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PRIORITIZING FAITHFULNESS: EFFICIENT ZERO-

SHOT NOVEL VIEW SYNTHESIS WITH ADAPTIVE LA-

TENT MODULATION

Anonymous authors
Paper under double-blind review

Trajectory Crafter
20G  ⏳01:51

NVS-Solver
33G  ⏳11:15

Ours
11G  ⏳02:23Rendered Images

Figure 1: Existing render-and-inpaint NVS methods often sacrifice faithfulness for fidelity, leading
to (i) spurious motion, (ii) drifting synthesis: inpainted regions are incoherent with camera motion,
and (iii) appearance shifts. In contrast, our training-free approach prioritizes faithfulness, yielding
globally structure-coherent results while maintaining sufficient fidelity, requiring only 11 GB of
memory. A total of 25 frames are generated, with the figure showing the 8th and 16th frames.

ABSTRACT

The challenge of camera-controlled novel view synthesis (NVS) lies in balanc-
ing high visual fidelity with strict faithfulness to the source scene. We argue that
current dominant approaches, which rely on finetuning large-scale diffusion mod-
els, often over-emphasize fidelity while struggling with faithfulness due to their
generative nature. To address this, we propose a zero-shot NVS pipeline that
prioritizes faithfulness and efficiency. Our method introduces two key contribu-
tions applied during inference: (1) Test-time Latent Homography Deformation,
an on-the-fly homography optimization to deform latents for global motion con-
sistency, and (2) Spatially Adaptive RePaint (SA-RePaint), an extension to Re-
Paint that achieves both structural consistency and texture fidelity by introducing
a mathematically-grounded, region-wise balancing of these two objectives. Our
evaluations demonstrate substantial improvements in faithfulness and camera ac-
curacy with competitive perceptual scores, highlighting a successful integration
of faithfulness, quality, and efficiency. This work offers a promising direction for
NVS that rebalances the focus towards greater authenticity.

1 INTRODUCTION

Camera-controlled novel view synthesis (NVS) aims to generate a video along a user-specified cam-
era trajectory from a source image or video. Beyond creative use, NVS is poised to enable practical
applications like e-commerce, digital archiving, and virtual architectural walkthrough. The primary
challenge is to simultaneously satisfy three key objectives: high visual fidelity, strict faithfulness
to the source, and geometric consistency throughout the generated video. While fidelity has often
been the central focus, for such practical applications, artifacts like texture changes or color shifts
are unacceptable, making faithfulness a priority on par with, or even greater than, visual fidelity.

Many recent methods based on finetuning large-scale video diffusion models (He et al., 2024; Yu
et al., 2024), have achieved impressive visual fidelity, but their reliance on strong generative priors

1
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makes consistently maximizing faithfulness a non-trivial challenge, leading to artifacts like spurious
motion on the primary subject, as seen in Fig. 1. Furthermore, these pipelines are computationally
expensive: large datasets and substantial resources for training, with inference also remaining ex-
pensive, limiting their broader accessibility and customizability.

In this regard, training-free methods offer a compelling alternative, as they allow for direct faithful-
ness control without costly retraining. However, to our knowledge, no existing zero-shot method
has simultaneously pursued both high faithfulness and lightweight inference. Some, like NVS-
Solver (You et al., 2025), achieve a degree of faithfulness through test-time optimization, but still
suffer from visual artifacts like drifting synthesis in the generated region (failing to follow the camera
motion) and prohibitive computational costs (33 GB VRAM, 11:15 inference time, Fig. 1). Others
prioritize efficiency but neglect faithfulness as a primary goal (Hou & Wei, 2024). Thus, a solution
addressing both challenges remains an open question.

To fill this gap, we propose a novel training-free NVS pipeline that achieves both high faithfulness
and efficiency. Our approach is built on a render-and-inpaint scheme: we render images from a
3D point cloud derived from the source image (Yang et al., 2024a); their disoccluded regions are
then inpainted by a video diffusion model (Blattmann et al., 2023). For this step, we leverage Re-
Paint (Lugmayr et al., 2022), a technique that repurposes a diffusion model for zero-shot inpainting.
This choice proves remarkably effective for faithfulness, yet its naive application exhibits two crit-
ical limitations: the aforementioned phenomenon of drifting synthesis, and the trade-off between
structural consistency and texture fidelity. We tackle these challenges with two key contributions:

1. Test-time Latent Homography Deformation, a lightweight optimization that resolves drifting
synthesis in inpainted regions. It deforms the latent tensor on the fly to align with the rendered
images, ensuring the entire scene moves in coherence with the camera motion.

2. Spatially Adaptive RePaint (SA-RePaint), our solution to the structure-texture trade-off. This
issue stems from RePaint’s fixed strategy for balancing reliance on the rendered images versus
the model’s generative freedom. We make this balance spatially auto-adaptive, allowing it to
generate globally coherent structures while producing rich new textures.

Our evaluation demonstrates substantial improvements in faithfulness and camera pose accuracy
while remaining competitive in perceptual quality, all under 11 GB of VRAM. This outcome shows
that significant gains in faithfulness are achievable without disproportionate trade-offs in visual qual-
ity or efficiency. By rebalancing these competing objectives towards faithfulness, our work con-
tributes to a more practical and reliable form of NVS, offering a promising direction for applications
where authenticity is paramount.

2 RELATED WORKS

Novel View Video Synthesis Novel view synthesis (NVS) approaches can be broadly catego-
rized into reconstruction-based and generation-based methods. Reconstruction-based methods like
NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl et al., 2023) build implicit or explicit 3D scene rep-
resentations. While faithful, they struggle with novel camera poses. In contrast, recent generation-
based methods adapt pretrained video diffusion models (Blattmann et al., 2023; Yang et al., 2024b;
HaCohen et al., 2024; Kong et al., 2024; Wan et al., 2025) for NVS, offering superior visual fidelity
and generalizability by conditioning on various view-related signals.

View Conditioning Types These conditioning signals include camera parameters (He et al., 2024;
Zhang et al., 2024a; Zhou et al., 2025; Bai et al., 2025), optical flow (Jin et al., 2025; Burgert et al.,
2025), or, most relevant to our work, rendered point clouds derived from depth estimation (Yu et al.,
2024; You et al., 2025; Xiao et al., 2025; YU et al., 2025; Ren et al., 2025; Seo et al., 2024; Chen
et al., 2025a). Our method adopts the point cloud rendering strategy for its strong geometric prior,
maximizing faithfulness. This contrasts with approaches that only use rendered views for positional
encoding, citing their unreliability (Seo et al., 2024). We rather argue for a strict separation of
concerns, entrusting geometry to the depth estimator and inpainting to the diffusion model, thereby
prioritizing faithfulness and scales with improving depth estimators.

Training-Free Methods While most generation-based NVS methods rely on finetuning via
LoRA (Hu et al., 2022) or ControlNet (Zhang et al., 2023), a few training-free alternatives exist.
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Figure 2: The structure-texture trade-off in RePaint variants. (a, b) Existing RePaint implementa-
tions compromise either structural integrity or textural fidelity. (c) Our SA-RePaint overcomes this
challenge by adopting a spatially variable noise map Σ. The intermediate steps 1,2,3 are conceptual
illustrations; the actual process occurs entirely in the latent space.

The most comparable work, NVS-Solver (You et al., 2025), also uses rendered point clouds but op-
timizes the latent tensor via gradient descent, incurring significant computational overhead. Other
methods either sacrifice faithfulness for efficiency (Hou & Wei, 2024) or require additional 3D re-
construction models like MonST3R (Zhang et al., 2024b), increasing complexity (Park et al., 2025;
Zhou et al., 2024). Another line of work employs iterative per-frame RGBD inpainting and 3D lift-
ing (Engstler et al., 2025). Although lightweight, such auto-regressive approaches often suffer from
error accumulation and severe temporal drift, unlike batch-processing video diffusion models. Our
approach, in contrast, achieves high faithfulness and efficiency without costly backpropagation or
auxiliary models, through direct intervention in the inference process of a video diffusion model.

3 PRELIMINARIES

3.1 STABLE VIDEO DIFFUSION

Stable Video Diffusion (SVD) (Blattmann et al., 2023) is an image-to-video diffusion model built
upon the EDM framework (Karras et al., 2022). It operates in a latent space where a video is
represented as z0. During training, the forward process corrupts this clean latent by:

zt = add noise(z0, 0→ t) := z0 + tϵ, (1)

where ϵ ∼ N (0, I) is Gaussian noise and t ∈ R≥0 is a noise level. A U-Net then derives a clean
latent ẑ0|t ≈ z0 from zt, t, and the first frame of z0. At inference, one initializes zT ∼ N (0, T 2I)
and for a decreasing schedule T = t0 > · · · > tN = 0 applies the Euler update rule iteratively:

zti+1
= Euler(zti ; ẑ0|ti , ti → ti+1) := ẑ0|ti + ti+1 ·D(zti) (2)

where D(zti) = (zti − ẑ0|ti)/ti. The final latent ztN = z0 is then decoded into the output video.

3.2 REPAINT VARIANTS AND THEIR IMPLICATIONS

RePaint (Lugmayr et al., 2022) enables diffusion-based zero-shot inpainting by repeatedly pasting
the known region of a conditioning image y (defined by a mask mvalid) onto intermediate denoised
predictions during the sampling process.

In practice, RePaint-style inpainting has been implemented in two prominent ways: Original Re-
Paint and Stable Diffusion (SD) Inpainting. Let zti be the current noisy latent and ẑ0|ti be the
prediction of the clean latent. Both variants follow a process of merging y and ẑ0|ti based on the

mask and renoising the result back to the noise level ti, yielding a modified latent z′ti (Fig. 2 left).
This new latent then serves as the input for the standard Euler update step (z′ti → zti+1

). Their key
difference lies in at which noise level this merging occurs, as summarized below:
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1. Unproject 3. Prefill black pixels2. Render

Latent 
modulationSVD❄ Euler

updateSVD❄

VAE4. Diffusion inpaint

① ②

Figure 3a: Overview of our rendering and diffusion inpainting pipeline. Step 1⃝ modulates the latent zti to z′ti
so that it aligns with y (our core contribution), while 2⃝ performs the standard denoising process z′ti 7→ zti+1

.

§ 4.2§ 4.1

Eq.5b

Eq.5a

❄

SVD

Figure 3b: Detailed view of latent modulation. We globally align the latents ẑ0|t with the rendered image
latents y by test-time optimizing a homography H (Section 4.1), and derive a non-uniform noise map Σ (see

Fig. 2) for smooth blending (Section 4.2). The merged result ẑ
merged

Σ|t is then further corrupted to reach a uniform

noise level t. All tensors reside in the latent space; the attached images are for illustration purposes only.

SD Inpainting (merging at t = 0) Original RePaint (merging at t = ti+1)

Noising None

{

yti+1
=add noise(y, 0→ ti+1)

zti+1
=Euler(zti ; ẑ0|ti , ti → ti+1)

Merging z
merged

0|ti
=mvalid y + (1−mvalid) ẑ0|ti z

merged
ti+1

=mvalid yti+1
+ (1−mvalid) zti+1

Renoising z′ti =add noise(zmerged

0|ti
, 0 → ti) z′ti =add noise(zmerged

ti+1
, ti+1 → ti)

The choice of merging noise level, despite both variants renoising to the same level ti, leads to
distinct outcomes (Fig. 2 right). Merging at the lowest noise level t = 0 (SD Inpainting) maintains
structural alignment but results in overly smooth, textureless outputs. Conversely, merging at a high
noise level ti+1 (Original RePaint) enhances texture fidelity but compromises structural consistency.

This trade-off motivates us to develop a method that adaptively selects the optimal noise level for
merging per region. Ideally, such a method would use lower noise for textured regions to preserve
structure, while applying higher noise to smoother regions for better inpainting fidelity (Fig. 2c).
The mathematical formulation of this intuition is discussed in Section 4.2.

4 METHODOLOGY

Given a source image I0 and a specified camera path {Cf}F−1
f=0 , our goal is to synthesize a novel

view video {I ′f}F−1
f=0 (I ′0 = I0) following this camera path. Although our method easily extends

to video inputs (see Appendix P), we focus on the single-image setting: this creates a “bullet-time”
effect where the scene must remain static, providing a stringent test for faithfulness as even minor
motion artifacts are highly perceptible. Our pipeline (Fig. 3a) consists of two main stages: rendering
via 3D projection and diffusion-based inpainting. Our key contributions are introduced within the
latter inpainting stage to resolve the inherent challenges of this framework.

Rendering via 3D Projection First, we lift the input image I0 to a 3D point cloud using Depth
Anything V2 (Yang et al., 2024a), and render it along the camera path to produce a sequence of

views {If}F−1
f=0 . These views contain empty regions corresponding to disocclusions. To prevent

black pixels in these regions from contaminating valid regions during VAE encoding, we pre-fill
them using a classical completion method (Bertalmio et al., 2001). These pre-filled images are
VAE-encoded to form a latent tensor y ∈ R

F×C×H×W , with corresponding valid-region masks
mvalid ∈ [0, 1]F×1×H×W derived by resizing their pixel-space counterparts.

4
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Diffusion Inpainting We inpaint the disoccluded regions in y using a RePaint-style (Lugmayr
et al., 2022) iterative process with Stable Video Diffusion (SVD) (Blattmann et al., 2023). The
process begins at an intermediate step i0 ∈ [0, N − 1], where we initialize the latent by noising y:

zti0 = y + ti0 ϵ, ϵ ∼ N (0, I). (3)

SVD then iteratively denoises this latent, with RePaint intervening at each step as in Sec. 3.2.

However, a naive application of RePaint suffers from two key issues: (i) drifting synthesis, where
the inpainted region fails to follow the camera motion (as seen in Fig. 1, NVS-Solver), and (ii) the
structure-texture trade-off discussed in Sec. 3.2 (Fig. 2). To resolve these issues, we introduce two
lightweight strategies that respectively address each problem by modulating the clean prediction
ẑ0|ti before the merging step. For simplicity, we hereafter drop the denoise step subscript i.

4.1 TEST-TIME LATENT HOMOGRAPHY DEFORMATION

❌ w/o HRendered ✅ w/ H

Fr
am

e 
12

Fr
am

e 
24

Figure 4: Comparison before and after in-
troducing homography deformation. The or-
ange boxes indicate that the background of
“w/o H” doesn’t follow the camera rotation.

Our baseline approach, a naive application of Re-
Paint, often suffers from drifting synthesis: the in-
painted regions fail to follow the camera motion, ap-
pearing static and disconnected from the rendered
area (an issue also seen in methods like NVS-Solver,
Fig. 1). We hypothesize that this stems from an in-
herent static bias in image-to-video diffusion mod-
els, which prioritize texture stability over consistent
motion (Tian et al., 2025; Choi et al., 2025). This is-
sue is particularly pronounced in SVD, which lacks
text prompts that could otherwise guide motion.

To address this drifting synthesis, we introduce a test-time latent homography deformation. Our

goal is to find a set of homographies {Hf}F−1
f=0 , where each Hf ∈ R

3×3 warps the clean prediction

ẑ0|t’s f -th frame to align with the rendered image’s latent y[f ]. We formulate this as an optimization
problem solved at each denoise step, minimizing two losses: a reconstruction loss Lrecon

H enforcing

the alignment, and a temporal smoothing loss Lsmooth
H encouraging constant velocity:

Lrecon
H =

F−1∑

f=0

∥
∥
(
y[f ]−Hf ẑ0|t[f ]

)
·mvalid[f ]

∥
∥
1
, Lsmooth

H =

F−2∑

f=1

∥Hf+1 − 2Hf +Hf−1∥1 .

(4)
The total loss is LH = Lrecon

H + λHLsmooth
H . At each denoise step, Hf is initialized to identity and

optimized by Adam (Kingma & Ba, 2014) with a learning rate of 0.01 for 100 steps. After {Hf}F−1
f=0

has converged, we replace ẑ0|t with ẑdeformed
0|t = stack({Hf ẑ0|t[f ]}F−1

f=0 ) for subsequent process.

Since homographies perform a global transformation, they effectively propagate the motion from
the rendered regions into the inpainting areas, ensuring spatio-temporal consistency across frames
(Fig. 4). Visualizations of this warping process are in Appendix E, where the homography is shown
to gradually converge to the identity over denoising steps. However, homographies cannot model
complex, depth-induced parallax. We therefore disable this deformation during later denoise steps,
allowing the model to establish finer geometric details unconstrained by the global warp.

4.2 SPATIALLY ADAPTIVE REPAINT (SA-REPAINT)

As discussed in Sec. 3.2, RePaint’s fixed merge noise level creates a structure-texture trade-off. We
propose to resolve this with a spatially adaptive merge noise level, computed as a per-pixel map
Σ ∈ [0, t]F×C×H×W . To derive a criterion for computing Σ, we first analyze the source of this
trade-off, which is guided by the conceptual visualizations in Fig. 2 left.

Merging at low noise (t = 0, SD Inpainting) Merging at the clean level (Fig. 2a) creates a stark
“texture gap” between the sharp, pasted region y and the smoother prediction ẑ0|t. We hypothesize
that this visible gap is also present in the actual merging in the latent space. Consequently, in the
subsequent denoise step, the model may misinterpret this discrepancy as a genuine scene feature,
thereby inhibiting texture generation in the inpainted region and impairing fidelity.
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Var SVD❄ ❓

Similarity
matrix

Figure 5a: Derivation of the noise level map Σ. For
each pixel, we determine the appropriate noise level
s∗ that matches the variance of a noised ground-truth
region (zs, blue curve) and the noised generated re-
gion (ẑs|t, green curve), enabling subsequent seamless
merging.

Figure 5b: Estimating Var[z0] via Variance Transfer.
Since the ground truth z0 is unavailable, its variance
Var[z0], required in (a), must be estimated. Our ap-
proach transfers the variance map of the first frame
y[0], leveraging the attention qk-similarity between
the first and subsequent frames (f = 1, . . . , F − 1).

Merging at high noise (t = ti+1, Original RePaint) Conversely, at high noise levels, the texture
gap seems to vanish (Fig. 2b), yet the resulting loss of structural consistency suggests an underlying
statistical imbalance. We posit that the noising applied to y is more destructive to its overall geomet-
ric structures than the one applied to ẑ0|t

1. This could obscure geometric cues in the known region,
hindering their propagation to inpainting regions and compromising coherence.

This analysis suggests that our goal should be to define a noise level map Σ such that y and ẑ0|t
noised by Σ are statistically coherent and merge seamlessly. We expect such a merged tensor to be
perceived as in-domain, allowing the model to exert its original generation capability and resolve the
structure-texture trade-off. Let’s first extend the noising formulation from Sec. 3.2 to be pixelwise:

yΣ : = add noise(y, 0→ Σ) = y +Σ · ϵ, ϵ ∼ N (0, I) (5a)

ẑΣ|t : = Euler(zt; ẑ0|t, t→ Σ) = (1− Σ/t) · ẑ0|t + (Σ/t) · zt (5b)

To make yΣ and ẑΣ|t statistically coherent, matching their full statistical distributions is intractable.
We therefore propose to match their local pixel-value variance as a tractable proxy for this purpose.

For a tensor z ∈ R
F×C×H×W , let p = (pf , py, px) be a spatio-temporal coordinate, andWp be a

local spatio-temporal window (e.g., of size 3× 3× 3) centered at p. We define the local pixel-value
variance Var[z] ∈ R

F×C×H×W , computed independently for each channel, as follows:

Var[z](pf , :, py, px) :=
1

|Wp|
∑

q∈Wp

z(qf , :, qy, qx)
2 −

( 1

|Wp|
∑

q∈Wp

z(qf , :, qy, qx)
)2

. (6)

Our task is thus to find a map Σ that satisfies Var[yΣ](p) ≈ Var[ẑΣ|t](p) for all p.

4.2.1 DERIVING THE PER-PIXEL NOISE LEVEL

Let s = Σ(p) ∈ [0, t] be the target noise level at pixel p. We focus on its local window Wp and
consider how to deduce s. Accordingly, we rewrite yΣ and ẑΣ|t as ys and ẑs|t, respectively. For

simplicity, we treat Var[ẑs|t] and Var[ys] as scalars, implicitly referring to their values at pixel p.

If the conditioning image y is available onWp, the objective is straightforward: find the noise level
s that minimizes the variance difference between the noised conditioning image ys and the noised
prediction ẑs|t: s

∗ := argmins∈[0,t]

∥
∥Var[ẑs|t]−Var[ys]

∥
∥
1
.

However, this formulation is confined to known regions, as y offers no guidance in areas requiring
inpainting. To create a unified objective, we need a reference signal that is valid across all pixels.
The most logical candidate is the variance of the final, ideal output z0. We therefore generalize the
objective by replacing y with the (hypothetical) ground-truth z0.

s∗ := argmin
s∈[0,t]

∥
∥Var[ẑs|t]−Var[zs]

∥
∥
1
, (7)

1Due to the asymmetric noising mechanisms (add noise for y versus Euler for ẑ0|t), the initial textural
superiority of y can be reversed at high noise levels, leaving it more degraded than the prediction ẑ0|t.
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where zs := z0 + sϵ. This objective is well-defined for all pixels and consistently reduces to our
initial objective in known regions where we can assume z0 ≈ y. Fortunately, this generalized
problem is a quadratic minimization, thus it admits a closed-form solution.

Theorem 1. The noise level s∗ ∈ [0, t] that minimizes the objective in Eq. 7 is an element of the set:

s∗ ∈ {η+, η−, 0, t} , where η± := clip
((

−B ±
√

max(0, B2 −AC)
)

/A; 0, t
)

. (8)

The coefficients A, B, and C are given below, where D(zt) := (zt − ẑ0|t)/t. Var[·] and Cov[·, ·]
denote the pixel-value variance and covariance on the local window:

A = Var[D(zt)]− 1, B = Cov[ẑ0|t, D(zt)], C = Var[ẑ0|t]−Var[z0]. (9)

Theorem 1 reveals that the optimal noise level s∗ is one of at most four candidate values. We find
the true optimum by evaluating the objective in Eq. 7 for each candidate. This provides a direct path
to computing the entire noise map Σ pixel by pixel.

However, a critical prerequisite remains. The computation of the coefficient C requires Var[z0] as
an input. While we can use Var[y] in known regions, the core challenge is to estimate Var[z0] for
unknown regions before z0 is generated. We tackle this circular problem using cross-frame attention.

4.2.2 ESTIMATING Var[z0] WITH CROSS-FRAME ATTENTION

To estimate the unknown variance Var[z0], we propagate texture information from a known source:
the input first frame y[0]. We leverage the cross-frame attention mechanism within the SVD U-Net,
positing that attention similarity reflects textural similarity. Let qt and kt be the attention queries
and keys from a U-Net upsample block. We approximate Var[z0] as follows:

Var[z0] ≈ λvar ·AtVar[y[0]], where At := softmax
(

qt(kt[0])
⊤/
√
d
)

. (10)

Here, At is the attention similarity map between all the frames’ queries qt and the first frame’s key
kt[0], scaled by the channel dimension d. The hyperparameter λvar scales the transferred variance,
and we set it to 1.5 to enhance fidelity (see Appendix J for ablation).

As visualized in Fig. 5b, this method robustly estimates a smooth variance map for Var[z0] even in
unobserved regions. The resulting Σ map accurately identifies areas requiring more texture synthesis
(e.g., the foliage on the right) by assigning higher noise levels, while keeping noise low in simpler
or rendered regions (e.g., the road). The full algorithm is provided in Appendix D.

4.2.3 ENSURING RELIABLE VARIANCE TRANSFER WITH KEY WEIGHTING

Our variance estimation (Eq. 10) presumes meaningful textural correspondence between the source
y[0] and the generated content. This assumption breaks down when novel objects are generated in
unknown regions, invalidating the variance transfer since there is no source texture to draw from.

To enforce reliable correspondence, we employ time-varying key weighting, inspired by Sun et al.
(2025); Jia et al. (2024). We modulate the key kti with a weight mask wi that suppresses its influence
in invalid regions, especially during early denoising steps:

kwi

ti
:= ϕ(wi) · kti , where wi := i/N +mvalid · (1− i/N) . (11)

Here, ϕ is a function to align the shape of wi with the key token kti . This guides the model to
rely on valid regions in y, ensuring a reliable basis for variance transfer by discouraging object
hallucination. As denoising progresses, we gradually relax this weighting (wi → 1), allowing the
model to shift its focus from source-reliance to the generation of coherent internal details within the
inpainted regions, which results in improved fidelity.

5 EXPERIMENTS

We evaluate our proposed method on several standard benchmarks for novel view synthesis. De-
tailed implementation settings, including hyperparameters, are provided in Appendix G. Notably,
our pipeline also incorporates Smoothed Energy Guidance (SEG) (Hong, 2024), which enhances
perceptual quality with negligible computational overhead.
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5.1 BENCHMARK SETTINGS

Metrics. We adopt a dual-faithfulness evaluation strategy to rigorously assess distinct aspects of
the synthesis. First, we introduce Input-Faithfulness, which measures the pixel-wise alignment
between the output and the projected input rendering. This effectively serves as a metric for con-
trollability: any deviation from valid rendered images indicates failure issues as reported in Fig. 1.
Second, we report GT-Faithfulness, a conventional metric to compare the output against ground-
truth target views. For both metrics, we compute PSNR, SSIM, and LPIPS exclusively on the valid
rendering regions. This masking is essential to decouple the evaluation of faithfulness (preserving
visible content) from fidelity (hallucinating occluded content), ensuring that plausible inpainting
is not penalized for differing from the ground truth. The quality of these hallucinated regions is
assessed by Fidelity measures: FID, KID, FVD, and VBench scores (Huang et al., 2024). Addition-
ally, we compute Camera Pose Errors (ATE, RRE, RTE) between GLOMAP-estimated poses (Pan
et al., 2024) and the ground truth. Lastly, we assess Static Geometry Compliance using Thresh-
olded Symmetric Epipolar Distance (TSED) (Yu et al., 2023) with thresholds of 0.25 and 0.5, and
MEt3R (Asim et al., 2024) with images resized so that the longer side is 256 while the aspect ratio
is retained.

Tasks and Datasets. We evaluate our method on two different settings. (i) Scripted Camera
Motion: we use DAVIS (Perazzi et al., 2016) and Tanks and Temples (T&T) (Knapitsch et al., 2017).
To generate our test sequences, we sample one frame at a 25-frame interval from each source video,
apply Depth Anything V2 (Yang et al., 2024a), and synthesize a 25-frame clip using a predefined
camera trajectory chosen uniformly from a set of 10 motions comprising rotation and zoom. In this
setting, we don’t have access to ground truth target images, so we skip the gt-faithfulness evaluation.
(ii) Real Camera Motion: We use the Mannequin Challenge (MC) validation set (Li et al., 2019)
and DL3DV-Evaluation (Ling et al., 2024). We cut out 25-frame clips from the video, apply Depth
Anything 3 (Lin et al., 2025) to infer corresponding per-frame depth and camera pose, and synthesize
25-frame clips based on these poses. We have found that SED scores are too low in other baselines
to compare meaningfully, so we remove them from the evaluation.

Note that DAVIS and MC contain movable objects, posing a challenge to maintain faithfulness to
rendered images against the video diffusion model’s strong motion priors. Filtering out MC videos
below 1080p and random half of DL3DV-Evaluation, the respective dataset contains a total of 288
(DAVIS), 314 (T&T), 268 (MC), and 360 (DL3DV) sequences. We report aggregated scores across
all datasets; detailed per-dataset results are in Appendix H.

Baselines. We compare our method against four rendering or trajectory-based methods: Trajectory
Attention (Xiao et al., 2025), Trajectory Crafter (YU et al., 2025), Diffusion As Shader (Gu et al.,
2025), and NVS-Solver (You et al., 2025). The former three are fine-tuned models, whereas NVS-
Solver, like our method, is training-free. Other training-free works (Hou & Wei, 2024; Zhou et al.,
2024) are excluded due to the unavailability of public implementations. We also evaluated Invisible
Stitch (Engstler et al., 2025) and Stable Virtual Camera (Zhou et al., 2025); however, due to fun-
damental methodological differences (e.g., iterative inpainting or lack of explicit 3D guidance) that
hinder a strictly fair comparison, their results are reported separately in Appendix M.

5.2 COMPARISON RESULTS: SCRIPTED CAMERA MOTION

As illustrated in Fig. 6, our method demonstrates superior faithfulness to the rendered images and
globally consistent yet high-fidelity generation, avoiding misalignment artifacts common in prior
work, such as spurious foreground motion, static/drifting background synthesis, or color shifts.

The quantitative results in Tables 1 reveal a dramatic improvement in faithfulness (PSNR, SSIM,
LPIPS) and geometric consistency (camera pose, TSED), substantially outperforming all baselines.
This high faithfulness is achieved in tandem with competitive perceptual quality, as reflected in our
FID/KID3 and VBench scores. While some of these scores do not rank highest, this is partly because
certain baselines fail to generate motion aligned with the camera trajectory, resulting in near-static
videos. This failure mode can artificially inflate inter-frame consistency metrics. In contrast, our ap-

2See Appendix I for the evaluation details.
3Trajectory Crafter’s unexpectedly high FID/KID likely stems from a domain shift, as it tends to synthesize

novel backgrounds not present in the ground truth. This hypothesis is plausible given its strong VBench scores.
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Figure 6: Qualitative comparison with other methods. Our method achieves the highest faithful
geometric/appearance alignment to the rendered images (green boxes). In contrast, other methods
exhibit severe inconsistency (red boxes) or subtle yet noticeable appearance shifts (orange boxes).
Gray labels indicate finetuning-based methods. Other results are in Appendix K.

Table 1: Quantitative results of Scripted Camera Motion. Top: Comparison on standard met-
rics. Bottom: VBench evaluation. Gray rows denote training-based methods. Here, KID’ denotes
KID×103, T.25 (T.50) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MEt3R.

Method
Input-Faithfulness Fidelity ↓ Pose ↓ Geometry Efficiency2↓

PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓ GB Time

Traj. Attention 23.01 0.731 0.175 18.36 1.737 640.1 0.266 0.063 0.100 0.378 0.916 0.031 12.7 1:15
Traj. Crafter 24.11 0.804 0.114 18.65 1.586 699.9 0.132 0.048 0.074 0.472 0.965 0.030 19.4 1:51
Diff. As Shader 14.92 0.453 0.396 19.43 1.671 497.5 1.543 0.491 1.285 0.040 0.130 0.037 30.8 7:30
NVS-Solver 21.91 0.713 0.188 16.57 1.039 640.0 0.593 0.161 0.311 0.318 0.764 0.037 32.7 11:15
Ours 29.27 0.868 0.068 16.43 0.763 648.1 0.056 0.022 0.028 0.656 0.966 0.030 10.8 2:23

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 95.49 94.98 96.45 98.87 23.79 52.36 67.68
Traj. Crafter 95.38 95.44 96.10 99.02 24.32 53.05 69.66
Diff. As Shader 94.99 94.62 96.08 98.65 24.33 53.19 66.40
NVS-Solver 95.18 94.43 94.50 98.26 23.98 52.38 72.19
Ours 95.69 94.99 95.97 99.05 23.91 53.61 69.36

Table 2: Quantitative results of Real Camera Motion. Top: Comparison on standard metrics. Bot-
tom: VBench evaluation. Gray rows denote training-based methods.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓ Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE M3R↓

Traj. Attention 21.12 0.735 0.215 18.29 0.617 0.281 20.32 5.069 156.6 0.186 0.749 0.089 0.062
Traj. Crafter 22.77 0.793 0.164 18.71 0.645 0.269 19.30 5.437 127.4 0.394 0.771 0.190 0.057
Diff. As Shader 12.92 0.452 0.523 12.70 0.431 0.559 26.50 5.380 304.0 0.349 1.085 0.182 0.066
NVS-Solver 20.51 0.720 0.223 16.91 0.572 0.300 15.80 1.789 128.9 0.392 0.916 0.620 0.064
Ours 28.95 0.893 0.074 18.97 0.652 0.241 15.56 1.792 106.1 0.114 0.637 0.053 0.060

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 92.11 93.19 94.38 97.82 24.02 48.81 59.43
Traj. Crafter 92.86 93.60 93.33 97.43 24.78 50.87 63.51
Diff. As Shader 90.61 92.32 94.27 97.39 24.52 50.13 55.17
NVS-Solver 92.81 92.75 91.23 96.55 24.45 50.19 70.78
Ours 92.53 93.16 92.84 97.16 24.23 51.81 66.65

proach successfully generates videos that adhere to the camera path. Therefore, our VBench scores
reflect the quality of a genuinely challenging, motion-consistent generation, confirming a superior
balance between adherence and visual quality. Moreover, our zero-shot approach is significantly
more efficient than NVS-Solver and rivals, if not surpasses, training-based methods in efficiency.

5.3 COMPARISON RESULTS: REAL CAMERA MOTION

From Table 2, we observe a clear positive correlation between Input-Faithfulness and GT-
Faithfulness. Notably, our method, which strictly prioritizes Input-Faithfulness, also leads in GT-
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Table 3: Ablation study on DAVIS. B: Baseline, SAR: SA-RePaint; KID’ denotes KID×103, T.25

(T.50) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MEt3R.

Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

Method PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

B (RePaint+SEG) 29.89 0.866 0.076 30.19 1.410 714.1 0.067 0.025 0.033 0.674 0.958 0.032
w/o Homography 29.50 0.864 0.075 28.01 0.862 702.1 0.108 0.031 0.043 0.641 0.959 0.033
w/o SAR (Σ = 0) 29.95 0.866 0.075 30.35 1.460 709.2 0.050 0.021 0.027 0.713 0.968 0.032
w/o SAR (Σ = ti+1) 29.65 0.864 0.077 28.99 1.003 699.0 0.049 0.021 0.027 0.683 0.967 0.032
All 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964 0.033

Rendered Baseline (RePaint+SEG) w/o Homography   w/o SAR w/o SAR All
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Figure 7: Visualization of each component’s role. Without homography, the background remains
static (red boxes). Without SA-RePaint, either global structure or texture fidelity is compromised
(purple boxes). ‘All’ successfully overcomes all these issues (green box).

Faithfulness. This result validates our stance: by encouraging diffusion models to adhere to the input
guidance as closely as possible, we not only resolve the practically prominent issues as pointed in
Fig. 1 but also contribute to higher accuracy in terms of “conventional” faithfulness.

On the other hand, we observe a general decline in VBench metrics such as Motion Smoothness
and Temporal Flicker compared to the Scripted setting. This trend is attributable to the inherent
complexity of real-world trajectories, which often contain handheld jitter and irregular velocities,
posing greater challenges for temporal consistency than smooth, synthesized paths.

5.4 ABLATION STUDY

In Table 3, our RePaint-based baseline (B) validates its design selection by achieving exceptional
faithfulness. However, its low fidelity and pose accuracy scores highlight the two critical limitations
this approach introduces: geometric inconsistency (drifting synthesis) and a poor structure-texture
trade-off. Our components respectively target these limitations: Homography Deformation (Sec.4.1)
is crucial for geometric consistency; its removal severely degrades camera pose accuracy, though
this strict enforcement comes at a slight cost to perceptual fidelity (FID). In contrast, SA-RePaint
(Sec.4.2) primarily enhances texture fidelity. Its inclusion markedly improves FID/KID by gener-
ating richer details while preserving structural coherence (Fig. 7). The slight decrease in TSED
with SAR is expected. The realistic details SAR adds to formerly untextured regions enable more
stringent feature matching in TSED, penalizing SAR more heavily for minor geometric deviations,
thereby lowering the score. Our full model (‘All’) synergizes these strengths, trading a negligible
decrease in faithfulness for notable gains in fidelity and pose accuracy to achieve a superior overall
balance. Further hyperparameter ablations are in Appendix J.

6 CONCLUSION

We introduced a zero-shot novel view synthesis pipeline to address the trade-off between faithful-
ness, fidelity, and efficiency. Our method, featuring Test-Time Latent Homography Deformation
and Spatially Adaptive RePaint (SA-RePaint), demonstrates that significant gains in faithfulness are
achievable without disproportionate trade-offs in perceptual quality. By rebalancing the NVS objec-
tives towards faithfulness while maintaining computational efficiency (under 11 GB VRAM), our
work offers a promising and accessible direction for applications where authenticity is paramount.
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A ADDITIONAL SUPPLEMENTARY MATERIALS

Our anonymized code is uploaded to https://anonymous.4open.science/r/

FaithfulNVS-9EDF. Also, please refer to the supplementary videos for more visualiza-
tion.
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B “ADD NOISE” FORMULATION IN SVD

Lemma 1. Let z0 be the clean latent tensor. Let s and t be real numbers with 0 < s < t. Under the
EDM (Karras et al., 2022) framework, the operation add noise(·, s→ t) to add an i.i.d. Gaussian
noise on zs ∼ N (z0, s

2I) to generate a new random variable zt ∼ N (z0, t
2I) is given by

zt = add noise(zs, s→ t) := zs +
√

t2 − s2 ϵ, ϵ ∼ N (0, I). (12)

Proof. Since zt is an affine transformation of independent Gaussian variables zs and ϵ, it also follows
a Gaussian distribution. We proceed by computing its mean and variance. The mean is given by:

E[zt] = E[zs +
√

t2 − s2 ϵ] = E[zs] +
√

t2 − s2 E[ϵ] = z0 +
√

t2 − s2 · 0 = z0. (13)

As zs and ϵ are independent, the variance is the sum of their variances:

Var[zt] = Var[zs +
√

t2 − s2 ϵ] (14)

= Var[zs] + Var[
√

t2 − s2 ϵ] (15)

= Var[zs] + (t2 − s2)Var[ϵ] (16)

= s2I + (t2 − s2)I = t2I. (17)

Thus, we have shown that zt ∼ N (z0, t
2I).

C PROOF OF THEOREM 1

Theorem 1. The optimal s∗ ∈ [0, t] satisfying

s∗ = argmin
0≤s≤t

∥
∥Var[ẑs|t]−Var[zs]

∥
∥
1

(18)

is an element of the set:

s∗ ∈ {η+, η−, 0, t} , where η± := clip

(

−B ±
√

max(0, B2 −AC)

A
; 0, t

)

. (19)

Here, A, B, and C are given by the following:

A = Var[D(zt)]− 1 (20)

B = Cov[ẑ0|t, D(zt)] (21)

C = Var[ẑ0|t]−Var[z0] (22)

where D(zt) := (zt − ẑ0|t)/t, and z0 is the ground truth clean latent. Cov[ẑ0|t, D(zt)] stands for

the covariance between ẑ0|t and D(zt).

Proof. Recall the definitions of zs and ẑs|t:

zs = z0 + sϵ, ϵ ∼ N (0, I) (23)

ẑs|t =
(

1− s

t

)

ẑ0|t +
(s

t

)

zt (24)

Taking the variance of Eq. 23 (assuming the independence between z0 and ϵ), we get:

Var[zs] = Var[z0] + s2 (25)

Next, we simplify the expression for ẑs|t by defining D(zt) := (zt − ẑ0|t)/t.

ẑs|t = ẑ0|t +
s

t
(zt − ẑ0|t) = ẑ0|t + sD(zt) (26)

The variance of Eq. 24 is then a quadratic function of s:

Var[ẑs|t] = Var[ẑ0|t + sD(zt)] = Var[D(zt)]s
2 + 2Cov[ẑ0|t, D(zt)]s+Var[ẑ0|t] (27)
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The objective function in Eq. 18 is the absolute value of the difference between these two variances.
Let this difference be f(s):

f(s) : = Var[ẑs|t]−Var[zs] (28)

= (Var[D(zt)]− 1)
︸ ︷︷ ︸

A

s2 + 2Cov[ẑ0|t, D(zt)]
︸ ︷︷ ︸

B

s+ (Var[ẑ0|t]−Var[z0])
︸ ︷︷ ︸

C

(29)

= As2 + 2Bs+ C (30)

Our goal is to find argmins∈[0,t] |f(s)|. In an unconstrained setting s ∈ R, the minimizers of |f(s)|
are given by the roots of f(s) = 0 if they are real, or by the vertex of the parabola s = −B/A if the
roots are complex. Both cases are compactly represented by:

s =
−B ±

√

max(0, B2 −AC)

A
(31)

When considering the constraint s ∈ [0, t], the optimal value s∗ must be found within the set of
candidates comprising the unconstrained solutions that lie in [0, t] and the interval’s boundaries, 0
and t. Therefore, s∗ must be an element of the set given in the theorem statement. One can determine
the true minimum by evaluating |f(s)| for each candidate.

Notes for implementation: The equation f(s) = 0 can have two real roots, both of which may
lie in [0, t]. In this case, we select the root using the following formula:

s∗ =
−B + sign(B)

√

max(0, B2 −AC)

A
. (32)

This choice is motivated by the ideal case where the model’s prediction is perfect, i.e., ẑ0|t = z0.

Given the construction zt = z0 + tϵ where ϵ ∼ N (0, I), we have:

D(zt) = ((z0 + tϵ)− z0)/t = ϵ (33)

A = Var[ϵ]− 1 = 0 (34)

B = Cov[z0, ϵ] = 0 (35)

C = Var[z0]−Var[z0] = 0 (36)

In this ideal scenario, all coefficients are zero. In practice, this means that A can be a small value,
making the solution for s∗ sensitive to division by A. To mitigate the risk of large perturbations in
s∗ due to a small A, we select the root whose numerator has a smaller absolute value, leading to
Eq. 32.

D SA-REPAINT IMPLEMENTATION

Algorithm 1 describes our implementation of Section 4.2. Note that the operations to deduce Σ
are pixelwise. As a specific detail of the process, we apply guided filtering (He et al., 2012) to the
computed covariances with Var[z0] as a guide. This step serves two purposes: firstly, to smooth
the coefficients A, B, and C, which are prone to noise due to being close to zero (see the proof of
Appendix C); and secondly, to guide the solution such that Σ correlates with the image’s structure,
a behavior we expect, where it is lower in textureless areas and higher in high-frequency, complex
regions. Moreover, particular care must be taken with the division nunom/A. Although both nunom

and A are spatio-temporally smooth, the coefficient map A is expected to be close to 0 as shown
in the note of C. Therefore, pixel-wise division nunom/A is very susceptible to the sign flips and
the slight fluctuation on A, resulting in a highly unstable noise level map Σ = clip(nunom/A; 0, t).
We circumvent this instability by employing a simple yet effective technique that reformulates the
division as solving a local least-squares problem.

Definition of safe division For simplicity, let P,Q ∈ R
H×W be two single-channel images.

Our goal is to compute a ratio map R that is more robust to noise and spatially coherent than the
pointwise division P/Q. To achieve this, we assume that the ratio is locally constant within a small
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Algorithm 1: SA-RePaint (Section 4.2)

Input: Current noisy latent zt ∈ R
F×C×H×W , one-step denoised latent ẑ0|t ∈ R

F×C×H×W ,

rendered image latent y ∈ R
F×C×H×W

Hyperparameters: Variance scaler λvar ∈ R, local spatial/temporal window radius rs, rt ∈ R

Output: Noise level map Σ ∈ [0, t]F×C×H×W

1 Var[z0]← λvar · get var data(y0:1) ; /* Eq. 10 */

2 D(zt)← (zt − ẑ0|t)/t ;

3 Var[ẑ0|t]← guided filter
(
local covariance(ẑ0|t, ẑ0|t, rs, rt),Var[z0]

)
;

4 Var[D(zt)]← guided filter (local covariance(D(zt), D(zt), rs, rt),Var[z0]) ;

5 Cov[ẑ0|t, D(zt)]← guided filter
(
local covariance(ẑ0|t, D(zt), rs, rt),Var[z0]

)
;

6 A← Var[D(zt)]− 1; B ← Cov[ẑ0|t, D(zt)]; C ← Var[ẑ0|t]−Var[z0] ; /* Eq. 9 */

7 nunom pos← −B + sign(B)
√

max(0, B2 −AC) ;

8 nunom neg← −B − sign(B)
√

max(0, B2 −AC) ;
9 Σpos ← clip(safe division(nunom pos, A); 0, t) ; /* (See below) */

10 Σneg ← clip(safe division(nunom neg, A); 0, t) ;

11 Σ← (AΣ2
pos +BΣpos + C ≤ AΣ2

neg +BΣneg + C) ? Σpos : Σneg ; /* Eq. 8 */

12 Σ← (AΣ2
pos +BΣpos + C ≤ A · 02 +B · 0 + C) ? Σpos : 0 ;

13 Σ← (AΣ2
pos +BΣpos + C ≤ A · t2 +B · t+ C) ? Σpos : t ;

14 return Σ

window W (p) around each pixel p. We then find the optimal ratio R(p) that minimizes the sum of
squared errors within this window:

R(p) = argmin
r∈R

∑

q∈W (p)

(P (q)− r ·Q(q))
2

(37)

This is a convex quadratic minimization problem. By setting the derivative of the objective function
with respect to r to zero, we obtain the analytical solution:

R(p) =

∑

q∈W (p) P (q)Q(q)
(
∑

q∈W (p) Q(q)2
)

+ ϵ
(38)

where ϵ > 0 is a small constant added for numerical stability to prevent division by zero.

This method can be readily extended to multi-channel images by applying it channel-wise, or to
videos by defining W (p) as a 3D spatio-temporal window. In summary, safe division is defined
as follows:

nunom

A
≈ safe divison(nunom, A) := clip

(
box blur(nunom ·A)
box blur(A2) + ϵ

; 0, t

)

(39)

E TEST-TIME HOMOGRAPHY IMPLEMENTATION
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Figure 8: Evolution of homography de-
formation strength over denoising steps.

Algorithm 2 delineates the test-time homography opti-
mization described in Section 4.1. We empirically ob-
served that Niter = 100 and η = 0.01 were enough for

{Hj}F−1
j=0 to converge, and the iteration completes in a

second.

Figure 9 shows the process of how homographies rectify
the intermediate denoised images. At the beginning of
the denoising steps, the image color and structure are not

well established, so the deduced homographies {Hj}F−1
j=0

strongly act on the denoised latents ẑ0|t. Over time, the
latents comply with the global motion, and the homogra-
phy deformation magnitude is reduced. This deformation magnitude is quantified by calculating the
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Algorithm 2: Test-time Latent Homography Deformation (Section 4.1)

Input: One-step denoised latent ẑ0|t ∈ R
F×C×H×W , rendered image latent y ∈ R

F×C×H×W ,

rendered image valid mask mvalid ∈ {0, 1}F×1×H×W

Hyperparameters: Regularization weight λH , learning rate η, Max iterations Niter

Output: Aligned latent ẑdeformed
0|t ∈ R

F×C×H×W

1 Initialize the homographies {Hj ∈ PGL(3,R)}F−1
j=0 such that Hj = [1, 0, 0; 0, 1, 0; 0, 0, 1] ;

2 Initialize optimizer = Adam([H ′
0, . . . , H

′
F−1], lr = η), where H ′

j ∈ R
8 = flatten(Hj)[: 8]

;
3 for i← 1 to Niter do

4 Warp latents: zdeformed
0|t [j]← Hj ẑ0|t[j] ;

5 Reconstruction loss: Lreconst
H ←∑F−1

j=1

∥
∥
∥

(

y[j]− ẑdeformed
0|t [j]

)

·mvalid[j]
∥
∥
∥
1

;

6 Smoothness loss: Lsmooth
H ←∑F−2

j=1 ∥Hj+1 − 2Hj +Hj−1∥1 ;

7 Sum up the losses: L ← Lreconst
H + λHLsmooth

H ;
8 Update parameters: H ′ ← optimizer(∇HL, η).
9 Warp latents: zdeformed

0|t [j]← Hj ẑ0|t[j] ;

10 return ẑdeformed
0|t

Rendered Step 22 ✅ FinalStep 27Rendered

Fr
am

e 
12

Fr
am

e 
24

Figure 9: Homography deformation at 22th and 27th denoising steps, with 12th and 24th frames
aligned vertically. We see that homographies try to align the latents ẑ0|t to the rendered images.

average of the distances four image corners move. Figure 8 shows this result. Note that the defor-
mation peaks at around frame 12, and then decreases in later frames. This is because the rendered
images contain fewer valid regions as the camera moves more, resulting in a weaker guiding signal
for homography optimization. In practice, this doesn’t cause any problems; as we see in the graph,
the homography eventually converges to the identity.

F SMOOTHED ENERGY GUIDANCE (SEG) WITH BLUR WEIGHTING

The methods introduced in Sec. 4 primarily enhance faithfulness while maintaining fidelity, but the
fidelity itself remains bounded by the underlying model capabilities. Indeed, Latent Homography
Deformation (Section 4.1) promotes global structural consistency, while SA-RePaint (Section 4.2)
manages the fidelity–faithfulness tradeoff.

To purely improve fidelity in a zero-shot manner, we employ Smoothed Energy Guidance (SEG)
(Hong, 2024), a variant of classifier-free guidance (CFG) (Ho & Salimans, 2022). SEG replaces the
unconditional prediction in CFG with a conditional one with attention maps blurred:

Attn(qti , k
wi

ti
, vti ;Gσ) = softmax

(

(Gσ ∗ qti) kwi⊤
ti√

d

)

vti (40)

where Gσ denotes a Gaussian blur kernel with standard deviation σ.

However, directly applying SEG in our task results in unstable neon artifacts in invalid regions. We
attribute this to texture inconsistencies: since the invalid regions are already blurry, further blurring
reduces guidance effectiveness, leading to nearly unconditional generation. To address this, we
propose spatially adaptive blurring: we set a lower blur sigma σinvalid for invalid pixels and a
higher one σvalid for valid pixels, ensuring 0 < σinvalid < σvalid. This mitigates neon effects in
inpainted regions while sharpening object boundaries around valid/invalid area borders.
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We use σinvalid = 2 and σvalid = 4. To encourage novel structure generation in invalid regions, we
alternate between standard CFG and SEG at a 2 : 1 ratio.

G IMPLEMENTATION DETAILS

Input ❌ w/ disocclusion ✅ w/o disocclusion

Figure 10: We mask out the disoccluded
region (right) to prevent potential see-
through artifacts (middle).

Our pipeline operates on a 1024×576 resolution. During
rendering, we discard disoccluded pixels, as they poten-
tially lead to see-through artifacts as illustrated in Fig. 10.
We use N = 50 denoising steps, with inference starting at
step i0 = 16. For Homography Deformation (Sec. 4.1),
the regularization weight is λH = 0.5, and this process
is disabled after step 30. For SA-RePaint (Sec. 4.2), we
set Σ = 0 for the first 25 steps for stability, then make it
adaptive with a local window radius of r = 1 for variance
computation.

To further boost perceptual quality, we incorporate
Smoothed Energy Guidance (SEG; Appendix F). In the
final 10 denoising steps, we disable all our proposed components to allow the model to harmonize
the boundaries between valid and inpainted regions. We empirically found that these final 10 steps
of free generation have a negligible impact on overall faithfulness.

H DETAILED QUANTITATIVE RESULTS

Tables 6-5 report the quantitative metrics and the VBench scores for Mannequin Challenge, DAVIS,
and Tanks and Temples, respectively. KID’ denotes KID×103, T.25 (T.50) represents TSED with a
threshold of 0.25 (0.50), and M3R stands for MEt3R.

I EFFICIENCY EVALUATION

To determine the minimal required memory, we identify the lowest memory limit
at which our inference pipeline can run without an Out-of-Memory (OOM) error.
This is achieved by progressively lowering the maximum allocatable memory using
torch.cuda.set_per_process_memory_fraction. We chose this method over
querying torch.cuda.max_memory_allocated because the latter fails to account for
memory reserved by the CUDA context and the PyTorch caching allocator. Consequently, our
approach provides a more realistic measure of the total memory footprint in an actual execution
environment. Inference time, conversely, was measured without any memory cap, focusing
specifically on the iterative process of the denoising U-Net. We run each model three times and
report the median processing time. All experiments were conducted on a single NVIDIA A6000
GPU with 48 GB of VRAM.

J FURTHER ABLATION STUDIES

J.1 EFFECT OF λH IN LATENT HOMOGRAPHY DEFORMATION

In Section 4.1, we defined the test-time loss function of homography deformation as follows: LH =
Lrecon
H + λHLsmooth

H . This section ablates the effect of λH , i.e., how the smoothness regularization
affects the final generation results. Table 8 shows that the camera pose errors for λH = 0 are
notably higher than those for λH > 0. We attribute this to the homography overfitting to each
frame independently, leading to a loss of temporal consistency and producing a non-smooth motion
trajectory distinct from the one used for rendering.
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Table 4: Quantitative comparison on DAVIS (Scripted Camera Motion). Top: Comparison on stan-
dard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method
Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

Traj. Attention 22.93 0.725 0.195 30.73 1.855 647.8 0.273 0.066 0.108 0.406 0.894 0.035
Traj. Crafter 24.24 0.811 0.119 32.03 1.906 704.7 0.139 0.047 0.071 0.499 0.958 0.032
Diff. As Shader 14.79 0.434 0.432 32.60 2.036 492.5 1.782 0.543 1.409 0.038 0.092 0.044
NVS-Solver 21.78 0.695 0.209 27.92 1.108 665.9 0.909 0.200 0.394 0.326 0.715 0.041
Ours 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964 0.033

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 95.00 94.80 96.64 98.89 23.94 51.12 62.73
Traj. Crafter 94.92 95.28 96.20 99.05 24.44 51.93 65.97
Diff. As Shader 94.26 94.34 95.92 98.51 24.77 52.50 62.25
NVS-Solver 94.68 94.27 94.66 98.21 24.11 51.07 68.52
Ours 95.33 94.92 96.03 99.05 24.07 52.35 65.39

Table 5: Quantitative comparison on Tanks and Temples (Scripted Camera Motion). Top: Compari-
son on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method
Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

Traj. Attention 23.08 0.737 0.157 21.71 1.985 1052 0.258 0.061 0.093 0.353 0.936 0.028
Traj. Crafter 23.99 0.798 0.109 21.57 1.884 1146 0.126 0.050 0.077 0.446 0.971 0.027
Diff. As Shader 15.04 0.470 0.362 23.44 1.938 891.8 1.304 0.439 1.161 0.041 0.165 0.030
NVS-Solver 22.04 0.729 0.169 19.96 1.254 1067 0.310 0.124 0.221 0.310 0.808 0.034
Ours 28.98 0.872 0.063 19.95 0.941 1025 0.058 0.022 0.029 0.641 0.967 0.027

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 95.99 95.16 96.26 98.84 23.65 53.60 72.63
Traj. Crafter 95.84 95.61 96.01 99.00 24.20 54.17 73.35
Diff. As Shader 95.73 94.90 96.23 98.80 23.90 53.88 70.54
NVS-Solver 95.68 94.58 94.34 98.32 23.86 53.69 75.86
Ours 96.05 95.06 95.90 99.04 23.74 54.87 73.33

Table 6: Quantitative comparison on Mannequin Challenge (Real Camera Motion). Top: Compari-
son on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE M3R↓

Traj. Attention 21.96 0.783 0.168 18.43 0.639 0.250 31.49 4.371 230.2 0.187 0.509 0.091 0.049
Traj. Crafter 24.48 0.855 0.119 18.96 0.662 0.243 30.16 4.302 221.4 0.196 0.552 0.092 0.044
Diff. As Shader 13.06 0.468 0.500 12.79 0.448 0.538 40.30 5.824 598.2 0.162 0.620 0.082 0.052
NVS-Solver 21.95 0.775 0.184 17.20 0.591 0.274 29.93 3.733 251.7 0.193 0.528 0.093 0.054
Ours 30.51 0.925 0.056 19.03 0.663 0.226 26.18 1.865 187.1 0.061 0.424 0.031 0.047

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 93.92 93.43 95.00 98.56 24.10 51.22 63.44
Traj. Crafter 94.58 93.97 94.58 98.49 24.75 52.17 64.88
Diff. As Shader 93.52 92.90 94.93 98.02 25.13 52.37 57.75
NVS-Solver 93.81 92.50 92.15 97.69 24.35 50.86 71.82
Ours 94.43 93.31 94.07 98.36 24.17 53.60 67.48
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Table 7: Quantitative comparison on DL3DV-Evaluation (Real Camera Motion). Top: Comparison
on standard metrics. Bottom: VBench evaluation. Gray rows are training-based.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE M3R↓

Traj. Attention 20.28 0.687 0.262 18.15 0.595 0.313 25.16 6.965 234.6 0.186 0.990 0.088 0.076
Traj. Crafter 21.05 0.732 0.209 18.46 0.627 0.296 23.17 7.467 188.6 0.593 0.990 0.287 0.071
Diff. As Shader 12.78 0.437 0.547 12.61 0.413 0.580 33.93 7.244 362.8 0.536 1.550 0.282 0.079
NVS-Solver 19.07 0.666 0.261 16.63 0.553 0.327 18.12 2.471 179.8 0.592 1.305 0.294 0.075
Ours 27.39 0.861 0.093 18.92 0.641 0.255 20.27 3.064 163.3 0.168 0.850 0.075 0.074

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Attention 90.30 92.95 93.76 97.08 23.93 46.40 55.43
Traj. Crafter 91.13 93.22 92.09 96.38 24.82 49.57 62.14
Diff. As Shader 87.70 91.74 93.62 96.76 23.90 47.89 52.58
NVS-Solver 91.81 93.00 90.31 95.41 24.55 49.53 69.74
Ours 90.64 93.01 91.61 95.96 24.28 50.01 65.83

Table 8: Quantitative comparison with different λH on DAVIS. Top: Comparison on standard met-
rics. Bottom: VBench evaluation.

Input-Faithfulness Fidelity ↓ Camera Pose ↓ TSED ↑

λH PSNR ↑ SSIM ↑ LPIPS ↓ FID KID ×103 FVD ATE RRE RTE @.25 @.50

0.0 29.58 0.864 0.074 28.13 0.834 705.2 0.086 0.023 0.037 0.658 0.966
0.5 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964
1.0 29.58 0.864 0.074 28.17 0.861 704.1 0.066 0.022 0.030 0.660 0.965
1.5 29.57 0.864 0.074 28.12 0.872 702.4 0.055 0.022 0.028 0.651 0.953

λH

Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

0.0 95.35 94.81 95.99 99.03 24.05 52.08 65.54
0.5 95.33 94.92 96.03 99.05 24.07 52.35 65.39
1.0 95.34 94.81 96.00 99.03 24.06 52.09 65.53
1.5 95.35 94.87 96.00 99.03 24.06 52.13 65.53

J.2 EFFECT OF λvar IN SA-REPAINT

In Section 4.2.2, we proposed a method to approximate the latent variance Var[z0] using the latent
variance map of the input image latent, Var[y0:1], and the attention correspondence matrix:

Var[z0] ≈ λvar · softmax

(

qt (k
wi

t [0])
⊤

√
d

)

Var[y[0]] (41)

Here, we analyze the effect of the global scalar λvar on the model’s qualitative and quantitative
performance.

A higher value of λvar increases the overall variance Var[z0], which encourages the model to generate
novel views with high-frequency textures, particularly in uncertain or occluded regions. This effect
is corroborated in Figure 11, which shows that increasing λvar leads to richer low-level textures and
the generation of new semantic structures.

However, this increased generation capability comes at the cost of reduced faithfulness to the source
view. As shown in Tables 9, key metrics such as PSNR, camera pose accuracy, and TSED degrade as
λvar increases. We also observe that temporal consistency and motion smoothness are diminished.

J.3 EFFECT OF PRE-FILLING

In Figure 3a, we introduced the process of filling the void black regions in the rendered images by a
classical inpainting algorithm (Bertalmio et al., 2001). This is a crucial step to avoid artifacts at the
valid-invalid boundary. Figure 12 shows the difference with or without this prefilling step. The gray
artifacts in the ”w/o prefilling” appear exactly in the same position as the valid-invalid borders in
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Figure 11: Fidelity enhancement by increasing λvar.

Table 9: Quantitative comparison with different λvar on DAVIS. Top: Comparison on standard
metrics. Bottom: VBench evaluation.

Input-Faithfulness Fidelity ↓ Camera Pose ↓ TSED ↑

λvar PSNR ↑ SSIM ↑ LPIPS ↓ FID KID ×103 FVD ATE RRE RTE @.25 @.50

1.0 29.66 0.864 0.074 28.32 0.876 703.8 0.081 0.023 0.032 0.684 0.966
1.5 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964
2.0 29.54 0.864 0.074 28.03 0.831 705.1 0.063 0.022 0.030 0.649 0.957
2.5 29.51 0.864 0.074 27.99 0.838 703.6 0.061 0.022 0.030 0.662 0.962
3.0 29.48 0.864 0.074 27.95 0.832 701.9 0.061 0.022 0.029 0.645 0.964

λvar
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

1.0 95.33 94.91 96.13 99.08 24.06 52.36 65.16
1.5 95.33 94.92 96.03 99.05 24.07 52.35 65.39
2.0 95.33 94.78 95.94 99.01 24.06 52.09 65.65
2.5 95.31 94.87 95.93 99.01 24.07 52.31 65.60
3.0 95.30 94.75 95.85 98.98 24.10 52.04 65.80

the rendered image. This strongly indicates that the artifact is caused by contamination of the black
region during the VAE encoding process. Since our main focus is the faithfulness to the rendered
images, the conditioning VAE latent must be prepared with care, unlike other previous works.

To ensure a fair comparison, Table 10 evaluates the effect of prefilling on other baselines. As Tra-
jectoryAttention (Xiao et al., 2025) and DiffusionAsShader (Gu et al., 2025) do not directly operate
on rendered RGB images, our evaluation focuses on TrajectoryCrafter (YU et al., 2025) and NVS-
Solver (You et al., 2025) using the DAVIS dataset. An interesting contrast emerges: prefilling
slightly impairs TrajectoryCrafter (except for faithfulness scores) yet benefits NVS-Solver. The im-
pairment to TrajectoryCrafter can be attributed to the train-test domain gap. In contrast, NVS-Solver,
being a zero-shot method like ours, is immune to this issue. Nevertheless, its failure to consistently
enforce faithfulness to the input results in scores lower than those of our method.

K ADDITIONAL QUALITATIVE COMPARISON

Figs. 13, 14, 15, and 16 show additional qualitative comparison results. The common failure cases
observed in previous methods include (i) unintended foreground object motion, (ii) color shifts, (iii)
texture washout, and (iv) background motion inconsistency between rendered images and generated
frames. Trajectory Attention (Xiao et al., 2025) tends to exhibit (iii), whereas NVS-Solver (You
et al., 2025) and DiffusionAsShader (Gu et al., 2025) are likely to suffer from (iv). In addition,
(ii) is often prominent in NVS-Solver. Although Trajectory Crafter (YU et al., 2025) is less sus-
ceptible to these failure cases, (i) can still occasionally be observable, especially when the input
image contains animals. Our training-free method, which is designed to explicitly maintain faithful-
ness, effectively overcomes these issues and achieves competitive perceptual fidelity comparable to
Trajectory Crafter.
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Rendered w/o Prefill Result w/o Prefill Rendered w/ Prefill Result w/ Prefill

Figure 12: The benefit of applying the prefilling operation. Without it, the gray border is present in
the final result.

Table 10: Quantitative comparison by applying prefilling on different baselines with the DAVIS
dataset. (+) applies prefilling, whereas (-) doesn’t. KID’ indicates KID×103.

Input-Faithfulness Fidelity ↓ Camera Pose ↓ TSED ↑

Method PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE @.25 @.50

- Traj. Crafter 24.24 0.811 0.119 32.03 1.906 704.7 0.139 0.047 0.071 0.499 0.958
+ Traj. Crafter 24.34 0.812 0.117 31.75 1.914 706.7 0.144 0.048 0.075 0.498 0.957

- NVS-Solver 21.78 0.695 0.209 27.92 1.108 665.9 0.909 0.200 0.394 0.326 0.715
+ NVS-Solver 23.16 0.729 0.185 27.87 1.017 698.3 0.480 0.140 0.250 0.427 0.808

+ Ours 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964

L ADDITIONAL EXPERIMENTS WITH DYCHECK DATASET

Source RGB+D Warped Target

Figure 17: Visual comparison between the
warped source image and the ground-truth
target image (“apple” scene in DyCheck),
highlighting misalignment of object edges
and color shifts.

Our faithfulness evaluation is primarily performed
on the non-void (valid) regions of the rendering.
Specifically, we compute pixel-wise metrics be-
tween the generated images and the rendered images
only at pixels where the rendering is valid (i.e., non-
black). However, for the sake of comparison with
prior work, it will be desirable to evaluate the gen-
erated images against complete ground-truth images
over the entire image domain. This is feasible using
datasets with multiple time-synchronized cameras,
such as DyCheck (Gao et al., 2022). Nevertheless,
we argue that this evaluation protocol is inherently
flawed for two reasons:

1. Misalignment between ground-truth and ren-
dered images: Figure 17 compares the result of warping the source image to a target camera
view (using the source’s LiDAR depth) against the actual image captured by the target camera.
We observe significant spatial misalignment and appearance shifts. Since our task is to faithfully
complete the missing pixels in the warped image, even a perfectly inpainted image would not
strictly match the ground truth due to these geometric and photometric errors.

2. Entanglement of faithfulness and fidelity:
Evaluating the entire image without differentiat-
ing valid/invalid regions leads to the conflation of
two distinct objectives: the valid rendered region
should be preserved (faithfulness), while the in-
valid region should be filled with realistic, plau-
sible textures (fidelity). Furthermore, there are an
infinite number of valid ways to fill the invalid
regions. A perfectly realistic inpainting could be
penalized simply for deviating from the specific
ground-truth texture, which is unreasonable.

Despite these limitations, we conduct this evaluation to facilitate a fair comparison with existing
methods. We report the scores on the entire image using the DyCheck dataset. Following Trajec-
toryCrafter (YU et al., 2025), we use five scenes: ‘apple’, ‘block’, ‘teddy’, ‘paper-windmill’, and
‘spin’. We treat the first handheld camera as the source and the first fixed camera as the target.
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader

Figure 13: Additional qualitative comparison on DAVIS.
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader

Figure 14: Additional qualitative comparison on Tanks and Temples.
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader GT

Figure 15: Additional qualitative comparison on Mannequin Challenge.
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader GT

Figure 16: Additional qualitative comparison on DL3DV-Evaluation.
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Table 11: Quantitative evaluation on the ”full” image domain using the DyCheck iPhone dataset.
Gray rows denote training-based methods.

PSNR ↑ SSIM ↑ LPIPS ↓
Method Apple Block Paper Spin Teddy Mean Apple Block Paper Spin Teddy Mean Apple Block Paper Spin Teddy Mean

Traj. Attention 10.78 10.73 12.60 11.70 9.556 10.90 0.205 0.422 0.219 0.286 0.234 0.285 0.920 0.750 0.576 0.720 0.783 0.751
Traj. Crafter 11.96 14.76 16.83 15.16 13.49 14.42 0.234 0.522 0.382 0.334 0.372 0.382 0.820 0.473 0.396 0.499 0.595 0.547
NVS-Solver 11.10 13.54 14.56 13.00 12.02 12.82 0.197 0.476 0.267 0.237 0.301 0.310 0.838 0.481 0.390 0.556 0.620 0.571
Ours 12.25 14.10 16.79 14.90 13.46 14.23 0.240 0.524 0.375 0.321 0.365 0.377 0.833 0.500 0.390 0.499 0.616 0.561

Specifically, we sample every tenth frame for evaluation. For each source-target pair, we first apply
VGGT (Wang et al., 2025a) to obtain depth maps4 and camera parameters. During this process, the
images are center-cropped and resized to 518 × 518. Then, we construct a camera trajectory from
the source to the target pose using Spherical Linear Interpolation (SLERP) for rotation and Linear
Interpolation (LERP) for translation. Warped images are rendered along this trajectory, resized to
the model’s input resolution, and fed into the model to inpaint void regions. The outputs are then
resized back to 518 × 518. Finally, the last frame of the generated video is compared with the
ground-truth target image.

Table 11 presents the quantitative results. Despite the inherent limitations of this evaluation pro-
tocol, our method demonstrates performance highly competitive with the state-of-the-art training-
based method, TrajectoryCrafter. Considering our superior faithfulness demonstrated in the main
paper, this score gap here is primarily driven by the fidelity in void regions, where TrajectoryCrafter
benefits from its domain-specific training.

M COMPARISON WITH OTHER BASELINES

In the main paper, we prioritized comparisons with other methods that share the “render-and-inpaint”
paradigm and can be fairly evaluated under a unified depth estimation backbone. Here, we provide
additional comparisons with two relevant works: Invisible Stitch (Engstler et al., 2025) and Stable
Virtual Camera (SEVA) (Zhou et al., 2025). We excluded these methods from the main experimen-
tal results because their fundamental methodological differences hinder a strictly fair quantitative
comparison. We detail the specific reasons below, followed by the reference results.

Invisible Stitch. Although Invisible Stitch falls into the category of 3D-aware generation, several
factors make a direct comparison problematic:

• Iterative Error Accumulation: Unlike our video inpainting approach, Invisible Stitch
relies on a recursive loop of rendering, inpainting, and unprojecting on a per-frame basis.
This iterative nature is highly prone to error accumulation, in which minor artifacts in
early inpainted frames are permanently baked into the 3D representation, progressively
degrading the quality of subsequent frames.

• Heuristic Rendering and Optimization: The method’s performance heavily depends on
heuristic parameters for point cloud rendering (e.g., point size determination) and requires
complex hyperparameter tuning for keyframe selection for inpainting and 3DGS optimiza-
tion. These heuristics introduce ambiguity, complicating the establishment of a standard-
ized evaluation setting.

• Backbone Incompatibility: The original method relies on a specific fine-tuned ZoeDepth
(Bhat et al., 2023) model for depth inpainting. Substituting this with our standardized
backbone (Depth Anything V2) and using external depth inpainting models, e.g., Prior
Depth Anything (Wang et al., 2025b), creates a domain gap that inevitably penalizes its
performance, making it difficult to isolate the method’s true capability from the backbone’s
influence.

• Task Mismatch: Designed primarily for panoramic expansion, the method often strug-
gles with the large disocclusions and parallax effects typical in our forward-facing camera
motion benchmarks.

4We found that the depth maps from VGGT warp the source image to the target view more accurately than
the provided LiDAR depth.
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Table 12: Reference quantitative comparison with Invisible Stitch and Stable Virtual Camera on
Mannequin Challenge (Real Camera Motion). Note that Input-Faithfulness does not apply (N/A) to
Stable Virtual Camera, as it does not utilize rendered images as guidance.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’

Invisible Stitch 23.18 0.804 0.215 18.63 0.633 0.306 62.89 13.79

Stable Virtual Camera N/A N/A N/A 13.69 0.497 0.393 33.59 4.331

Ours 30.51 0.925 0.056 19.03 0.663 0.226 26.18 1.865

Rendered Ours GTInvisible Stitch SEVA

Fr
am

e 
0

Fr
am

e 
10

Fr
am

e 
20

Figure 18: Qualitative results of Invisible Stitch and Stable Virtual Camera (SEVA). Invisible Stitch
suffers from error propagation, while SEVA exhibits camera drift (see Minnie’s eyebrow position)
and structural degradation due to domain shift.

Stable Virtual Camera (SEVA). Comparison with SEVA is structurally challenging due to its
lack of explicit 3D guidance:

• Inapplicability of Input-Faithfulness: Since SEVA generates novel views without ex-
plicit 3D conditioning (i.e., it does not use rendered images as input), our primary metric,
Input-Faithfulness, which measures adherence to the geometric guidance, is structurally in-
applicable. While GT-Faithfulness could technically be computed, comparing a geometry-
free method against geometry-guided ones on this metric yields little meaningful insight,
especially since our method is designed to improve Input-Faithfulness.

• Scale Ambiguity and Drifting: In the single-image setting without explicit 3D priors,
SEVA suffers from severe scale ambiguity. We observed that the model frequently mis-
interprets the scene scale, resulting in excessive camera movement relative to the target
trajectory. To mitigate this, we followed the authors’ recommendation to manually rescale
the camera trajectory (e.g., by a factor of 0.1) during evaluation. This manual intervention
fundamentally makes a fair comparison difficult.

• Domain Gap: SEVA is trained primarily on static scenes. Consequently, it exhibits sig-
nificant performance degradation when applied to our datasets containing humans, such as
Mannequin Challenge, often failing to preserve the structure of foreground subjects.

Due to these limitations, the quantitative and qualitative results presented in this section should be
interpreted as reference values rather than a direct competitive benchmark.

For Invisible Stitch, we select every 5 frames as keyframes for RGBD inpainting, and skip the 3DGS
training part to avoid complications. Therefore, the evaluation is conducted only on these keyframes.
Since the frame interval changes, which can negatively affect camera pose and geometry scores, we
limit evaluation to per-frame faithfulness and frame-level fidelity for fairness. The RGBD inpainting
part consists of Stable Diffusion 2 (Blattmann et al., 2023) and Prior Depth Anything (Wang et al.,
2025b). For Stable Virtual Camera, we follow the original SEVA paper and test the camera scales
[0.1, 0.2, ..., 1.0], and report the result of scale 0.1 because it recorded the best scores.

As shown in Table 12 and Figure 18, Invisible Stitch struggles to generate spatiotemporally coher-
ent videos, as reflected in its poor fidelity scores. Conversely, SEVA’s low GT-Faithfulness scores
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highlight the difficulty of achieving precise camera motion control from a single image without ex-
plicit 3D guidance. These results underscore the critical role of explicit rendering guidance and
non-iterative generation for robust zero-shot novel view synthesis.

N WAN2.2 AS THE BASE VIDEO DIFFUSION MODEL

Our proposed homography deformation and SA-RePaint both manipulate latents directly with the
denoiser treated intact. Therefore, our method naturally extends to more recent DiT-based architec-
tures (Peebles & Xie, 2023). This section demonstrates the extensibility of our method by replacing
SVD with the latest Wan2.2-TI2V-5B model (Wan et al., 2025).

N.1 PRELIMINARIES OF FLOW MATCHING

Wan2.2 differs from SVD in that it is built on the flow matching framework: given a clean video
latent z0 and a continuous time t ∈ [0, 1], the forward noising process is defined by:

zt = (1− t)z0 + t ϵ, ϵ ∼ N (0, I) (42)

The model is tasked to predict the flow v := ϵ − x0 from the noisy input zt, timestep t, and con-

ditioning signals of the first frame and the text prompt describing the video. Let v
(t)
θ (zt) be the

predicted flow. During inference, we start from a pure Gaussian noise z1 ∼ N (0, I) and gradually
denoise it with the predefined timestep sequence 1 = tN > tN−1 > · · · > t1 > t0 = 0 following
the Euler update:

ẑ0|ti = zti − ti · v(ti)θ (zti) (43)

zti−1
= ẑ0|ti + ti−1 · v(ti)θ (zti) (44)

N.2 REFORMULATION OF SA-REPAINT FOR FLOW MATCHING

Due to the fundamental mathematical difference, we need a slight modification in our SA-RePaint
process. Let y be the latent tensor of rendered images, mvalid be the mask tensor representing the
valid region of y, and zt be the current noisy latent under generation. Recapitulating Section 3.2,
SA-RePaint consists of three steps:

(i) Noising Both y and ẑ0|t are noised to a certain level s ∈ [0, t] so that the resulting latents ys
and ẑs|t seamlessly blends. Based on Eq. 42,

ys : = (1− s)y + s ϵ, ϵ ∼ N (0, I) (45)

ẑs|t : =
(

1− s

t

)

ẑ0|t +
s

t
zt (46)

(ii) Merging This is a simple mask-based blending:

ẑmerged
s|t = mvalid ys + (1−mvalid) ẑs|t (47)

(iii) Renoising The merged latent ẑmerged
s|t is noised back to the level of timestep t. The actual

noise strength to add needs derivation specifically for the flow matching formulation:

Lemma 2. Let z0 be the clean latent tensor. Let s and t be real numbers with 0 < s < t. Under
the flow matching (Lipman et al., 2022) framework, the operation add noise(·, s → t) to add

an i.i.d. Gaussian noise on zs ∼ N
(
(1− s) z0, s

2I
)

to generate a new random variable zt ∼
N
(
(1− t) z0, t

2I
)

is given by

zt = add noise(zs, s→ t) :=
1− t

1− s
zs +

√

t2 − s2
(
1− t

1− s

)2

ϵ, ϵ ∼ N (0, I). (48)
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Proof. Since zt is an affine transformation of independent Gaussian variables zs and ϵ, it also follows
a Gaussian distribution. Therefore, the proof concludes by showing the mean and the variance of
the resulting Gaussian distribution. Let A := 1−t

1−s
. Then the means is:

E[zt] = E
[

Azs +
√

t2 − s2A2 ϵ
]

= AE[zs]+
√

t2 − s2A2 E[ϵ] = A (1−s)E[z0]+0 = (1−t)E[z0].

(49)
Noting that zs and ϵ are independent, the variance is:

Var[zt] = Var
[

Azs +
√

t2 − s2A2 ϵ
]

(50)

= A2 Var[zs] + (t2 − s2A2)Var[ϵ] (51)

= A2s2I + (t2 − s2A2)I = t2I. (52)

Therefore, we conclude that zt ∼ N ((1− t)z0, t
2I).

N.3 DEDUCE THE PER-PIXEL NOISE LEVEL

Similarly to Section 4.2.1, we aim to find appropriate 0 ≤ s ≤ t locally so that ys and ẑs|t blend
seamlessly along their borders. Let p be a pixel position where y is valid, and we temporarily focus
on the local window around p. We define the optimal s on this window as:

s∗ := argmin
0≤s≤t

∥Var[ẑs|t]−Var[ys]∥1. (53)

Because p is in the valid region of y, the ground-truth clean latent z0 should satisfy z0 = y within
this local window. Therefore, we can rewrite the above equation as:

s∗ := argmin
0≤s≤t

∥
∥Var[ẑs|t]−Var[zs]

∥
∥
1

(54)

where zs := (1− s) z0 + s ϵ.

Theorem 2. The optimal s∗ satisfying Eq. 54 is an element of the set:

s∗ ∈ {η+, η−, 0, t} , where η± := clip

(

−B ±
√

max(0, B2 −AC)

A
; 0, t

)

. (55)

Here, A, B, and C are given by the following:

A = Var[v
(t)
θ (zt)]−Var[z0]− 1 (56)

B = Cov[ẑ0|t, v
(t)
θ (zt)] + Var[z0] (57)

C = Var[ẑ0|t]−Var[z0] (58)

Proof. From the definition of zs and ẑs|t, we have

Var[zs] = Var [(1− s) z0 + s ϵ] (59)

= (1− s)2 Var[z0] + s2 (60)

Var[ẑs|t] = Var[(1− s/t) ẑ0|t + (s/t) zt] (61)

= Var
[

ẑ0|t + s v
(t)
θ (zt)

]

(62)

= Var
[
ẑ0|t
]
+ 2sCov

[

ẑ0|t, v
(t)
θ (zt)

]

+ s2 Var
[

v
(t)
θ (zt)

]

(63)

Therefore, the objective function is rewritten as ∥Var[ẑs|t]−Var[zs]∥1 = ∥As2+2Bs+C∥1, where

A = Var[v
(t)
θ (zt)]−Var[z0]− 1 (64)

B = Cov[ẑ0|t, v
(t)
θ (zt)] + Var[z0] (65)

C = Var[ẑ0|t]−Var[z0] (66)

The rest is the same as the proof of Theorem 1 except that the representations of coefficients A, B,
and C have changed. Therefore, we can directly refer to its solution with the coefficients replaced
by the above.
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N.4 IMPLEMENTATION DETAILS

We use WAN2.2-TI2V-5B as our base model due to its affordable inference cost. Since it is funda-
mentally different from Stable Video Diffusion in terms of theoretical framework, model architec-
ture, and inference capability, we have altered several implementation details as listed below:

• The input image size is 1280×704, and we generate 25 frames to match our SVD baseline.

• Wan2.2’s VAE compression rate is 4 × 16 × 16; except for the first frame’s independent
encoding, every 4-frame chunk is encoded into a single latent frame with 16× spatial size
reduction. We accordingly area-resize the rendering mask to this size. Although Wan2.2
VAE uses the previous chunk’s information to condition the current frame chunk’s encod-
ing, we found that our per-chunk independent resizing performs relatively well.

• We empirically found that WAN2.2’s intermediate outputs become sharp and clear much
faster than SVD. Therefore, we halt homography deformation at step 10 out of 50 total
denoising steps.

• The attention q/k tensors for Var[z0] estimation (Sec. 4.2.2) are extracted from the 15th
DiT self attention block.

• We remove attention key weighting (Sec. 4.2.3) because its inclusion leads to blurry in-
painting results. This does not undermine our variance transfer logic, since we can naturally
expect similar texture generation around the valid/invalid borders even without attention
key weighting.

• Also, we remove SEG (Hong, 2024) because its integration led to worse results.

• Similar to our SVD baseline, we apply free generation without any intervention after step
40 for smooth blending between valid and invalid (inpainted) regions.

N.5 EVALUATION

Tables 13, 14, 15, and 16 show drastic improvements from our SVD baseline. Especially pronounced
is the much higher and diverse inpainting fidelity without compromising the faithfulness to the
rendered areas, as evidenced by the competitive VBench scores against Trajectory Crafter. We can
see these superior traits also in Fig. 19.

However, we have identified several limitations of our current method when applied to Wan2.2:
(1) Dynamic Motion Prior: Although our method strictly enforces consistency with the rendered
images, the inpainted regions are completely up to the model’s prior. Since Wan2.2 tries to inject
dynamics in its generated videos, we sometimes observe unintended motion in the inpainted areas,
such as water splashes. (2) Drifting Synthesis: We observed cases where drifting synthesis oc-
curs even when homography deformation is applied. We hypothesize that this is due to Wan2.2’s
stronger generative capability, which can produce diverse scenes including mildly unrealistic video
effects, possibly making drifting synthesis a plausible output. Additionally, as Wan2.2 is a flow-
based model, the global structure of the video is determined in the earlier denoising stages than
diffusion-based counterparts, so iterative homography compensation may not fully take effect. (3)
Stripe Artifacts: In some cases, grid-pattern artifacts emerge in inpainted regions. We suspect this
may stem from the direct mask operation in the spatiotemporally compressed latents, but further
investigation is necessary.

Nevertheless, the above results demonstrate a significant potential for our method’s generalizability.
Note that we have slightly modified the Wan2.2 VAE encoder so that it doesn’t cache the previous
frame chunk’s data on the GPU for next-chunk conditioning. This change enables the entire model to
run within a 24 GB memory budget, achieving our end goal of faithfulness-first, low-cost, zero-shot
NVS for wider community accessibility.

N.6 ABLATION

To verify the effectiveness of our proposed homography deformation and SA-RePaint in this Wan2.2
setting, we conduct an ablation study similar to Sec. 5.4: we discard each module from our full
pipeline and observe the metric shifts. Table 17 shows similar numerical changes as in Table 3,
corroborating that our proposed modules are functioning as expected. More specifically, removing
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Table 13: Quantitative comparison on DAVIS (Scripted Camera Motion). Top: Comparison on
standard metrics. Bottom: VBench evaluation.

Method
Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

Traj. Crafter 24.24 0.811 0.119 32.03 1.906 704.7 0.139 0.047 0.071 0.499 0.958 0.032
Ours (SVD) 29.58 0.864 0.074 28.14 0.816 705.2 0.051 0.022 0.027 0.672 0.964 0.033
Ours (Wan2.2) 32.67 0.942 0.054 26.35 0.486 699.2 0.066 0.021 0.032 0.856 0.961 0.033

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Crafter 94.92 95.28 96.20 99.05 24.44 51.93 65.97
Ours (SVD) 95.33 94.92 96.03 99.05 24.07 52.35 65.39
Ours (Wan2.2) 95.25 95.69 96.06 99.14 24.20 52.70 65.65

Table 14: Quantitative comparison on Tanks and Temples (Scripted Camera Motion). Top: Com-
parison on standard metrics. Bottom: VBench evaluation.

Method
Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

Traj. Crafter 23.99 0.798 0.109 21.57 1.884 1146 0.126 0.050 0.077 0.446 0.971 0.027
Ours (SVD) 28.98 0.872 0.063 19.95 0.941 1025 0.058 0.022 0.029 0.641 0.967 0.027
Ours (Wan2.2) 31.54 0.937 0.046 18.52 0.626 1012 0.063 0.023 0.033 0.878 0.962 0.027

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Crafter 95.84 95.61 96.01 99.00 24.20 54.17 73.35
Ours (SVD) 96.05 95.06 95.90 99.04 23.74 54.87 73.33
Ours (Wan2.2) 95.92 95.90 95.89 99.11 23.87 55.74 74.19

Table 15: Quantitative comparison on Mannequin Challenge (Real Camera Motion). Top: Compar-
ison on standard metrics. Bottom: VBench evaluation.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE M3R↓

Traj. Crafter 24.48 0.855 0.119 18.96 0.662 0.243 30.16 4.302 221.4 0.196 0.552 0.092 0.044
Ours (SVD) 30.51 0.925 0.056 19.03 0.663 0.226 26.18 1.865 187.1 0.061 0.424 0.031 0.047
Ours (Wan2.2) 33.48 0.958 0.027 19.11 0.667 0.211 22.64 0.761 191.3 0.063 0.593 0.033 0.047

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Crafter 94.58 93.97 94.58 98.49 24.75 52.17 64.88
Ours (SVD) 94.43 93.31 94.07 98.36 24.17 53.60 67.48
Ours (Wan2.2) 94.72 93.93 94.05 98.24 24.61 54.30 68.19

Table 16: Quantitative comparison on DL3DV-Evaluation (Real Camera Motion). Top: Comparison
on standard metrics. Bottom: VBench evaluation.

Method
Input-Faithfulness GT-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE M3R↓

Traj. Crafter 21.05 0.732 0.209 18.46 0.627 0.296 23.17 7.467 188.6 0.593 0.990 0.287 0.071
Ours (SVD) 27.39 0.861 0.093 18.92 0.641 0.255 20.27 3.064 163.3 0.168 0.850 0.075 0.074
Ours (Wan2.2) 26.57 0.877 0.079 18.90 0.645 0.253 16.66 2.581 192.3 0.238 1.341 0.100 0.069

Method
Subject
Consis.↑

Background
Consis.↑

Temporal
Flicker↑

Motion
Smooth.↑

Overall
Consis.↑

Aesthetic
Quality↑

Imaging
Quality↑

Traj. Crafter 91.13 93.22 92.09 96.38 24.82 49.57 62.14
Ours (SVD) 90.64 93.01 91.61 95.96 24.28 50.01 65.83
Ours (Wan2.2) 91.60 93.90 92.56 96.16 24.84 51.15 67.31
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Rendered Trajectory Crafter Ours (SVD) Ours (Wan2.2)

Rendered Trajectory Crafter Ours (SVD) Ours (Wan2.2) GT

Figure 19: Qualitative comparison between Trajectory Crafter and ours (SVD-based and Wan2.2-
based). Each image is from DAVIS, Tanks and Temples, Mannequin Challenge, and DL3DV-
Evaluation.
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Table 17: Ablation study on DAVIS with the Wan2.2 backbone. SAR: SA-RePaint; KID’ denotes
KID×103, T.25 (T.50) represents TSED with a threshold of 0.25 (0.50), and M3R stands for MEt3R.

Input-Faithfulness Fidelity ↓ Camera Pose ↓ Geometry

Method PSNR↑ SSIM↑ LPIPS↓ FID KID’ FVD ATE RRE RTE T.25 ↑ T.50 ↑ M3R↓

w/o Homography 31.62 0.939 0.057 26.34 0.519 698.3 0.194 0.046 0.079 0.759 0.906 0.031
w/o SAR (Σ = 0) 33.01 0.943 0.054 27.32 0.710 704.6 0.098 0.026 0.038 0.865 0.967 0.032
All 32.67 0.942 0.054 26.35 0.486 699.2 0.066 0.021 0.032 0.856 0.961 0.033

Rendered   w/o SAR w/o SAR All
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Figure 20: Ablation of our components with Wan2.2 backbone. Removing each component results
in expected degradation (drifting synthesis, textureless generation) except for w/o SAR (Σ = ti+1,
original RePaint), which was unsuccessful in generation itself.

homography deformation leads to an obvious decline in camera pose accuracy, indicating more
severe drifting synthesis. Replacing SA-Repaint with Stable Diffusion-type RePaint (Σ = 0) results
in higher Input-Faithfulness at the expense of a notable fidelity drop, indicating that the inpainting
quality is compromised because of the unresolved texture gap (cf. Fig. 2) during RePaint. Lastly,
replacing it with the original RePaint (Σ = tt+1) shows different results: it completely fails in
inpainting (cf. Fig. 20). This may be attributable to the faster generation characteristics of flow
matching models as briefly mentioned in Section N.4, which can be at odds with strong renoising of
the original RePaint. Our SA-RePaint doesn’t suffer from this collapse while achieving much higher
texture fidelity than RePaint (Σ = 0).

O SA-REPAINT FOR GENERAL IMAGE DIFFUSION MODELS

Our proposed SA-RePaint is not constrained to the novel view synthesis task. To demonstrate the
same generality as the original RePaint, we apply it to a general image inpainting task with Stable
Diffusion 2 (SD2).

O.1 PRELIMINARY OF DDIM

Contrary to Stable Video Diffusion (SVD) built on the EDM framework (Karras et al., 2022), Stable
Diffusion 2 (SD2) inference works under the variance-preserving DDIM scheduling (Song et al.,
2020). Therefore, we first reformulate SA-RePaint under this setting. Let z0 be a clean latent tensor.
Both EDM and DDIM predefine a decreasing timestep sequence T = t0 > t1 > · · · > tN = 0
where N is the total number of denoise steps. However, DDIM (more precisely, its predecessor
DDPM (Ho et al., 2020)) is built on a discrete Markov chain formulation, so {ti}Ni=0 are all integers.
Instead, it introduces a real number sequence 0 < αt0 < αt1 < · · · < αtN = 1 such that the
forward noising process is defined as:

zti =
√
αtiz0 +

√

1− αtiϵ, ϵ ∼ N (0, I) (67)
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The model is trained to predict ϵ from the noisy latent zti conditioned on the timestep ti. Let’s call

the predicted noise ϵ
(ti)
θ (zti). Then, the backward denoise path is defined as follows:

ẑ0|ti =
zti −

√
1− αtiϵ

(ti)
θ (zti)√

αti

(68)

zti+1
=
√
αti+1

ẑ0|ti +
√
1− αti+1

ϵ
(ti)
θ (zti) (69)

where ẑ0|i is the one-step denoised result similar to what we defined in the SVD setting.

O.2 REFORMULATION OF SA-REPAINT FOR DDIM

We now focus on a particular denoising step, so we drop the subscript i. Let y be a latent tensor
of rendered images, and mvalid be the mask representing which part of y is valid. The core idea
is the same: we want to paste y onto the intermediate denoised result so that the pasting border is
unnoticeable. Therefore, we consider (i) noising both y and ẑ0|t to a certain middle noise level, (ii)
pasting them together, and (iii) further noising the merged result to the noise level at timestep t (c.f.
the table in Sec. 3.2 for comparison with SVD).

(i) Noising Based on Eq. 67 and Eq. 69, we define the noised y and ẑ0|t at timestep 0 < s ≤ t as
follows:

ys : =
√
αsy +

√
1− αsϵ, ϵ ∼ N (0, I) (70)

ẑs|t : =
√
αsẑ0|t +

√
1− αsϵ

(t)
θ (zt) (71)

Note that DDIM is based on discrete timesteps in its standard formulation, so we originally cannot
take the intermediate real-valued timestep s. However, the main obstacle to continuous-time exten-
sion lies in the backward path, because the model is only trained with the predefined timesteps. This
limitation does not apply to the forward process. The forward process is governed by {αt}t, which
is typically defined as a continuous function over the interval [0, T ]. Since our SA-RePaint method
exclusively utilizes this forward noising mechanism, we can naturally extend the formulation to
continuous time by evaluating the function α• at any real-valued s.

(ii) Merging This is the same as the case of EDM-based formulation:

ẑmerged

s|t = mvalid ys + (1−mvalid) ẑs|t (72)

(iii) Renoising The merged latent ẑmerged

s|t is further noised back to the noise level at timestep t.

This is achievable by substituting ẑmerged
s|t to zs in Lemma 3 (c.f. Lemma 1 for comparison):

Lemma 3. Let z0 be the clean latent tensor. Let s and t be real numbers with 0 < s < t. Under the
DDIM (Song et al., 2020) framework, the operation add noise(·, s→ t) to add an i.i.d. Gaussian
noise on zs ∼ N (

√
αsz0, (1−αs)I) to generate a new random variable zt ∼ N (

√
αtz0, (1−αt)I)

is given by

zt = add noise(zs, s→ t) :=

√
αt

αs

zs +

√

1− αt

αs

ϵ, ϵ ∼ N (0, I). (73)

Proof. Since zt is an affine transformation of independent Gaussian variables zs and ϵ, it also follows
a Gaussian distribution. We only need to determine its mean and variance. The mean is computed
as:

E[zt] = E

[√
αt

αs

zs +

√

1− αt

αs

ϵ

]

(74)

=

√
αt

αs

E[zs] +

√

1− αt

αs

E[ϵ] =

√
αt

αs

(
√
αsz0) + 0 =

√
αtz0. (75)
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Since zs and ϵ are independent, the variance is the sum of the variances:

Var[zt] = Var

[√
αt

αs

zs

]

+ Var

[√

1− αt

αs

ϵ

]

(76)

=
αt

αs

Var[zs] +

(

1− αt

αs

)

Var[ϵ] (77)

=
αt

αs

(1− αs)I +

(

1− αt

αs

)

I =

(
αt

αs

− αt + 1− αt

αs

)

I = (1− αt)I. (78)

Therefore, we have shown that zt ∼ N (
√
αtz0, (1− αt)I).

O.3 DEDUCE THE PER-PIXEL ALPHA MAP A

Our goal is seamless blending between ys and ẑs|t at a suitable timestep s. By the same reasoning
as in the main paper, we want to make αs dynamically adjustable and extend it to a spatial map A.

We again adopt local pixel variance as a quantitative measure to evaluate seamless blending. Let p
be a pixel location on which y is valid, and we temporarily focus on a local window around p. Then,
we define the optimal αs on this window as:

α∗
s := argmin

αt≤αs≤1

∥
∥Var[ẑs|t]−Var[ys]

∥
∥
1
. (79)

Because p is in the valid region of y, the ground-truth clean latent z0 should satisfy z0 = y within
this local window. Therefore, we can rewrite the above equation as:

α∗
s := argmin

αt≤αs≤1

∥
∥Var[ẑs|t]−Var[zs]

∥
∥
1

(80)

where zs :=
√
αsz0 +

√
1− αsϵ.

Theorem 3. The optimal α∗
s satisfying Eq. 80 is an element of the set: α∗ ∈ {x1, x2, x3, αt, 1},

where

x1,2 = clip

(

−(AC − 2B)±
√

max (0, (AC − 2B2)2 − C2(A2 + 4B2))

A2 + 4B2
;αt, 1

)

, (81)

x3 = clip

(
1

2
− sign(B) ·A

2
√
A2 + 4B2

;αt, 1

)

. (82)

Here, A, B, and C are given by the following:

A = Var[z0]−Var[ẑ0|t] + Var[ϵ
(t)
θ (zt)]− 1 (83)

B = Cov[ẑ0|t, ϵ
(t)
θ (zt)] (84)

C = 1−Var[ϵ
(t)
θ (zt)] (85)

Proof. Expanding the respective variance equation, we get

Var[zs] = αsVar[z0] + (1− αs) (86)

Var[ẑs|t] = αsVar[ẑ0|t] + (1− αs)Var[ϵ
(t)
θ (zt)] (87)

+ 2
√

αs(1− αs) Cov[ẑ0|t, ϵ
(t)
θ (zt)] (88)

Therefore,

∥
∥Var[ẑs|t]−Var[zs]

∥
∥
1
=
∥
∥
∥Aαs + C − 2B

√

αs(1− αs)
∥
∥
∥
1

(89)

A = Var[z0]−Var[ẑ0|t] + Var[ϵ
(t)
θ (zt)]− 1 (90)

B = Cov[ẑ0|t, ϵ
(t)
θ (zt)] (91)

C = 1−Var[ϵ
(t)
θ (zt)] (92)
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Here we define a functions L(x) =
(

Ax+ C − 2B
√

x(1− x)
)2

and seek for L(x)’s minimizer

in the range [αt, 1]. This solution is also a minimizer of Eq. 89. Since L′(x) = 0 if the minimizer
exists in (αt, 1),

L′(x) = 2
(

Ax+ C − 2B
√

x(1− x)
)

︸ ︷︷ ︸

=:f(x)

·
(

A− B(1− 2x)
√

x(1− x)

)

︸ ︷︷ ︸

=:g(x)

(93)

f(x) = 0 =⇒ x =
−(AC − 2B)±

√

(AC − 2B2)2 − C2(A2 + 4B2)

A2 + 4B2
, (94)

if

{
(AC − 2B2)2 − C2(A2 + 4B2) ≥ 0

sign(Ax+ C) = sign(B)
(95)

g(x) = 0 =⇒ x =
1

2
− sign(B) ·A

2
√
A2 + 4B2

(96)

Adding the possibility that we cannot find the minimizer in the open range (αt, 1), we ultimately
get the following solution candidates:

x1,2 = clip

(

−(AC − 2B)±
√

max (0, (AC − 2B2)2 − C2(A2 + 4B2))

A2 + 4B2
;αt, 1

)

(97)

x3 = clip

(
1

2
− sign(B) ·A

2
√
A2 + 4B2

;αt, 1

)

(98)

x4 = αt (99)

x5 = 1 (100)

We select the best x as the one that minimizes Eq. 89.

Note that there can be two solutions satisfying L(x1) = L(x2) = 0 at the same time. In this case,
we choose

α∗
s =
−(AC − 2B) + sign(AC − 2B) ·

√

max (0, (AC − 2B2)2 − C2(A2 + 4B2))

A2 + 4B2
(101)

as the final solution for numerical stability. Indeed, we can show similarly to the SVD case that
A = B = C = 0 under an ideal prediction, which means that the denominator is zero. Therefore,
the above solution is considered to be numerically more stable because the absolute value of the
numerator is smaller than the other.

We determine αs pixelwise, and finally get the 2D mapA. This is used in place of αs for the noising,
merging, and renoising process described in Sec. O.2.

O.4 IMPLEMENTATION DETAILS

We use the StableDiffusionImg2ImgPipeline implemented by diffusers library. The
total number of denoising steps is 50, where the actual denoising starts from the 18th step by noising
the input masked image latent. We introduce SA-RePaint after the 25th step; until then, we setA = 1
for stability.

As for the SA-RePaint specific operations, we again need access to Var[z0] for calculating the co-
efficient A. We approximate it by exploiting the qk-similarity. Contrary to the SVD case, we don’t
have access to the full image to draw the reference variance from. Therefore, we apply attention
masking to refer only to valid pixels. The variance amplifier λvar (c.f. Eq. 10) is set to be 0.5, which
resulted in better scores and qualitative results than λvar ≥ 1.

Lastly, we found that αs must be consistent across channels; otherwise, many high-frequency arti-
facts appeared in the final inpainted images. As a simple remedy, we average the alpha map A in a
channel dimension.
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Table 18: Quantitative results of SD2 inpainting with/without SA-RePaint.

Medium Thick

Method LPIPS ↓ FID ↓ CLIP-I ↑ DINO-S ↑ LPIPS ↓ FID ↓ CLIP-I ↑ DINO-S ↑

RePaint (αs = 1) 0.184 3.229 0.923 0.894 0.207 3.735 0.913 0.879
RePaint (αs = αti+1

) 0.178 2.819 0.929 0.890 0.198 3.143 0.922 0.877

SA-RePaint (λvar = 1) 0.178 2.741 0.928 0.887 0.197 2.929 0.923 0.873
SA-RePaint (λvar = 0.5) 0.175 2.752 0.930 0.891 0.194 2.967 0.924 0.878

Input RePaint SA-RePaint

Figure 21: Qualitative comparison between RePaint and SA-RePaint under the image inpainting
task with Stable Diffusion 2. Our proposed SA-RePaint maintains both the overall consistency and
textural fidelity, where the latter is further controllable by λvar.

O.5 EVALUATION

We follow the evaluation scheme of LaMa (Suvorov et al., 2022). We randomly sample 30,000
images with a cropped size of 512x512 from the Places365 dataset (Zhou et al., 2017) and define
two types of masks: medium and large. We utilize BLIP2 (Li et al., 2023) to generate a caption
for each image, which is then fed to SD2 during image inpainting as a text prompt. We report four
evaluation metrics: LPIPS, FID, CLIP Image Similarity (CLIP-I), and DINO Similarity (DINO-S).

From Table 18, we clearly observe the superiority of SA-RePaint over both conventional RePaint
implementations. Furthermore, the comparison between λvar = 1.0 and 0.5 reveals a trend: a higher
λvar yields better FID scores but at the cost of overall coherence (measured by LPIPS, CLIP-I,
DINO-S). This finding is consistent with the observation in Sec . J.2.

As shown in Fig. 21, conventional RePaint fails to maintain a proper balance between structural
consistency and textural fidelity. In contrast, our SA-RePaint achieves this balance automatically,
confirming that the SA-RePaint algorithm is general and applicable to a wide range of tasks where
RePaint can be employed.
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Table 19: Quantitative comparison on DAVIS video inputs. Top: Comparison on standard metrics.
Bottom: VBench evaluation. Gray rows are training-based methods.

Input-Faithfulness Fidelity ↓ Camera Pose (Median) ↓

Method PSNR↑ SSIM↑ LPIPS↓ FID KID ×103 FVD ATE RRE RTE

Trajectory Attention 15.48 0.510 0.452 41.76 4.789 733.5 0.468 0.675 0.204
Trajectory Crafter 22.08 0.743 0.182 35.90 4.532 428.2 0.324 0.517 0.151
Diffusion As Shader 13.84 0.417 0.486 37.64 2.756 599.5 0.941 0.573 0.582
NVS-Solver 19.42 0.618 0.280 27.62 1.281 419.6 1.058 0.475 0.454
Ours 27.51 0.830 0.106 29.38 1.455 380.5 0.377 0.574 0.149

Method
Subject

Consis. ↑
Background

Consis. ↑
Temporal
Flicker ↑

Motion
Smooth. ↑

Overall
Consis. ↑

Aesthetic
Quality ↑

Imaging
Quality ↑

Trajectory Attention 91.23 93.18 96.30 98.44 23.82 48.51 58.88
Trajectory Crafter 88.10 91.97 93.07 97.14 24.68 49.72 60.53
Diffusion As Shader 89.72 92.58 94.86 97.40 24.57 50.64 58.56
NVS-Solver 89.40 91.48 91.59 95.93 24.19 49.35 66.85
Ours 87.90 91.11 92.88 96.91 24.10 50.00 62.90

P EXPERIMENTS WITH VIDEO INPUTS

P.1 SETTINGS

Our pipeline readily extends to video inputs with one key modification: we use VideoDepthAnything
(Chen et al., 2025b) for depth estimation instead of DepthAnythingV2. This change prevents depth
oscillation and texture flickering in the rendered images. Since VideoDepthAnything produces a
different depth scale than DepthAnythingV2, which can result in exaggerated camera motion, we
empirically halve the magnitude of the camera motion for rendering. The rendering process is
similar to our single-image approach: each frame of the input video is independently unprojected
into a 3D point cloud based on its estimated depth. Each resulting point cloud is then rendered from
its corresponding target camera pose.

To evaluate camera pose accuracy, we employ ViPE (Huang et al., 2025) in place of GLOMAP. We
chose ViPE for its robustness in estimating camera poses in scenes with dynamic objects. Specif-
ically, we first temporally concatenate the reversed ground-truth video with the generated video.
Because the generated video shares the same first frame as the ground-truth video, this creates a
continuous camera path, allowing the concatenated video to be treated as a single sequential input.
We then feed this video into ViPE to extract camera parameters for all frames. From these parame-
ters, we calculate the relative camera pose between each pair of corresponding frames, one from the
ground-truth and one from the generated video. Finally, we compare this calculated relative pose
against the predefined camera motion used for generation.

Note that ViPE may fail to process videos if the scene is ambiguous for pose estimation (e.g., texture-
less or highly dynamic scenes). To mitigate the impact of such outliers, our evaluation metric is
calculated as follows. For each video clip, we first compute the mean of the framewise camera pose
errors. We then report the median of these per-video mean errors as our final score. The evaluation
was conducted on the DAVIS dataset, using the same scenes as in our single-image experiments.
We excluded the TSED metric from our evaluation, as it assumes a static scene and is therefore not
applicable in this dynamic context.

P.2 RESULTS

Figs. 22 and 23 provide a qualitative comparison between the different methods. Trajectory Atten-
tion (Xiao et al., 2025) and Diffusion As Shader (Gu et al., 2025) tend to fail in highly dynamic
scenes because the tracking point map they use as auxiliary input becomes uninformative in later
frames. Similar to the image-input case, NVS-Solver (You et al., 2025) struggles to align with the
rendered images. In contrast, our method, despite also being a zero-shot approach like NVS-Solver,
maintains significantly higher consistency with the rendered images. Furthermore, its fidelity is
comparable to that of Trajectory Crafter (YU et al., 2025).
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader

Figure 22: Qualitative comparison on DAVIS video inputs.
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Rendered Trajectory Attention Trajectory Crafter NVS-Solver OursDiffusion As Shader

Figure 23: Qualitative comparison on DAVIS video inputs.
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From Table 19, we see that our method achieves the best scores for the faithfulness metrics and the
second-lowest camera pose errors, while achieving high FID/KID scores. However, the VBench
scores in the table below are not as competitive. We attribute this to a specific failure mode of the
other methods, especially Trajectory Attention, Diffusion As Shader, and NVS-Solver. When they
fail to align with the rendered images, they tend to generate frames that are similar to the first frame.
This behavior produces near-static videos, which artificially inflate their inter-frame consistency
scores.

Q LIMITATIONS

By design, our method prioritizes strict faithfulness to the rendered geometry, which inherently lim-
its its ability to model view-dependent effects like dynamic shadows or reflections. While masking
such a region can offer a partial remedy, explicitly modeling these phenomena within a faithfulness-
centric framework remains an open research direction. Furthermore, our reliance on rendered con-
tent as a conditional signal presents a natural trade-off: larger camera motions reduce the available
guidance, potentially compromising geometric consistency. Addressing this challenge, perhaps by
integrating semantic priors for plausible extrapolation, constitutes a promising avenue for future
work.
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