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Abstract

A novel compositional approach called DSE- Diffusion Score Equilibrium that
enables few-shot learning for novel skills by utilizing a combination of base policy
priors is presented. Our method is based on probabilistically composing diffusion
policies to better model the few-shot demonstration data-distribution than any
individual policy. By using our few-shot learning approach DSE, we show that
we are able to achieve a reduction of over 30% in MMD distance across skills
and number of demonstrations. Moreover, we show the utility of our approach
through real world experiments by teaching novel trajectories to a robot in 5
demonstrations.

1 Introduction
For robots to be deployed in unstructured environments and interact with humans, they should
be capable of combining previously learned skills along with utilizing any given demonstrations.
However, finding the right skills to combine from a base set and the extent of their contributions in
the resulting motion is non-trivial. Existing compositionality methods either directly pick and choose
the priors to compose while only learning the ratios of the priors’ contribution Peng et al. [2019],
or do not have a method to utilize residual information in the provided demonstrations Urain et al.
[2023], Wang et al. [2024].

To tackle these shortcomings, we propose Diffusion Score Equilibrium(DSE), a compositional
method that works over a set of base policies by inferring the extent of their contribution given a
few demonstrations. Importantly, our method does not assume the policies to compose for achieving
the desired behavior, and scales the contribution of base policies based on the information available
in the provided demonstrations. A core element of our approach is inferring the contribution of
each base policy in the resulting behavior, which we refer to as compositional weights henceforth.
We infer these weights by minimizing the distance between a proposed trajectory and the few-shot
demonstration data-distribution.

We show that by inferring the compositional weights by minimizing the Maximum Mean Discrepancy
distance Gretton et al. [2012] over the Forward Kinematics (FK) kernel Das and Yip [2020] (MMD-
FK), our method DSE scales with the number of provided demonstrations and achieves superior
performance in both low and high data regimes. DSE results in 30% to 50% lower MMD-FK
error in different data regimes than a demonstration fine-tuned policy and is also superior to prior
compositional approach using diffusion models. Our contributions in this work are as follows-

• We present a novel compositional approach for sample-efficient learning called Diffusion Score
Equilibrium (DSE). To the best of our knowledge, our work is also the first to learn compositional
weights over a set of diffusion policies from the target demonstrations.

• We propose MMD-FK to fill the gap of a task and action space agnostic metric. We use the novel
combination of the distributional MMD measure with the Forward Kinematics kernel to calculate
distances between two trajectory distributions over the whole body of the robot.
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Figure 1: An outline of our approach. We assume a set of base policies πi, i = 1..N and train
another policy πN+1 on the provided demonstrations. We compose over these policies and infer
the compositional weights using quadratic optimization with the objective of MMD-FK. Only one
optimization cycle is shown in the image.

2 Background

2.1 Policy Composition and Sampling

Our aim is to learn the action distribution aL0 for a fixed trajectory length L from D demonstrations.
Here, we use a to denote action for all the trajectory time-steps for brevity and drop the L notation.
Gaussian diffusion models Sohl-Dickstein et al. [2015] learn the reverse diffusion kernel pθ(at|at−1)
for a fixed forward kernel that adds Gaussian noise at each step q(at|at−1) = N (at;

√
αtat−1, (1−

αt)I), such that q(aT ) ≈ N (0, I). Here t <= T represents the diffusion time-step and αt the
noise schedule. To sample from the product distribution, we need the score of the composition
at each noise scale of the ancestral sampling chain. Our product distribution can be expressed as
pcomp(a0) = p1θ(a0) ∗ p2θ(a0), where a0 has been specifically written to reflect that the distributions
are composed in the data space. Then the score of the composed distribution ∇at log qcomp(at) can
be written as ∇at log

(∫ [∏
qi(a0)

]
q(at|a0)da0

)
. A long line of works instead add the individual

scores of the distributions being composed
∑

i

(
∇at

log
[∫

qi(a0)q(at|a0)da0
])

, since the former
is not tractable. Du et al. [2023] bring this out as the reason for inferior quality of samples from
composed image distributions and suggest Annealed MCMC samplers instead of ancestral sampling
that does not result in the correct sequence of marginals expected by the reverse diffusion process.
However, we utilize this sequence of marginals to interpolate between distributions.

3 Methodology

3.1 Novel Motion Generation by Composing Diffusion Models

To spatially blend between distributions for generating novel motion, we propose to sample from
qcomp(a0) =

∏N
i=1 qi(a0)

wi , where
∑N

i=1 wi = 1, where we have N base policies. The sum of
scores of the composed distribution ∇at

log qcomp(at) at each time-step can then be approximated as∑N
i wi

(
∇at

log
[∫

qi(
a′
0√
ᾱt
)Φ

(
at−a′

0

1−ᾱt

)
da′0

])
. Here Φ is the standard normal distribution. Here,

we have split the mean and variance effects of the forward diffusion transition kernel q(at|a0) to
suggest that the individual distributions being composed are not invariant across time-steps.

Expressing the ith base policy distribution at diffusion time-step t as an EBM pi;t(a) =
exp(−Ei;t(a))/Zθ, we get its score as ∇logpi;t(a) = −∇Ei;t(a), where Ei;t represents the noisy
shifted energy function. The gradient of the energy function ∇Ei;t(a) is proportional to the output of
diffusion models ϵ̂i;θ(at, t), both of which estimate the score of the data distribution corresponding
to the ith base policy Du et al. [2023]. Thus a weighted addition of the diffusion model outputs∑N

i=1 wiϵ̂i;θ(at, t) where
∑N

i=1 wi = 1 is proportional to the gradient of the weighted energy func-

tion ∇
(∑N

i=1 wiEi;t(a)
)

at diffusion time-step t. Hence, this enables sampling from regions that
are not minimums in any of the individual energy functions or distributions being composed, while
also lending some control over it’s placement.

2



3.2 MMD-FK Metric

Several integral probability metrics have been proposed in the image generation literature such a FID
Heusel et al. [2017] and Maximum Mean Discrepancy (MMD) Gretton et al. [2012] to quantitatively
evaluate the generated samples with respect to the data distribution. Moreover, we would like our
metric to measure the distance in the task space where the effect of motion composition is apparent,
and not be limited to the end-effector actions. With these requirements in consideration, we propose
MMD-FK, a metric that uses the MMD distance on the FK kernel to evaluate the distance between
two robot-link trajectory distributions. Our metric ˆdist

2

MMD−FK(X,Y ) for m and n samples from
the two distributions respectively can be expressed as:

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

KFK(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

KFK(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

KFK(xi, yj)

(1)

It leverages MMD for it’s kernel support that enables measurement of the distance between two
distributions in terms of the distance between their feature means in a latent space. To evalu-
ate task-space distances even with action space as the robot configuration, we use the positive-
definite Forward Kinematics kernel as suggested in Das and Yip [2020]. Here KFK(x, x′) =
1
M

∑M
m=1 KRQ(FKm(x), FKm(x′)) is the positive-definite Forward Kinematics kernel in Equation

1. It sums over the m control points defined on the robot, typically associated with each link in the kine-
matic chain. KRQ is a second-order rational quadratic kernel KRQ(x, x

′) =
(
1 + γ

2 ||x− x′||2
)−2

,
with the width of the kernel being γ > 0.

3.3 Diffusion Score Equilibrium

We present our few-shot learning approach DSE shown in Figure 1 in this section. Assuming M
motion demonstrations Dj where j = 1..M , we want to learn the optimal policy, which we evaluate
using the MMD-FK distance between the data-distribution and samples from the policy. Given the
limited number of demonstrations, the policy trained on the few-shot data learns a very noisy estimate
of the score function. Sampling from such a policy often results in incorrect motions as the energy
function gradient estimates are not accurate. Our main insight is to use gradient priors from the
base set of policies to get a more accurate estimate of actual gradient towards the minimum. We
use this score estimate as a prior for our policy learned on the few-shot data wcompϵ̂comp;θ(at, t) +

wfsϵ̂fs;θ(at, t) where wcomp + wfs = 1. This can be reformulated as
∑N+1

i=1 wiϵ̂i;θ(at, t) where∑N+1
i=1 wi = 1, where the (N + 1)th policy is trained on the few-shot demonstrations D. Finally, we

estimate wi by minimizing MMD-FK between the few-shot demonstration data and our composed
policy samples.

Estimating wi is challenging, but attempts have been made previously to estimate the sampling
parameters in differentiable samplers for diffusion models Watson et al. [2022] with gradient based
methods. These gradient based methods are computationally expensive due to multiple backward
passes through the model. Instead, we utilize a non-gradient based quadratic optimizer Kraft [1988]
to tune our weights with the objective function of MMD-FK. Our approach is described in Algorithm
1.

4 Experimental Details
4.1 Data Generation and Model Architecture

We generate 200 joint-position demonstrations using damped-least squares based differential inverse
kinematics Buss [2004] for Franka Research-3 robot in Mujoco Todorov et al. [2012], as shown
in Figure 2. These priors execute these trajectories in task space with random initial end-effector
orientations and positions. All our policies are trained on the smallest variant of DiT Peebles and
Xie [2023], conditioned on the initial state of the robot in configuration space. The model ϵ̂θ(at, o, t)
learns to predict the noise that was added to the input at, conditioned on the diffusion time-step t
and the observation o using AdaLN Perez et al. [2018]. The models were trained using the standard
hyper-parameter configuration as resented in the DiT paper. The training was performed on NVIDIA
RTX A5000 GPUs and took approximately 2 hours for each model till 2000 epochs.
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Algorithm 1 DSE: Compositional Weight Estimation
Input: Base policies pi, i = 1..N ; Demonstrations D
Output: Compositional weights wi

Initialize : Train a diffusion model pN+1 on the demonstration data D
Minimize MMD-FK:

1: for l = 1 to OPT_ITER do
2: Initialize : wi,

∑N+1
i=1 wi = 1

3: for k = 1 to NUM_SAMPLES do
4: for t = 1 to NUM_INFERENCE_STEPS do
5: ϵ̂comp =

∑N+1
i=1 wiϵ̂i;θ(at, t)

6: end for
7: end for
8: Calculate MMD-FK(SAMPLES,D)
9: end for

10: return wi, i = 1..N + 1

Figure 2: Base policies in order: LineX , LineY , LineY , CircleX , CircleY , CircleZ, OscX ,
OscY , OscZ. The last three base policies Osc oscillate about the specified axis with fixed end-
effector position.

4.2 Sequential Quadratic Optimization

A core element of our approach is the optimization procedure to evaluate the compositional weights.
The sample size for the quadratic optimizer is adjusted based on the number of demonstrations in
the few-shot dataset. For all the experiments, we run the optimization procedure 4 times, where it is
initialized with the normalized MMD-FK values between the prior motion datasets and the novel
demonstration dataset, and three random initial values that sum to 1. We found that the optimization
was also able to recover the base policies from corresponding demonstration data collected on the
real robot. The optimization procedure took around 10-20 minutes depending upon the number of
samples considered to evaluate MMD-FK on a single GPU.

5 Results
5.1 Few-shot learning

We use prior motions corresponding to a line, a circle and inverted pendulum along the X, Y and Z axis
as base policies for most of our experiments, visually depicted in figure 2. We utilize two baselines to
compare against our approach. The first is the composition of diffusion policies as proposed by Du
et al. [2023, 2020]. We find optimal compositional weights for this method using the optimization
procedure similar to ours. The second is a non-compositional baseline of a diffusion model trained
on the demonstration data. We compare DSE against our baselines for 4 novel trajectories not seen
by the robot, two in a simulated setting, and two collected on the real robot. We report MMD-FK
values with the reference trajectory distribution wherever available, evaluated over 50 samples. Table
1 shows the results for the simulated experiments. DSE consistently achieves a lower or comparable
MMD-FK score than both the baselines on all the tasks, for 5, 15 and 40 demonstrations. While we
visually represent the end effector trajectories in Section 4, our method optimizes the compositional
weights for all the links of the robot. Further experimental details can be found in Appendix A.1 and
the rollout videos can be accessed on our project webpage 2.

2https://sites.google.com/asu.edu/comp-fsl
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Table 1: MMD-FK scores for 50 rollouts across skills and demonstrations counts. Details on the
few-shot trajectories provided for StepX and OscX + LineXZ can be found in the Appendix A.1.

Number Vanilla Fine-tuned Diffusion
of Composition Policy Score

Trajectories demos Equilibrium

StepX
5 0.79 0.50 0.25

15 0.18 0.27 0.20
40 0.15 0.17 0.12

OSC X +
Line XZ

5 0.75 0.57 0.32
15 0.30 0.25 0.06
40 0.37 0.14 0.12

For our real world experiment, we collected 15 demonstrations resembling an S along the X-axis and
Spring motion along X-axis. The MMD-FK results are shown in Table 2 and visually represented
in Figure 5. DSE also achieved lower MSE with the collected demonstrations than the baselines,
confirming the utility of our metric MMD-FK for evaluating compositional weights.

Table 2: Robot experiment results where we collected 15 demonstrations on Franka FR3 to train our
policies. DSE achieves lower MMD-FK/MSE values exhibiting robustness to noise when learning.

Number Vanilla Fine-tuned Diffusion
of Composition Policy Score

Trajectories demos Equilibrium

S Motion 5 0.50 / 0.0076 0.69 / 0.0034 0.56 / 0.0019
15 1.70 / 0.0148 0.69 / 0.0023 0.34 / 0.0015

Spring
Motion

5 1.65 / 0.016 4.28 / 0.0037 0.37 / 0.0024
15 0.91 / 0.0110 5.10 / 0.0022 0.47 / 0.0013

6 Discussion and Limitations
As the number of training demonstrations are increased, the weight assigned by our approach DSE
to the fine-tuned model increases. This is expected as if we have more demonstrations our model
picks the true data distribution rather than the compositions over the base policies. However, as we
observe more data vanilla composition models also perform better as they get a better estimate of
the trajectory distribution. Further, our priors are not orthogonal, can be multi-modal and be chosen
with a lot of freedom. This is unlike policy composition using multiplicative Gaussian policies Peng
et al. [2019] which cannot handle multi-modality. Moreover, Gaussian Mixture Models face the
challenge of exploding number of modes as the number of prior policies increase, further highlighting
the efficiency of DSE. Our results can also improve with more priors however this would lead to
increased compute time to find optimal weights. Finally, we do want to acknowledge that these
compositions are in the state space of the robot rather than in the raw observation space such as the
visual observations of the robot.

7 Conclusion
We present a novel compositional approach to few-shot learning called Diffusion Score Equilibrium
(DSE) based on equilibrium of scores predicted by diffusion models. Our approach composes a policy
trained on the target demonstrations with a set of base policy priors and infers the compositional
weights by minimizing a measure of distance between the resulting composed distribution and the
demonstration data distribution. Empirically, we observed that DSE will perform better than a policy
simply trained on the data irrespective of the number of provided demonstrations on average by
30%− 50%, while outperforming it by significant margins in the few-shot regime. We also propose
a novel metric MMD-FK to measure the distance between two movement trajectory distributions for
the whole body of the robot.
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A Appendix

A.1 Detailed Results

A.1.1 Results with Multi-modal Priors

Figure 3: This panel of figures shows A: Demo data for +X/+Y data. B: Demo data for +X/−Y data.
C: Policy rollout of composition of LineX and CircleX . D: Composition of Line+X/ + Y and
CircleX

We train multi-modal priors to test compositional approach’s ability to sample from regions of high
probability in both the distributions as shown in image A and B of Figure 3. We train policy A to
reach towards the +X or +Y direction and policy B to reach towards the +X or the −Y direction.
We expect the composed policy C with w1 = w2 = 0.5 to sample from the modes of reaching
towards the +X direction as the +X behavior exists in both Policy A and B. We see exactly this
behavior as the MMD-FK between Policy A and policy C is 0.58, between Policy B and Policy C
is 0.27 and Policy C and a +X direction policy is 0.11. Lower values of MMD-FK indicates lower
errors or higher match between the two trajectory distributions. Composing policies to sample from
the common regions of high probability was also shown for the reach and obstacle avoidance task
by Urain et al. [2023]. However, their work used hand crafted potential functions to compose these
distributions Urain et al. [2023]. We also showcase spatial blending where we compose a policy
CircleX and policy LineX to create a spiral, as shown in image C Figure 3. The MMD-FK metrics
obtained for both the cases are provided in Table 3. Finally, we showcase the result of composing
the multi-modal policy Line+X/+ Y and policy CircleX in image D in Figure 3. The composed
policy is more dominant along the +Y direction due to the directional similarity of motions.

Table 3: MMD-FK values between samples from the composed and the base policy distributions.
The compositional weights are taken to be w1 = w2 = 0.5 for both cases. Self-Comparison implies
that the MMD-FK is calculated between demonstration data and rollouts for the same policy.

+X CircleX
Spiral Vanilla Composition 0.92 0.87

Self-Comparison 0.03 0.01

We also present few-shot results in the multi-modal setting. We generate a spiral trajectory along the
X-axis as the target policy. For this experiment, we consider only Line+X/+ Y and CircleX as our
prior policies. The vanilla composition method clearly struggles in this case due to the prior policy
being multi-modal. DSE performs the best of the three approaches compared as shown in Table 4
and visually depicted in Figure 4.

Table 4: MMD-FK scores for 50 rollouts across skills and demonstrations counts for few-shot demon-
strations in simulation for SpiralX . Vanilla composition allocates majority of the compositional
weight to LineX , with DSE also using the residual information from the provided few-shot demon-
strations. DSE out-performs both our baselines in terms of MMD-FK.

Number Vanilla Fine-tuned Diffusion
of Composition Policy Score

Trajectories demos Equilibrium

Spiral X
5 0.58 0.64 0.51

15 0.58 0.26 0.09
40 0.58 0.15 0.09
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Figure 4: This panel of figures shows A: EEF few-shot demo data for spiral trajectory. B: Policy
rollout of vanilla composition C: Policy rollout of the fine-tuned policy trained on 15 demos D: Policy
rollout of DSE trained on 15 demos.

Figure 5: This panel of figures shows Left: Overlay of real robot demonstration collection for
S-motion along the X-axis; Top-right: Policy rollout of vanilla composition with 15 demos; Bottom-
right: Policy rollout of DSE trained on 5 demos.

A.1.2 Main Results

We provide details on the simulated few-shot demonstrations and analyze our results closely below.
We also visually depict the end-effector trajectory resulting from the policy rollouts for the few-shot
demonstrations of S-motion collected on the real robot in figure 5.

• Step: We generate a step trajectory in the XZ plane. We observe that DSE policy performs
surprisingly well with just 5 demonstrations, largely due to the base policy gradient priors,
while the fine-tuned policy does not perform well. As the number number of demonstrations
is increased, the fine-tuned policy catches up to DSE in terms of MMD-FK.

• OscX+LineXZ: We create a difficult target distribution for the final case in the simulated
setting. The robot end effector moves along a line while the robot body is oscillating about
the X axis. We observe that the fine-tuned policy performance gets better with increasing
number of demonstrations while compositional weight optimizer struggles due to the small
oscillatory movements in the target.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The title and the introduction are not inflated and accurately reflect the method,
domain and the results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss our limitations in section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theorem or proof has been provided in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We specify most experimental settings in the Appendix ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release the code after the camera-ready version of this paper is
submitted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper is brief due to space limitations. All the details are specified in
Section ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our results are evaluated over 50 rollouts of the model. We were not able to
calculate the standard deviation in the results due to shortage of computational resources
and time. However, our results are stronger than the next baseline by a large margin.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Provided in Appendix ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform to all the specified code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe there is no larger societal impact as the presented method is limited
to efficient learning of robotic motions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not required, as we do not train large, general-purpose models. In fact we do
quite the opposite.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have utilized several open-source code-repositories in our work. We have
appropriately credited and acknowledged them in our code, and the paper if necessary.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects or crowd-sourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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