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Abstract

Organic chemistry underpins small-molecule drug discovery, yet—unlike structural
biology—it lacks large, unbiased datasets for training broadly generalizable mod-
els. We report the largest microliter-scale high-throughput experimentation (HTE)
campaign to date: 200,000 reactions spanning three workhorse classes (Amide
Coupling, Suzuki Coupling, Buchwald—Hartwig Coupling) involving 30,000 prod-
ucts—over 4x larger than the largest publicly disclosed dataset to date. This
scale and diversity enable reaction-outcome predictors that generalize to unseen
substrates. We introduce UniReact, a molecule-attention Transformer built on pre-
trained molecular encoders. Across the three reaction classes, our models achieve
PR-AUC 2-3x over random and ROC-AUC in the 70-86% range. We further
establish scaling laws for reaction-outcome prediction spanning three orders of
magnitude of HTE data, and for one class up to 100,000 reactions—to our knowl-
edge, the broadest HTE scaling study to date. In a human study on Suzuki coupling
prioritization, our models outperform PhD-level chemists (precision 87.1% at 50%
recall vs. 60.8%). Finally, we show the first, to our best knowledge, demonstration
of zero-shot transfer to an external HTE dataset. Taken together, these results
support scaled HTE as a viable path to broadly applicable predictors of chem-
ical reactivity that surpass human intuition and ultimately help discover novel
chemistry.

1 Introduction

The long-term ambition of synthetic chemistry is universal synthesis—the ability to make any physi-
cally realizable molecule. Unlocking broader chemical space requires two advances: discovering
new reactions and developing robust models for synthesis planning and reaction-outcome prediction.
Today, however, drug discovery remains constrained to compounds that are easy to synthesize [Blake;
more et al., 2018|.

The discovery of the Nobel Prize-winning Suzuki coupling in the 1980s reshaped medicinal chemistry.
Drug hunters were able to form carbon—carbon bonds between sp? carbons. This invention plausibly
contributed to the proliferation of small-molecule drugs rich in such bonds after the 1980s [Leeson
et al.,[2021].

Despite our mastery of organic chemistry, humans have relatively limited accuracy in predicting
the outcomes of chemical reactions. This is evidenced by the high failure rate of human-executed
experiments, reaching up to 40% [Buitrago Santanilla et al., 2015} |Raghavan et al., 2024] In many

!"This may stem from limited feedback: unlike domains like chess, chemists perform only thousands of
reactions in a lifetime, with most learning happening offfine from textbooks, papers, and colleagues. These
sources rarely report failed experiments, and the experiments performed are highly biased toward successes and
chemist intuition.
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cases, this is due to issues beyond intrinsic reactivity, such as substrate instability, workup effects
on the product, poor solubility, or unforeseen side reactions. Chemists routinely troubleshoot such
situations [[Frontier] | 2025].

Limited predictive power is a pressing issue. Automation remains limited, and many small molecules
in early-stage drug discovery are synthesized in countries with lower labor costs. This manifest in
the fact that organic synthesis accounts for roughly 40% of the cost of discovering a drug and is a
significant contributor to long delays [Paul et al.l 2010].

High-throughput experimentation (HTE) is a natural way to generate large, relatively unbiased
reaction datasets, unlocking both the discovery of novel chemistry and the training of robust predictive
models. In other fields, major Al advances have closely followed the availability of large-scale
datasets—for example, the Protein Data Bank enabled breakthroughs in structure prediction such as
AlphaFold [PDB} 2022, 2025, Jumper et al.,2021]]; Internet-scale corpora unlocked few-shot language
models [Brown et al.|[2020]; and massive labeled image collections made possible Transformer-based
vision systems [[Dosovitskiy et al.,[2021]]. Chemistry lacks an equivalent resource.

Most chemical HTE campaigns to date have focused on a narrow product scope, optimizing yields for
a small number of products by varying conditions (e.g., temperature, time) [Shevlin| 2017, Mennen
et al., 2019} |Krska et al., 2017]]. Such targeted designs provide limited data for learning about the
broader chemical space, which is vast—the number of drug-like molecules exceeds 10°°. See also

Figure

We report the largest microliter-scale reaction campaign to date, spanning three key medicinal
chemistry reaction classes: Amide Coupling, Suzuki Coupling, and Buchwald—Hartwig Coupling.
These classes account for approximately 56.8% of reported large-scale syntheses [Brown and Bostroml,
2016|. The dataset comprises 200, 000 microliter-scale reactions, > 1,000 unique substrates, and
30, 000 unique products.

This chemical diversity and scale enable training of robust, superhuman models that predict outcomes
on unseen substrates. Our main contributions are:

1. We show robust generalization to unseen building blocks on the largest HTE dataset across
three workhorse reaction classes. We achieve PR-AUC 2-3x over a random baseline and
ROC-AUC in the 70-86% range. We also present the first scaling laws for reaction-outcome
prediction across three orders of magnitude of microliter-scale HTE data, with smooth
power-law trends.

2. We show that our models outperform PhD-level synthetic chemists on Suzuki coupling
prioritization (precision 87.1% at 50% recall vs. 60.8% for humans).

3. We introduce UniReact: a molecular-attention Transformer that surpasses a strong graph-
based model on the largest subset of our dataset and exhibits complementary inductive
biases that improve performance when ensembled.

4. We show the first, to our best knowledge, demonstration of zero-shot generalization to an
external HTE dataset. We show a model trained on our subset of Amide Couplings achieves
70% ROC-AUC on the dataset from [Zhang et al., 2025].

2 Related work

Published reaction databases (textbooks, papers, patents, etc.) are heavily biased toward successful
outcomes and seldom report negative or low-yield reactions. For example, |Angello et al.| [2022]
attempted to mine the literature for general Suzuki—Miyaura conditions and explicitly noted that
their ML approach “failed” in part because of “a lack of published (or otherwise accessibly archived)
negative results.” Saebi et al.|[2023]] likewise emphasize that the “lack of publicly available, large,
and unbiased datasets” is a key roadblock for ML in chemistry. Efforts like the Open Reaction
Database (ORD) [Kearnes et al., [2021]] aim to standardize and share reaction data, but existing
large collections (CAS, Reaxys, USPTO, commercial patent databases, etc.) often contain the same
literature-derived chemistry. Indeed, |King-Smith et al.|[2024]] note that datasets such as CAS, Reaxys,
USPTO and even the ORD have “a high level of overlap” with published reactions, rendering their
internal “reactomes” largely indistinguishable from the literature’s. These observations underscore
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Figure 1: Summary of our microliter-scale HTE dataset.

the need for new experimental data sources (especially including failed experiments) to train robust
predictive models.

High-throughput experimentation (HTE) campaigns provide one such source. Chemical high-
throughput experimentation (HTE) has evolved from early plate-based condition screens to a routine
tool in pharmaceutical process and medicinal chemistry [Shevlinl 2017, Mennen et al.| 2019] [Krska
2017). Historically, most HTE campaigns have focused on optimizing reaction conditions,
often leveraging Bayesian Optimization to sequentially prioritize experiments [Shields et al., 2021].
This focus is driven by the practical need to maximize yield in synthesis, from small to large scale.
As aresult, HTE has become a standard technique in commercial laboratories.

In contrast, relatively few studies have conducted HTE campaigns that target broad regions of
chemical space. For instance, a recent study sought to identify a set of conditions effective across a
wide range of products [[Angello et al.|[2022], but tested fewer than 100 unique products—Ilimiting
the generalizability of any models trained on this data. Another effort [King-Smith et al.| [2024]
reported 39, 000 chemical reactions spanning various reaction classes, yet included only 290 unique
products. The largest HTE study reported to date is a 50, 000-reaction screen of the Ugi (3-component)
reaction 2025]), which involved 171 building blocks, but was performed under a single
set of conditions. Key datasets are summarized in Figure[I] [Zhang et all, 2025

Machine learning for reaction outcomes has made rapid progress, but is indeed largely limited by
data. Early work (e.g.,/Ahneman et al.| [2018al]) showed that models like random forests or simple
neural nets could predict yields for narrowly defined coupling reactions. More recently, message-
passing graph neural networks have become popular (e.g., the Chemprop framework
[2019])) for chemical property prediction, including reaction success. However, these models typically
assume relatively small, domain-specific datasets and often fail to generalize beyond their training
chemistries.

HTE coupled with automation and Al is also enabling autonomous discovery. [Mahjour et al.| [2024]
proposed new multicomponent reactions via an automated workflow and confirmed two by robotic
parallel experiments. |Angello et al.|[2022] used a closed-loop robotic system guided by ML to identify
general Suzuki conditions. In contrast, purely theoretical approaches (e.g., quantum calculations) can
jilluminate mechanisms and catalyst design but are too resource-intensive for broad screening
2023]]. Overall, unbiased, high-throughput experimental data will be essential for training ML
models that surpass human intuition.

3 Methods

3.1 High-throughput Experimentation

We begin by outlining our high-throughput experimentation (HTE) program.
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While fields like structural biology and Al have advanced rapidly thanks to large, high-quality datasets
such as the Protein Data Bank |PDB|[2022] 2025] and the Internet, chemistry still lacks a comparable
resource. We see HTE as the key to building such a dataset, but it must be specifically designed to
support broad, generalizable applications.

Our goal is to develop models with a broad, generalizable understanding of chemistry that can be
readily fine-tuned for diverse downstream applications. To this end, our approach differs from much
of the prior literature in several key ways:

1. We prioritize a wide diversity of substrates, while keeping the number of screened condition
sets small (4-10);

2. We aim for 10x to 100x larger number of unique products than most previous studies;
3. We aim for semi-quantitative yield estimation using proprietary analytical software.

We conduct reactions at the microliter scale and millimolar concentrations. This scale offers a
practical compromise: it is small enough for high-throughput, yet large enough to ensure reliable,
high-quality data. Reagents are prepared as stock solutions in DMSO, with solubility checked by
hand. Reactions are set up on 96-well plates using Opentrons pipetting robots. After reformatting,
quenching, and workup, we analyze products by LC/MS, using autosampling from 384-well plates.

At the core of our workflow is proprietary software for processing analytical chemistry data. Unlike
previous approaches, we use spectra curated by analytical chemists to train our software. This
enables more accurate peak assignment and integration, producing a robust yield estimator. For
semi-quantitative yield assessment, we calibrate the method on a held-out set of product standards.

The entire process is orchestrated by software. A centralized metadata store acts as the source of
truth for both models and chemists. Analytical results are processed automatically and saved to cloud
storage. These automation steps are crucial—they minimize human error and keep the operation
running quickly.

3.2 UniReact: a model for scaled HTE

Models with minimal inductive bias, such as the Vision Transformer [Dosovitskiy et al., [2021], often
outperform specialized architectures on large datasets. However, HTE datasets have historically
favored models with stronger domain-specific assumptions [Ahneman et al., [2018b, [Shields et al.,
2021} [Saebi et al., [ 2023]].

Motivated by the scale of our dataset, we introduce UniReact: it embeds substrates and products
using pretrained UniMolV2 [Zhou et al.l 2024]], processes each molecule with the Relative Molecule
Attention Transformer (RMAT) [Maziarka et al.; 2024], and aggregates per-compound representations
into a reaction embedding. Figure 2| summarizes the architecture.

Let N; denote the number of atoms in the ith molecule. Each UniMolV2 layer [ operates on an
atomic representation x' € RYi*9a and a pair representation p' € RYi*NiXd» Following [Zhou
et al., 2024, we compute the initial x° and p” using RDKit and graph features and the molecular
conformation.

Updating the pair representation scales computationally as O(Nizdp). To alleviate this computational
cost, we only keep the first k£ layers of the encoder and process the molecular representation further
with a computationally cheaper Relative Molecule Attention Transformer (RMAT).

RMAT extends standard Transformer self-attention by incorporating molecular graph information
directly into the attention computation. For a molecule with atom feature matrix X and pairwise
features p’, the attention mechanism is further biased as follows:

T

QK
A(X, p') = Softmax (

Vi
where Q = XW®, K = XWX and V = XWV are the usual query, key, and value projections;
D encodes pairwise atomic distances, A encodes adjacency (bond) information, and fqist, faqj, and
fpair are learned or fixed functions mapping these features to attention biases. The term fpair(pl)
specifically injects the pairwise representations from UniMolV2 as an additional bias to the attention
logits.

+ faiss(D) + faaj(A) + fpair(pl)> Vv, (D
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Figure 2: UniReact architecture. Each molecule is processed by pretrained UniMolV2 encoders to
produce atom and pair embeddings. Relative Molecule Attention Transformer (RMAT) operates per
molecule to yield a per-compound embedding; per-compound embeddings are averaged to obtain the
reaction embedding hy,., which feeds K prediction heads.

Finally, the representation of the first token (atom) is averaged across input molecules. The final
classification is made by a separate MLP head for each set of conditions.

By default, we use 2D conformers to represent molecules to skip the costly 3D embedding procedure,
which improves throughput without degrading performance empirically. We hypothesize that the
pretrained UniMolV2 has the capability to quickly learn to update the conformation.

4 Experiments

Our primary objective is to develop models that can assist in planning syntheses during early-stage
drug discovery. This goal shapes several key choices in our evaluation strategy.

We evaluate models on reactions where both substrates and the product are held out from training.
This scenario closely mirrors real-world synthesis, where chemists typically encounter novel products
and substrates due to the vastness of chemical space.

Because our focus is on early discovery, we consider the practical context: new structures are
experimentally validated using only small amounts of product (typically milligrams). Therefore,
achieving even modest yields is sufficient and cost-effective. In our experiments, we set a 5% yield
threshold and frame the task as a classification problem.

For evaluation, we use the Precision Area Under the Curve (PR-AUC) as our primary metric. PR-AUC
quantifies the average precision when reactions are prioritized by the model. For reference, a random
baseline achieves a PR-AUC equal to the proportion of positive reactions in the dataset.

Our central claim is that scaling high-throughput experimentation enables the development of robust
models for reaction outcome prediction. This principle underpins the design of our experiments.

4.1 Robust generalization to unseen substrates

We compare UniReact to Chemprop, a widely used graph-based model [Heid et al., 2023||. For each
of the three reaction classes, we evaluate models for predicting reaction outcomes for both novel
substrates and products.

Unless noted otherwise, we use the UniMolV2-84M pretrained encoder. RMAT is configured with 2
layers and 8 attention heads (dropout 0.1), with hidden size tied to the UniMol embedding.

For UniReact, we train with learning rate in {1.2 x 107°,2.5 x 107°} and the number of compound
encoder layers in {2, 3,4}. For Chemprop, we train with hidden sizes in {250, 500}, depths in {2, 3},
and learning rates in {2 x 10745 x 1073}, testing 12 hyperparameter combinations for Chemprop
and 6 for UniReact. To evaluate generalization to unseen substrates, we exclude 40 boronic acids and
40 halides from the training set; the validation split remains random. We evaluate an ensemble of
models trained with different hyperparameters, which we observe to achieve better performance on
the out-of-distribution test set than tuning hyperparameters based on the validation set. All models
use early stopping based on the ROC-AUC metric on the validation set.

Table [1] summarizes the results for all three reaction classes.
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Method Suzuki Amide Buchwald-Hartwig
PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC  ROC-AUC
Random 13% £+ 1% 50% 43% £ 4% 50% 19% £ 5% 50%
Chemprop | 48.8% 5% 84.9% £3% | 69.8% 8% 753% £2% | 35% £ 14% 66% + 5%
UniReact | 52.8% £2% 86.2% + 2% | 69.5% £ 13% T74.5% + 14% | 34% £ 12% 66% £ 7%
Ensemble | 53.8% 4+ 10% 86.0% +2% | 70.8% + 8% 759% +2% |36% + 14% 68% + 7%
Table 1: Performance comparison of methods on three reaction datasets, with error bars indicating
standard deviation across 3 runs. Random baseline shows expected performance for random predic-
tions. Best results for each column are in bold. Ensemble combines Chemprop and UniReact models
with all hyperparameter configurations.

Both models demonstrate strong generalization to unseen building blocks, achieving PR-AUC scores
that are 2—4 x higher than the random baseline.

On the largest dataset (Suzuki coupling, N ~ 100,000 reactions), UniReact achieves a PR-AUC
of 52.8% =+ 2% and ROC-AUC of 86.2% + 2%, outperforming Chemprop (PR-AUC 48.8% =+ 5%,
ROC-AUC 84.9% + 3%). This result supports our hypothesis that more expressive models excel
as dataset size increases. To our knowledge, this is the first demonstration of a Transformer-based
model surpassing a graph-based model on a high-throughput reaction dataset with unseen substrates.

On the Buchwald-Hartwig coupling dataset (/N = 30,000 reactions), Chemprop achieves a PR-AUC
of 35% =+ 14% and ROC-AUC of 66% =+ 5%, while UniReact achieves a PR-AUC of 34% =+ 12%
and ROC-AUC of 66% =+ 7%. For the amide coupling dataset (N = 45,000 reactions), both models
perform similarly: UniReact achieves a PR-AUC of 69.5% =+ 13% and ROC-AUC of 74.5% + 14%,
while Chemprop achieves a PR-AUC of 69.8% =+ 8% and ROC-AUC of 75.3% =+ 2%.

We hypothesize that UniReact and Chemprop exhibit complementary inductive biases. Motivated
by this, we also compare the performance of UniReact to an ensemble of Chemprop and UniReact.
We average predictions of all models with all hyperparameter configurations. We observe that the
ensemble outperforms both models across all datasets.

4.2 Scaling laws for reaction outcome prediction across three orders of magnitude

The large scale of our datasets raises a natural research question: does scaling to the order of 100, 000
individual reactions improve generalization and robustness?

To investigate this, we trained UniReact on the Suzuki coupling subset of our dataset, varying
training set sizes from approximately 1, 000 to 100, 000 reactions. For each training configuration,
we optimized the learning rate from the set {1 x 1074,2 x 1074, 4 x 10~*}. Performance was
averaged over 4 random seeds with repeated train-test splits. We evaluated on reactions with both
unseen substrates and unseen products. The results are summarized in Fig. 3]

Performance as measured by PR-AUC increased from 20% to 50%, representing a 2.5X improvement
in precision across different recall values. ROC-AUC increased from 57% to 81%.

4.3 Superhuman performance in classifying Suzuki coupling reactions

Next, we evaluated our models against human experts. Three PhD-level synthetic chemists were asked
to classify Suzuki coupling reactions as achieving 10% or higher LC/MS yield. Their predictions
were averaged across all participants.

We evaluated a set of 100 Suzuki coupling reactions, randomly sampled from our dataset and balanced
to ensure approximately 50% were successful.

We use precision at 50% recall as our metric. Chemists are routinely asked to prioritize reactions
based on their likelihood of success, e.g., when preparing quotations for a synthesis. This metric
reflects that scenario by measuring the ability to prioritize reactions more likely to succeed when
allowed to reject 50% of reactions.

Figure[4]shows the results. Chemprop outperforms the chemists, achieving 87.1% precision compared
to 60.8% for humans, representing a 1.7x improvement over the random baseline.
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Figure 4: Superhuman performance at discriminating failures vs. successful Suzuki coupling
reactions. Chemists are routinely asked to prioritize reactions based on their likelihood of success,
e.g., when preparing quotations for a synthesis. We compare precision at 50% recall for a random
baseline, the average prediction of three organic chemists, and Chemprop.

4.4 Zero-shot transfer to an external HTE dataset

Finally, we tested the transferability of our models to an external HTE dataset. We used the dataset
from [Zhang et al [2025]], which contains 47,000 amide coupling reactions. The dataset contains
over 90 different condition sets, which exceeds the number of condition sets in our dataset. We
performed closest matching based on similarity of conditions.

We trained Chemprop on our amide-coupling subset and evaluated it zero-shot on the external dataset.
Figure [5] summarizes the results: the external products largely lie within the manifold spanned by our
products, and the model achieves ROC-AUC of 70% without any fine-tuning.

5 Limitations

The scale and design of our dataset introduce several important limitations that should be considered
when applying our data and models. Here, we briefly outline the key limitations and discuss their
potential impact on model applicability.

First, our yield estimates are not based on product standards, as synthesizing standards at this scale is
not practical. Consequently, products with unusual absorbance profiles may be misclassified. While
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Figure 5: Zero-shot transfer to an external HTE dataset. Left: products from Zhang et al.|[2025]
occupy a region largely contained within the product manifold from our HTE campaign. Right:
zero-shot performance of a model trained on our amide-coupling subset on the external dataset.

our yield estimation is reliable for distinguishing failures from successes at low yield thresholds, it is
not suitable for precise quantitative yield prediction.

Second, our reactions are performed under conditions that differ from those used in larger-scale
synthesis, most notably at much lower concentrations (typically at least 10 times lower) and with less
efficient mixing. This leads to lower success rates for many reaction classes.

Despite these and other limitations, the dataset remains highly valuable. As with large language
models pretrained on Internet data, we expect most downstream applications to benefit from additional
fine-tuning. To further test the transferability of our models, we have also demonstrated that our
models can transfer to external data sources.

6 Conclusions

We scaled microliter high-throughput experimentation to 200,000 reactions across three workhorse
reaction classes with emphasis on product diversity. This breadth enables models that robustly
generalize to unseen substrates and products, with 2-3x gains in PR-AUC over random and ROC-
AUC in the 0.7-0.85 range. We report the first scaling laws for reaction-outcome prediction spanning
three orders of magnitude in data, and we demonstrate superhuman prioritization on Suzuki (precision
87.1% at 50% recall vs. 60.8% for PhD chemists). We also show the first demonstration of zero-shot
transfer to an external HTE dataset.

We also introduced a molecular-attention Transformer that surpasses a graph-based model on the
largest subset of the dataset and shows complementary inductive biases to the graph-based model.

These results support our thesis: scaling unbiased HTE is a practical path to robust reaction-outcome
prediction—enabling models that exceed human intuition about existing chemistry and ultimately
help discover novel chemical reactions.

Looking ahead, our main priorities are: (i) applying our methodology to a rarely used but promising
reaction class; (ii) scaling up by another order of magnitude; (iii) continually improving dataset
quality, particularly by refining yield estimation; and (iv) automatically extracting new chemical
knowledge from the dataset, such as understanding side-product reactivity and the relationships
between structure, conditions, and reactivity.
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