60.8% for humans, representing a 1.7× improvement over the random baseline.238
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Figure 3: Scaling laws on Suzuki coupling across three orders of magnitude of dataset size.
Performance improves smoothly with data scale across three orders of magnitude. Points show mean
with ± one s.d. error bars; red dashed lines are power-law fits in log–log space.
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Figure 4: Superhuman performance at discriminating failures vs. successful Suzuki coupling
reactions. Chemists are routinely asked to prioritize reactions based on their likelihood of success,
e.g., when preparing quotations for a synthesis. We compare precision at 50% recall for a random
baseline, the average prediction of three organic chemists, and Chemprop.

4.4 Zero-shot transfer to an external HTE dataset239

Finally, we tested the transferability of our models to an external HTE dataset. We used the dataset240

from [Zhang et al., 2025], which contains 47, 000 amide coupling reactions. The dataset contains241

over 90 different condition sets, which exceeds the number of condition sets in our dataset. We242

performed closest matching based on similarity of conditions.243

We trained Chemprop on our amide-coupling subset and evaluated it zero-shot on the external dataset.244

Figure 5 summarizes the results: the external products largely lie within the manifold spanned by our245

products, and the model achieves ROC-AUC of 70% without any fine-tuning.246

5 Limitations247

The scale and design of our dataset introduce several important limitations that should be considered248

when applying our data and models. Here, we briefly outline the key limitations and discuss their249

potential impact on model applicability.250

First, our yield estimates are not based on product standards, as synthesizing standards at this scale is251

not practical. Consequently, products with unusual absorbance profiles may be misclassified. While252
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Figure 5: Zero-shot transfer to an external HTE dataset. Left: products from Zhang et al. [2025]
occupy a region largely contained within the product manifold from our HTE campaign. Right:
zero-shot performance of a model trained on our amide-coupling subset on the external dataset.

our yield estimation is reliable for distinguishing failures from successes at low yield thresholds, it is253

not suitable for precise quantitative yield prediction.254

Second, our reactions are performed under conditions that differ from those used in larger-scale255

synthesis, most notably at much lower concentrations (typically at least 10 times lower) and with less256

efficient mixing. This leads to lower success rates for many reaction classes.257

Despite these and other limitations, the dataset remains highly valuable. As with large language258

models pretrained on Internet data, we expect most downstream applications to benefit from additional259

fine-tuning. To further test the transferability of our models, we have also demonstrated that our260

models can transfer to external data sources.261

6 Conclusions262

We scaled microliter high-throughput experimentation to 200,000 reactions across three workhorse263

reaction classes with emphasis on product diversity. This breadth enables models that robustly264

generalize to unseen substrates and products, with 2–3× gains in PR-AUC over random and ROC-265

AUC in the 0.7–0.85 range. We report the first scaling laws for reaction-outcome prediction spanning266

three orders of magnitude in data, and we demonstrate superhuman prioritization on Suzuki (precision267

87.1% at 50% recall vs. 60.8% for PhD chemists). We also show the first demonstration of zero-shot268

transfer to an external HTE dataset.269

We also introduced a molecular-attention Transformer that surpasses a graph-based model on the270

largest subset of the dataset and shows complementary inductive biases to the graph-based model.271

These results support our thesis: scaling unbiased HTE is a practical path to robust reaction-outcome272

prediction—enabling models that exceed human intuition about existing chemistry and ultimately273

help discover novel chemical reactions.274

Looking ahead, our main priorities are: (i) applying our methodology to a rarely used but promising275

reaction class; (ii) scaling up by another order of magnitude; (iii) continually improving dataset276

quality, particularly by refining yield estimation; and (iv) automatically extracting new chemical277

knowledge from the dataset, such as understanding side-product reactivity and the relationships278

between structure, conditions, and reactivity.279
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