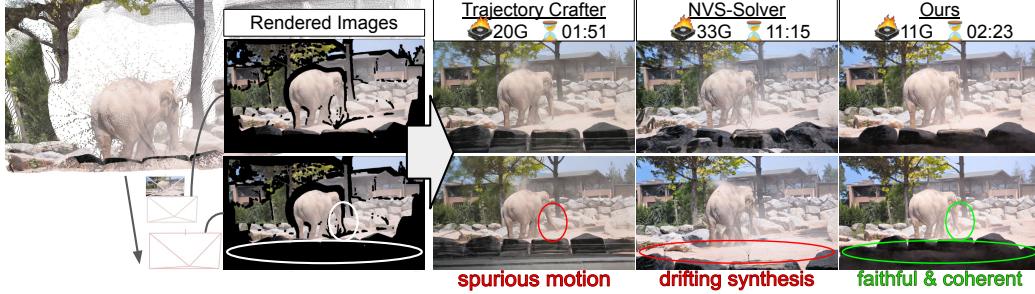


PRIORITIZING FAITHFULNESS: EFFICIENT ZERO-SHOT NOVEL VIEW SYNTHESIS WITH ADAPTIVE LATENT MODULATION

006 **Anonymous authors**

007 Paper under double-blind review



021 Figure 1: Existing render-and-inpaint NVS methods often sacrifice faithfulness for fidelity, leading
 022 to (i) spurious motion, (ii) drifting synthesis: inpainted regions are incoherent with camera motion,
 023 and (iii) appearance shifts. In contrast, our **training-free** approach prioritizes faithfulness, yielding
 024 globally structure-coherent results while maintaining sufficient fidelity, requiring only 11 GB of
 025 memory. A total of 25 frames are generated, with the figure showing the 8th and 16th frames.

ABSTRACT

028 The challenge of camera-controlled novel view synthesis (NVS) lies in balancing
 029 high visual fidelity with strict faithfulness to the source scene. We argue that
 030 current dominant approaches, which rely on finetuning large-scale diffusion
 031 models, often over-emphasize fidelity while struggling with faithfulness due to their
 032 generative nature. To address this, we propose a zero-shot NVS pipeline that
 033 prioritizes faithfulness and efficiency. Our method introduces two key contribu-
 034 tions applied during inference: (1) Test-time Latent Homography Deformation,
 035 an on-the-fly homography optimization to deform latents for global motion con-
 036 sistency, and (2) Spatially Adaptive RePaint (SA-RePaint), an extension to Re-
 037 Paint that achieves both structural consistency and texture fidelity by introducing
 038 a mathematically-grounded, region-wise balancing of these two objectives. Our
 039 evaluations demonstrate substantial improvements in faithfulness and camera accu-
 040 racy with competitive perceptual scores, highlighting a successful integration
 041 of faithfulness, quality, and efficiency. This work offers a promising direction for
 042 NVS that rebalances the focus towards greater authenticity.

1 INTRODUCTION

046 Camera-controlled novel view synthesis (NVS) aims to generate a video along a user-specified cam-
 047 era trajectory from a source image or video. Beyond creative use, NVS is poised to enable practical
 048 applications like e-commerce, digital archiving, and virtual architectural walkthrough. The primary
 049 challenge is to simultaneously satisfy three key objectives: high visual fidelity, strict faithfulness
 050 to the source, and geometric consistency throughout the generated video. While fidelity has often
 051 been the central focus, for such practical applications, artifacts like texture changes or color shifts
 052 are unacceptable, making faithfulness a priority on par with, or even greater than, visual fidelity.

053 Many recent methods based on finetuning large-scale video diffusion models (He et al., 2024; Yu
 et al., 2024), have achieved impressive visual fidelity, but their reliance on strong generative priors

054 makes consistently maximizing faithfulness a non-trivial challenge, leading to artifacts like *spurious*
 055 *motion* on the primary subject, as seen in Fig. 1. Furthermore, these pipelines are computationally
 056 expensive: large datasets and substantial resources for training, with inference also remaining ex-
 057 pensive, limiting their broader accessibility and customizability.

058 In this regard, training-free methods offer a compelling alternative, as they allow for direct faith-
 059 fulness control without costly retraining. However, to our knowledge, no existing zero-shot method
 060 has simultaneously pursued both high faithfulness and lightweight inference. Some, like NVS-
 061 Solver (You et al., 2025), achieve a degree of faithfulness through test-time optimization, but still
 062 suffer from visual artifacts like *drifting synthesis* in the generated region (failing to follow the camera
 063 motion) and prohibitive computational costs (33 GB VRAM, 11:15 inference time, Fig. 1). Others
 064 prioritize efficiency but neglect faithfulness as a primary goal (Hou & Wei, 2024). Thus, a solution
 065 addressing both challenges remains an open question.

066 To fill this gap, we propose a novel training-free NVS pipeline that achieves both high faithfulness
 067 and efficiency. Our approach is built on a render-and-inpaint scheme: we render images from a
 068 3D point cloud derived from the source image (Yang et al., 2024a); their disoccluded regions are
 069 then inpainted by a video diffusion model (Blattmann et al., 2023). For this step, we leverage Re-
 070 Paint (Lugmayr et al., 2022), a technique that repurposes a diffusion model for zero-shot inpainting.
 071 This choice proves remarkably effective for faithfulness, yet its naive application exhibits two crit-
 072 ical limitations: the aforementioned phenomenon of *drifting synthesis*, and the trade-off between
 073 structural consistency and texture fidelity. We tackle these challenges with two key contributions:

- 074 **1. Test-time Latent Homography Deformation**, a lightweight optimization that resolves drifting
 075 synthesis in inpainted regions. It deforms the latent tensor on the fly to align with the rendered
 076 images, ensuring the entire scene moves in coherence with the camera motion.
- 077 **2. Spatially Adaptive RePaint (SA-RePaint)**, our solution to the structure-texture trade-off. This
 078 issue stems from RePaint’s fixed strategy for balancing reliance on the rendered images versus
 079 the model’s generative freedom. We make this balance spatially auto-adaptive, allowing it to
 080 generate globally coherent structures while producing rich new textures.

082 Our evaluation demonstrates substantial improvements in faithfulness and camera pose accuracy
 083 while remaining competitive in perceptual quality, all under 11 GB of VRAM. This outcome shows
 084 that significant gains in faithfulness are achievable without disproportionate trade-offs in visual qual-
 085 ity or efficiency. By rebalancing these competing objectives towards faithfulness, our work con-
 086 tributes to a more practical and reliable form of NVS, offering a promising direction for applications
 087 where authenticity is paramount.

089 2 RELATED WORKS

091 **Novel View Video Synthesis** Novel view synthesis (NVS) approaches can be broadly cate-
 092 gorized into reconstruction-based and generation-based methods. Reconstruction-based methods like
 093 NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl et al., 2023) build implicit or explicit 3D scene rep-
 094 resentations. While faithful, they struggle with novel camera poses. In contrast, recent generation-
 095 based methods adapt pretrained video diffusion models (Blattmann et al., 2023; Yang et al., 2024b;
 096 HaCohen et al., 2024; Kong et al., 2024; Wan et al., 2025) for NVS, offering superior visual fidelity
 097 and generalizability by conditioning on various view-related signals.

098 **View Conditioning Types** These conditioning signals include camera parameters (He et al., 2024;
 099 Zhang et al., 2024a; Zhou et al., 2025; Bai et al., 2025), optical flow (Jin et al., 2025; Burgert et al.,
 100 2025), or, most relevant to our work, rendered point clouds derived from depth estimation (Yu et al.,
 101 2024; You et al., 2025; Xiao et al., 2025; YU et al., 2025; Ren et al., 2025; Seo et al., 2024; Chen
 102 et al., 2025a). Our method adopts the point cloud rendering strategy for its strong geometric prior,
 103 maximizing faithfulness. This contrasts with approaches that only use rendered views for positional
 104 encoding, citing their unreliability (Seo et al., 2024). We rather argue for a strict separation of
 105 concerns, entrusting geometry to the depth estimator and inpainting to the diffusion model, thereby
 106 prioritizing faithfulness and scales with improving depth estimators.

107 **Training-Free Methods** While most generation-based NVS methods rely on finetuning via
 LoRA (Hu et al., 2022) or ControlNet (Zhang et al., 2023), a few training-free alternatives exist.

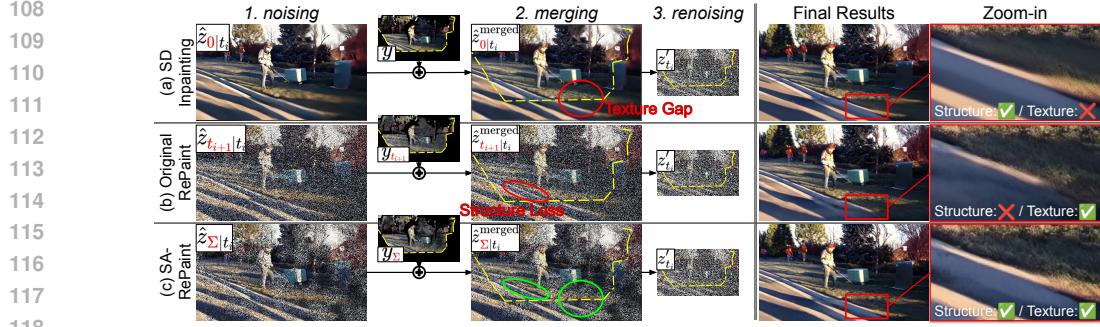


Figure 2: The structure-texture trade-off in RePaint variants. (a, b) Existing RePaint implementations compromise either structural integrity or textural fidelity. (c) Our **SA-RePaint** overcomes this challenge by adopting a spatially variable noise map Σ . The intermediate steps 1,2,3 are conceptual illustrations; the actual process occurs entirely in the latent space.

The most comparable work, NVS-Solver (You et al., 2025), also uses rendered point clouds but optimizes the latent tensor via gradient descent, incurring significant computational overhead. Other methods either sacrifice faithfulness for efficiency (Hou & Wei, 2024) or require additional 3D reconstruction models like MonST3R (Zhang et al., 2024b), increasing complexity (Park et al., 2025; Zhou et al., 2024). Another line of work employs iterative per-frame RGBD inpainting and 3D lifting (Engstler et al., 2025). Although lightweight, such auto-regressive approaches often suffer from error accumulation and severe temporal drift, unlike batch-processing video diffusion models. Our approach, in contrast, achieves high faithfulness and efficiency without costly backpropagation or auxiliary models, through direct intervention in the inference process of a video diffusion model.

3 PRELIMINARIES

3.1 STABLE VIDEO DIFFUSION

Stable Video Diffusion (SVD) (Blattmann et al., 2023) is an image-to-video diffusion model built upon the EDM framework (Karras et al., 2022). It operates in a latent space where a video is represented as z_0 . During training, the forward process corrupts this clean latent by:

$$z_t = \text{add_noise}(z_0, 0 \rightarrow t) := z_0 + t\epsilon, \quad (1)$$

where $\epsilon \sim \mathcal{N}(0, I)$ is Gaussian noise and $t \in \mathbb{R}_{\geq 0}$ is a noise level. A U-Net then derives a clean latent $\hat{z}_{0|t} \approx z_0$ from z_t , t , and the first frame of z_0 . At inference, one initializes $z_T \sim \mathcal{N}(0, T^2 I)$ and for a decreasing schedule $T = t_0 > \dots > t_N = 0$ applies the Euler update rule iteratively:

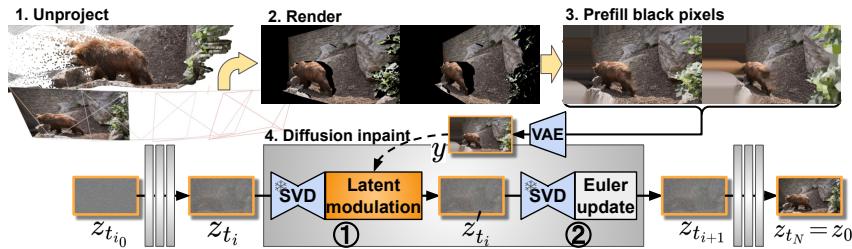
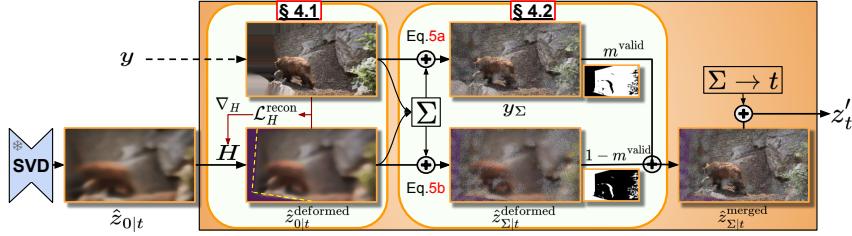
$$z_{t_{i+1}} = \text{Euler}(z_{t_i}; \hat{z}_{0|t_i}, t_i \rightarrow t_{i+1}) := \hat{z}_{0|t_i} + t_{i+1} \cdot D(z_{t_i}) \quad (2)$$

where $D(z_{t_i}) = (z_{t_i} - \hat{z}_{0|t_i})/t_i$. The final latent $z_{t_N} = z_0$ is then decoded into the output video.

3.2 REPAINT VARIANTS AND THEIR IMPLICATIONS

RePaint (Lugmayr et al., 2022) enables diffusion-based zero-shot inpainting by repeatedly pasting the known region of a conditioning image y (defined by a mask m^{valid}) onto intermediate denoised predictions during the sampling process.

In practice, RePaint-style inpainting has been implemented in two prominent ways: **Original RePaint** and **Stable Diffusion (SD) Inpainting**. Let z_{t_i} be the current noisy latent and $\hat{z}_{0|t_i}$ be the prediction of the clean latent. Both variants follow a process of *merging* y and $\hat{z}_{0|t_i}$ based on the mask and *renoising* the result back to the noise level t_i , yielding a modified latent z'_{t_i} (Fig. 2 left). This new latent then serves as the input for the standard Euler update step ($z'_{t_i} \rightarrow z_{t_{i+1}}$). Their key difference lies in *at which noise level* this merging occurs, as summarized below:

162
163
164
165
166
167
168
169170
171
172
Figure 3a: Overview of our rendering and diffusion inpainting pipeline. Step ① modulates the latent z_{t_i} to z'_{t_i} so that it aligns with y (our core contribution), while ② performs the standard denoising process $z'_{t_i} \mapsto z_{t_{i+1}}$.173
174
175
176
177
178
179180
181
182
183
Figure 3b: Detailed view of latent modulation. We globally align the latents $\hat{z}_{0|t}$ with the rendered image latents y by test-time optimizing a homography H (Section 4.1), and derive a non-uniform noise map Σ (see Fig. 2) for smooth blending (Section 4.2). The merged result $\hat{z}_{\Sigma|t}^{\text{merged}}$ is then further corrupted to reach a uniform noise level t . All tensors reside in the latent space; the attached images are for illustration purposes only.184
185
186
187
188
189
190

SD Inpainting (merging at $t = 0$)		Original RePaint (merging at $t = t_{i+1}$)
Noising	None	$\begin{cases} y_{t_{i+1}} = \text{add_noise}(y, 0 \rightarrow t_{i+1}) \\ z_{t_{i+1}} = \text{Euler}(z_{t_i}; \hat{z}_{0 t_i}, t_i \rightarrow t_{i+1}) \end{cases}$
Merging	$z_{0 t_i}^{\text{merged}} = m^{\text{valid}} y + (1 - m^{\text{valid}}) \hat{z}_{0 t_i}$	$z_{t_{i+1}}^{\text{merged}} = m^{\text{valid}} y_{t_{i+1}} + (1 - m^{\text{valid}}) z_{t_{i+1}}$
Renoising	$z'_{t_i} = \text{add_noise}(z_{0 t_i}^{\text{merged}}, 0 \rightarrow t_i)$	$z'_{t_i} = \text{add_noise}(z_{t_{i+1}}^{\text{merged}}, t_{i+1} \rightarrow t_i)$

191
192
193
194
The choice of merging noise level, despite both variants renoising to the same level t_i , leads to distinct outcomes (Fig. 2 right). Merging at the lowest noise level $t = 0$ (SD Inpainting) maintains structural alignment but results in overly smooth, textureless outputs. Conversely, merging at a high noise level t_{i+1} (Original RePaint) enhances texture fidelity but compromises structural consistency.195
196
197
198
This trade-off motivates us to develop a method that adaptively selects the optimal noise level for merging per region. Ideally, such a method would use lower noise for textured regions to preserve structure, while applying higher noise to smoother regions for better inpainting fidelity (Fig. 2c). The mathematical formulation of this intuition is discussed in Section 4.2.200
201
4 METHODOLOGY202
203
204
205
206
207
208
209
Given a source image I_0 and a specified camera path $\{C_f\}_{f=0}^{F-1}$, our goal is to synthesize a novel view video $\{I'_f\}_{f=0}^{F-1}$ ($I'_0 = I_0$) following this camera path. Although our method easily extends to video inputs (see Appendix P), we focus on the single-image setting: this creates a “bullet-time” effect where the scene must remain static, providing a stringent test for faithfulness as even minor motion artifacts are highly perceptible. Our pipeline (Fig. 3a) consists of two main stages: rendering via 3D projection and diffusion-based inpainting. Our key contributions are introduced within the latter inpainting stage to resolve the inherent challenges of this framework.210
211
212
213
214
215
Rendering via 3D Projection First, we lift the input image I_0 to a 3D point cloud using Depth Anything V2 (Yang et al., 2024a), and render it along the camera path to produce a sequence of views $\{I_f\}_{f=0}^{F-1}$. These views contain empty regions corresponding to disocclusions. To prevent black pixels in these regions from contaminating valid regions during VAE encoding, we pre-fill them using a classical completion method (Bertalmio et al., 2001). These pre-filled images are VAE-encoded to form a latent tensor $y \in \mathbb{R}^{F \times C \times H \times W}$, with corresponding valid-region masks $m^{\text{valid}} \in [0, 1]^{F \times 1 \times H \times W}$ derived by resizing their pixel-space counterparts.

216 **Diffusion Inpainting** We inpaint the disoccluded regions in y using a RePaint-style (Lugmayr
 217 et al., 2022) iterative process with Stable Video Diffusion (SVD) (Blattmann et al., 2023). The
 218 process begins at an intermediate step $i_0 \in [0, N - 1]$, where we initialize the latent by noising y :
 219

$$z_{t_{i_0}} = y + t_{i_0} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I). \quad (3)$$

220 SVD then iteratively denoises this latent, with RePaint intervening at each step as in Sec. 3.2.
 221

222 However, a naive application of RePaint suffers from two key issues: (i) *drifting synthesis*, where
 223 the inpainted region fails to follow the camera motion (as seen in Fig. 1, NVS-Solver), and (ii) the
 224 *structure-texture trade-off* discussed in Sec. 3.2 (Fig. 2). To resolve these issues, we introduce two
 225 lightweight strategies that respectively address each problem by modulating the clean prediction
 226 $\hat{z}_{0|t_i}$ before the merging step. For simplicity, we hereafter drop the denoise step subscript i .
 227

228 4.1 TEST-TIME LATENT HOMOGRAPHY DEFORMATION

229 Our baseline approach, a naive application of Re-
 230 Paint, often suffers from *drifting synthesis*: the in-
 231 painted regions fail to follow the camera motion, ap-
 232 pearing static and disconnected from the rendered
 233 area (an issue also seen in methods like NVS-Solver,
 234 Fig. 1). We hypothesize that this stems from an in-
 235 herent static bias in image-to-video diffusion mod-
 236 els, which prioritize texture stability over consistent
 237 motion (Tian et al., 2025; Choi et al., 2025). This is-
 238 sue is particularly pronounced in SVD, which lacks
 239 text prompts that could otherwise guide motion.
 240

241 To address this *drifting synthesis*, we introduce a test-time latent homography deformation. Our
 242 goal is to find a set of homographies $\{H_f\}_{f=0}^{F-1}$, where each $H_f \in \mathbb{R}^{3 \times 3}$ warps the clean prediction
 243 $\hat{z}_{0|t}$'s f -th frame to align with the rendered image's latent $y[f]$. We formulate this as an optimization
 244 problem solved at each denoise step, minimizing two losses: a reconstruction loss $\mathcal{L}_H^{\text{recon}}$ enforcing
 245 the alignment, and a temporal smoothing loss $\mathcal{L}_H^{\text{smooth}}$ encouraging constant velocity:
 246

$$\mathcal{L}_H^{\text{recon}} = \sum_{f=0}^{F-1} \|(y[f] - H_f \hat{z}_{0|t}[f]) \cdot m^{\text{valid}}[f]\|_1, \quad \mathcal{L}_H^{\text{smooth}} = \sum_{f=1}^{F-2} \|H_{f+1} - 2H_f + H_{f-1}\|_1. \quad (4)$$

247 The total loss is $\mathcal{L}_H = \mathcal{L}_H^{\text{recon}} + \lambda_H \mathcal{L}_H^{\text{smooth}}$. At each denoise step, H_f is initialized to identity and
 248 optimized by Adam (Kingma & Ba, 2014) with a learning rate of 0.01 for 100 steps. After $\{H_f\}_{f=0}^{F-1}$
 249 has converged, we replace $\hat{z}_{0|t}$ with $\hat{z}_{0|t}^{\text{deformed}} = \text{stack}(\{H_f \hat{z}_{0|t}[f]\}_{f=0}^{F-1})$ for subsequent process.
 250

251 Since homographies perform a global transformation, they effectively propagate the motion from
 252 the rendered regions into the inpainting areas, ensuring spatio-temporal consistency across frames
 253 (Fig. 4). Visualizations of this warping process are in Appendix E, where the homography is shown
 254 to gradually converge to the identity over denoising steps. However, homographies cannot model
 255 complex, depth-induced parallax. We therefore disable this deformation during later denoise steps,
 256 allowing the model to establish finer geometric details unconstrained by the global warp.
 257

258 4.2 SPATIALLY ADAPTIVE REPAINT (SA-REPAINT)

259 As discussed in Sec. 3.2, RePaint's fixed merge noise level creates a structure-texture trade-off. We
 260 propose to resolve this with a spatially adaptive merge noise level, computed as a per-pixel map
 261 $\Sigma \in [0, t]^{F \times C \times H \times W}$. To derive a criterion for computing Σ , we first analyze the source of this
 262 trade-off, which is guided by the conceptual visualizations in Fig. 2 left.
 263

264 **Merging at low noise** ($t = 0$, SD Inpainting) Merging at the clean level (Fig. 2a) creates a stark
 265 “texture gap” between the sharp, pasted region y and the smoother prediction $\hat{z}_{0|t}$. We hypothesize
 266 that this visible gap is also present in the actual merging in the latent space. Consequently, in the
 267 subsequent denoise step, the model may misinterpret this discrepancy as a genuine scene feature,
 268 thereby inhibiting texture generation in the inpainted region and impairing fidelity.
 269

269 Figure 4: Comparison before and after introducing homography deformation. The orange boxes indicate that the background of “w/o H ” doesn't follow the camera rotation.

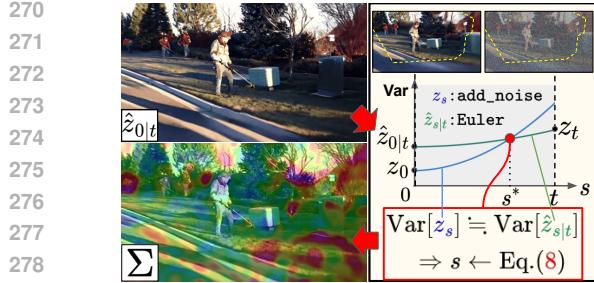


Figure 5a: Derivation of the noise level map Σ . For each pixel, we determine the appropriate noise level s^* that matches the variance of a noised ground-truth region (z_s , blue curve) and the noised generated region ($\hat{z}_{s|t}$, green curve), enabling subsequent seamless merging.

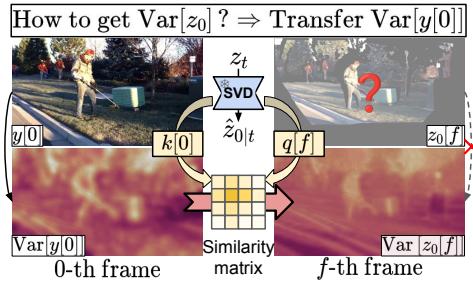


Figure 5b: Estimating $\text{Var}[z_0]$ via Variance Transfer. Since the ground truth z_0 is unavailable, its variance $\text{Var}[z_0]$, required in (a), must be estimated. Our approach transfers the variance map of the first frame $y[0]$, leveraging the attention qk -similarity between the first and subsequent frames ($f = 1, \dots, F - 1$).

Merging at high noise ($t = t_{i+1}$, Original RePaint) Conversely, at high noise levels, the texture gap seems to vanish (Fig. 2b), yet the resulting loss of structural consistency suggests an underlying statistical imbalance. We posit that the noising applied to y is more destructive to its overall geometric structures than the one applied to $\hat{z}_{0|t}$ ¹. This could obscure geometric cues in the known region, hindering their propagation to inpainting regions and compromising coherence.

This analysis suggests that our goal should be to define a noise level map Σ such that y and $\hat{z}_{0|t}$ noised by Σ are statistically coherent and merge seamlessly. We expect such a merged tensor to be perceived as in-domain, allowing the model to exert its original generation capability and resolve the structure-texture trade-off. Let's first extend the noising formulation from Sec. 3.2 to be pixelwise:

$$y_\Sigma := \text{add_noise}(y, 0 \rightarrow \Sigma) = y + \Sigma \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (5a)$$

$$\hat{z}_{\Sigma|t} := \text{Euler}(z_t; \hat{z}_{0|t}, t \rightarrow \Sigma) = (1 - \Sigma/t) \cdot \hat{z}_{0|t} + (\Sigma/t) \cdot z_t \quad (5b)$$

To make y_Σ and $\hat{z}_{\Sigma|t}$ statistically coherent, matching their full statistical distributions is intractable. We therefore propose to match their *local pixel-value variance* as a tractable proxy for this purpose.

For a tensor $z \in \mathbb{R}^{F \times C \times H \times W}$, let $p = (p_f, p_y, p_x)$ be a spatio-temporal coordinate, and \mathcal{W}_p be a local spatio-temporal window (e.g., of size $3 \times 3 \times 3$) centered at p . We define the *local pixel-value variance* $\text{Var}[z] \in \mathbb{R}^{F \times C \times H \times W}$, computed independently for each channel, as follows:

$$\text{Var}[z](p_f, :, p_y, p_x) := \frac{1}{|\mathcal{W}_p|} \sum_{q \in \mathcal{W}_p} z(q_f, :, q_y, q_x)^2 - \left(\frac{1}{|\mathcal{W}_p|} \sum_{q \in \mathcal{W}_p} z(q_f, :, q_y, q_x) \right)^2. \quad (6)$$

Our task is thus to find a map Σ that satisfies $\text{Var}[y_\Sigma](p) \approx \text{Var}[\hat{z}_{\Sigma|t}](p)$ for all p .

4.2.1 DERIVING THE PER-PIXEL NOISE LEVEL

Let $s = \Sigma(p) \in [0, t]$ be the target noise level at pixel p . We focus on its local window \mathcal{W}_p and consider how to deduce s . Accordingly, we rewrite y_Σ and $\hat{z}_{\Sigma|t}$ as y_s and $\hat{z}_{s|t}$, respectively. For simplicity, we treat $\text{Var}[\hat{z}_{s|t}]$ and $\text{Var}[y_s]$ as scalars, implicitly referring to their values at pixel p .

If the conditioning image y is available on \mathcal{W}_p , the objective is straightforward: find the noise level s that minimizes the variance difference between the noised conditioning image y_s and the noised prediction $\hat{z}_{s|t}$: $s^* := \arg \min_{s \in [0, t]} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[y_s]\|_1$.

However, this formulation is confined to known regions, as y offers no guidance in areas requiring inpainting. To create a unified objective, we need a reference signal that is valid across all pixels. The most logical candidate is the variance of the final, ideal output z_0 . We therefore generalize the objective by replacing y with the (hypothetical) ground-truth z_0 .

$$s^* := \arg \min_{s \in [0, t]} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s]\|_1, \quad (7)$$

¹Due to the asymmetric noising mechanisms (`add_noise` for y versus `Euler` for $\hat{z}_{0|t}$), the initial textural superiority of y can be reversed at high noise levels, leaving it more degraded than the prediction $\hat{z}_{0|t}$.

324 where $z_s := z_0 + s\epsilon$. This objective is well-defined for all pixels and consistently reduces to our
 325 initial objective in known regions where we can assume $z_0 \approx y$. Fortunately, this generalized
 326 problem is a quadratic minimization, thus it admits a closed-form solution.

327 **Theorem 1.** *The noise level $s^* \in [0, t]$ that minimizes the objective in Eq. 7 is an element of the set:*

$$329 \quad s^* \in \{\eta_+, \eta_-, 0, t\}, \quad \text{where } \eta_{\pm} := \text{clip}\left(\left(-B \pm \sqrt{\max(0, B^2 - AC)}\right) / A; 0, t\right). \quad (8)$$

331 *The coefficients A , B , and C are given below, where $D(z_t) := (z_t - \hat{z}_{0|t})/t$. $\text{Var}[\cdot]$ and $\text{Cov}[\cdot, \cdot]$
 332 denote the pixel-value variance and covariance on the local window:*

$$333 \quad A = \text{Var}[D(z_t)] - 1, \quad B = \text{Cov}[\hat{z}_{0|t}, D(z_t)], \quad C = \text{Var}[\hat{z}_{0|t}] - \text{Var}[z_0]. \quad (9)$$

335 Theorem 1 reveals that the optimal noise level s^* is one of at most four candidate values. We find
 336 the true optimum by evaluating the objective in Eq. 7 for each candidate. This provides a direct path
 337 to computing the entire noise map Σ pixel by pixel.

338 However, a critical prerequisite remains. The computation of the coefficient C requires $\text{Var}[z_0]$ as
 339 an input. While we can use $\text{Var}[y]$ in known regions, the core challenge is to estimate $\text{Var}[z_0]$ for
 340 unknown regions before z_0 is generated. We tackle this circular problem using cross-frame attention.

342 4.2.2 ESTIMATING $\text{Var}[z_0]$ WITH CROSS-FRAME ATTENTION

343 To estimate the unknown variance $\text{Var}[z_0]$, we propagate texture information from a known source:
 344 the input first frame $y[0]$. We leverage the cross-frame attention mechanism within the SVD U-Net,
 345 positing that attention similarity reflects textural similarity. Let q_t and k_t be the attention queries
 346 and keys from a U-Net upsample block. We approximate $\text{Var}[z_0]$ as follows:

$$348 \quad \text{Var}[z_0] \approx \lambda_{\text{var}} \cdot A_t \text{Var}[y[0]], \quad \text{where } A_t := \text{softmax}\left(q_t(k_t[0])^\top / \sqrt{d}\right). \quad (10)$$

349 Here, A_t is the attention similarity map between all the frames' queries q_t and the first frame's key
 350 $k_t[0]$, scaled by the channel dimension d . The hyperparameter λ_{var} scales the transferred variance,
 351 and we set it to 1.5 to enhance fidelity (see Appendix J for ablation).

353 As visualized in Fig. 5b, this method robustly estimates a smooth variance map for $\text{Var}[z_0]$ even in
 354 unobserved regions. The resulting Σ map accurately identifies areas requiring more texture synthesis
 355 (e.g., the foliage on the right) by assigning higher noise levels, while keeping noise low in simpler
 356 or rendered regions (e.g., the road). The full algorithm is provided in Appendix D.

357 4.2.3 ENSURING RELIABLE VARIANCE TRANSFER WITH KEY WEIGHTING

359 Our variance estimation (Eq. 10) presumes meaningful textural correspondence between the source
 360 $y[0]$ and the generated content. This assumption breaks down when novel objects are generated in
 361 unknown regions, invalidating the variance transfer since there is no source texture to draw from.

362 To enforce reliable correspondence, we employ time-varying key weighting, inspired by Sun et al.
 363 (2025); Jia et al. (2024). We modulate the key k_{t_i} with a weight mask w_i that suppresses its influence
 364 in invalid regions, especially during early denoising steps:

$$365 \quad k_{t_i}^{w_i} := \phi(w_i) \cdot k_{t_i}, \quad \text{where } w_i := i/N + m^{\text{valid}} \cdot (1 - i/N). \quad (11)$$

367 Here, ϕ is a function to align the shape of w_i with the key token k_{t_i} . This guides the model to
 368 rely on valid regions in y , ensuring a reliable basis for variance transfer by discouraging object
 369 hallucination. As denoising progresses, we gradually relax this weighting ($w_i \rightarrow 1$), allowing the
 370 model to shift its focus from source-reliance to the generation of coherent internal details within the
 371 inpainted regions, which results in improved fidelity.

372 5 EXPERIMENTS

375 We evaluate our proposed method on several standard benchmarks for novel view synthesis. De-
 376 tailed implementation settings, including hyperparameters, are provided in Appendix G. Notably,
 377 our pipeline also incorporates Smoothed Energy Guidance (SEG) (Hong, 2024), which enhances
 perceptual quality with negligible computational overhead.

378
379

5.1 BENCHMARK SETTINGS

380
381
382
383
384
385
386
387
388
389
390
391
392
393

Metrics. We adopt a dual-faithfulness evaluation strategy to rigorously assess distinct aspects of the synthesis. First, we introduce **Input-Faithfulness**, which measures the pixel-wise alignment between the output and the projected input rendering. This effectively serves as a metric for *controllability*: any deviation from valid rendered images indicates failure issues as reported in Fig. 1. Second, we report **GT-Faithfulness**, a conventional metric to compare the output against ground-truth target views. For both metrics, we compute PSNR, SSIM, and LPIPS *exclusively on the valid rendering regions*. This masking is essential to decouple the evaluation of faithfulness (preserving visible content) from fidelity (hallucinating occluded content), ensuring that plausible inpainting is not penalized for differing from the ground truth. The quality of these hallucinated regions is assessed by **Fidelity** measures: FID, KID, FVD, and VBench scores (Huang et al., 2024). Additionally, we compute **Camera Pose Errors** (ATE, RRE, RTE) between GLOMAP-estimated poses (Pan et al., 2024) and the ground truth. Lastly, we assess **Static Geometry Compliance** using Thresholded Symmetric Epipolar Distance (TSED) (Yu et al., 2023) with thresholds of 0.25 and 0.5, and MEt3R (Asim et al., 2024) with images resized so that the longer side is 256 while the aspect ratio is retained.

394
395
396
397
398
399
400
401
402
403
404

Tasks and Datasets. We evaluate our method on two different settings. **(i) Scripted Camera Motion:** we use DAVIS (Perazzi et al., 2016) and Tanks and Temples (T&T) (Knapitsch et al., 2017). To generate our test sequences, we sample one frame at a 25-frame interval from each source video, apply Depth Anything V2 (Yang et al., 2024a), and synthesize a 25-frame clip using a predefined camera trajectory chosen uniformly from a set of 10 motions comprising rotation and zoom. In this setting, we don't have access to ground truth target images, so we skip the gt-faithfulness evaluation. **(ii) Real Camera Motion:** We use the Mannequin Challenge (MC) validation set (Li et al., 2019) and DL3DV-Evaluation (Ling et al., 2024). We cut out 25-frame clips from the video, apply Depth Anything 3 (Lin et al., 2025) to infer corresponding per-frame depth and camera pose, and synthesize 25-frame clips based on these poses. We have found that SED scores are too low in other baselines to compare meaningfully, so we remove them from the evaluation.

405
406
407
408
409

Note that DAVIS and MC contain movable objects, posing a challenge to maintain faithfulness to rendered images against the video diffusion model's strong motion priors. Filtering out MC videos below 1080p and random half of DL3DV-Evaluation, the respective dataset contains a total of 288 (DAVIS), 314 (T&T), 268 (MC), and 360 (DL3DV) sequences. We report aggregated scores across all datasets; detailed per-dataset results are in Appendix H.

410
411
412
413
414
415
416
417

Baselines. We compare our method against four rendering or trajectory-based methods: Trajectory Attention (Xiao et al., 2025), Trajectory Crafter (YU et al., 2025), Diffusion As Shader (Gu et al., 2025), and NVS-Solver (You et al., 2025). The former three are fine-tuned models, whereas NVS-Solver, like our method, is training-free. Other training-free works (Hou & Wei, 2024; Zhou et al., 2024) are excluded due to the unavailability of public implementations. We also evaluated Invisible Stitch (Engstler et al., 2025) and Stable Virtual Camera (Zhou et al., 2025); however, due to fundamental methodological differences (e.g., iterative inpainting or lack of explicit 3D guidance) that hinder a strictly fair comparison, their results are reported separately in Appendix M.

418
419

5.2 COMPARISON RESULTS: SCRIPTED CAMERA MOTION

420
421
422
423

As illustrated in Fig. 6, our method demonstrates superior faithfulness to the rendered images and globally consistent yet high-fidelity generation, avoiding misalignment artifacts common in prior work, such as spurious foreground motion, static/drifting background synthesis, or color shifts.

424
425
426
427
428
429

The quantitative results in Tables 1 reveal a dramatic improvement in faithfulness (PSNR, SSIM, LPIPS) and geometric consistency (camera pose, TSED), substantially outperforming all baselines. This high faithfulness is achieved in tandem with competitive perceptual quality, as reflected in our FID/KID² and VBench scores. While some of these scores do not rank highest, this is partly because certain baselines fail to generate motion aligned with the camera trajectory, resulting in near-static videos. This failure mode can artificially inflate inter-frame consistency metrics. In contrast, our ap-

²See Appendix I for the evaluation details.

430
431

³Trajectory Crafter's unexpectedly high FID/KID likely stems from a domain shift, as it tends to synthesize novel backgrounds not present in the ground truth. This hypothesis is plausible given its strong VBench scores.

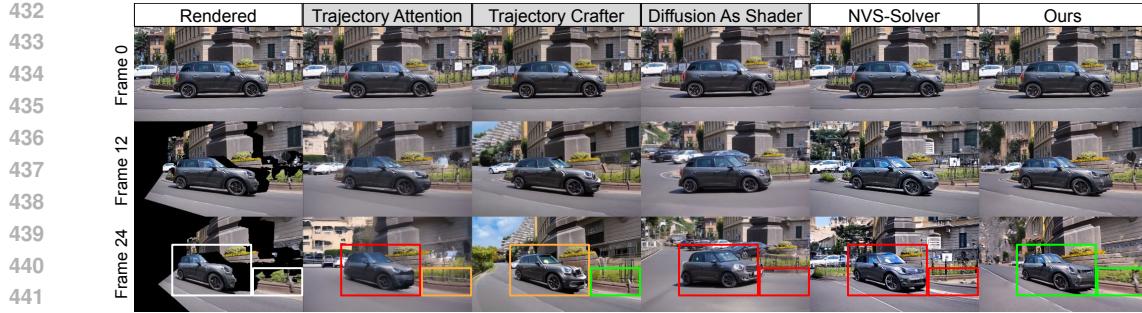


Figure 6: Qualitative comparison with other methods. Our method achieves the highest faithful geometric/appearance alignment to the rendered images (green boxes). In contrast, other methods exhibit severe inconsistency (red boxes) or subtle yet noticeable appearance shifts (orange boxes). Gray labels indicate finetuning-based methods. Other results are in Appendix K.

Table 1: Quantitative results of Scripted Camera Motion. Top: Comparison on standard metrics. Bottom: VBench evaluation. Gray rows denote training-based methods. Here, KID' denotes $KID \times 10^3$, $T_{.25}$ ($T_{.50}$) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MEt3R.

Method	Input-Faithfulness			Fidelity \downarrow			Pose \downarrow			Geometry			Efficiency $^2 \downarrow$	
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID	KID'	FVD	ATE	RRE	RTE	T $_{.25} \uparrow$	T $_{.50} \uparrow$	M3R \downarrow	GB	Time
Traj. Attention	23.01	0.731	0.175	18.36	1.737	640.1	0.266	0.063	0.100	0.378	0.916	0.031	12.7	1:15
Traj. Crafter	24.11	0.804	0.114	18.65	1.586	699.9	0.132	0.048	0.074	0.472	0.965	0.030	19.4	1:51
Diff. As Shader	14.92	0.453	0.396	19.43	1.671	497.5	1.543	0.491	1.285	0.040	0.130	0.037	30.8	7:30
NVS-Solver	21.91	0.713	0.188	16.57	1.039	640.0	0.593	0.161	0.311	0.318	0.764	0.037	32.7	11:15
Ours	29.27	0.868	0.068	16.43	0.763	648.1	0.056	0.022	0.028	0.656	0.966	0.030	10.8	2:23

Method	Subject Consis. \uparrow	Background Consis. \uparrow	Temporal Flicker \uparrow	Motion Smooth. \uparrow	Overall Consis. \uparrow	Aesthetic Quality \uparrow	Imaging Quality \uparrow								
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	
Traj. Attention	95.49	94.98	96.45	98.87	23.79	52.36	67.68								
Traj. Crafter	95.38	95.44	96.10	99.02	24.32	53.05	69.66								
Diff. As Shader	94.99	94.62	96.08	98.65	24.33	53.19	66.40								
NVS-Solver	95.18	94.43	94.50	98.26	23.98	52.38	72.19								
Ours	95.69	94.99	95.97	99.05	23.91	53.61	69.36								

Table 2: Quantitative results of Real Camera Motion. Top: Comparison on standard metrics. Bottom: VBench evaluation. Gray rows denote training-based methods.

Method	Input-Faithfulness			GT-Faithfulness			Fidelity \downarrow			Pose \downarrow			Geometry	
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID	KID'	FVD	ATE	RRE	RTE	M3R \downarrow	
Traj. Attention	21.12	0.735	0.215	18.29	0.617	0.281	20.32	5.069	156.6	0.186	0.749	0.089	0.062	
Traj. Crafter	22.77	0.793	0.164	18.71	0.645	0.269	19.30	5.437	127.4	0.394	0.771	0.190	0.057	
Diff. As Shader	12.92	0.452	0.523	12.70	0.431	0.559	26.50	5.380	304.0	0.349	1.085	0.182	0.066	
NVS-Solver	20.51	0.720	0.223	16.91	0.572	0.300	15.80	1.789	128.9	0.392	0.916	0.620	0.064	
Ours	28.95	0.893	0.074	18.97	0.652	0.241	15.56	1.792	106.1	0.114	0.637	0.053	0.060	

Method	Subject Consis. \uparrow	Background Consis. \uparrow	Temporal Flicker \uparrow	Motion Smooth. \uparrow	Overall Consis. \uparrow	Aesthetic Quality \uparrow	Imaging Quality \uparrow								
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	
Traj. Attention	92.11	93.19	94.38	97.82	24.02	48.81	59.43								
Traj. Crafter	92.86	93.60	93.33	97.43	24.78	50.87	63.51								
Diff. As Shader	90.61	92.32	94.27	97.39	24.52	50.13	55.17								
NVS-Solver	92.81	92.75	91.23	96.55	24.45	50.19	70.78								
Ours	92.53	93.16	92.84	97.16	24.23	51.81	66.65								

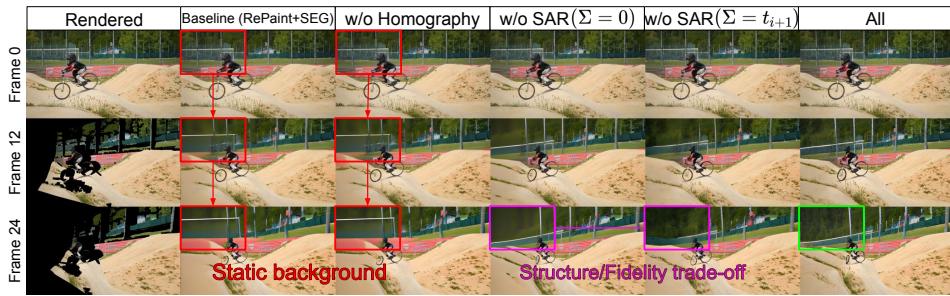
proach successfully generates videos that adhere to the camera path. Therefore, our VBench scores reflect the quality of a genuinely challenging, motion-consistent generation, confirming a superior balance between adherence and visual quality. Moreover, our zero-shot approach is significantly more efficient than NVS-Solver and rivals, if not surpasses, training-based methods in efficiency.

5.3 COMPARISON RESULTS: REAL CAMERA MOTION

From Table 2, we observe a clear positive correlation between Input-Faithfulness and GT-Faithfulness. Notably, our method, which strictly prioritizes Input-Faithfulness, also leads in GT-

486 Table 3: Ablation study on DAVIS. B: Baseline, SAR: SA-RePaint; KID' denotes $KID \times 10^3$, $T_{.25}$
 487 ($T_{.50}$) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MET3R.

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	$T_{.25} \uparrow$	$T_{.50} \uparrow$	M3R↓
B (RePaint+SEG)	29.89	0.866	0.076	30.19	1.410	714.1	0.067	0.025	0.033	0.674	0.958	0.032
w/o Homography	29.50	0.864	0.075	28.01	0.862	702.1	0.108	0.031	0.043	0.641	0.959	0.033
w/o SAR ($\Sigma = 0$)	29.95	0.866	0.075	30.35	1.460	709.2	0.050	0.021	0.027	0.713	0.968	0.032
w/o SAR ($\Sigma = t_{i+1}$)	29.65	0.864	0.077	28.99	1.003	699.0	0.049	0.021	0.027	0.683	0.967	0.032
All	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964	0.033



505 Figure 7: Visualization of each component’s role. Without homography, the background remains
 506 static (red boxes). Without SA-RePaint, either global structure or texture fidelity is compromised
 507 (purple boxes). ‘All’ successfully overcomes all these issues (green box).

509 Faithfulness. This result validates our stance: by encouraging diffusion models to adhere to the input
 510 guidance as closely as possible, we not only resolve the practically prominent issues as pointed in
 511 Fig. 1 but also contribute to higher accuracy in terms of “conventional” faithfulness.

512 On the other hand, we observe a general decline in VBench metrics such as Motion Smoothness
 513 and Temporal Flicker compared to the Scripted setting. This trend is attributable to the inherent
 514 complexity of real-world trajectories, which often contain handheld jitter and irregular velocities,
 515 posing greater challenges for temporal consistency than smooth, synthesized paths.

517 5.4 ABLATION STUDY

519 In Table 3, our RePaint-based baseline (B) validates its design selection by achieving exceptional
 520 faithfulness. However, its low fidelity and pose accuracy scores highlight the two critical limitations
 521 this approach introduces: geometric inconsistency (*drifting synthesis*) and a poor *structure-texture*
 522 *trade-off*. Our components respectively target these limitations: Homography Deformation (Sec.4.1)
 523 is crucial for geometric consistency; its removal severely degrades camera pose accuracy, though
 524 this strict enforcement comes at a slight cost to perceptual fidelity (FID). In contrast, SA-RePaint
 525 (Sec.4.2) primarily enhances texture fidelity. Its inclusion markedly improves FID/KID by gen-
 526 erating richer details while preserving structural coherence (Fig. 7). The slight decrease in TSED
 527 with SAR is expected. The realistic details SAR adds to formerly untextured regions enable more
 528 stringent feature matching in TSED, penalizing SAR more heavily for minor geometric deviations,
 529 thereby lowering the score. Our full model (‘All’) synergizes these strengths, trading a negligible
 530 decrease in faithfulness for notable gains in fidelity and pose accuracy to achieve a superior overall
 531 balance. Further hyperparameter ablations are in Appendix J.

532 6 CONCLUSION

535 We introduced a zero-shot novel view synthesis pipeline to address the trade-off between faithfulness,
 536 fidelity, and efficiency. Our method, featuring Test-Time Latent Homography Deformation
 537 and Spatially Adaptive RePaint (SA-RePaint), demonstrates that significant gains in faithfulness are
 538 achievable without disproportionate trade-offs in perceptual quality. By rebalancing the NVS objec-
 539 tives towards faithfulness while maintaining computational efficiency (under 11 GB VRAM), our
 work offers a promising and accessible direction for applications where authenticity is paramount.

540 REFERENCES
541

542 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen.
543 Met3r: Measuring multi-view consistency in generated images. In *Computer Vision and Pattern
544 Recognition (CVPR)*, 2024.

545 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
546 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
547 a single video. *arXiv preprint arXiv:2503.11647*, 2025.

548 Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid dynamics, and
549 image and video inpainting. In *Proceedings of the 2001 IEEE Computer Society Conference on
550 Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pp. I–I. IEEE, 2001.

551

552 Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-
553 shot transfer by combining relative and metric depth. *arXiv preprint arXiv:2302.12288*, 2023.

554 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
555 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
556 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

557

558 Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma,
559 Yitong Deng, Lingxiao Li, Mohsen Mousavi, Michael Ryoo, Paul Debevec, and Ning Yu. Go-
560 with-the-flow: Motion-controllable video diffusion models using real-time warped noise. In
561 *CVPR*, 2025. Licensed under Modified Apache 2.0 with special crediting requirement.

562

563 Kaihua Chen, Tarasha Khurana, and Deva Ramanan. Reconstruct, inpaint, test-time finetune: Dy-
564 namic novel-view synthesis from monocular videos. In *Advances in Neural Information Process-
565 ing Systems (NeurIPS)*, 2025a.

566

567 Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, and Bingyi Kang.
568 Video depth anything: Consistent depth estimation for super-long videos. In *Proceedings of the
569 Computer Vision and Pattern Recognition Conference*, pp. 22831–22840, 2025b.

570

571 June Suk Choi, Kyungmin Lee, Sihyun Yu, Yisol Choi, Jinwoo Shin, and Kimin Lee. Enhanc-
572 ing motion dynamics of image-to-video models via adaptive low-pass guidance. *arXiv preprint
573 arXiv:2506.08456*, 2025.

574

575 Paul Engstler, Andrea Vedaldi, Iro Laina, and Christian Rupprecht. Invisible stitch: Generating
576 smooth 3d scenes with depth inpainting. In *2025 International Conference on 3D Vision (3DV)*,
577 pp. 457–468. IEEE, 2025.

578

579 Hang Gao, Rui long Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dy-
580 namic view synthesis: A reality check. In *NeurIPS*, 2022.

581

582 Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng
583 Lin, Ziwei Liu, Wenping Wang, and Yuan Liu. Diffusion as shader: 3d-aware video diffusion for
584 versatile video generation control. *arXiv preprint arXiv:2501.03847*, 2025.

585

586 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
587 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.
588 *arXiv preprint arXiv:2501.00103*, 2024.

589

590 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang.
591 Cameractrl: Enabling camera control for text-to-video generation, 2024.

592

593 Kaiming He, Jian Sun, and Xiaou Tang. Guided image filtering. *IEEE transactions on pattern
594 analysis and machine intelligence*, 35(6):1397–1409, 2012.

595

596 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
597 arXiv:2207.12598*, 2022.

598

599 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
600 neural information processing systems*, 33:6840–6851, 2020.

594 Susung Hong. Smoothed energy guidance: Guiding diffusion models with reduced energy curvature
 595 of attention. *Advances in Neural Information Processing Systems*, 37:66743–66772, 2024.
 596

597 Chen Hou and Guoqiang Wei. Training-free camera control for video generation. *ArXiv*,
 598 abs/2406.10126, 2024. URL <https://api.semanticscholar.org/CorpusID:270521761>.
 599

600 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 601 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 602

603 Jiahui Huang, Qunjie Zhou, Hesam Rabeti, Aleksandr Korovko, Huan Ling, Xuanchi Ren, Tian-
 604 chang Shen, Jun Gao, Dmitry Slepichev, Chen-Hsuan Lin, Jiawei Ren, Kevin Xie, Joydeep
 605 Biswas, Laura Leal-Taixe, and Sanja Fidler. Vipe: Video pose engine for 3d geometric perception.
 606 In *NVIDIA Research Whitepapers arXiv:2508.10934*, 2025.
 607

607 Ziqi Huang, Yinan He, Jiahuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 608 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 609 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 610 *Pattern Recognition*, pp. 21807–21818, 2024.

611 Yueru Jia, Yuhui Yuan, Aosong Cheng, Chuke Wang, Ji Li, Huizhu Jia, and Shanghang Zhang.
 612 Designedit: Multi-layered latent decomposition and fusion for unified & accurate image editing.
 613 *arXiv preprint arXiv:2403.14487*, 2024.
 614

615 Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, and Sunghyun Cho. Flovd: Optical flow
 616 meets video diffusion model for enhanced camera-controlled video synthesis. In *Proceedings of*
 617 *the Computer Vision and Pattern Recognition Conference*, pp. 2040–2049, 2025.

618 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 619 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 620 2022.

621 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 622 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.
 623

624 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 625 *arXiv:1412.6980*, 2014.
 626

626 Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
 627 large-scale scene reconstruction. *ACM Transactions on Graphics*, 36(4), 2017.
 628

629 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 630 Bo Wu, Jianwei Zhang, et al. Hunyanvideo: A systematic framework for large video generative
 631 models. *arXiv preprint arXiv:2412.03603*, 2024.
 632

632 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 633 pre-training with frozen image encoders and large language models. In *International conference*
 634 *on machine learning*, pp. 19730–19742. PMLR, 2023.
 635

636 Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, and William T
 637 Freeman. Learning the depths of moving people by watching frozen people. In *Proceedings of*
 638 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4521–4530, 2019.
 639

639 Haotong Lin, Sili Chen, Junhao Liew, Donny Y Chen, Zhenyu Li, Guang Shi, Jiashi Feng, and
 640 Bingyi Kang. Depth anything 3: Recovering the visual space from any views. *arXiv preprint*
 641 *arXiv:2511.10647*, 2025.
 642

642 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 643 Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
 644 vision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 645 pp. 22160–22169, 2024.
 646

647 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

648 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 649 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 650 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

651 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 652 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 653 *of the ACM*, 65(1):99–106, 2021.

654 Linfei Pan, Daniel Barath, Marc Pollefeys, and Johannes Lutz Schönberger. Global Structure-from-
 655 Motion Revisited. In *European Conference on Computer Vision (ECCV)*, 2024.

656 Byeongjun Park, Hyojun Go, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, and Changick
 657 Kim. Steerx: Creating any camera-free 3d and 4d scenes with geometric steering. *arXiv preprint*
 658 *arXiv:2503.12024*, 2025.

659 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 660 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

661 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 662 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
 663 tation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 664 724–732, 2016.

665 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 666 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video
 667 generation with precise camera control. In *Proceedings of the IEEE/CVF Conference on Com-
 668 puter Vision and Pattern Recognition*, 2025.

669 Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu,
 670 Chieh-Hsin Lai, Seungryong Kim, and Yuki Mitsuji. Genwarp: Single image to novel views
 671 with semantic-preserving generative warping. *Advances in Neural Information Processing Sys-
 672 tems*, 37:80220–80243, 2024.

673 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 674 *preprint arXiv:2010.02502*, 2020.

675 Wenhao Sun, Benlei Cui, Xue-Mei Dong, and Jingqun Tang. Attentive eraser: Unleashing diffusion
 676 model’s object removal potential via self-attention redirection guidance. In *Proceedings of the*
 677 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 20734–20742, 2025.

678 Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
 679 Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
 680 Resolution-robust large mask inpainting with fourier convolutions. In *Proceedings of the*
 681 *IEEE/CVF winter conference on applications of computer vision*, pp. 2149–2159, 2022.

682 Jie Tian, Xiaoye Qu, Zhenyi Lu, Wei Wei, Sichen Liu, and Yu Cheng. Extrapolating and decoupling
 683 image-to-video generation models: Motion modeling is easier than you think. In *Proceedings of*
 684 *the Computer Vision and Pattern Recognition Conference*, pp. 12512–12521, 2025.

685 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 686 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 687 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 688 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 689 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 690 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 691 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 692 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 693 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 694 *arXiv preprint arXiv:2503.20314*, 2025.

695 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 696 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-
 697 ference on Computer Vision and Pattern Recognition*, 2025a.

702 Zehan Wang, Siyu Chen, Lihe Yang, Jialei Wang, Ziang Zhang, Hengshuang Zhao, and Zhou Zhao.
 703 Depth anything with any prior. *arXiv preprint arXiv:2505.10565*, 2025b.
 704

705 Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan. Tra-
 706 jectory attention for fine-grained video motion control. In *The Thirteenth International Confer-
 707 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2z1HT51w5M>.
 708

709 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 710 Zhao. Depth anything v2. *Advances in Neural Information Processing Systems*, 37:21875–21911,
 711 2024a.
 712

713 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 714 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 715 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024b.
 716

717 Meng You, Zhiyu Zhu, Hui Liu, and Junhui Hou. Nvs-solver: Video diffusion model as zero-shot
 718 novel view synthesizer. In *International Conference on Learning Representations*, 2025.
 719

720 Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis, and Marcus A Brubaker. Long-term pho-
 721 tometric consistent novel view synthesis with diffusion models. In *Proceedings of the IEEE/CVF
 722 International Conference on Computer Vision*, pp. 7094–7104, 2023.
 723

724 Mark YU, Wenbo Hu, Jinbo Xing, and Ying Shan. Trajectorycrafter: Redirecting camera trajectory
 725 for monocular videos via diffusion models. *arXiv preprint arXiv:2503.05638*, 2025.
 726

727 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 728 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 729 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024.
 730

731 David Junhao Zhang, Roni Paiss, Shiran Zada, Nikhil Karnad, David E Jacobs, Yael Pritch, In-
 732 bar Mosseri, Mike Zheng Shou, Neal Wadhwa, and Nataniel Ruiz. Recapture: Generative
 733 video camera controls for user-provided videos using masked video fine-tuning. *arXiv preprint
 734 arXiv:2411.05003*, 2024a.
 735

736 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
 737 qing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
 738 presence of motion. *arXiv preprint arXiv:2410.03825*, 2024b.
 739

740 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 741 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 742 pp. 3836–3847, 2023.
 743

744 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
 745 lion image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine
 746 Intelligence*, 2017.
 747

748 Jensen (Jinghao) Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss,
 749 Philip Torr, Christian Rupprecht, and Varun Jampani. Stable virtual camera: Generative view
 750 synthesis with diffusion models. *arXiv preprint arXiv:2503.14489*, 2025.
 751

752 Zhenghong Zhou, Jie An, and Jiebo Luo. Latent-reframe: Enabling camera control for video diffu-
 753 sion model without training. *arXiv preprint arXiv:2412.06029*, 2024.
 754

755 A ADDITIONAL SUPPLEMENTARY MATERIALS

756 Our anonymized code is uploaded to [https://anonymous.4open.science/r/
 757 FaithfulNVS-9EDF](https://anonymous.4open.science/r/FaithfulNVS-9EDF). Also, please refer to the supplementary videos for more visualiza-
 758 tion.

810 The objective function in Eq. 18 is the absolute value of the difference between these two variances.
 811 Let this difference be $f(s)$:

$$813 \quad f(s) := \text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s] \quad (28)$$

$$814 \quad = \underbrace{\text{Var}[D(z_t)] - 1}_{A} s^2 + 2 \underbrace{\text{Cov}[\hat{z}_{0|t}, D(z_t)]}_{B} s + \underbrace{(\text{Var}[\hat{z}_{0|t}] - \text{Var}[z_0])}_{C} \quad (29)$$

$$816 \quad = As^2 + 2Bs + C \quad (30)$$

818 Our goal is to find $\arg \min_{s \in [0, t]} |f(s)|$. In an unconstrained setting $s \in \mathbb{R}$, the minimizers of $|f(s)|$
 819 are given by the roots of $f(s) = 0$ if they are real, or by the vertex of the parabola $s = -B/A$ if the
 820 roots are complex. Both cases are compactly represented by:

$$822 \quad s = \frac{-B \pm \sqrt{\max(0, B^2 - AC)}}{A} \quad (31)$$

825 When considering the constraint $s \in [0, t]$, the optimal value s^* must be found within the set of
 826 candidates comprising the unconstrained solutions that lie in $[0, t]$ and the interval's boundaries, 0
 827 and t . Therefore, s^* must be an element of the set given in the theorem statement. One can determine
 828 the true minimum by evaluating $|f(s)|$ for each candidate. \square

829 **Notes for implementation:** The equation $f(s) = 0$ can have two real roots, both of which may
 830 lie in $[0, t]$. In this case, we select the root using the following formula:

$$832 \quad s^* = \frac{-B + \text{sign}(B) \sqrt{\max(0, B^2 - AC)}}{A}. \quad (32)$$

835 This choice is motivated by the ideal case where the model's prediction is perfect, i.e., $\hat{z}_{0|t} = z_0$.
 836 Given the construction $z_t = z_0 + t\epsilon$ where $\epsilon \sim \mathcal{N}(0, I)$, we have:

$$837 \quad D(z_t) = ((z_0 + t\epsilon) - z_0)/t = \epsilon \quad (33)$$

$$839 \quad A = \text{Var}[\epsilon] - 1 = 0 \quad (34)$$

$$840 \quad B = \text{Cov}[z_0, \epsilon] = 0 \quad (35)$$

$$841 \quad C = \text{Var}[z_0] - \text{Var}[z_0] = 0 \quad (36)$$

842 In this ideal scenario, all coefficients are zero. In practice, this means that A can be a small value,
 843 making the solution for s^* sensitive to division by A . To mitigate the risk of large perturbations in
 844 s^* due to a small A , we select the root whose numerator has a smaller absolute value, leading to
 845 Eq. 32.

D SA-REPAINT IMPLEMENTATION

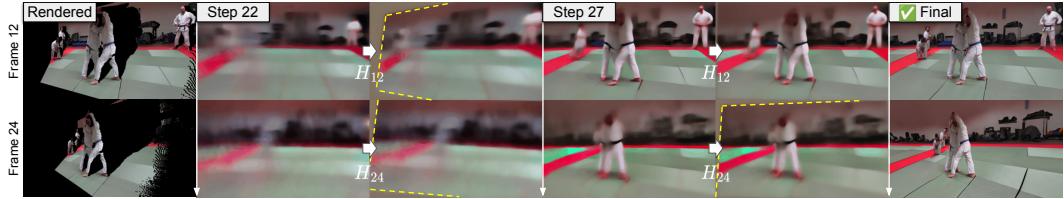
847 Algorithm 1 describes our implementation of Section 4.2. Note that the operations to deduce Σ
 848 are pixelwise. As a specific detail of the process, we apply guided filtering (He et al., 2012) to the
 849 computed covariances with $\text{Var}[z_0]$ as a guide. This step serves two purposes: firstly, to smooth
 850 the coefficients A , B , and C , which are prone to noise due to being close to zero (see the proof of
 851 Appendix C); and secondly, to guide the solution such that Σ correlates with the image's structure,
 852 a behavior we expect, where it is lower in textureless areas and higher in high-frequency, complex
 853 regions. Moreover, particular care must be taken with the division nunom/A . Although both nunom
 854 and A are spatio-temporally smooth, the coefficient map A is expected to be close to 0 as shown
 855 in the note of C. Therefore, pixel-wise division nunom/A is very susceptible to the sign flips and
 856 the slight fluctuation on A , resulting in a highly unstable noise level map $\Sigma = \text{clip}(\text{nunom}/A; 0, t)$.
 857 We circumvent this instability by employing a simple yet effective technique that reformulates the
 858 division as solving a local least-squares problem.

859 **Definition of safe_division** For simplicity, let $P, Q \in \mathbb{R}^{H \times W}$ be two single-channel images.
 860 Our goal is to compute a ratio map R that is more robust to noise and spatially coherent than the
 861 pointwise division P/Q . To achieve this, we assume that the ratio is locally constant within a small

918 **Algorithm 2:** Test-time Latent Homography Deformation (Section 4.1)

919 **Input:** One-step denoised latent $\hat{z}_{0|t} \in \mathbb{R}^{F \times C \times H \times W}$, rendered image latent $y \in \mathbb{R}^{F \times C \times H \times W}$,
 920 rendered image valid mask $m^{\text{valid}} \in \{0, 1\}^{F \times 1 \times H \times W}$
 921 **Hyperparameters:** Regularization weight λ_H , learning rate η , Max iterations N_{iter}
 922 **Output:** Aligned latent $\hat{z}_{0|t}^{\text{deformed}} \in \mathbb{R}^{F \times C \times H \times W}$

923 1 Initialize the homographies $\{H_j \in \text{PGL}(3, \mathbb{R})\}_{j=0}^{F-1}$ such that $H_j = [1, 0, 0; 0, 1, 0; 0, 0, 1]$;
 924 2 Initialize optimizer = Adam($[H'_0, \dots, H'_{F-1}]$, lr = η), where $H'_j \in \mathbb{R}^8 = \text{flatten}(H_j)[: 8]$
 925 ;
 926 3 **for** $i \leftarrow 1$ **to** N_{iter} **do**
 927 4 Warp latents: $\hat{z}_{0|t}^{\text{deformed}}[j] \leftarrow H_j \hat{z}_{0|t}[j]$;
 928 5 Reconstruction loss: $\mathcal{L}_H^{\text{reconst}} \leftarrow \sum_{j=1}^{F-1} \left\| (y[j] - \hat{z}_{0|t}^{\text{deformed}}[j]) \cdot m^{\text{valid}}[j] \right\|_1$;
 929 6 Smoothness loss: $\mathcal{L}_H^{\text{smooth}} \leftarrow \sum_{j=1}^{F-2} \|H_{j+1} - 2H_j + H_{j-1}\|_1$;
 930 7 Sum up the losses: $\mathcal{L} \leftarrow \mathcal{L}_H^{\text{reconst}} + \lambda_H \mathcal{L}_H^{\text{smooth}}$;
 931 8 Update parameters: $H' \leftarrow \text{optimizer}(\nabla_H \mathcal{L}, \eta)$.
 932 9 Warp latents: $\hat{z}_{0|t}^{\text{deformed}}[j] \leftarrow H_j \hat{z}_{0|t}[j]$;
 933 10 **return** $\hat{z}_{0|t}^{\text{deformed}}$



938 Figure 9: Homography deformation at 22th and 27th denoising steps, with 12th and 24th frames
 939 aligned vertically. We see that homographies try to align the latents $\hat{z}_{0|t}$ to the rendered images.
 940

941 average of the distances four image corners move. Figure 8 shows this result. Note that the deformation
 942 peaks at around frame 12, and then decreases in later frames. This is because the rendered images
 943 contain fewer valid regions as the camera moves more, resulting in a weaker guiding signal
 944 for homography optimization. In practice, this doesn't cause any problems; as we see in the graph,
 945 the homography eventually converges to the identity.

946 **F SMOOTHED ENERGY GUIDANCE (SEG) WITH BLUR WEIGHTING**

947 The methods introduced in Sec. 4 primarily enhance faithfulness while maintaining fidelity, but the
 948 fidelity itself remains bounded by the underlying model capabilities. Indeed, Latent Homography
 949 Deformation (Section 4.1) promotes global structural consistency, while SA-RePaint (Section 4.2)
 950 manages the fidelity–faithfulness tradeoff.

951 To purely improve fidelity in a zero-shot manner, we employ Smoothed Energy Guidance (SEG)
 952 (Hong, 2024), a variant of classifier-free guidance (CFG) (Ho & Salimans, 2022). SEG replaces the
 953 unconditional prediction in CFG with a conditional one with attention maps blurred:

$$954 \text{Attn}(q_{t_i}, k_{t_i}^{w_i}, v_{t_i}; G_\sigma) = \text{softmax} \left(\frac{(G_\sigma * q_{t_i}) k_{t_i}^{w_i \top}}{\sqrt{d}} \right) v_{t_i} \quad (40)$$

955 where G_σ denotes a Gaussian blur kernel with standard deviation σ .

956 However, directly applying SEG in our task results in unstable neon artifacts in invalid regions. We
 957 attribute this to texture inconsistencies: since the invalid regions are already blurry, further blurring
 958 reduces guidance effectiveness, leading to nearly unconditional generation. To address this, we
 959 propose **spatially adaptive blurring**: we set a lower blur sigma σ_{invalid} for invalid pixels and a
 960 higher one σ_{valid} for valid pixels, ensuring $0 < \sigma_{\text{invalid}} < \sigma_{\text{valid}}$. This mitigates neon effects in
 961 inpainted regions while sharpening object boundaries around valid/invalid area borders.

972 We use $\sigma_{\text{invalid}} = 2$ and $\sigma_{\text{valid}} = 4$. To encourage novel structure generation in invalid regions, we
 973 alternate between standard CFG and SEG at a 2 : 1 ratio.
 974

976 G IMPLEMENTATION DETAILS

978 Our pipeline operates on a 1024×576 resolution. During
 979 rendering, we discard disoccluded pixels, as they potentially
 980 lead to see-through artifacts as illustrated in Fig. 10.
 981 We use $N = 50$ denoising steps, with inference starting at
 982 step $i_0 = 16$. For Homography Deformation (Sec. 4.1),
 983 the regularization weight is $\lambda_H = 0.5$, and this process
 984 is disabled after step 30. For SA-RePaint (Sec. 4.2), we
 985 set $\Sigma = 0$ for the first 25 steps for stability, then make it
 986 adaptive with a local window radius of $r = 1$ for variance
 987 computation.

988 To further boost perceptual quality, we incorporate
 989 Smoothed Energy Guidance (SEG; Appendix F). In the
 990 final 10 denoising steps, we disable all our proposed components to allow the model to harmonize
 991 the boundaries between valid and inpainted regions. We empirically found that these final 10 steps
 992 of free generation have a negligible impact on overall faithfulness.

995 H DETAILED QUANTITATIVE RESULTS

997 Tables 6-5 report the quantitative metrics and the VBench scores for Mannequin Challenge, DAVIS,
 998 and Tanks and Temples, respectively. KID' denotes $\text{KID} \times 10^3$, $T_{.25}$ ($T_{.50}$) represents TSED with a
 999 threshold of 0.25 (0.50), and M3R stands for MEt3R.

1002 I EFFICIENCY EVALUATION

1004 To determine the minimal required memory, we identify the lowest memory limit
 1005 at which our inference pipeline can run without an Out-of-Memory (OOM) error.
 1006 This is achieved by progressively lowering the maximum allocatable memory using
 1007 `torch.cuda.set_per_process_memory_fraction`. We chose this method over
 1008 querying `torch.cuda.max_memory_allocated` because the latter fails to account for
 1009 memory reserved by the CUDA context and the PyTorch caching allocator. Consequently, our
 1010 approach provides a more realistic measure of the total memory footprint in an actual execution
 1011 environment. Inference time, conversely, was measured without any memory cap, focusing
 1012 specifically on the iterative process of the denoising U-Net. We run each model three times and
 1013 report the median processing time. All experiments were conducted on a single NVIDIA A6000
 1014 GPU with 48 GB of VRAM.

1017 J FURTHER ABLATION STUDIES

1019 J.1 EFFECT OF λ_H IN LATENT HOMOGRAPHY DEFORMATION

1021 In Section 4.1, we defined the test-time loss function of homography deformation as follows: $\mathcal{L}_H =$
 1022 $\mathcal{L}_H^{\text{recon}} + \lambda_H \mathcal{L}_H^{\text{smooth}}$. This section ablates the effect of λ_H , i.e., how the smoothness regularization
 1023 affects the final generation results. Table 8 shows that the camera pose errors for $\lambda_H = 0$ are
 1024 notably higher than those for $\lambda_H > 0$. We attribute this to the homography overfitting to each
 1025 frame independently, leading to a loss of temporal consistency and producing a non-smooth motion
 trajectory distinct from the one used for rendering.

Figure 10: We mask out the disoccluded region (right) to prevent potential see-through artifacts (middle).

1026
1027
10281029 Table 4: Quantitative comparison on DAVIS (Scripted Camera Motion). Top: Comparison on stan-
1030 dard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	T.25↑	T.50↑	M3R↓
Traj. Attention	22.93	0.725	0.195	30.73	1.855	647.8	0.273	0.066	0.108	0.406	0.894	0.035
Traj. Crafter	24.24	0.811	0.119	32.03	1.906	704.7	0.139	0.047	0.071	0.499	0.958	0.032
Diff. As Shader	14.79	0.434	0.432	32.60	2.036	492.5	1.782	0.543	1.409	0.038	0.092	0.044
NVS-Solver	21.78	0.695	0.209	27.92	1.108	665.9	0.909	0.200	0.394	0.326	0.715	0.041
Ours	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964	0.033

Method	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
	Consis.↑	Consis.↑	Flicker↑	Smooth.↑	Consis.↑	Quality↑	Quality↑
Traj. Attention	95.00	94.80	96.64	98.89	23.94	51.12	62.73
Traj. Crafter	94.92	95.28	96.20	99.05	24.44	51.93	65.97
Diff. As Shader	94.26	94.34	95.92	98.51	24.77	52.50	62.25
NVS-Solver	94.68	94.27	94.66	98.21	24.11	51.07	68.52
Ours	95.33	94.92	96.03	99.05	24.07	52.35	65.39

1045
1046 Table 5: Quantitative comparison on Tanks and Temples (Scripted Camera Motion). Top: Compari-
1047 son on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	T.25↑	T.50↑	M3R↓
Traj. Attention	23.08	0.737	0.157	21.71	1.985	1052	0.258	0.061	0.093	0.353	0.936	0.028
Traj. Crafter	23.99	0.798	0.109	21.57	1.884	1146	0.126	0.050	0.077	0.446	0.971	0.027
Diff. As Shader	15.04	0.470	0.362	23.44	1.938	891.8	1.304	0.439	1.161	0.041	0.165	0.030
NVS-Solver	22.04	0.729	0.169	19.96	1.254	1067	0.310	0.124	0.221	0.310	0.808	0.034
Ours	28.98	0.872	0.063	19.95	0.941	1025	0.058	0.022	0.029	0.641	0.967	0.027

Method	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
	Consis.↑	Consis.↑	Flicker↑	Smooth.↑	Consis.↑	Quality↑	Quality↑
Traj. Attention	95.99	95.16	96.26	98.84	23.65	53.60	72.63
Traj. Crafter	95.84	95.61	96.01	99.00	24.20	54.17	73.35
Diff. As Shader	95.73	94.90	96.23	98.80	23.90	53.88	70.54
NVS-Solver	95.68	94.58	94.34	98.32	23.86	53.69	75.86
Ours	96.05	95.06	95.90	99.04	23.74	54.87	73.33

1062
1063 Table 6: Quantitative comparison on Mannequin Challenge (Real Camera Motion). Top: Compari-
1064 son on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method	Input-Faithfulness			GT-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	M3R↓
Traj. Attention	21.96	0.783	0.168	18.43	0.639	0.250	31.49	4.371	230.2	0.187	0.509	0.091	0.049
Traj. Crafter	24.48	0.855	0.119	18.96	0.662	0.243	30.16	4.302	221.4	0.196	0.552	0.092	0.044
Diff. As Shader	13.06	0.468	0.500	12.79	0.448	0.538	40.30	5.824	598.2	0.162	0.620	0.082	0.052
NVS-Solver	21.95	0.775	0.184	17.20	0.591	0.274	29.93	3.733	251.7	0.193	0.528	0.093	0.054
Ours	30.51	0.925	0.056	19.03	0.663	0.226	26.18	1.865	187.1	0.061	0.424	0.031	0.047

Method	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
	Consis.↑	Consis.↑	Flicker↑	Smooth.↑	Consis.↑	Quality↑	Quality↑
Traj. Attention	93.92	93.43	95.00	98.56	24.10	51.22	63.44
Traj. Crafter	94.58	93.97	94.58	98.49	24.75	52.17	64.88
Diff. As Shader	93.52	92.90	94.93	98.02	25.13	52.37	57.75
NVS-Solver	93.81	92.50	92.15	97.69	24.35	50.86	71.82
Ours	94.43	93.31	94.07	98.36	24.17	53.60	67.48

1078
1079

Table 7: Quantitative comparison on DL3DV-Evaluation (Real Camera Motion). Top: Comparison on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method	Input-Faithfulness			GT-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	M3R↓
Traj. Attention	20.28	0.687	0.262	18.15	0.595	0.313	25.16	6.965	234.6	0.186	0.990	0.088	0.076
Traj. Crafter	21.05	0.732	0.209	18.46	0.627	0.296	23.17	7.467	188.6	0.593	0.990	0.287	0.071
Diff. As Shader	12.78	0.437	0.547	12.61	0.413	0.580	33.93	7.244	362.8	0.536	1.550	0.282	0.079
NVS-Solver	19.07	0.666	0.261	16.63	0.553	0.327	18.12	2.471	179.8	0.592	1.305	0.294	0.075
Ours	27.39	0.861	0.093	18.92	0.641	0.255	20.27	3.064	163.3	0.168	0.850	0.075	0.074

Method	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
	Consis.↑	Consis.↑	Flicker↑	Smooth.↑	Consis.↑	Quality↑	Quality↑
Traj. Attention	90.30	92.95	93.76	97.08	23.93	46.40	55.43
Traj. Crafter	91.13	93.22	92.09	96.38	24.82	49.57	62.14
Diff. As Shader	87.70	91.74	93.62	96.76	23.90	47.89	52.58
NVS-Solver	91.81	93.00	90.31	95.41	24.55	49.53	69.74
Ours	90.64	93.01	91.61	95.96	24.28	50.01	65.83

Table 8: Quantitative comparison with different λ_H on DAVIS. Top: Comparison on standard metrics. Bottom: VBench evaluation.

λ_H	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			TSED ↑	
	PSNR ↑	SSIM ↑	LPIPS ↓	FID	KID $\times 10^3$	FVD	ATE	RRE	RTE	@.25	@.50
0.0	29.58	0.864	0.074	28.13	0.834	705.2	0.086	0.023	0.037	0.658	0.966
0.5	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964
1.0	29.58	0.864	0.074	28.17	0.861	704.1	0.066	0.022	0.030	0.660	0.965
1.5	29.57	0.864	0.074	28.12	0.872	702.4	0.055	0.022	0.028	0.651	0.953

λ_H	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
	Consis.↑	Consis.↑	Flicker↑	Smooth.↑	Consis.↑	Quality↑	Quality↑
0.0	95.35	94.81	95.99	99.03	24.05	52.08	65.54
0.5	95.33	94.92	96.03	99.05	24.07	52.35	65.39
1.0	95.34	94.81	96.00	99.03	24.06	52.09	65.53
1.5	95.35	94.87	96.00	99.03	24.06	52.13	65.53

J.2 EFFECT OF λ_{var} IN SA-REPAINT

In Section 4.2.2, we proposed a method to approximate the latent variance $\text{Var}[z_0]$ using the latent variance map of the input image latent, $\text{Var}[y_{0:1}]$, and the attention correspondence matrix:

$$\text{Var}[z_0] \approx \lambda_{\text{var}} \cdot \text{softmax} \left(\frac{q_t (k_t^{w_i}[0])^\top}{\sqrt{d}} \right) \text{Var}[y[0]] \quad (41)$$

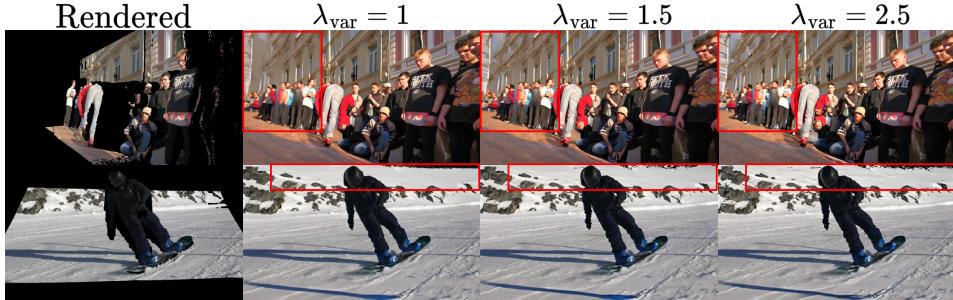
Here, we analyze the effect of the global scalar λ_{var} on the model’s qualitative and quantitative performance.

A higher value of λ_{var} increases the overall variance $\text{Var}[z_0]$, which encourages the model to generate novel views with high-frequency textures, particularly in uncertain or occluded regions. This effect is corroborated in Figure 11, which shows that increasing λ_{var} leads to richer low-level textures and the generation of new semantic structures.

However, this increased generation capability comes at the cost of reduced faithfulness to the source view. As shown in Tables 9, key metrics such as PSNR, camera pose accuracy, and TSED degrade as λ_{var} increases. We also observe that temporal consistency and motion smoothness are diminished.

J.3 EFFECT OF PRE-FILLING

In Figure 3a, we introduced the process of filling the void black regions in the rendered images by a classical inpainting algorithm (Bertalmio et al., 2001). This is a crucial step to avoid artifacts at the valid-invalid boundary. Figure 12 shows the difference with or without this prefilling step. The gray artifacts in the “w/o prefilling” appear exactly in the same position as the valid-invalid borders in

Figure 11: Fidelity enhancement by increasing λ_{var} .Table 9: Quantitative comparison with different λ_{var} on DAVIS. Top: Comparison on standard metrics. Bottom: VBench evaluation.

λ_{var}	Input-Faithfulness			Fidelity \downarrow			Camera Pose \downarrow			TSED \uparrow	
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID	KID $\times 10^3$	FVD	ATE	RRE	RTE	@.25	@.50
1.0	29.66	0.864	0.074	28.32	0.876	703.8	0.081	0.023	0.032	0.684	0.966
1.5	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964
2.0	29.54	0.864	0.074	28.03	0.831	705.1	0.063	0.022	0.030	0.649	0.957
2.5	29.51	0.864	0.074	27.99	0.838	703.6	0.061	0.022	0.030	0.662	0.962
3.0	29.48	0.864	0.074	27.95	0.832	701.9	0.061	0.022	0.029	0.645	0.964

λ_{var}	Subject Consis. \uparrow	Background Consis. \uparrow	Temporal Flicker \uparrow	Motion Smooth. \uparrow	Overall Consis. \uparrow	Aesthetic Quality \uparrow	Imaging Quality \uparrow
1.0	95.33	94.91	96.13	99.08	24.06	52.36	65.16
1.5	95.33	94.92	96.03	99.05	24.07	52.35	65.39
2.0	95.33	94.78	95.94	99.01	24.06	52.09	65.65
2.5	95.31	94.87	95.93	99.01	24.07	52.31	65.60
3.0	95.30	94.75	95.85	98.98	24.10	52.04	65.80

the rendered image. This strongly indicates that the artifact is caused by contamination of the black region during the VAE encoding process. Since our main focus is the faithfulness to the rendered images, the conditioning VAE latent must be prepared with care, unlike other previous works.

To ensure a fair comparison, Table 10 evaluates the effect of prefilling on other baselines. As TrajectoryAttention (Xiao et al., 2025) and DiffusionAsShader (Gu et al., 2025) do not directly operate on rendered RGB images, our evaluation focuses on TrajectoryCrafter (YU et al., 2025) and NVS-Solver (You et al., 2025) using the DAVIS dataset. An interesting contrast emerges: prefilling slightly impairs TrajectoryCrafter (except for faithfulness scores) yet benefits NVS-Solver. The impairment to TrajectoryCrafter can be attributed to the train-test domain gap. In contrast, NVS-Solver, being a zero-shot method like ours, is immune to this issue. Nevertheless, its failure to consistently enforce faithfulness to the input results in scores lower than those of our method.

K ADDITIONAL QUALITATIVE COMPARISON

Figs. 13, 14, 15, and 16 show additional qualitative comparison results. The common failure cases observed in previous methods include (i) unintended foreground object motion, (ii) color shifts, (iii) texture washout, and (iv) background motion inconsistency between rendered images and generated frames. Trajectory Attention (Xiao et al., 2025) tends to exhibit (iii), whereas NVS-Solver (You et al., 2025) and DiffusionAsShader (Gu et al., 2025) are likely to suffer from (iv). In addition, (ii) is often prominent in NVS-Solver. Although Trajectory Crafter (YU et al., 2025) is less susceptible to these failure cases, (i) can still occasionally be observable, especially when the input image contains animals. Our training-free method, which is designed to explicitly maintain faithfulness, effectively overcomes these issues and achieves competitive perceptual fidelity comparable to Trajectory Crafter.

Figure 12: The benefit of applying the prefilling operation. Without it, the gray border is present in the final result.

Table 10: Quantitative comparison by applying prefilling on different baselines with the DAVIS dataset. (+) applies prefilling, whereas (-) doesn't. KID' indicates $KID \times 10^3$.

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			TSED ↑	
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	@.25	@.50
- Traj. Crafter	24.24	0.811	0.119	32.03	1.906	704.7	0.139	0.047	0.071	0.499	0.958
+ Traj. Crafter	24.34	0.812	0.117	31.75	1.914	706.7	0.144	0.048	0.075	0.498	0.957
- NVS-Solver	21.78	0.695	0.209	27.92	1.108	665.9	0.909	0.200	0.394	0.326	0.715
+ NVS-Solver	23.16	0.729	0.185	27.87	1.017	698.3	0.480	0.140	0.250	0.427	0.808
+ Ours	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964

L ADDITIONAL EXPERIMENTS WITH DYCHECK DATASET

Our faithfulness evaluation is primarily performed on the non-void (valid) regions of the rendering. Specifically, we compute pixel-wise metrics between the generated images and the rendered images only at pixels where the rendering is valid (i.e., non-black). However, for the sake of comparison with prior work, it will be desirable to evaluate the generated images against complete ground-truth images over the entire image domain. This is feasible using datasets with multiple time-synchronized cameras, such as DyCheck (Gao et al., 2022). Nevertheless, we argue that this evaluation protocol is inherently flawed for two reasons:

1. Misalignment between ground-truth and rendered images:

Figure 17 compares the result of warping the source image to a target camera view (using the source’s LiDAR depth) against the actual image captured by the target camera. We observe significant spatial misalignment and appearance shifts. Since our task is to faithfully complete the missing pixels in the warped image, even a perfectly inpainted image would not strictly match the ground truth due to these geometric and photometric errors.

2. Entanglement of faithfulness and fidelity:

Evaluating the entire image without differentiating valid/invalid regions leads to the conflation of two distinct objectives: the valid rendered region should be preserved (faithfulness), while the invalid region should be filled with realistic, plausible textures (fidelity). Furthermore, there are an infinite number of valid ways to fill the invalid regions. A perfectly realistic inpainting could be penalized simply for deviating from the specific ground-truth texture, which is unreasonable.



Figure 17: Visual comparison between the warped source image and the ground-truth target image (“apple” scene in DyCheck), highlighting misalignment of object edges and color shifts.

Despite these limitations, we conduct this evaluation to facilitate a fair comparison with existing methods. We report the scores on the entire image using the DyCheck dataset. Following TrajectoryCrafter (YU et al., 2025), we use five scenes: ‘apple’, ‘block’, ‘teddy’, ‘paper-windmill’, and ‘spin’. We treat the first handheld camera as the source and the first fixed camera as the target.

1242

1243

1244

1245

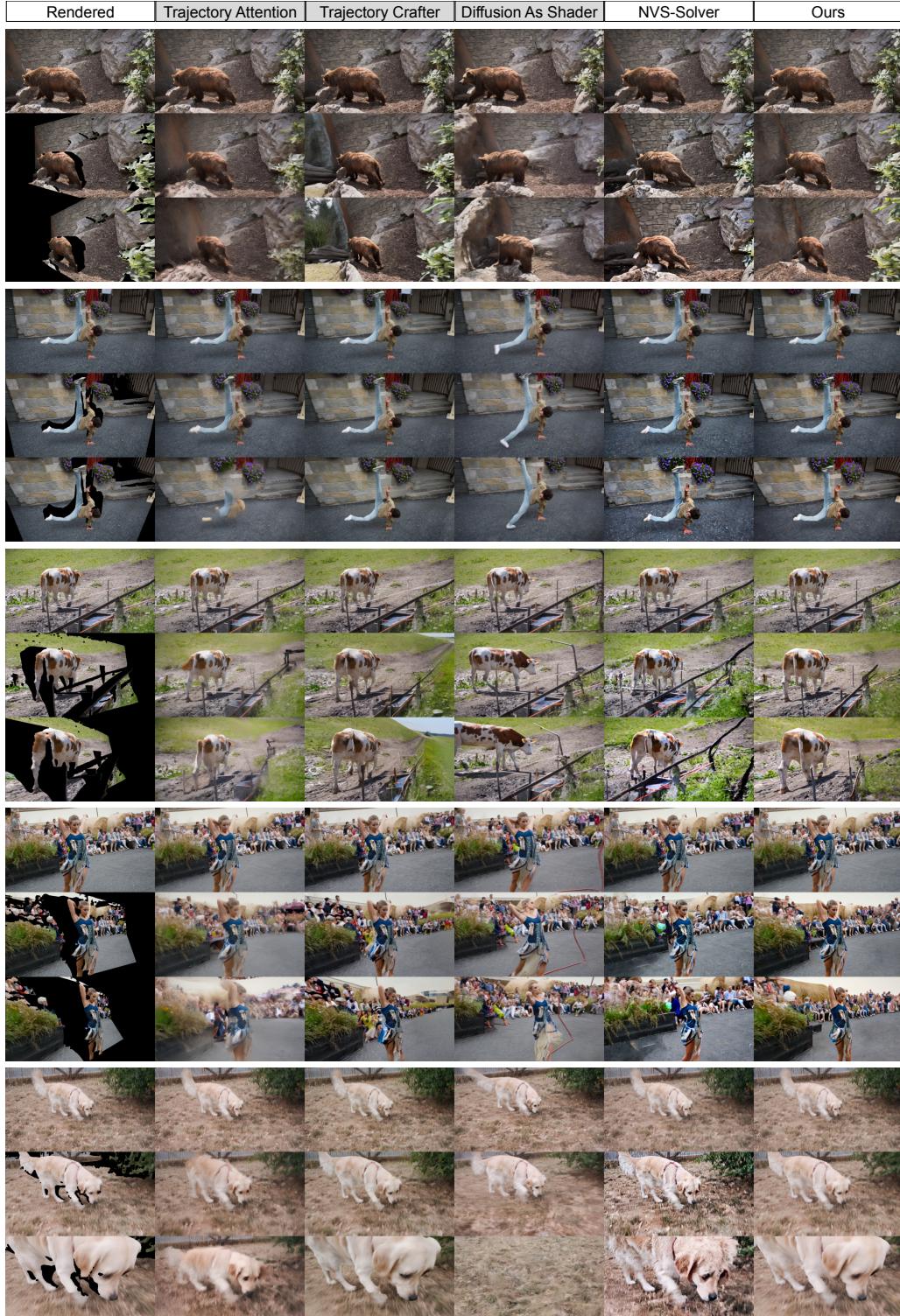


Figure 13: Additional qualitative comparison on DAVIS.

1293

1294

1295

1296

1297

1298

1299

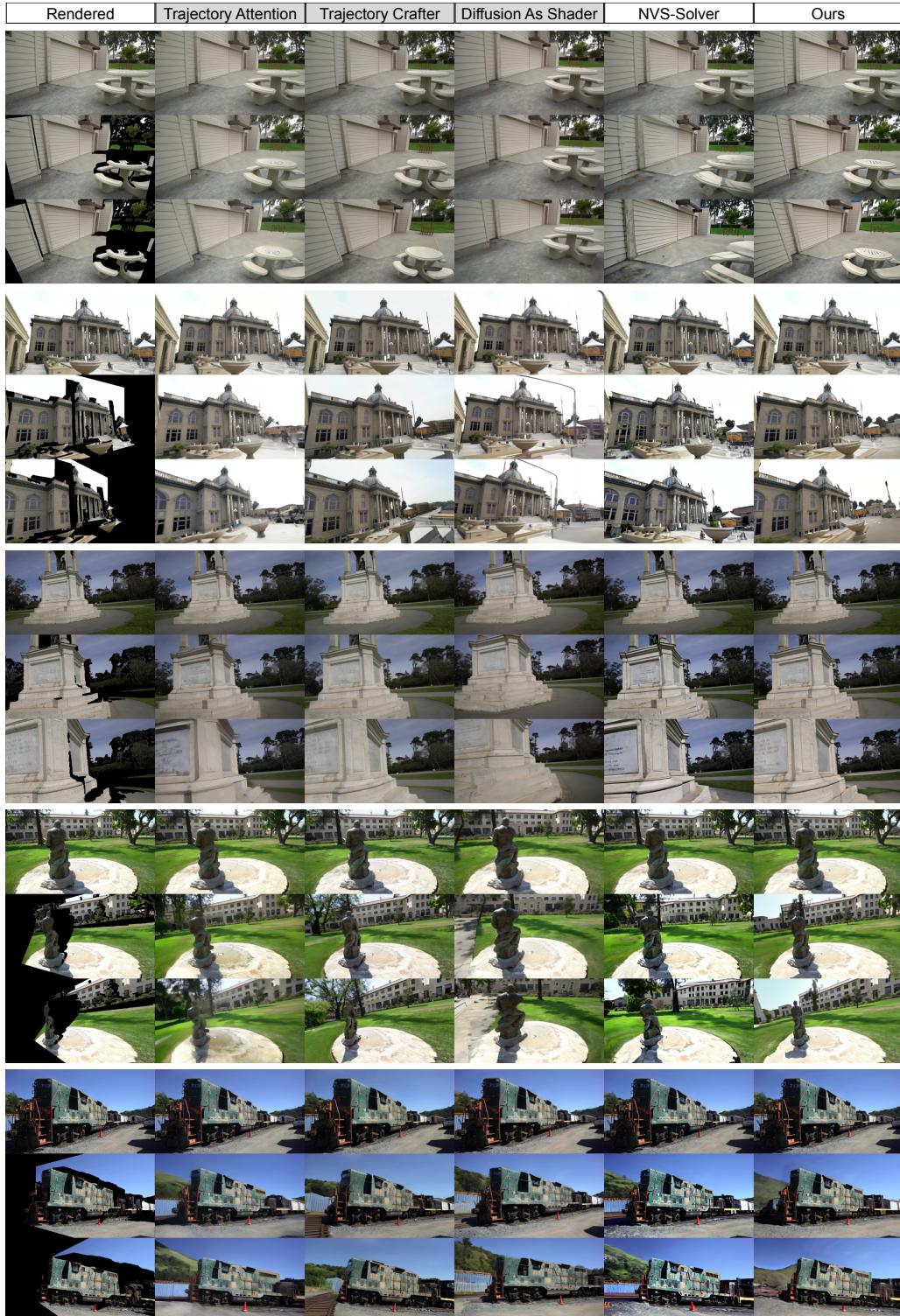


Figure 14: Additional qualitative comparison on Tanks and Temples.

1347

1348

1349

1350
1351
1352
1353
1354
1355

1356
1357
1358
1359
1360
1361
1362
1363
1364

1365
1366
1367
1368
1369
1370
1371
1372

1373
1374
1375
1376
1377
1378
1379
1380

1381
1382
1383
1384
1385
1386
1387
1388
1389

1390
1391
1392
1393
1394
1395
1396

1397
1398
1399
1400
1401
1402
1403

Rendered	Trajectory Attention	Trajectory Crafter	Diffusion As Shader	NVS-Solver	Ours	GT
		<img alt="Dr				

Figure 15: Additional qualitative comparison on Mannequin Challenge.

1404

1405

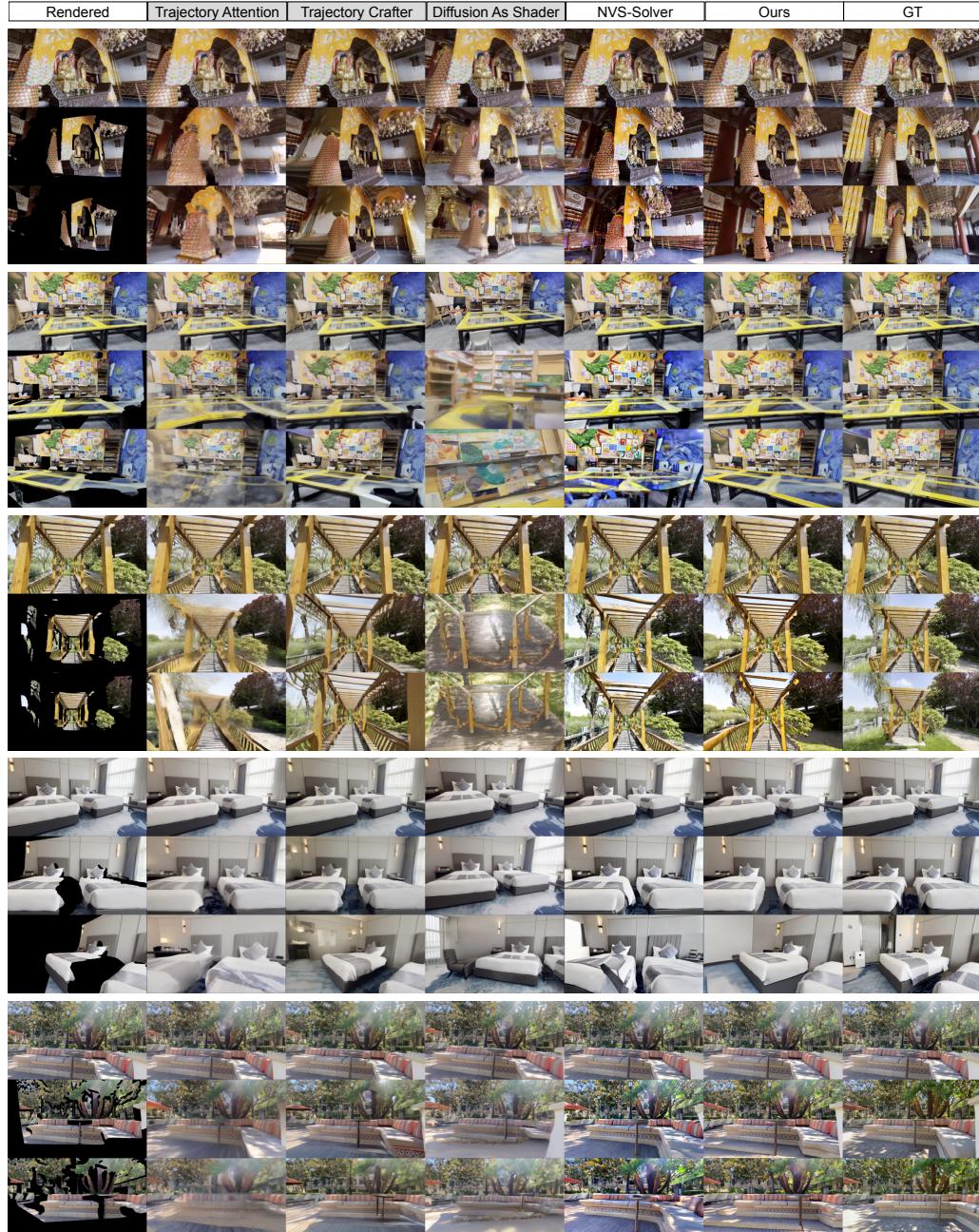
1406

1407

1408

1409

1410



1451

1452

1453

1454

1455

1456

1457

Figure 16: Additional qualitative comparison on DL3DV-Evaluation.

1458 Table 11: Quantitative evaluation on the "full" image domain using the DyCheck iPhone dataset.
 1459 Gray rows denote training-based methods.

Method	PSNR \uparrow						SSIM \uparrow						LPIPS \downarrow					
	Apple	Block	Paper	Spin	Teddy	Mean	Apple	Block	Paper	Spin	Teddy	Mean	Apple	Block	Paper	Spin	Teddy	Mean
Traj. Attention	10.78	10.73	12.60	11.70	9.556	10.90	0.205	0.422	0.219	0.286	0.234	0.285	0.920	0.750	0.576	0.720	0.783	0.751
Traj. Crafter	11.96	14.76	16.83	15.16	13.49	14.42	0.234	0.522	0.382	0.334	0.372	0.382	0.820	0.473	0.396	0.499	0.595	0.547
NVS-Solver	11.10	13.54	14.56	13.00	12.02	12.82	0.197	0.476	0.267	0.237	0.301	0.310	0.838	0.481	0.390	0.556	0.620	0.571
Ours	12.25	14.10	16.79	14.90	13.46	14.23	0.240	0.524	0.375	0.321	0.365	0.377	0.833	0.500	0.390	0.499	0.616	0.561

1465 Specifically, we sample every tenth frame for evaluation. For each source-target pair, we first apply
 1466 VGGT (Wang et al., 2025a) to obtain depth maps⁴ and camera parameters. During this process, the
 1467 images are center-cropped and resized to 518×518 . Then, we construct a camera trajectory from
 1468 the source to the target pose using Spherical Linear Interpolation (SLERP) for rotation and Linear
 1469 Interpolation (LERP) for translation. Warped images are rendered along this trajectory, resized to
 1470 the model's input resolution, and fed into the model to inpaint void regions. The outputs are then
 1471 resized back to 518×518 . Finally, the last frame of the generated video is compared with the
 1472 ground-truth target image.

1473 Table 11 presents the quantitative results. Despite the inherent limitations of this evaluation pro-
 1474 tocol, our method demonstrates performance highly competitive with the state-of-the-art training-
 1475 based method, TrajectoryCrafter. Considering our superior faithfulness demonstrated in the main
 1476 paper, this score gap here is primarily driven by the fidelity in void regions, where TrajectoryCrafter
 1477 benefits from its domain-specific training.

M COMPARISON WITH OTHER BASELINES

1482 In the main paper, we prioritized comparisons with other methods that share the "render-and-inpaint"
 1483 paradigm and can be fairly evaluated under a unified depth estimation backbone. Here, we provide
 1484 additional comparisons with two relevant works: **Invisible Stitch** (Engstler et al., 2025) and **Stable**
 1485 **Virtual Camera (SEVA)** (Zhou et al., 2025). We excluded these methods from the main experimen-
 1486 tal results because their fundamental methodological differences hinder a strictly fair quantitative
 1487 comparison. We detail the specific reasons below, followed by the reference results.

1488 **Invisible Stitch.** Although Invisible Stitch falls into the category of 3D-aware generation, several
 1489 factors make a direct comparison problematic:

- 1491 • **Iterative Error Accumulation:** Unlike our video inpainting approach, Invisible Stitch
 1492 relies on a recursive loop of rendering, inpainting, and unprojecting on a per-frame basis.
 1493 This iterative nature is highly prone to error accumulation, in which minor artifacts in
 1494 early inpainted frames are permanently baked into the 3D representation, progressively
 1495 degrading the quality of subsequent frames.
- 1496 • **Heuristic Rendering and Optimization:** The method's performance heavily depends on
 1497 heuristic parameters for point cloud rendering (e.g., point size determination) and requires
 1498 complex hyperparameter tuning for keyframe selection for inpainting and 3DGS optimiza-
 1499 tion. These heuristics introduce ambiguity, complicating the establishment of a standard-
 1500 ized evaluation setting.
- 1501 • **Backbone Incompatibility:** The original method relies on a specific fine-tuned ZoeDepth
 1502 (Bhat et al., 2023) model for depth inpainting. Substituting this with our standardized
 1503 backbone (Depth Anything V2) and using external depth inpainting models, e.g., Prior
 1504 Depth Anything (Wang et al., 2025b), creates a domain gap that inevitably penalizes its
 1505 performance, making it difficult to isolate the method's true capability from the backbone's
 1506 influence.
- 1507 • **Task Mismatch:** Designed primarily for panoramic expansion, the method often strug-
 1508 gles with the large disocclusions and parallax effects typical in our forward-facing camera
 1509 motion benchmarks.

1511 ⁴We found that the depth maps from VGGT warp the source image to the target view more accurately than
 the provided LiDAR depth.

1512 Table 12: Reference quantitative comparison with Invisible Stitch and Stable Virtual Camera on
 1513 Mannequin Challenge (Real Camera Motion). Note that Input-Faithfulness does not apply (N/A) to
 1514 Stable Virtual Camera, as it does not utilize rendered images as guidance.

1515
 1516
 1517
 1518
 1519
 1520
 1521

Method	Input-Faithfulness			GT-Faithfulness			Fidelity ↓	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	FID	KID'
Invisible Stitch	23.18	0.804	0.215	18.63	0.633	0.306	62.89	13.79
Stable Virtual Camera	N/A	N/A	N/A	13.69	0.497	0.393	33.59	4.331
Ours	30.51	0.925	0.056	19.03	0.663	0.226	26.18	1.865

1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533

1534 Figure 18: Qualitative results of Invisible Stitch and Stable Virtual Camera (SEVA). Invisible Stitch
 1535 suffers from error propagation, while SEVA exhibits camera drift (see Minnie’s eyebrow position)
 1536 and structural degradation due to domain shift.

1537
 1538
 1539

Stable Virtual Camera (SEVA). Comparison with SEVA is structurally challenging due to its lack of explicit 3D guidance:

- **Inapplicability of Input-Faithfulness:** Since SEVA generates novel views without explicit 3D conditioning (i.e., it does not use rendered images as input), our primary metric, *Input-Faithfulness*, which measures adherence to the geometric guidance, is structurally inapplicable. While *GT-Faithfulness* could technically be computed, comparing a geometry-free method against geometry-guided ones on this metric yields little meaningful insight, especially since our method is designed to improve Input-Faithfulness.
- **Scale Ambiguity and Drifting:** In the single-image setting without explicit 3D priors, SEVA suffers from severe scale ambiguity. We observed that the model frequently misinterprets the scene scale, resulting in excessive camera movement relative to the target trajectory. To mitigate this, we followed the authors’ recommendation to manually rescale the camera trajectory (e.g., by a factor of 0.1) during evaluation. This manual intervention fundamentally makes a fair comparison difficult.
- **Domain Gap:** SEVA is trained primarily on static scenes. Consequently, it exhibits significant performance degradation when applied to our datasets containing humans, such as Mannequin Challenge, often failing to preserve the structure of foreground subjects.

1555 Due to these limitations, the quantitative and qualitative results presented in this section should be
 1556 interpreted as reference values rather than a direct competitive benchmark.

1557
 1558 For Invisible Stitch, we select every 5 frames as keyframes for RGBD inpainting, and skip the 3DGS
 1559 training part to avoid complications. Therefore, the evaluation is conducted only on these keyframes.
 1560 Since the frame interval changes, which can negatively affect camera pose and geometry scores, we
 1561 limit evaluation to per-frame faithfulness and frame-level fidelity for fairness. The RGBD inpainting
 1562 part consists of Stable Diffusion 2 (Blattmann et al., 2023) and Prior Depth Anything (Wang et al.,
 1563 2025b). For Stable Virtual Camera, we follow the original SEVA paper and test the camera scales
 1564 [0.1, 0.2, ..., 1.0], and report the result of scale 0.1 because it recorded the best scores.

1565 As shown in Table 12 and Figure 18, Invisible Stitch struggles to generate spatiotemporally coherent
 1566 videos, as reflected in its poor fidelity scores. Conversely, SEVA’s low GT-Faithfulness scores

1566 highlight the difficulty of achieving precise camera motion control from a single image without explicit
 1567 3D guidance. These results underscore the critical role of explicit rendering guidance and
 1568 non-iterative generation for robust zero-shot novel view synthesis.
 1569

1570 N WAN2.2 AS THE BASE VIDEO DIFFUSION MODEL 1571

1572 Our proposed homography deformation and SA-RePaint both manipulate latents directly with the
 1573 denoiser treated intact. Therefore, our method naturally extends to more recent DiT-based architec-
 1574 tures (Peebles & Xie, 2023). This section demonstrates the extensibility of our method by replacing
 1575 SVD with the latest Wan2.2-TI2V-5B model (Wan et al., 2025).
 1576

1577 N.1 PRELIMINARIES OF FLOW MATCHING 1578

1579 Wan2.2 differs from SVD in that it is built on the flow matching framework: given a clean video
 1580 latent z_0 and a continuous time $t \in [0, 1]$, the forward noising process is defined by:
 1581

$$1582 z_t = (1 - t)z_0 + t\epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (42)$$

1583 The model is tasked to predict the flow $v := \epsilon - x_0$ from the noisy input z_t , timestep t , and con-
 1584 ditioning signals of the first frame and the text prompt describing the video. Let $v_\theta^{(t)}(z_t)$ be the
 1585 predicted flow. During inference, we start from a pure Gaussian noise $z_1 \sim \mathcal{N}(0, I)$ and gradually
 1586 denoise it with the predefined timestep sequence $1 = t_N > t_{N-1} > \dots > t_1 > t_0 = 0$ following
 1587 the Euler update:
 1588

$$1589 \hat{z}_{0|t_i} = z_{t_i} - t_i \cdot v_\theta^{(t_i)}(z_{t_i}) \quad (43)$$

$$1590 z_{t_{i-1}} = \hat{z}_{0|t_i} + t_{i-1} \cdot v_\theta^{(t_i)}(z_{t_i}) \quad (44)$$

1591 N.2 REFORMULATION OF SA-REPAINT FOR FLOW MATCHING 1592

1593 Due to the fundamental mathematical difference, we need a slight modification in our SA-RePaint
 1594 process. Let y be the latent tensor of rendered images, m^{valid} be the mask tensor representing the
 1595 valid region of y , and z_t be the current noisy latent under generation. Recapitulating Section 3.2,
 1596 SA-RePaint consists of three steps:
 1597

1600 **(i) Noising** Both y and $\hat{z}_{0|t}$ are noised to a certain level $s \in [0, t]$ so that the resulting latents y_s
 1601 and $\hat{z}_{s|t}$ seamlessly blends. Based on Eq. 42,
 1602

$$1603 y_s := (1 - s)y + s\epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (45)$$

$$1604 \hat{z}_{s|t} := \left(1 - \frac{s}{t}\right) \hat{z}_{0|t} + \frac{s}{t} z_t \quad (46)$$

1606 **(ii) Merging** This is a simple mask-based blending:
 1607

$$1608 \hat{z}_{s|t}^{\text{merged}} = m^{\text{valid}} y_s + (1 - m^{\text{valid}}) \hat{z}_{s|t} \quad (47)$$

1611 **(iii) Renoising** The merged latent $\hat{z}_{s|t}^{\text{merged}}$ is noised back to the level of timestep t . The actual
 1612 noise strength to add needs derivation specifically for the flow matching formulation:
 1613

1614 **Lemma 2.** Let z_0 be the clean latent tensor. Let s and t be real numbers with $0 < s < t$. Under
 1615 the flow matching (Lipman et al., 2022) framework, the operation `add_noise`($\cdot, s \rightarrow t$) to add
 1616 an i.i.d. Gaussian noise on $z_s \sim \mathcal{N}((1 - s)z_0, s^2 I)$ to generate a new random variable $z_t \sim$
 1617 $\mathcal{N}((1 - t)z_0, t^2 I)$ is given by
 1618

$$1619 z_t = \text{add_noise}(z_s, s \rightarrow t) := \frac{1 - t}{1 - s} z_s + \sqrt{t^2 - s^2 \left(\frac{1 - t}{1 - s}\right)^2} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I). \quad (48)$$

1620 *Proof.* Since z_t is an affine transformation of independent Gaussian variables z_s and ϵ , it also follows
 1621 a Gaussian distribution. Therefore, the proof concludes by showing the mean and the variance of
 1622 the resulting Gaussian distribution. Let $A := \frac{1-t}{1-s}$. Then the means is:

$$1624 E[z_t] = E\left[A z_s + \sqrt{t^2 - s^2 A^2} \epsilon\right] = A E[z_s] + \sqrt{t^2 - s^2 A^2} E[\epsilon] = A(1-s) E[z_0] + 0 = (1-t) E[z_0]. \quad (49)$$

1626 Noting that z_s and ϵ are independent, the variance is:

$$1628 \text{Var}[z_t] = \text{Var}\left[A z_s + \sqrt{t^2 - s^2 A^2} \epsilon\right] \quad (50)$$

$$1629 = A^2 \text{Var}[z_s] + (t^2 - s^2 A^2) \text{Var}[\epsilon] \quad (51)$$

$$1631 = A^2 s^2 I + (t^2 - s^2 A^2) I = t^2 I. \quad (52)$$

1632 Therefore, we conclude that $z_t \sim \mathcal{N}((1-t)z_0, t^2 I)$. \square

1634 N.3 DEDUCE THE PER-PIXEL NOISE LEVEL

1636 Similarly to Section 4.2.1, we aim to find appropriate $0 \leq s \leq t$ locally so that y_s and $\hat{z}_{s|t}$ blend
 1637 seamlessly along their borders. Let p be a pixel position where y is valid, and we temporarily focus
 1638 on the local window around p . We define the optimal s on this window as:

$$1639 s^* := \arg \min_{0 \leq s \leq t} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[y_s]\|_1. \quad (53)$$

1641 Because p is in the valid region of y , the ground-truth clean latent z_0 should satisfy $z_0 = y$ within
 1642 this local window. Therefore, we can rewrite the above equation as:

$$1643 s^* := \arg \min_{0 \leq s \leq t} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s]\|_1 \quad (54)$$

1645 where $z_s := (1-s)z_0 + s\epsilon$.

1646 **Theorem 2.** *The optimal s^* satisfying Eq. 54 is an element of the set:*

$$1648 s^* \in \{\eta_+, \eta_-, 0, t\}, \quad \text{where } \eta_{\pm} := \text{clip}\left(\frac{-B \pm \sqrt{\max(0, B^2 - AC)}}{A}; 0, t\right). \quad (55)$$

1651 Here, A , B , and C are given by the following:

$$1652 A = \text{Var}[v_{\theta}^{(t)}(z_t)] - \text{Var}[z_0] - 1 \quad (56)$$

$$1654 B = \text{Cov}[\hat{z}_{0|t}, v_{\theta}^{(t)}(z_t)] + \text{Var}[z_0] \quad (57)$$

$$1655 C = \text{Var}[\hat{z}_{0|t}] - \text{Var}[z_0] \quad (58)$$

1657 *Proof.* From the definition of z_s and $\hat{z}_{s|t}$, we have

$$1658 \text{Var}[z_s] = \text{Var}[(1-s)z_0 + s\epsilon] \quad (59)$$

$$1660 = (1-s)^2 \text{Var}[z_0] + s^2 \quad (60)$$

$$1661 \text{Var}[\hat{z}_{s|t}] = \text{Var}[(1-s/t)\hat{z}_{0|t} + (s/t)z_t] \quad (61)$$

$$1662 = \text{Var}[\hat{z}_{0|t} + s v_{\theta}^{(t)}(z_t)] \quad (62)$$

$$1664 = \text{Var}[\hat{z}_{0|t}] + 2s \text{Cov}[\hat{z}_{0|t}, v_{\theta}^{(t)}(z_t)] + s^2 \text{Var}[v_{\theta}^{(t)}(z_t)] \quad (63)$$

1666 Therefore, the objective function is rewritten as $\|\text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s]\|_1 = \|As^2 + 2Bs + C\|_1$, where

$$1668 A = \text{Var}[v_{\theta}^{(t)}(z_t)] - \text{Var}[z_0] - 1 \quad (64)$$

$$1669 B = \text{Cov}[\hat{z}_{0|t}, v_{\theta}^{(t)}(z_t)] + \text{Var}[z_0] \quad (65)$$

$$1670 C = \text{Var}[\hat{z}_{0|t}] - \text{Var}[z_0] \quad (66)$$

1672 The rest is the same as the proof of Theorem 1 except that the representations of coefficients A , B ,
 1673 and C have changed. Therefore, we can directly refer to its solution with the coefficients replaced
 by the above. \square

1674
16751676 We use WAN2.2-TI2V-5B as our base model due to its affordable inference cost. Since it is funda-
1677 mentally different from Stable Video Diffusion in terms of theoretical framework, model architec-
1678 ture, and inference capability, we have altered several implementation details as listed below:1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698

- The input image size is 1280×704 , and we generate 25 frames to match our SVD baseline.
- Wan2.2’s VAE compression rate is $4 \times 16 \times 16$; except for the first frame’s independent encoding, every 4-frame chunk is encoded into a single latent frame with $16 \times$ spatial size reduction. We accordingly area-resize the rendering mask to this size. Although Wan2.2 VAE uses the previous chunk’s information to condition the current frame chunk’s encoding, we found that our per-chunk independent resizing performs relatively well.
- We empirically found that WAN2.2’s intermediate outputs become sharp and clear much faster than SVD. Therefore, we halt homography deformation at step 10 out of 50 total denoising steps.
- The attention q/k tensors for $\text{Var}[z_0]$ estimation (Sec. 4.2.2) are extracted from the 15th DiT self attention block.
- We remove attention key weighting (Sec. 4.2.3) because its inclusion leads to blurry inpainting results. This does not undermine our variance transfer logic, since we can naturally expect similar texture generation around the valid/invalid borders even without attention key weighting.
- Also, we remove SEG (Hong, 2024) because its integration led to worse results.
- Similar to our SVD baseline, we apply free generation without any intervention after step 40 for smooth blending between valid and invalid (inpainted) regions.

1699
1700

N.5 EVALUATION

1701
1702
1703
1704

Tables 13, 14, 15, and 16 show drastic improvements from our SVD baseline. Especially pronounced is the much higher and diverse inpainting fidelity without compromising the faithfulness to the rendered areas, as evidenced by the competitive VBench scores against Trajectory Crafter. We can see these superior traits also in Fig. 19.

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

However, we have identified several limitations of our current method when applied to Wan2.2: (1) Dynamic Motion Prior: Although our method strictly enforces consistency with the rendered images, the inpainted regions are completely up to the model’s prior. Since Wan2.2 tries to inject dynamics in its generated videos, we sometimes observe unintended motion in the inpainted areas, such as water splashes. (2) Drifting Synthesis: We observed cases where drifting synthesis occurs even when homography deformation is applied. We hypothesize that this is due to Wan2.2’s stronger generative capability, which can produce diverse scenes including mildly unrealistic video effects, possibly making drifting synthesis a plausible output. Additionally, as Wan2.2 is a flow-based model, the global structure of the video is determined in the earlier denoising stages than diffusion-based counterparts, so iterative homography compensation may not fully take effect. (3) Stripe Artifacts: In some cases, grid-pattern artifacts emerge in inpainted regions. We suspect this may stem from the direct mask operation in the spatiotemporally compressed latents, but further investigation is necessary.

1723
1724
1725
1726
1727

Nevertheless, the above results demonstrate a significant potential for our method’s generalizability. Note that we have slightly modified the Wan2.2 VAE encoder so that it doesn’t cache the previous frame chunk’s data on the GPU for next-chunk conditioning. This change enables the entire model to run within a 24 GB memory budget, achieving our end goal of faithfulness-first, low-cost, zero-shot NVS for wider community accessibility.

1728
1729

N.6 ABLATION

1730
1731
1732
1733
1734

To verify the effectiveness of our proposed homography deformation and SA-RePaint in this Wan2.2 setting, we conduct an ablation study similar to Sec. 5.4: we discard each module from our full pipeline and observe the metric shifts. Table 17 shows similar numerical changes as in Table 3, corroborating that our proposed modules are functioning as expected. More specifically, removing

1728
1729 Table 13: Quantitative comparison on DAVIS (Scripted Camera Motion). Top: Comparison on
1730 standard metrics. Bottom: VBench evaluation.
1731

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	T. _{.25} ↑	T. _{.50} ↑	M3R↓
Traj. Crafter	24.24	0.811	0.119	32.03	1.906	704.7	0.139	0.047	0.071	0.499	0.958	0.032
Ours (SVD)	29.58	0.864	0.074	28.14	0.816	705.2	0.051	0.022	0.027	0.672	0.964	0.033
Ours (Wan2.2)	32.67	0.942	0.054	26.35	0.486	699.2	<u>0.066</u>	0.021	<u>0.032</u>	0.856	0.961	<u>0.033</u>

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	Subject Consis.↑	Background Consis.↑	Temporal Flicker↑	Motion Smooth.↑	Overall Consis.↑	Aesthetic Quality↑	Imaging Quality↑					
Traj. Crafter	94.92	95.28	96.20	99.05	24.44	51.93	65.97					
Ours (SVD)	95.33	94.92	96.03	99.05	24.07	52.35	65.39					
Ours (Wan2.2)	<u>95.25</u>	95.69	96.06	99.14	24.20	52.70	65.65					

1742
1743 Table 14: Quantitative comparison on Tanks and Temples (Scripted Camera Motion). Top: Comparison on
1744 standard metrics. Bottom: VBench evaluation.
1745

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	T. _{.25} ↑	T. _{.50} ↑	M3R↓
Traj. Crafter	23.99	0.798	0.109	21.57	1.884	1146	0.126	0.050	0.077	0.446	0.971	0.027
Ours (SVD)	28.98	0.872	0.063	19.95	0.941	1025	0.058	0.022	0.029	0.641	0.967	0.027
Ours (Wan2.2)	31.54	0.937	0.046	18.52	0.626	1012	<u>0.063</u>	<u>0.023</u>	<u>0.033</u>	0.878	0.962	0.027

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	Subject Consis.↑	Background Consis.↑	Temporal Flicker↑	Motion Smooth.↑	Overall Consis.↑	Aesthetic Quality↑	Imaging Quality↑					
Traj. Crafter	95.84	95.61	96.01	99.00	24.20	54.17	73.35					
Ours (SVD)	96.05	95.06	95.90	99.04	23.74	54.87	73.33					
Ours (Wan2.2)	<u>95.92</u>	95.90	95.89	99.11	<u>23.87</u>	55.74	74.19					

1756
1757 Table 15: Quantitative comparison on Mannequin Challenge (Real Camera Motion). Top: Comparison
1758 on standard metrics. Bottom: VBench evaluation.
1759

Method	Input-Faithfulness			GT-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	M3R↓
Traj. Crafter	24.48	0.855	0.119	18.96	0.662	0.243	30.16	4.302	221.4	0.196	0.552	0.092	0.044
Ours (SVD)	30.51	0.925	0.056	19.03	0.663	0.226	26.18	1.865	187.1	0.061	0.424	0.031	0.047
Ours (Wan2.2)	33.48	0.958	0.027	19.11	0.667	0.211	22.64	0.761	191.3	<u>0.063</u>	0.593	0.033	<u>0.047</u>

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	Subject Consis.↑	Background Consis.↑	Temporal Flicker↑	Motion Smooth.↑	Overall Consis.↑	Aesthetic Quality↑	Imaging Quality↑					
Traj. Crafter	94.58	93.97	94.58	98.49	24.75	52.17	64.88					
Ours (SVD)	94.43	93.31	94.07	98.36	24.17	53.60	67.48					
Ours (Wan2.2)	94.72	93.93	94.05	98.24	<u>24.61</u>	54.30	68.19					

1770
1771 Table 16: Quantitative comparison on DL3DV-Evaluation (Real Camera Motion). Top: Comparison
1772 on standard metrics. Bottom: VBench evaluation.
1773

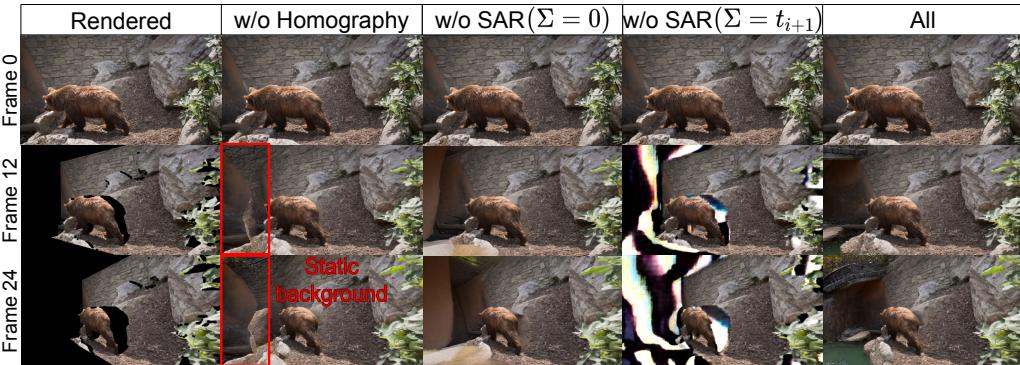
Method	Input-Faithfulness			GT-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	FID	KID'	FVD	ATE	RRE	RTE	M3R↓
Traj. Crafter	21.05	0.732	0.209	18.46	0.627	0.296	23.17	7.467	188.6	0.593	0.990	0.287	0.071
Ours (SVD)	27.39	0.861	0.093	18.92	0.641	0.255	20.27	3.064	163.3	0.168	0.850	0.075	0.074
Ours (Wan2.2)	<u>26.57</u>	0.877	0.079	18.90	0.645	0.253	16.66	2.581	192.3	<u>0.238</u>	1.341	<u>0.100</u>	0.069

Method	Input-Faithfulness			Fidelity ↓			Camera Pose ↓			Geometry		
	Subject Consis.↑	Background Consis.↑	Temporal Flicker↑	Motion Smooth.↑	Overall Consis.↑	Aesthetic Quality↑	Imaging Quality↑					
Traj. Crafter	91.13	93.22	92.09	96.38	24.82	49.57	62.14					
Ours (SVD)	90.64	93.01	91.61	95.96	24.28	50.01	65.83					
Ours (Wan2.2)	91.60	93.90	92.56	<u>96.16</u>	24.84	51.15	67.31					

Figure 19: Qualitative comparison between Trajectory Crafter and ours (SVD-based and Wan2.2-based). Each image is from DAVIS, Tanks and Temples, Mannequin Challenge, and DL3DV-Evaluation.

1836 Table 17: Ablation study on DAVIS with the Wan2.2 backbone. SAR: SA-RePaint; KID' denotes
 1837 $KID \times 10^3$, $T_{.25}$ ($T_{.50}$) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MEt3R.
 1838

1839	Method	Input-Faithfulness			Fidelity \downarrow			Camera Pose \downarrow			Geometry		
		PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID	KID'	FVD	ATE	RRE	RTE	$T_{.25}\uparrow$	$T_{.50}\uparrow$	M3R \downarrow
1841	w/o Homography	31.62	0.939	0.057	26.34	0.519	698.3	0.194	0.046	0.079	0.759	0.906	0.031
1842	w/o SAR ($\Sigma = 0$)	33.01	0.943	0.054	27.32	0.710	704.6	0.098	0.026	0.038	0.865	0.967	0.032
1843	All	32.67	0.942	0.054	26.35	0.486	699.2	0.066	0.021	0.032	0.856	0.961	0.033



1844 Figure 20: Ablation of our components with Wan2.2 backbone. Removing each component results
 1845 in expected degradation (drifting synthesis, textureless generation) except for w/o SAR ($\Sigma = t_{i+1}$),
 1846 which was unsuccessful in generation itself.
 1847

1848 homography deformation leads to an obvious decline in camera pose accuracy, indicating more
 1849 severe drifting synthesis. Replacing SA-RePaint with Stable Diffusion-type RePaint ($\Sigma = 0$) results
 1850 in higher Input-Faithfulness at the expense of a notable fidelity drop, indicating that the inpainting
 1851 quality is compromised because of the unresolved texture gap (cf. Fig. 2) during RePaint. Lastly,
 1852 replacing it with the original RePaint ($\Sigma = t_{i+1}$) shows different results: it completely fails in
 1853 inpainting (cf. Fig. 20). This may be attributable to the faster generation characteristics of flow
 1854 matching models as briefly mentioned in Section N.4, which can be at odds with strong renoising of
 1855 the original RePaint. Our SA-RePaint doesn't suffer from this collapse while achieving much higher
 1856 texture fidelity than RePaint ($\Sigma = 0$).
 1857

O SA-REPAINT FOR GENERAL IMAGE DIFFUSION MODELS

1858 Our proposed SA-RePaint is not constrained to the novel view synthesis task. To demonstrate the
 1859 same generality as the original RePaint, we apply it to a general image inpainting task with Stable
 1860 Diffusion 2 (SD2).
 1861

O.1 PRELIMINARY OF DDIM

1862 Contrary to Stable Video Diffusion (SVD) built on the EDM framework (Karras et al., 2022), Stable
 1863 Diffusion 2 (SD2) inference works under the variance-preserving DDIM scheduling (Song et al.,
 1864 2020). Therefore, we first reformulate SA-RePaint under this setting. Let z_0 be a clean latent tensor.
 1865 Both EDM and DDIM predefine a decreasing timestep sequence $T = t_0 > t_1 > \dots > t_N = 0$
 1866 where N is the total number of denoise steps. However, DDIM (more precisely, its predecessor
 1867 DDPM (Ho et al., 2020)) is built on a discrete Markov chain formulation, so $\{t_i\}_{i=0}^N$ are all integers.
 1868 Instead, it introduces a real number sequence $0 < \alpha_{t_0} < \alpha_{t_1} < \dots < \alpha_{t_N} = 1$ such that the
 1869 forward noising process is defined as:
 1870

$$z_{t_i} = \sqrt{\alpha_{t_i}} z_0 + \sqrt{1 - \alpha_{t_i}} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (67)$$

The model is trained to predict ϵ from the noisy latent z_{t_i} conditioned on the timestep t_i . Let's call the predicted noise $\epsilon_\theta^{(t_i)}(z_{t_i})$. Then, the backward denoise path is defined as follows:

$$\hat{z}_{0|t_i} = \frac{z_{t_i} - \sqrt{1 - \alpha_{t_i}} \epsilon_\theta^{(t_i)}(z_{t_i})}{\sqrt{\alpha_{t_i}}} \quad (68)$$

$$z_{t_{i+1}} = \sqrt{\alpha_{t_{i+1}}} \hat{z}_{0|t_i} + \sqrt{1 - \alpha_{t_{i+1}}} \epsilon_\theta^{(t_i)}(z_{t_i}) \quad (69)$$

where $\hat{z}_{0|t_i}$ is the one-step denoised result similar to what we defined in the SVD setting.

O.2 REFORMULATION OF SA-REPAINT FOR DDIM

We now focus on a particular denoising step, so we drop the subscript i . Let y be a latent tensor of rendered images, and m^{valid} be the mask representing which part of y is valid. The core idea is the same: we want to paste y onto the intermediate denoised result so that the pasting border is unnoticeable. Therefore, we consider (i) noising both y and $\hat{z}_{0|t}$ to a certain middle noise level, (ii) pasting them together, and (iii) further noising the merged result to the noise level at timestep t (c.f. the table in Sec. 3.2 for comparison with SVD).

(i) Noising Based on Eq. 67 and Eq. 69, we define the noised y and $\hat{z}_{0|t}$ at timestep $0 < s \leq t$ as follows:

$$y_s := \sqrt{\alpha_s} y + \sqrt{1 - \alpha_s} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) \quad (70)$$

$$\hat{z}_{s|t} := \sqrt{\alpha_s} \hat{z}_{0|t} + \sqrt{1 - \alpha_s} \epsilon_\theta^{(t)}(z_t) \quad (71)$$

Note that DDIM is based on discrete timesteps in its standard formulation, so we originally cannot take the intermediate real-valued timestep s . However, the main obstacle to continuous-time extension lies in the backward path, because the model is only trained with the predefined timesteps. This limitation does not apply to the forward process. The forward process is governed by $\{\alpha_t\}_t$, which is typically defined as a continuous function over the interval $[0, T]$. Since our SA-RePaint method exclusively utilizes this forward noising mechanism, we can naturally extend the formulation to continuous time by evaluating the function α_\bullet at any real-valued s .

(ii) Merging This is the same as the case of EDM-based formulation:

$$\hat{z}_{s|t}^{\text{merged}} = m^{\text{valid}} y_s + (1 - m^{\text{valid}}) \hat{z}_{s|t} \quad (72)$$

(iii) Renoising The merged latent $\hat{z}_{s|t}^{\text{merged}}$ is further noised back to the noise level at timestep t .

This is achievable by substituting $\hat{z}_{s|t}^{\text{merged}}$ to z_s in Lemma 3 (c.f. Lemma 1 for comparison):

Lemma 3. *Let z_0 be the clean latent tensor. Let s and t be real numbers with $0 < s < t$. Under the DDIM (Song et al., 2020) framework, the operation `add_noise`($\cdot, s \rightarrow t$) to add an i.i.d. Gaussian noise on $z_s \sim \mathcal{N}(\sqrt{\alpha_s} z_0, (1 - \alpha_s)I)$ to generate a new random variable $z_t \sim \mathcal{N}(\sqrt{\alpha_t} z_0, (1 - \alpha_t)I)$ is given by*

$$z_t = \text{add_noise}(z_s, s \rightarrow t) := \sqrt{\frac{\alpha_t}{\alpha_s}} z_s + \sqrt{1 - \frac{\alpha_t}{\alpha_s}} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I). \quad (73)$$

Proof. Since z_t is an affine transformation of independent Gaussian variables z_s and ϵ , it also follows a Gaussian distribution. We only need to determine its mean and variance. The mean is computed as:

$$E[z_t] = E \left[\sqrt{\frac{\alpha_t}{\alpha_s}} z_s + \sqrt{1 - \frac{\alpha_t}{\alpha_s}} \epsilon \right] \quad (74)$$

$$= \sqrt{\frac{\alpha_t}{\alpha_s}} E[z_s] + \sqrt{1 - \frac{\alpha_t}{\alpha_s}} E[\epsilon] = \sqrt{\frac{\alpha_t}{\alpha_s}} (\sqrt{\alpha_s} z_0) + 0 = \sqrt{\alpha_t} z_0. \quad (75)$$

1944 Since z_s and ϵ are independent, the variance is the sum of the variances:
 1945

$$1946 \quad \text{Var}[z_t] = \text{Var}\left[\sqrt{\frac{\alpha_t}{\alpha_s}} z_s\right] + \text{Var}\left[\sqrt{1 - \frac{\alpha_t}{\alpha_s}} \epsilon\right] \quad (76)$$

$$1947 \quad = \frac{\alpha_t}{\alpha_s} \text{Var}[z_s] + \left(1 - \frac{\alpha_t}{\alpha_s}\right) \text{Var}[\epsilon] \quad (77)$$

$$1948 \quad = \frac{\alpha_t}{\alpha_s} (1 - \alpha_s) I + \left(1 - \frac{\alpha_t}{\alpha_s}\right) I = \left(\frac{\alpha_t}{\alpha_s} - \alpha_t + 1 - \frac{\alpha_t}{\alpha_s}\right) I = (1 - \alpha_t) I. \quad (78)$$

1953 Therefore, we have shown that $z_t \sim \mathcal{N}(\sqrt{\alpha_t} z_0, (1 - \alpha_t) I)$. \square
 1954

1955 O.3 DEDUCE THE PER-PIXEL ALPHA MAP \mathcal{A}

1957 Our goal is seamless blending between y_s and $\hat{z}_{s|t}$ at a suitable timestep s . By the same reasoning
 1958 as in the main paper, we want to make α_s dynamically adjustable and extend it to a spatial map \mathcal{A} .

1959 We again adopt local pixel variance as a quantitative measure to evaluate seamless blending. Let p
 1960 be a pixel location on which y is valid, and we temporarily focus on a local window around p . Then,
 1961 we define the optimal α_s on this window as:

$$1962 \quad \alpha_s^* := \arg \min_{\alpha_t \leq \alpha_s \leq 1} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[y_s]\|_1. \quad (79)$$

1964 Because p is in the valid region of y , the ground-truth clean latent z_0 should satisfy $z_0 = y$ within
 1965 this local window. Therefore, we can rewrite the above equation as:

$$1967 \quad \alpha_s^* := \arg \min_{\alpha_t \leq \alpha_s \leq 1} \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s]\|_1 \quad (80)$$

1969 where $z_s := \sqrt{\alpha_s} z_0 + \sqrt{1 - \alpha_s} \epsilon$.

1970 **Theorem 3.** *The optimal α_s^* satisfying Eq. 80 is an element of the set: $\alpha^* \in \{x_1, x_2, x_3, \alpha_t, 1\}$,
 1971 where*

$$1973 \quad x_{1,2} = \text{clip}\left(\frac{-(AC - 2B) \pm \sqrt{\max(0, (AC - 2B^2)^2 - C^2(A^2 + 4B^2))}}{A^2 + 4B^2}; \alpha_t, 1\right), \quad (81)$$

$$1976 \quad x_3 = \text{clip}\left(\frac{1 - \text{sign}(B) \cdot A}{2\sqrt{A^2 + 4B^2}}; \alpha_t, 1\right). \quad (82)$$

1978 Here, A , B , and C are given by the following:

$$1980 \quad A = \text{Var}[z_0] - \text{Var}[\hat{z}_{0|t}] + \text{Var}[\epsilon_\theta^{(t)}(z_t)] - 1 \quad (83)$$

$$1981 \quad B = \text{Cov}[\hat{z}_{0|t}, \epsilon_\theta^{(t)}(z_t)] \quad (84)$$

$$1983 \quad C = 1 - \text{Var}[\epsilon_\theta^{(t)}(z_t)] \quad (85)$$

1985 *Proof.* Expanding the respective variance equation, we get

$$1986 \quad \text{Var}[z_s] = \alpha_s \text{Var}[z_0] + (1 - \alpha_s) \quad (86)$$

$$1988 \quad \text{Var}[\hat{z}_{s|t}] = \alpha_s \text{Var}[\hat{z}_{0|t}] + (1 - \alpha_s) \text{Var}[\epsilon_\theta^{(t)}(z_t)] \quad (87)$$

$$1989 \quad + 2\sqrt{\alpha_s(1 - \alpha_s)} \text{Cov}[\hat{z}_{0|t}, \epsilon_\theta^{(t)}(z_t)] \quad (88)$$

1991 Therefore,

$$1992 \quad \|\text{Var}[\hat{z}_{s|t}] - \text{Var}[z_s]\|_1 = \left\| A\alpha_s + C - 2B\sqrt{\alpha_s(1 - \alpha_s)} \right\|_1 \quad (89)$$

$$1994 \quad A = \text{Var}[z_0] - \text{Var}[\hat{z}_{0|t}] + \text{Var}[\epsilon_\theta^{(t)}(z_t)] - 1 \quad (90)$$

$$1996 \quad B = \text{Cov}[\hat{z}_{0|t}, \epsilon_\theta^{(t)}(z_t)] \quad (91)$$

$$1997 \quad C = 1 - \text{Var}[\epsilon_\theta^{(t)}(z_t)] \quad (92)$$

1998 Here we define a functions $L(x) = \left(Ax + C - 2B\sqrt{x(1-x)}\right)^2$ and seek for $L(x)$'s minimizer
 1999 in the range $[\alpha_t, 1]$. This solution is also a minimizer of Eq. 89. Since $L'(x) = 0$ if the minimizer
 2000 exists in $(\alpha_t, 1)$,
 2001

$$2002 \quad L'(x) = 2 \underbrace{\left(Ax + C - 2B\sqrt{x(1-x)}\right)}_{=:f(x)} \cdot \underbrace{\left(A - \frac{B(1-2x)}{\sqrt{x(1-x)}}\right)}_{=:g(x)} \quad (93)$$

$$2003$$

$$2004$$

$$2005$$

$$2006$$

$$2007 \quad f(x) = 0 \implies x = \frac{-(AC - 2B) \pm \sqrt{(AC - 2B^2)^2 - C^2(A^2 + 4B^2)}}{A^2 + 4B^2}, \quad (94)$$

$$2008$$

$$2009$$

$$2010 \quad \text{if } \begin{cases} (AC - 2B^2)^2 - C^2(A^2 + 4B^2) \geq 0 \\ \text{sign}(Ax + C) = \text{sign}(B) \end{cases} \quad (95)$$

$$2011$$

$$2012 \quad g(x) = 0 \implies x = \frac{1}{2} - \frac{\text{sign}(B) \cdot A}{2\sqrt{A^2 + 4B^2}} \quad (96)$$

$$2013$$

$$2014$$

2015 Adding the possibility that we cannot find the minimizer in the open range $(\alpha_t, 1)$, we ultimately
 2016 get the following solution candidates:

$$2017 \quad x_{1,2} = \text{clip}\left(\frac{-(AC - 2B) \pm \sqrt{\max(0, (AC - 2B^2)^2 - C^2(A^2 + 4B^2))}}{A^2 + 4B^2}; \alpha_t, 1\right) \quad (97)$$

$$2018$$

$$2019$$

$$2020 \quad x_3 = \text{clip}\left(\frac{1}{2} - \frac{\text{sign}(B) \cdot A}{2\sqrt{A^2 + 4B^2}}; \alpha_t, 1\right) \quad (98)$$

$$2021$$

$$2022 \quad x_4 = \alpha_t \quad (99)$$

$$2023 \quad x_5 = 1 \quad (100)$$

$$2024$$

2025 We select the best x as the one that minimizes Eq. 89. \square

$$2026$$

2027 Note that there can be two solutions satisfying $L(x_1) = L(x_2) = 0$ at the same time. In this case,
 2028 we choose

$$2029 \quad \alpha_s^* = \frac{-(AC - 2B) + \text{sign}(AC - 2B) \cdot \sqrt{\max(0, (AC - 2B^2)^2 - C^2(A^2 + 4B^2))}}{A^2 + 4B^2} \quad (101)$$

$$2030$$

$$2031$$

2032 as the final solution for numerical stability. Indeed, we can show similarly to the SVD case that
 2033 $A = B = C = 0$ under an ideal prediction, which means that the denominator is zero. Therefore,
 2034 the above solution is considered to be numerically more stable because the absolute value of the
 2035 numerator is smaller than the other.

2036 We determine α_s pixelwise, and finally get the 2D map \mathcal{A} . This is used in place of α_s for the noising,
 2037 merging, and renoising process described in Sec. O.2.

2038 O.4 IMPLEMENTATION DETAILS

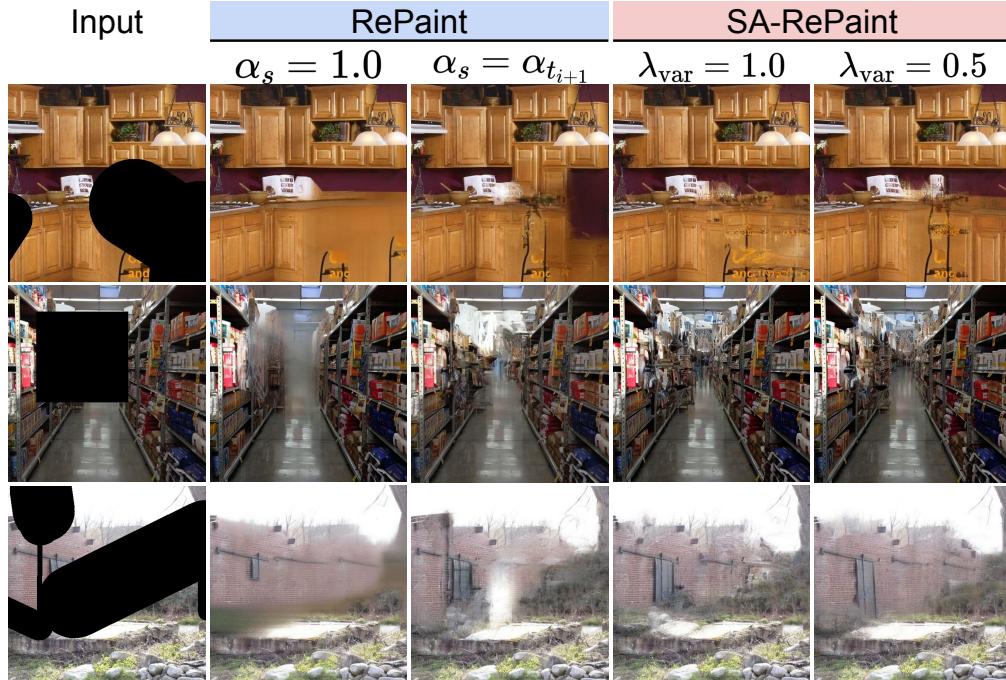
2039 We use the `StableDiffusionImg2ImgPipeline` implemented by `diffusers` library. The
 2040 total number of denoising steps is 50, where the actual denoising starts from the 18th step by noising
 2041 the input masked image latent. We introduce SA-RePaint after the 25th step; until then, we set $\mathcal{A} = 1$
 2042 for stability.

2043 As for the SA-RePaint specific operations, we again need access to $\text{Var}[z_0]$ for calculating the co-
 2044 efficient A . We approximate it by exploiting the qk -similarity. Contrary to the SVD case, we don't
 2045 have access to the full image to draw the reference variance from. Therefore, we apply attention
 2046 masking to refer only to valid pixels. The variance amplifier λ_{var} (c.f. Eq. 10) is set to be 0.5, which
 2047 resulted in better scores and qualitative results than $\lambda_{\text{var}} \geq 1$.

2048 Lastly, we found that α_s must be consistent across channels; otherwise, many high-frequency arti-
 2049 facts appeared in the final inpainted images. As a simple remedy, we average the alpha map \mathcal{A} in a
 2050 channel dimension.

Table 18: Quantitative results of SD2 inpainting with/without SA-RePaint.

Method	Medium				Thick			
	LPIPS ↓	FID ↓	CLIP-I ↑	DINO-S ↑	LPIPS ↓	FID ↓	CLIP-I ↑	DINO-S ↑
RePaint ($\alpha_s = 1$)	0.184	3.229	0.923	0.894	0.207	3.735	0.913	0.879
RePaint ($\alpha_s = \alpha_{t_{i+1}}$)	0.178	2.819	0.929	0.890	0.198	3.143	0.922	0.877
SA-RePaint ($\lambda_{\text{var}} = 1$)	0.178	2.741	0.928	0.887	0.197	2.929	0.923	0.873
SA-RePaint ($\lambda_{\text{var}} = 0.5$)	0.175	2.752	0.930	0.891	0.194	2.967	0.924	0.878

Figure 21: Qualitative comparison between RePaint and SA-RePaint under the image inpainting task with Stable Diffusion 2. Our proposed SA-RePaint maintains both the overall consistency and textural fidelity, where the latter is further controllable by λ_{var} .

O.5 EVALUATION

We follow the evaluation scheme of LaMa (Suvorov et al., 2022). We randomly sample 30,000 images with a cropped size of 512x512 from the Places365 dataset (Zhou et al., 2017) and define two types of masks: medium and large. We utilize BLIP2 (Li et al., 2023) to generate a caption for each image, which is then fed to SD2 during image inpainting as a text prompt. We report four evaluation metrics: LPIPS, FID, CLIP Image Similarity (CLIP-I), and DINO Similarity (DINO-S).

From Table 18, we clearly observe the superiority of SA-RePaint over both conventional RePaint implementations. Furthermore, the comparison between $\lambda_{\text{var}} = 1.0$ and 0.5 reveals a trend: a higher λ_{var} yields better FID scores but at the cost of overall coherence (measured by LPIPS, CLIP-I, DINO-S). This finding is consistent with the observation in Sec . J.2.

As shown in Fig. 21, conventional RePaint fails to maintain a proper balance between structural consistency and textural fidelity. In contrast, our SA-RePaint achieves this balance automatically, confirming that the SA-RePaint algorithm is general and applicable to a wide range of tasks where RePaint can be employed.

2106 Table 19: Quantitative comparison on DAVIS video inputs. Top: Comparison on standard metrics.
 2107 Bottom: VBench evaluation. Gray rows are training-based methods.

2109	Method	Input-Faithfulness			Fidelity ↓		Camera Pose (Median) ↓			
		PSNR↑	SSIM↑	LPIPS↓	FID	KID $\times 10^3$	FVD	ATE	RRE	RTE
2111	Trajectory Attention	15.48	0.510	0.452	41.76	4.789	733.5	0.468	0.675	0.204
2112	Trajectory Crafter	22.08	0.743	0.182	35.90	4.532	428.2	0.324	0.517	0.151
2113	Diffusion As Shader	13.84	0.417	0.486	37.64	2.756	599.5	0.941	0.573	0.582
2114	NVS-Solver	19.42	0.618	0.280	27.62	1.281	419.6	1.058	0.475	0.454
2115	Ours	27.51	0.830	0.106	29.38	1.455	380.5	0.377	0.574	0.149

2116	Method	Subject	Background	Temporal	Motion	Overall	Aesthetic	Imaging
		Consis. ↑	Consis. ↑	Flicker ↑	Smooth. ↑	Consis. ↑	Quality ↑	Quality ↑
2118	Trajectory Attention	91.23	93.18	96.30	98.44	23.82	48.51	58.88
2119	Trajectory Crafter	88.10	91.97	93.07	97.14	24.68	49.72	60.53
2120	Diffusion As Shader	89.72	92.58	94.86	97.40	24.57	50.64	58.56
2121	NVS-Solver	89.40	91.48	91.59	95.93	24.19	49.35	66.85
2122	Ours	87.90	91.11	92.88	96.91	24.10	50.00	62.90

P EXPERIMENTS WITH VIDEO INPUTS

P.1 SETTINGS

2127 Our pipeline readily extends to video inputs with one key modification: we use VideoDepthAnything
 2128 (Chen et al., 2025b) for depth estimation instead of DepthAnythingV2. This change prevents depth
 2129 oscillation and texture flickering in the rendered images. Since VideoDepthAnything produces a
 2130 different depth scale than DepthAnythingV2, which can result in exaggerated camera motion, we
 2131 empirically halve the magnitude of the camera motion for rendering. The rendering process is
 2132 similar to our single-image approach: each frame of the input video is independently unprojected
 2133 into a 3D point cloud based on its estimated depth. Each resulting point cloud is then rendered from
 2134 its corresponding target camera pose.

2135 To evaluate camera pose accuracy, we employ ViPE (Huang et al., 2025) in place of GLOMAP. We
 2136 chose ViPE for its robustness in estimating camera poses in scenes with dynamic objects. Specif-
 2137 ically, we first temporally concatenate the reversed ground-truth video with the generated video.
 2138 Because the generated video shares the same first frame as the ground-truth video, this creates a
 2139 continuous camera path, allowing the concatenated video to be treated as a single sequential input.
 2140 We then feed this video into ViPE to extract camera parameters for all frames. From these par-
 2141 ameters, we calculate the relative camera pose between each pair of corresponding frames, one from the
 2142 ground-truth and one from the generated video. Finally, we compare this calculated relative pose
 2143 against the predefined camera motion used for generation.

2144 Note that ViPE may fail to process videos if the scene is ambiguous for pose estimation (e.g., texture-
 2145 less or highly dynamic scenes). To mitigate the impact of such outliers, our evaluation metric is
 2146 calculated as follows. For each video clip, we first compute the mean of the framewise camera pose
 2147 errors. We then report the median of these per-video mean errors as our final score. The evaluation
 2148 was conducted on the DAVIS dataset, using the same scenes as in our single-image experiments.
 2149 We excluded the TSED metric from our evaluation, as it assumes a static scene and is therefore not
 2150 applicable in this dynamic context.

P.2 RESULTS

2154 Figs. 22 and 23 provide a qualitative comparison between the different methods. Trajectory Atten-
 2155 tion (Xiao et al., 2025) and Diffusion As Shader (Gu et al., 2025) tend to fail in highly dynamic
 2156 scenes because the tracking point map they use as auxiliary input becomes uninformative in later
 2157 frames. Similar to the image-input case, NVS-Solver (You et al., 2025) struggles to align with the
 2158 rendered images. In contrast, our method, despite also being a zero-shot approach like NVS-Solver,
 2159 maintains significantly higher consistency with the rendered images. Furthermore, its fidelity is
 comparable to that of Trajectory Crafter (YU et al., 2025).

2160

2161

2162

2163

Figure 22: Qualitative comparison on DAVIS video inputs.

2211

2212

2213

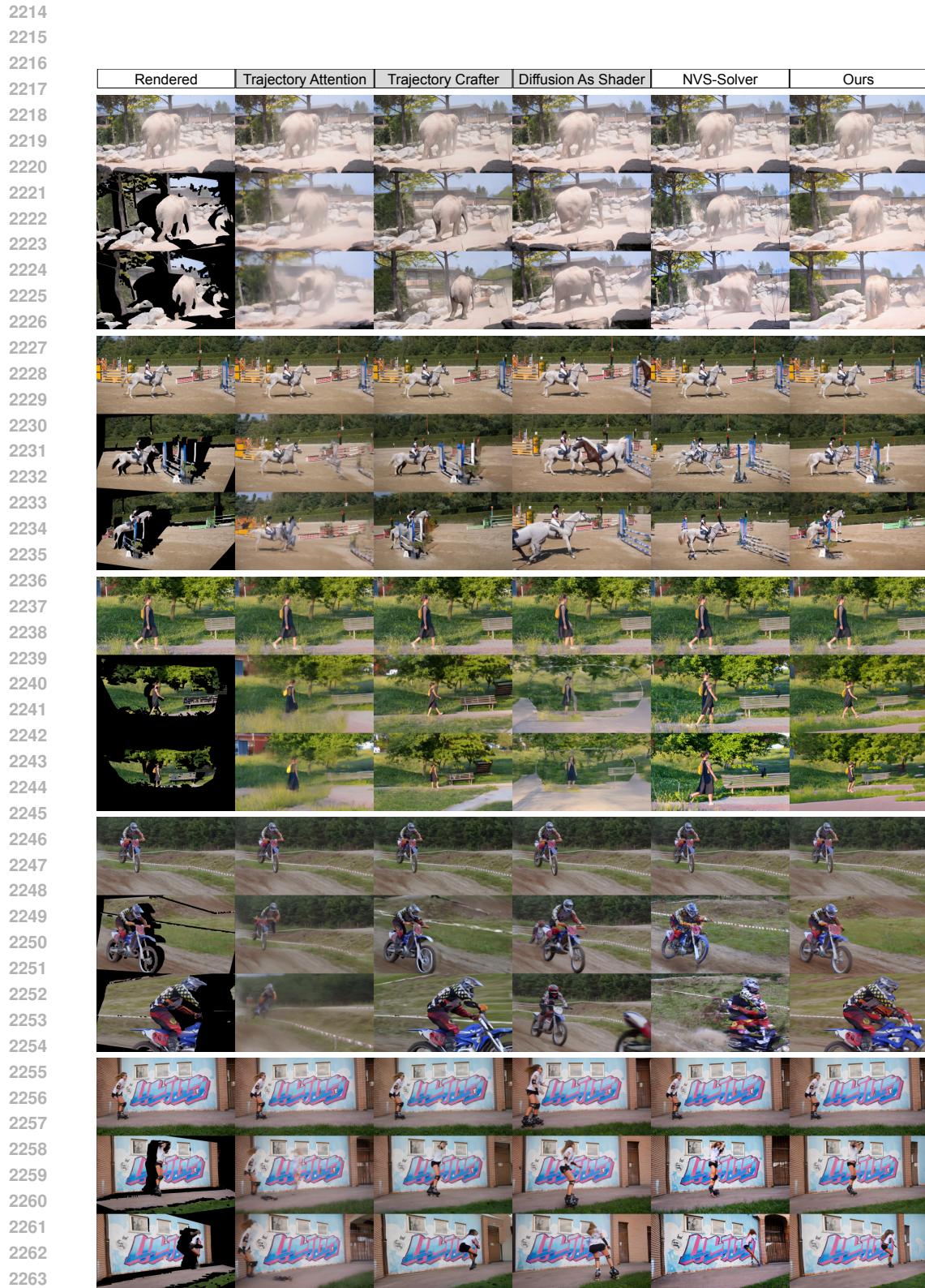


Figure 23: Qualitative comparison on DAVIS video inputs.

2268 From Table 19, we see that our method achieves the best scores for the faithfulness metrics and the
2269 second-lowest camera pose errors, while achieving high FID/KID scores. However, the VBench
2270 scores in the table below are not as competitive. We attribute this to a specific failure mode of the
2271 other methods, especially Trajectory Attention, Diffusion As Shader, and NVS-Solver. When they
2272 fail to align with the rendered images, they tend to generate frames that are similar to the first frame.
2273 This behavior produces near-static videos, which artificially inflate their inter-frame consistency
2274 scores.

2275

2276 Q LIMITATIONS

2277

2278 By design, our method prioritizes strict faithfulness to the rendered geometry, which inherently lim-
2279 its its ability to model view-dependent effects like dynamic shadows or reflections. While masking
2280 such a region can offer a partial remedy, explicitly modeling these phenomena within a faithfulness-
2281 centric framework remains an open research direction. Furthermore, our reliance on rendered con-
2282 tent as a conditional signal presents a natural trade-off: larger camera motions reduce the available
2283 guidance, potentially compromising geometric consistency. Addressing this challenge, perhaps by
2284 integrating semantic priors for plausible extrapolation, constitutes a promising avenue for future
2285 work.

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321