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Abstract

Organic chemistry underpins small-molecule drug discovery, yet—unlike structural
biology—it lacks large, unbiased datasets for training broadly generalizable mod-
els. We report the largest microliter-scale high-throughput experimentation (HTE)
campaign to date: 200,000 reactions spanning three workhorse classes (Amide Cou-
pling, Suzuki Coupling, Buchwald—Hartwig Coupling) involving 30,000 unique
products—over 4 x larger than the largest publicly disclosed HTE dataset to date.
This scale and diversity enable reaction-outcome predictors that generalize to un-
seen substrates. We introduce UniReact, a molecule-attention Transformer built
on pretrained molecular encoders. Across the three reaction classes, our mod-
els achieve PR-AUC 2-3 x higher than a random baseline and ROC-AUC in the
70-86% range. We further establish scaling laws for reaction-outcome prediction
of HTE data. In a human study on Suzuki Coupling prioritization, our models
outperform PhD-level chemists (precision 87.1% at 50% recall vs. 60.8%). Finally,
we show the first, to the best of our knowledge, demonstration of zero-shot transfer
to an external HTE dataset. Taken together, these results support scaled HTE as
a viable path to broadly applicable predictors of chemical reactivity that surpass
human intuition and ultimately help discover novel chemistry.

1 Introduction

The long-term ambition of synthetic chemistry is universal synthesis—the ability to make any physi-
cally realizable molecule. Unlocking broader chemical space requires two advances: discovering
new reactions and developing robust models for synthesis planning and reaction-outcome prediction.
Today, however, drug discovery remains constrained to compounds that are easy to synthesize [Blake-
more et al., 2018].

The discovery of the Nobel Prize-winning Suzuki Coupling in the 1980s reshaped medicinal chemistry.
Drug hunters were able to form carbon—carbon bonds between sp? carbons. This reaction plausibly
contributed to the proliferation of small-molecule drugs rich in such bonds after the 1980s [Leeson
et al.,[2021].

Despite our mastery of organic chemistry, humans have relatively limited accuracy in predicting
the outcomes of chemical reactions. This is evidenced by the high failure rate of human-executed
experiments, reaching up to 40%@ [Buitrago Santanilla et al.,[2015} Raghavan et al.,|2024]]. In many
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This may stem from limited feedback: unlike domains like chess, chemists perform only thousands of
reactions in a lifetime, with most learning happening offline from textbooks, papers, and colleagues. These
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cases, this is due to issues beyond intrinsic reactivity, such as substrate instability, workup effects
on the product, poor solubility, or unforeseen side reactions. Chemists routinely troubleshoot such
situations [[Frontier] | 2025].

Limited predictive power is a pressing issue. Automation remains limited, and many small molecules
in early-stage drug discovery are synthesized in countries with lower labor costs. This manifests
in the fact that organic synthesis accounts for roughly 40% of the cost of drug discovery and is a
significant contributor to long delays [Paul et al.l 2010].

High-throughput experimentation (HTE) is a natural way to generate large, relatively unbiased
reaction datasets, unlocking both the discovery of novel chemistry and the training of robust predictive
models. In other fields, major Al advances have closely followed the availability of large-scale
datasets—for example, the Protein Data Bank enabled breakthroughs in structure prediction such as
AlphaFold [PDB} 2022, 2025, Jumper et al.,2021]]; Internet-scale corpora unlocked few-shot language
models [Brown et al.|[2020]; and massive labeled image collections made possible Transformer-based
vision systems [[Dosovitskiy et al.,[2021]]. Chemistry lacks an equivalent resource.

Most chemical HTE campaigns to date have focused on a narrow product scope, optimizing yields for
a small number of products by varying conditions (e.g., temperature, time) [[Shevlin| 2017, Mennen
et al., 2019} |Krska et al., 2017]]. Such targeted designs provide limited data for learning about the
broader chemical space, which is vast—the number of drug-like molecules exceeds 10°°. See also

Figure

We report the largest microliter-scale reaction campaign with LC—UV—MSE] analysis to date, spanning
three key medicinal chemistry reaction classes: Amide Coupling, Suzuki Coupling, and Buch-
wald—Hartwig Coupling. These classes account for approximately 56.8% of reported large-scale
syntheses [[Brown and Bostrom| 2016]]. The dataset comprises 200, 000 microliter-scale reactions,
> 1,000 unique substrates, and 30, 000 unique products.

This chemical diversity and scale enable training of robust models that outperform PhD-level synthetic
chemists and predict outcomes on unseen substrates. Our main contributions are:

1. We show robust generalization to unseen building blocks on the largest HTE dataset across
three workhorse reaction classes. We achieve PR-AUC 2-3x over a random baseline and
ROC-AUC in the 70-86% range. We also show that both metrics follow smooth scaling
laws.

2. We show that our models outperform PhD-level synthetic chemists on Suzuki Coupling
prioritization (precision 87.1% at 50% recall vs. 60.8% for humans).

3. We introduce UniReact: a molecule-attention Transformer that surpasses a strong graph-
based baseline, and exhibits complementary inductive biases that improve performance
when ensembled.

4. We show the first, to the best of our knowledge, demonstration of zero-shot transfer to an
external HTE dataset. We show a model trained on our subset of Amide Couplings achieves
70% ROC-AUC on the dataset from [Zhang et al., 2025].

2 Related work

Published reaction databases (textbooks, papers, patents, etc.) are heavily biased toward successful
outcomes and seldom report negative or low-yield reactions. For example, |Angello et al.| [2022]]
attempted to mine the literature for general Suzuki—Miyaura conditions and explicitly noted that
their ML approach “failed” in part because of “a lack of published (or otherwise accessibly archived)
negative results.” Saebi et al.|[2023]] likewise emphasize that the “lack of publicly available, large,
and unbiased datasets” is a key roadblock for ML in chemistry. Efforts like the Open Reaction
Database (ORD) [Kearnes et al., [2021]] aim to standardize and share reaction data, but existing
large collections (CAS, Reaxys, USPTO, commercial patent databases, etc.) often contain the same

sources rarely report failed experiments, and the experiments performed are highly biased toward successes and
chemist intuition.

3Liquid chromatography—-ultraviolet-mass spectrometry (LC-UV-MS) is an analytical method that allows for
estimation of the yield of the reaction based on absorbance of the product.
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Figure 1: Summary of our microliter-scale HTE dataset.

literature-derived chemistry. Indeed, [King-Smith et al.|[2024] note that datasets such as CAS, Reaxys,
USPTO and even the ORD have “a high level of overlap” with published reactions, rendering their
internal “reactomes” largely indistinguishable from the literature’s. These observations underscore
the need for new experimental data sources (especially including failed experiments) to train robust
predictive models.

High-throughput experimentation (HTE) campaigns provide one such source. Chemical high-
throughput experimentation (HTE) has evolved from early plate-based condition screens to a routine
tool in pharmaceutical process and medicinal chemistry [Shevlin, 2017, Mennen et al.} 2019} [Krska
2017). Historically, most HTE campaigns have focused on optimizing reaction conditions,
often leveraging Bayesian Optimization to sequentially prioritize experiments [Shields et al., 2021].
This focus is driven by the practical need to maximize yield in synthesis, from small to large scale.
As aresult, HTE has become a standard technique in commercial laboratories.

In contrast, relatively few studies have conducted HTE campaigns that target broad regions of
chemical space. For instance, a recent study sought to identify a set of conditions effective across a
wide range of products [[Angello et al.|[2022], but tested fewer than 100 unique products—Ilimiting
the generalizability of any models trained on this data. Another effort [King-Smith et al.| [2024]
reported 39, 000 chemical reactions spanning various reaction classes, yet included only 290 unique
products. The largest HTE study reported to date is a 50, 000-reaction screen of the Ugi (3-component)
reaction 2025]), which involved 171 building blocks, but was performed under a single
set of conditions. Key datasets are summarized in Figure|[T]

Machine learning for reaction outcomes has made rapid progress, but is indeed largely limited by
data. Early work (e.g.,/Ahneman et al.| [2018al]) showed that models like random forests or simple
neural nets could predict yields for narrowly defined coupling reactions. More recently, message-
passing graph neural networks have become popular (e.g., the Chemprop framework
[2019])) for chemical property prediction, including reaction success. However, these models typically
assume relatively small, domain-specific datasets and often fail to generalize beyond their training
chemistries.

HTE coupled with automation and Al is also enabling autonomous discovery. [Mahjour et al.| [2024]
proposed new multicomponent reactions via an automated workflow and confirmed two by robotic
parallel experiments. |Angello et al.|[2022] used a closed-loop robotic system guided by ML to identify
general Suzuki conditions. In contrast, purely theoretical approaches (e.g., quantum calculations) can
illuminate mechanisms and catalyst design but are too resource-intensive for broad screening
2023]]. Overall, unbiased, high-throughput experimental data will be essential for training ML
models that surpass human intuition.




3 Methods

3.1 High-throughput Experimentation

We begin by outlining our high-throughput experimentation (HTE) program.

While fields like structural biology and Al have advanced rapidly thanks to large, high-quality datasets
such as the Protein Data Bank (PDB) [PDB|[2022] [2025]] and the Internet, chemistry still lacks a
comparable resource. We see HTE as the key to building such a dataset, but it must be specifically
designed to support broad, generalizable applications.

Our goal is to develop models with a broad, generalizable understanding of chemistry that can be
readily fine-tuned for diverse downstream applications. To this end, our approach differs from much
of the prior literature in several key ways:

1. We prioritize a wide diversity of substrates, while keeping the number of screened condition
sets small (4—10 per reaction class);

2. We aim for a 10x to 100x larger number of unique products than most previous studies;
3. We aim for semi-quantitative yield estimation using proprietary analytical software.

We conduct microliter-scale reactions (below 100 L) and millimolar concentrations (approximately
10 mM, depending on the reaction class). This scale offers a practical compromise: it is small enough
for high-throughput, yet large enough to ensure reliable, high-quality data. Reagents are prepared as
stock solutions in DMSO, with solubility checked manually. Reactions are set up on 96-well plates
using Opentrons pipetting robots. After reformatting, quenching, and workup, we analyze products
by LC-UV-MS, using autosampling from 384-well plates.

At the core of our workflow is proprietary software for processing analytical chemistry data. Unlike
previous approaches, we use spectra curated by analytical chemists to train our software. This
enables more accurate peak assignment and integration, producing a robust yield estimator. For
semi-quantitative yield assessment, we calibrate the method on a limited held-out set of product
standards.

The entire process is orchestrated by software. A centralized metadata store acts as the source of
truth for both models and chemists. Analytical results are processed automatically and saved to cloud
storage. These automation steps are crucial—they minimize human error and keep the operation
running quickly.

3.2 UniReact: a model for scaled HTE

Models with minimal inductive bias, such as the Vision Transformer [Dosovitskiy et al.| | 2021], often
outperform specialized architectures on large datasets. However, HTE datasets have historically
favored models with stronger domain-specific assumptions [Ahneman et al.| 2018b, [Shields et al.,
2021}, [Saebi et al .| [2023]).

Motivated by the scale of our dataset, we introduce UniReact: it embeds substrates and products
using pretrained UniMolV2 [Zhou et al.,[2024] and aggregates per-compound representations into a
reaction embedding using product-conditioned attention. Figure [2{ summarizes the architecture.

Let N; denote the number of atoms in the ith molecule. Each UniMolV2 layer [ operates on an atomic
representation x' € RY:*4a and a pair representation p! € RY:*Nixd» _ Following [Zhou et al.,
2024, we compute the initial x° and p° using RDKit-derived graph features and a 3D conformer.
We keep only the first k layers of the pretrained encoder, which we find sufficient for our task while
maintaining efficiency.

For multi-compound reactions, we use product-conditioned attention to aggregate reactant and

product representations. Let h,, € RN»*4 denote the atom representations from the product (the last
; () . ,

compound), and let hgl) € RN+ %4 denote the atom representations from the ith reactant. We first

pool the product atoms to obtain a product-level representation:

N
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Figure 2: UniReact architecture. Substrates and product are embedded with RDKit to obtain 3D
coordinates and atomic features, which are encoded by fine-tuned UniMolV2 (truncated to k layers)
into per-compound atom embeddings. The mean-pooled product embedding attends over reactant
atoms to produce product-conditioned reactant representations, which are concatenated with the
product vector and fed to task-specific heads. Mixup is applied at the reaction embedding level during
training.
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where we assume masked (padding-aware) mean pooling for simplicity. We then use r), as queries in
a cross-attention mechanism to attend over each reactant’s atoms:

r{?) = MultiHeadAttention(r,, h{Y, h{*)), (2)

where the product representation serves as the query and reactant atoms serve as both keys and
values (i.e., MultiHead Attention(Q = r,, K = th), V = hg))). This allows the model to focus
on reactant atoms that are most relevant given the product structure. The final reaction embedding is
obtained by concatenating the attended reactant representations with the product representation:

Treact = [I‘gl), r£=2)7 s 7r5071)a rp]a (3)

where C' is the number of compounds in the reaction.

Our main goal is to generalize to reactions with unseen substrates and products. During training, we
use Reaction Mixup: a regularization technique that applies Manifold Mixup [[Verma et al., 2019]
to the pooled reaction embeddings to improve generalization. For a batch of reaction embeddings
{r;}E. |, we sample a mixing coefficient A ~ Beta(a, ) and create mixed embeddings:

f‘i = AI‘i + (1 — )\)I'.,r(i), (4)

where 7 is a random permutation of batch indices. This discourages the model from memorizing
individual reactions, and encourages it to learn a more generalizable representation of the reaction
space.

The final classification is made by a separate MLP head for each condition set and yield threshold.

4 Experiments

Our primary objective is to develop models that can assist in planning syntheses during early-stage
drug discovery. This goal shapes several key choices in our evaluation strategy.

We evaluate models on reactions where both substrates and the product are held-out from training.
This scenario closely mirrors real-world synthesis, where chemists typically encounter novel products
and substrates due to the vastness of chemical space.

Because our focus is on early discovery, we consider the practical context: new structures are
experimentally validated using only small amounts of product (typically milligrams). Therefore,
achieving even modest yields is sufficient and cost-effective. In our experiments, we set a 5% yield
threshold and frame the task as a classification problem.

For evaluation, we use the area under the precision—recall curve (PR-AUC) as our primary metric.
PR-AUC quantifies the average precision when reactions are prioritized by the model. For reference,
a random baseline achieves a PR-AUC equal to the proportion of positive reactions in the dataset.



Our central claim is that scaling high-throughput experimentation enables the development of robust
models for reaction outcome prediction. This principle underpins the design of our experiments.

We compare UniReact to Chemprop, a widely used graph-based model [Heid et al., 2023]]. For each
of the three reaction classes, we evaluate models for predicting reaction outcomes for both novel
substrates and products.

4.1 Hyperparameters
4.1.1 UniReact

UniReact models are trained with the following key hyperparameters. We use the AdamW optimizer
with weight decay 0.15 and learning rate in {1.2 x 1075,2.5 x 10~°}. Training employs gradient
clipping at 2.0. The learning rate schedule uses a warmup phase of 500 steps followed by cosine
decay to 1% of the initial learning rate. We use early stopping with patience of 8 epochs, monitoring
validation PR-AUC. The model architecture uses the UniMolV2-84M pretrained encoder truncated to
4 layers for compound encoding. Product-conditioned attention employs 8 attention heads. During
training, we apply reaction mixup with « = 0.1 (sampling A ~ Beta(a, «)). The prediction head
uses dropout of 0.1. Loss is balanced by class weights. Batch size is set to 16.

4.1.2 Chemprop

Chemprop models are trained with the following configuration. We use a graph neural network with
depth 3 and tuned hidden size. The model is trained for 20 epochs. We use early stopping with
patience of 8 epochs, monitoring validation PR-AUC. The optimizer is Adam with a learning rate
schedule: initial learning rate 10—, maximum learning rate 102 (reached after 2 warmup epochs),
and final learning rate 10~% (exponential decay). Loss is balanced by class weights. Chemprop
operates in reaction mode, which transforms the reactants and products into a condensed graph of
the reaction. We use the reac_prod featurization mode, which concatenates information about each
atom’s state in both the reactants and the product to the atomic feature vectors. Substrates are encoded
as molecular graphs, while reaction conditions are featurized as one-hot encodings using predefined
vocabularies and passed as atom descriptors. Batch size is set to 64.

4.2 Robust generalization to unseen substrates

For UniReact, we train with learning rate in {1.2 x 1075,2.5 x 107°} and the number of compound
encoder layers in {2, 3,4}. For Chemprop, we train with hidden sizes in {250, 500}, depths in {2, 3},
and maximum learning rates in {2 x 107%,5 x 1073}, testing 12 hyperparameter combinations
for Chemprop and 6 for UniReact. To evaluate generalization to unseen substrates, we exclude 40
boronic acids and 40 halides from the training set; the validation split remains random. We evaluate
an ensemble of models trained with different hyperparameters, which we observe to achieve better
performance on the out-of-distribution test set than tuning hyperparameters based on the validation
set. All models use early stopping based on the PR-AUC metric on the validation set.

Table [Tl summarizes results for all three reaction classes.

Both models demonstrate strong generalization to unseen building blocks, achieving PR-AUC values
that are 2—4 x higher than the random baseline.

On the largest dataset (Suzuki Coupling, N =~ 100,000 reactions), UniReact achieves a PR-AUC of
53.4% + 12% and ROC-AUC of 86.2% =+ 1.4%, outperforming Chemprop (PR-AUC 48.8% =+ 5%,
ROC-AUC 84.9% =+ 3%). This result supports our hypothesis that more expressive models excel
as dataset size increases. To our knowledge, this is the first demonstration of a Transformer-based
model surpassing a graph-based model on a high-throughput reaction dataset with unseen substrates.

On the Buchwald-Hartwig coupling dataset (N ~ 30,000 reactions), Chemprop achieves a PR-AUC
of 35% 4+ 14% and ROC-AUC of 66% = 5%, while UniReact achieves a PR-AUC of 35.9% =+ 13.4%
and ROC-AUC of 68.1% =+ 2.3%. For the amide coupling dataset (N ~ 45,000 reactions), both
models perform similarly: UniReact achieves a PR-AUC of 70.6% =+ 6.7% and ROC-AUC of
76.3% == 3.9%, while Chemprop achieves a PR-AUC of 69.8% == 8% and ROC-AUC of 75.3% == 2%.

UniReact and Chemprop exhibit complementary inductive biases. Motivated by this, we also compare
the performance of UniReact to an ensemble of Chemprop and UniReact. We average predictions



Method Suzuki Amide Buchwald-Hartwig
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC
Random 13% £+ 1% 50% 43% £+ 4% 50% 19% + 5% 50%
Chemprop | 48.8% £5% 84.9% +3% | 69.8% = 8% 753% +2% | 35% + 14% 66% + 5%
UniReact | 55.5% £+ 12% 86.4% + 1% | 70.6% = 7% 76.3% + 4% | 35.9% £+ 13% 68.1% + 2%
Ensemble | 53.6% + 11% 85.8% £2% |70.9% + 8% 76.0% £3% |371% +17% 68.8% + 7%
Table 1: Performance comparison of methods on three reaction datasets, with error bars indicating
standard deviation across 3 runs. Random baseline shows expected performance for random predic-
tions. Best results for each column are in bold. Ensemble combines Chemprop and UniReact models
with all hyperparameter configurations.
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Figure 3: Scaling laws on Suzuki Coupling. Performance improves smoothly with data scale across
two and a half orders of magnitude. Points show mean with + one s.d. error bars; red dashed lines
are power-law fits in log—log space.

of all models with all hyperparameter configurations. We observe that the ensemble outperforms
both models across all datasets in PR-AUC, while outperforming in ROC-AUC in two of the three
datasets.

4.3 Is executing that many reactions necessary? Scaling laws for Suzuki Coupling
classification

The large scale of our datasets raises a natural research question: is the size of the dataset necessary
for achieving robust generalization to unseen substrates and products?

To investigate this, we trained UniReact on the Suzuki Coupling subset of our dataset, varying
training set sizes from approximately 1, 000 to 100, 000 reactions. For each training configuration,
we trained with learning rate € {1 x 107%,2 x 107%,4 x 10~*}. Performance was averaged over
hyperparameters and 4 random seeds with repeated train-test splits. We evaluated on reactions with
both unseen substrates and unseen products.

The results are summarized in Fig. [3| Performance as measured by PR-AUC increased from 26%
to 50%, representing a 1.92x improvement in precision across different recall values when scaling
dataset size from 2,500 to 70,000. ROC-AUC increased from 68% to 81% over the same range.

Fitting the data to a power-law scaling law of the form log;,(E) = alog,,(D) + b, we find for
PR-AUC: log(E) = 0.18log;(D) + 1.17, and for ROC-AUC: log,(E) = 0.06log,,(D) +0.37,
where E is the evaluation metric and D is the number of training reactions. We conclude that the
dataset size is justified: performance has not yet saturated, and increasing dataset size would likely
further improve performance.
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Figure 4: Outperforming PhD-level synthetic chemists in prioritizing Suzuki Coupling reactions.
(Left) Full precision—recall curves (PR-AUC) comparing UniReact, human experts, and a random
baseline. (Right) Precision evaluated specifically at 50% recall, representing the chemist-relevant
scenario of “picking the top half” of reactions. UniReact outperforms expert chemists across different
recall thresholds.

4.4 Outperforming PhD-level synthetic chemists in prioritizing Suzuki Coupling reactions

Chemists are routinely asked to prioritize reactions based on their likelihood of success, e.g., when
preparing quotations for a synthesis.

We compare our models against human experts in a simulation of this task. Four PhD-level synthetic
chemists were asked to classify Suzuki Coupling reactions as achieving 10% or higher LC-UV-MS
yield based on the full protocol (substrates, conditions, and product). The threshold of 10% was
chosen to be in the range of yield that is more typically reported in the literature. The binary
predictions were averaged across all participants.

We used a random set of 100 Suzuki Coupling reactions sampled from our dataset and approximately
balanced (with ~ 50% successful).

Figure [4] shows the results. UniReact outperforms the chemists, achieving 95.4% PR-AUC compared
to 59.6% for humans, and at 50% recall, achieves 100% precision compared to 60.8% for humans,
representing a 2.2x improvement over the random baseline.

4.5 Zero-shot transfer to an external HTE dataset

To assess the generalizability of our models beyond our own experimental setup, we evaluated
zero-shot transfer to an external HTE dataset from [[Zhang et al.,[2025]). This dataset contains 47, 000
amide coupling reactions performed at milliliter scale (over 10X larger volume and concentration
than our microliter-scale reactions), representing both a scale shift and transferability to a different
laboratory.

The external dataset contains over 90 different condition sets, most of which are not present in
our dataset. We focused our evaluation on reactions performed with HATU and DIPEA as base,
a condition set for which we also have substantial data in our training set. This allows us to test
transferability while controlling for condition mismatch.

We evaluated UniReact trained on our amide-coupling subset in zero-shot mode on the external
dataset, using a 5% yield threshold. Figure shows that the external products (632 unique products)
largely occupy a region within the product embedding space spanned by our training data (8,339
unique products).

Despite the differences in reaction volume and concentration, the model achieves ROC-AUC of
73.3% without any fine-tuning when classifying reactions as successes or failures based on 5% yield
threshold.
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Figure 5: Zero-shot transfer to an external HTE dataset. Left: products from Zhang et al.|[2025]
(632 unique products) occupy a region largely contained within the product embedding space from
our HTE campaign (8,339 unique products). Right: UniReact achieves 73.3% ROC-AUC on the
external dataset classifying reactions as successes or failures based on a 5% yield threshold.

To our knowledge, this represents the first demonstration of zero-shot transfer to an external reaction
dataset for a model trained on microliter-scale HTE data.

5 Limitations

The scale and design of our dataset introduce several important limitations that should be considered
when applying our data and models. Here, we briefly outline the key limitations and discuss their
potential impact on model applicability.

First, our yield estimates are not based on per-product standards, as synthesizing standards at this
scale is not practical and standards are not available for all products. Consequently, products
with unusual absorbance profiles may be misclassified. While our yield estimation is reliable for
distinguishing failures from successes at low yield thresholds, it is not suitable for precise quantitative
yield prediction.

Second, our reactions are performed under conditions that differ from those used in larger-scale
synthesis, most notably at much lower concentrations (typically at least 10x lower) and with less
efficient mixing. This leads to lower success rates for many reaction classes.

Despite these limitations, the dataset remains highly valuable. As with large language models
pretrained on Internet data, we expect most downstream applications to benefit from additional
fine-tuning. To further test the transferability of our models, we have also demonstrated that our
models can transfer to external data sources.

6 Conclusions

We scaled microliter-scale high-throughput experimentation to 200,000 reactions measured using
LC-UV-MS across three workhorse reaction classes with emphasis on product diversity. This breadth
enables models that robustly generalize to unseen substrates and products, with 2—-4x gains in
PR-AUC over random and ROC-AUC in the 68-86% range. We report smooth scaling laws for
reaction-outcome prediction, and we demonstrate prioritization that outperforms PhD-level synthetic
chemists on Suzuki Coupling (PR-AUC 95.4% vs. 59.6% for PhD chemists). We also show the first
demonstration of zero-shot transfer to an external HTE dataset, achieving ROC-AUC of 70% on
milliliter-scale reactions from a different laboratory.



We introduced UniReact, a molecule-attention Transformer that surpasses a graph-based model
(Chemprop) on the largest subset of the dataset (Suzuki Coupling, PR-AUC 53.4% vs. 48.8%)
and shows complementary inductive biases, with an ensemble of both models achieving the best
performance across all datasets.

These results support our thesis: scaling unbiased HTE is a practical path to robust reaction-outcome
prediction—enabling models that exceed human intuition about existing chemistry and ultimately
help discover novel chemical reactions.

Looking ahead, our main priorities are: (i) applying our methodology to a rarely used but promising
reaction class; (ii) scaling up by another order of magnitude; (iii) continually improving dataset
quality, particularly by refining yield estimation; and (iv) automatically extracting new chemical
knowledge from the dataset, such as understanding side-product reactivity and the relationships
between structure, conditions, and reactivity.
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