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Abstract

Radiogenomic map linking image features and gene expression profiles has great potential for non-
invasively identifying molecular properties of a particular type of disease. Conventionally, such
map is produced in three independent steps: 1) gene-clustering to metagenes, 2) image feature
extraction, and 3) statistical correlation between metagenes and image features. Each step is sepa-
rately performed and relies on arbitrary measurements without considering the correlation among
each other. In this work, we investigate the potential of an end-to-end method fusing gene code
with image features to generate synthetic pathology image and learn radiogenomic map simultane-
ously. To achieve this goal, we develop a multi-conditional generative adversarial network (GAN)
conditioned on both background images and gene expression code, synthesizing the corresponding
image. Image and gene features are fused at different scales to ensure both the separation of pathol-
ogy part and background, as well as the realism and quality of the synthesized image. We tested
our method on non-small cell lung cancer (NSCLC) dataset. Results demonstrate that the proposed
method produces realistic synthetic images, and provides a promising way to find gene-image rela-
tionship in a holistic end-to-end manner.
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1. Introduction

The integration of genomic and imaging findings has emerged as a promising direction in clinical
research, often being referred to as radiogenomics. A few studies has been performed to examine its
potential in several diseases with different imaging techniques, including magnetic resonance (MR)
in brain tumor (Diehn et al., 2008), and computed tomography (CT) in nonsmall cell lung cancer
(NSCLC) (Zhou et al., 2018).

Despite the differences in disease and imaging modality, most current studies shared a common
methodology in radiogenomics map generation. It is often designed following three independent
steps: 1) image feature extraction, either computationally derived (Gevaert et al., 2012), or man-
ually annotated (Zhou et al., 2018); 2) metagene clustering from the gene expression data on the
basis of coexpression; and 3) statistical analysis to identify associations between image features and
metagenes.
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Although it is shown to be a viable way for radiogenomics, it may potentially have some lim-
itations. First, image features are either existing hand-crafted sets or manually defined semantic
judgements. The former may not be an optimal representation for the candidate data, and the later
can in addition suffer from inter- and intra- observer variability. Second, the metagene clustering is
based on statistical correlation analysis, which depends on the specific model being used, and may
miss some correlation during model application. Third and most importantly, the image features and
genetic characteristics are treated independently without the knowledge of each other, and they can
only be correlated in the last step. Hence, sub-optimal image representation, and model-dependent
genome clustering may lead to weak correlations that can have limited power in reflecting reality.
To out best knowledge, there is no prior work treating all three steps in an alternative way: holistic
and end-to-end.

Major challenges in holistically learning a radiogemonic map include: 1) from gene’s point of
view, it is difficult to fuse the non-image genomic information with image so that the two can be
correlated within a single system; 2) from image’s of view, it is difficult to use an arbitrary feature
extractor to describe its feature related to its corresponding genomic representation, and 3) back-
ground region beyond the lesion may be irrelevant to the disease, hence a proper object/background
separation is needed; however, the “interaction region” can also hold significant value in lesion char-
acterization, and therefore directly applying a binary segmentation may not be an optimal solution.

With recent development of deep learning, image features can be learnt from data and be op-
timized for a specific task (Shin et al., 2016). Comparing with hand-crafted or semantic features,
such learnt feature presents higher accuracy and robustness in several tasks. Meanwhile, generative
adversarial network (GAN) has enabled computer vision researchers to artificially generate realistic
images from noise, reference images, and word embeddings (Zhang et al., 2017). A few successes
have also been achieved in medical domain (Jin et al., 2018). GAN features the capability of fusing
information from different sources to generate the output.

In this work, we propose to use image synthesis as a “bridge” to connect image data with
genomic representation, so that we can address some of the challenges. We investigate the potential
of a multi-conditional GAN designed for holistically analyze gene expression data and medical
images. By utilizing them for new sample generation, both image features and gene embeddings
can be learnt directly from data in an end-to-end manner. Also, the design of the network ensures
smooth object/background fusion so that only meaningful lesion information get correlated with
genomic data. As a proof-of-concept study, we applied our strategy to a public NSCLC dataset
with gene expression profiles from RNA sequencing. NSCLC is a common type of lung cancer and
leading cause of mortality, and it is known that both imaging and gene expression play important
role in its management.

The major contributions of this work are 1) we formulate image-gene correlation by solving
a multi-conditional GAN, 2) we design a new GAN architecture and fusion blocks to separate
irrelevant image background from lesion so that gene only controls the lesion objects, and 3) we
demonstrate that a discriminative radiogemonic map can be learnt via this synthesis strategy.

2. Method

In this work, we approach radiogemonic map by formulating it as an image synthesis task. Existing
method for CT lung nodule simulation are mostly modeled as “inpainting” based on conditional
GAN with no (Jin et al., 2018) (Liu et al., 2018) or limited (Yang et al., 2018) ability in combin-
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ing other information beyond the surrounding image. There are two major challenges in applying
such network for radiogemonic purpose: 1) there is no direct mechanism to introduce non-image
information to the network, which is required for genomic data; and 2) inpainting removes part of
the image making space for the simulated nodule, the regional information is lost, and hence it is
difficult to ensure spatial continuity and to avoid artificial looking around the boundary of erased
region. Therefore, there’s no guarantee that the synthesized image have good object/background
separation coded within the network, which is critical for radiogenomics learning.

To address these issues, inspired by computer vision works for natural image synthesis (Park
et al., 2018) (Karras et al., 2018), we design our network as a multi-conditional GAN with style
specification. Foreground/background fusion is modeled within network, while background image
and gene coding are both utilized for synthesis. Fig.1 illustrates an overview of our method. Below,
we outline the GAN architecture, information fusion design, and training strategy for learning the
representation and generating lung nodules from both imaging and genomic data.
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Figure 1: Proposed multi-conditional GAN for radiogenomic map learning and nodule synthesis.
(a) Generator utilizes both background image and gene code to synthesize image together
with nodule segmentation. (b) Fusion block at each resolution layer helps to fuse the
information from background with that from previous layer and gene code. (c) With
image, segmentation, and gene code, discriminator distinguishes three types of real/fake
scenarios.

2.1. GAN architecture

Fig.1 (a) illustrates the structure of the proposed generator. From background image and gene ex-
pression data, it generates a synthetic image with a nodule characterized by the genomic data, and
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situated within the background image. Meanwhile, it also produces a binary segmentation mask of
the generated nodule. Structure-wise, it consists of three parts: encoding of the background image
(left), encoding of gene expression data (right), and information fusion for synthetic image/mask
generation (center). The proposed GAN handles two major challenges: object/background separa-
tion and blending, and image/gene representation fusion.

For the first challenge, unlike previous inpainting-based methods, the proposed network does
not remove any portion of the background image. Instead, it models object/background within the
network via two strategies: 1) a fusion block at each resolution level to control the overlapping
between generated object with reference background, and 2) an auxiliary output of segmentation
mask to guild such separation. At each stage, it performs a “soft” blending of object/background
information, and therefore ensures spatial continuity of the outcome synthetic image. Through such
mechanism, the gene code controls both the foreground and the meaningful region where lesion
blends with the background, while separated from the irrelevant background region. The use of
auxiliary output of segmentation is the same as baseline method (Park et al., 2018), it is a part of the
synthesis process with the aim of ensuring a good transition/fusion between object and background.

For the second challenge, existing work in computer vision (Park et al., 2018) used word em-
bedding to produce a base image that can be combined with background at the bottleneck layer of a
encoder-decoder network. One major difference between word embedding and gene representation
is that word is much more closely related to image. Therefore, we choose to model the gene infor-
mation as the abstract “style” of an image, and use style transfer techniques to guide the synthesis
process (Karras et al., 2018). Specifically, high-dimensional gene expression data is encoded with
a mapping network, this can be a few fully-connected (FC) layers (Karras et al., 2018), or more so-
phisticated conditioning augmentation block (Zhang et al., 2017)(Park et al., 2018). Here, for better
interpretability of gene encoding, we choose to use two FC layers to encode the raw gene data g
to a vector ¢(g). ¢(g) is further concatenated with a noise vector n to be used as the base style
map. Meanwhile, the background image is encoded with conventional image encoders consists of
convolutional layers (Park et al., 2018). With image features and gene map, we use a series of fusion
blocks to combine the information. The fusion block take image features from both background and
previous step, together with gene “style” map to achieve: 1) proper separation of object/background,
and 2) proper fusion of image/gene information.

2.2. Object separation and information fusion

Fig.1 (b) described the proposed fusion block. At each resolution level, we have three information
feed-ins: background image feature, gene map, and synthesis image feature from the previous layer.
Since it contains information for both object and background, the synthetic features are first further
encoded via two layers of convolution and batch normalization. During this process, the channel
number is doubled. The resulting code is then split into two parts: the first half used as a weight
map to control how much object/background information will be passed to further processing at this
layer; while the other half will be used as object feature map.

As shown in the figure, both object/background feature maps will be controlled by element-
wise multiplication with the weight map (+) and its inverse (—). Map + suppressed the background
information, passing mainly nodule features to be normalized by gene code. This is because we
need to formulate the system so that gene code has less to do with background and more to control
nodule appearance. Meanwhile, map — suppressed the information where nodule will be generated,
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reinforcing background information to align with input image. This process is similar to the hard
cropping operation for inpainting, but in a soft and progressive manner within each layer of network.
Gene code then controls the “style” of the synthetic nodule via an adaptive instance normalization
(AdalN) layer (Karras et al., 2018). Finally, the two are added together and fed to upsampling/de-
coding layer.

In this way, we achieved “soft” separation of lesion region and background, where genomic
and imaging information are fused together. Comparing with completely erasing part of the image
as “inpainting”, the weight map is a learnt probability, which retains the information necessary
for modelling the interaction between object and background. Comparing with word embedding
synthesis (Park et al., 2018), our strategy strengthened the object/background separation because
the gene map is to be applied mostly to the object region and has little impact over background.

(c) (d) (e) (f) ) (h)

Figure 2: Examples of proposed synthesis GAN: (a, e) background image, (b, f) synthesized nodule
image, (c, g) background weight image, (d, h) segmentation mask.

Fig.2 shows two examples (a-d) and (e-h) for the proposed GAN. (a) is the background image,
(b) is the synthesis result, (c) is the background weight map, and (d) is the resulting mask. (e-
h) is the same as (a-d) but for another case with ground-glass opacity. It can be observed that
the original background image does not get change significantly with major structures preserved.
At the same time, the synthesized nodule fused naturally with background image, this is especially
important for a ground-glass case. It can also be seen that for two background images under different
reconstruction, (e) being smoother than (a), the sharpness of the resulting nodule image also aligns
well with the background image. Another important observation is that the attention map and mask
coverage is larger than the solid lesion region, which confirms our hypothesis that both nodule and
its interaction with background tissue, i.e. the transition region in between, are modeled under
control of gene code.

2.3. Training strategy

The proposed GAN encodes genomic features as a vector, and outputs both image and segmenta-
tion. Here, the discriminator is illustrated in Fig.1 (c), following the method in (Park et al., 2018).
The input to the discriminator is a tuple of image-segmentation-gene code. Two encoders are uti-
lized to encode: 1) image for discriminator Dy, and 2) image-segmentation pairs for discriminator
Dys. The second encoder’s output is further combined with gene code ¢(g) and further encoded via
convolution, batch normalization, and leaky ReLLU activation layers for discriminator Djgg. Dis-
criminators are trained with least squares loss functions (Mao et al., 2017). Given image x, matched
gene code g, and matched segmentation mask m, tuples to be discriminated against it include cases
containing mismatched gene code g, mismatched segmentation mask m, synthetic image G, and
synthetic mask G,,. Let pg and pg denote the distributions of real and synthetic data, we have
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x,g,m,g,m ~ pg and G, Gy, ~ pg. With different combinations, we have

Lp, = E[(D1(x) —1)*] + E[D1(G)?)
Lp,s = E[(Drs(z,m) — 1)?]| + E[Drs(z,m)*] + E[D;s(Gx, Gin)?]
Lp,se = E[(Disa(x,m,g) —1)*] + E[Disq(x,m, g)°]
+E[Drsc(x,m, )?] + E[D1sq(Ge, Gm, 9)°]

For training the generator, the background reconstruction loss is added to guide the feature
extraction of background image during synthesis. Let G;; be a morphological eroded version of
segmentation mask G,,’s inverse (i.e. background region), ® denote element-wise multiplication,
the L1 loss is computed over background between synthetic image GG, and base image x:

Lg = E[(D(Gy) —1)’] + E[(D15(Ga, Gm) — 1)7]
+E[(D156(Ga; Gm, g) — 1)%] + AB[[|G2 © Gy — 2 © Gy |]

3. Experiments and Results

We evaluate the proposed method using the publicly available NSCLC dataset (Bakr et al., 2017).
This radiogenomic dataset is built upon a NSCLC cohort of 211 subjects. Together with CT images
and segmentation maps of the tumors, a subset of 130 subjects also have RNA sequencing data
from surgically excised tumor tissue samples. After removing all gene with NaN values, we end
up with a 5172-dimensional gene vector for each case. A 60 x 60 x 60 mm? volume-of-interest
(VOI) centered at each nodule is first cropped from the original image. Then 2D slices with nodule
presence are extracted as training samples. In total we have 3736 training image slices.

Background images are created as following: lung region is first segmented for each image,
then the nodule regions are excluded from lung mask. Next, distance transform is computed for the
resulting mask, and centers are selected at a random location 5 to 25 mm from the mask boundary.
Around each center, a 60 x 60 x 60 mm? VOI is cropped and 20 random slices are extracted from
each VOIL.

Our proposed method has two outputs: 1) realistic and controlled generation of nodule images,
and 2) radiogemonic map learning that links gene information to image features. Since there is no
prior work achieving these goals, we compare the proposed method against an in-painting method
(Jin et al., 2018), and a baseline method (Park et al., 2018) (2D multi-conditional natural image
synthesis).

Fig. 3 shows the performance of image synthesis with multi-conditional GAN. First row include
7 training images. The algorithm uses the gene information from each of them, together with back-
ground images from second row, to synthesize image with nodules. Third row is the results from
in-painting method, fourth row from baseline method, and the last row is from the proposed method.
As shown in the image, in-painting method does not have control over the appearance of the nodule,
and suffers from the discontinuity along the cropping boundary. Although more sophisticated in-
painting methods can potentially reduce this missing information issue; by keeping all information
from the background image rather than cropping out part of it, the network essentially has more in-
formation to prevent discontinuity along the cropping boundary from happening. As compared with
baseline, the proposed method generates more images that are less blurred/corrupted (e.g. last col-
umn). Also, The resulting synthetic images have similar features as the reference training samples.
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On the other hand, we do notice that the current model has a certain degree of mode collapsing issue.
While arguably, the proposed method still has an edge on the relative association to the reference
images. For example, Column 5 and 7, where 5 has much fuzzier boundaries than 7, the proposed
catches this feature (in a relative manner), but the baseline method generates a flipped version.

Figure 3: Result of nodule synthesis, first row: training image, whose genomic information is used
to synthesize each column; second row: background image; third row: synthetic image
by in-painting method (Jin et al., 2018); fourth row: synthetic image by baseline method
(Park et al., 2018); last tow: synthetic image by the proposed method.

Table 1: Quantitative evaluation of image synthesis quality

Method MSE SSIM PSNR
In-painting 0.0121 0.76 20.94
Baseline 0.0065 0.74 22.05
Proposed 0.0044 0.88 24.52

To further evaluate the results quantitatively, we used common image quality measurements
including MSE, SSIM and PSNR within specifc regions between generated image and background
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image. Results are listed in Table. 1. As shown in the table, the proposed have better performance
over the two methods under comparison. The numbers, though, should only be used as a reference
and interpreted with caution. This is because inherently, the in-painting method and the proposed
method follows different logic. The in-painting method removes center sphere of the original image,
so there is no change outside the sphere, and the major issue is the discontinuity along the sphere
boundary. Here we calculated the measurements of in-painting within 1.5 xradius sphere (otherwise
any numbers can be achieved just by adjusting the sphere). The baseline and proposed method, on
the other hand, try to synthesize nodule together with its fusion feature with the background, so the
entire image got changed during synthesis. The numbers are calculated as an overall assessment,
and may not be able to capture different aspects of each method. Therefore, we recommend readers
to interpret them carefully, and refer to the qualitative results.

g Y
Raw Baseline Proposed

Figure 4: Distribution of gene coding illustrated by 2D t-SNE map (van der Maaten and Hinton,
2008) : raw gene (5172-D) and gene code produced by baseline method (128-D) does
not show obvious separation, while gene code produced by the proposed method (128-
D) showed feasibility for clustering. Three groups of samples are drawn from clusters
formed according to distance, and their corresponding image are shown.

To check how well genomic information and image feature can be related with the proposed
method, we showed the the radiogenomic correlation of the trained network in Fig. 4. In this
experiment, the synthetic images are not involved, we look at the original image and comparing
their raw / learnt gene codes. Here, we would like to see whether the similarities (from a distribution
point of view) in gene codes can reflect their similarities in the image appearance. Supposedly, the
closer gene codes generated by the proposed method can - to a certain degree - be related to similar
image appearance.

Therefore, we project both the raw and the learnt gene codes using t-SNE (van der Maaten and
Hinton, 2008) to generate a 2D representation of genomic data for easier visualization. The color
groups in Fig. 4 are formed by the rough clusters from the proposed coding method, and we keep the
same color based on this map for each individual point cross all three maps. As shown, no clusters
can be reasonably formed from the raw gene vector, or the one produced by baseline method. This
shows that the cluster-separability of the original gene code is quite weak, and hence confirms
the difficulty of genome clustering if it is treated independently from image, as used in almost all
previous radiogenomic studies. Since genes are clustered with such high uncertainties, this could
potentially explain why the final findings are mostly weak in previous studies. With the proposed
method, the resulting gene code can be separated to clusters. By examining their corresponding
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image, we can observe some general correlation between gene cluster and the image features such
as nodule shape and boundary smoothness. Our approach opens a new perspective beyond common
practice and alleviates this issue as shown by the t-SNE map. The end-to-end framework removes
the need for handcrafted features for finding relations between the imaging and genetic data.

4. Discussion and Conclusion

In this work, we use a multi-conditional GAN, coupled with a new structure of style control and
fusion, to effectively generate realistic nodules whose appearance is controlled by its genomic fea-
tures. Without erasing any portion of condition image, our method is superior over state-of-the-art
method in object realism and object/background separation and fusion. An end-to-end mechanism
is achieved to holistically model and correlate various features. As such, our approach can provide
not only an effective and controllable means to generate diverse nodules, but also a discrimina-
tive radiogemonic map linking genomic and image features. To our best knowledge, this is the
first attempt to address radiogenomic mapping by fusing the image and gene information together
within an end-to-end GAN network. Currently, this work is proof-of-concept given that the data
size is limited and there are still many unanswered questions. Conducting a study to make clinically
convincing would be a long journey. There has been some clinical research that studies the charac-
teristics of lung nodules and their correlations to associated gene coding. It is rather a sophisticated
and ongoing research topic. With this paper, we would like to inspire the community about what we
can do with gene codes and imaging data using deep learning. We show promising results and hope
others may follow exploring what can be done in finding the correlation, which is less explored but
can potentially have clinical impact.
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