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ABSTRACT

Wearable sensors enable health researchers to continuously collect data pertaining
to the physiological state of individuals in real-world settings. However, such
data can be subject to extensive missingness due to a complex combination of
factors. In this work, we study the problem of imputation of missing step count
data, one of the most ubiquitous forms of wearable sensor data. We construct
a novel and large scale data set consisting of a training set with over 3 million
hourly step count observations and a test set with over 2.5 million hourly step
count observations. We propose an autocorrelation-informed sparse self-attention
model for this task that captures the temporally multi-scale nature of step count
data. We assess the performance of the proposed model relative to baselines based
on different missing rates.

1 INTRODUCTION

Step count data collected by smart watches and activity trackers is one of the most ubiquitous forms
of wearable sensor data, which provides valuable information about physical activity patterns and
their relationship to other facets of health. However, wearable sensor data are subject to complex
missingness patterns that arise from a variety of causes including device non-wear, insecure device
attachment and devices running out of battery (Tackney et al., 2022; Lin et al., 2020).

These missingness issues can significantly hinder the utility of wearable sensor data. Indeed, miss-
ing step count data is a problem for traditional statistical analyses that aim to relate physical activity
levels to other health events and to the effect of interventions (Master et al., 2022; Hall et al., 2020).
It is also a problem when practitioners seek to use these data with missingness as input to com-
mon supervised, unsupervised and reinforcement learning-based models that require complete data
(Papathomas et al., 2021; Liao et al., 2020; Zhou et al., 2018).

In this paper, we consider the problem of imputing missing step count data at the hourly level. This
problem has a number of significant challenges due to the presence of high variability in patterns
of physical activity both through time for a single person and between different people. To make
progress on these challenges necessitates both carefully designed models and the availability of
large-scale step count datasets.

To address these requirements, we curate a training set consisting of hourly step count data from 100
individuals and a test set from 500 individuals, which results in over 5.5 million hourly step count
observations. Also, we introduce a novel sparse self-attention model which is specifically designed
to handle the quadratic complexity of the vanilla self-attention mechanism, capture the temporally
multi-scale information (e.g. daily, weekly, etc.) as well as combine a time encoding (hour of day,
day of week) with a temporally local activity pattern representation.
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We compare our proposed model to a broad set of prior models including the state-of-the-art ar-
chitecture on missing step data imputation in actigraphy data (Jang et al., 2020). The results show
that our model achieves statistically significant improvements in average predictive performance.
Finally, we report the model performance with respect to various missing data rates.

2 DATA SET DEVELOPMENT

Data Set Extraction Our data set is derived from the All of Us Fitbit data set1 (Mayo et al., 2023)
and contains hourly-level data of step count, heart rate and wearing time (i.e. total wear minutes).
Each hour aligns with each hour of the day (e.g. 9:00am to 10:00am) and is referred to as “hourly
block”. We define hourly blocks with zero minutes of wear time as missing, and hourly blocks with
at least one minute of wear time as observed.

Since imputation model training requires holding out observed data to use as prediction targets
thus increasing the amount of missing data seen by models during training, we form a training set
of 100 individuals with low to moderate levels of natural missing data (i.e. < 20%), including
over 3 million observed hourly blocks with an average time series length of over 50, 000 hours per
participant. Also, since most participants do not wear their devices between 11:00pm and 5:00am
and the observed step count data for those who do are almost always 0 (presumably due to sleep),
we focus on predicting step counts in the interval of 6:00am to 10:00pm.

To form a test set, we first exclude the training participants. Next, we select a total of 100 participants
for each of five missing data level bins [0%, 20%), [20%, 40%), [40%, 60%), [60%, 80%), and [80%,
100%). This yields a total of 500 test participants with a total of approximately 2.5 million observed
hourly blocks. We again assess missing data within the 6:00am to 10:00pm time frame.

Data Set Pre-Processing Once the data set is extracted, we apply several pre-processing steps. First,
to deal with partially observed hourly blocks (i.e. wear minutes is more than 0 and less than 60),
we use step rates as input features instead of step counts. The step rate of an hourly block is defined
as the observed step count divided by the observed wear minutes within that hourly block. When
making predictions for held-out observed hourly blocks, the model predicts step rates, but the loss
is computed between the observed step count and the predicted step count formed by combining the
predicted step rate with the observed wear minutes. Further, we normalize each participant’s step
rates and heart rates using personalized z-normalization (Ulyanov et al., 2016). Also, in order to
enable vectorized computations over time series with missing data, we use zeros as the placeholder
for missing data values and use an auxiliary response indicator time series to maintain information
about which blocks are missing and which are observed. For more details about data pre-processing,
please refer to Appendix A.

3 PROPOSED MODEL

Problem Definition We denote by D = {C(n)
l,t |n = 1, . . . , N, l = 1, . . . , L, t = 1, . . . , Tn} a

dataset of N participants, C(n) ∈ RL×Tn is a multivariant time series with L features and Tn hourly
blocks. When considering data from a single participant, we drop the (n) superscript for brevity.

For each hourly block t, we let Cs,t be the step count and Cw,t be the wear time, and define a
response indicator rt in Equation 1 to indicate if the data is observed (i.e. with at least one minute
of wear time). The problem is thus to impute Cs,t when rt = 0 from all the other observed data.

rt =

{
1 Cw,t > 0

0 otherwise
m(t, t′) =

{
1 t′ ∈ A(t) and rt′ = 1

0 otherwise
(1)

Sparse Self-Attention LetA(t) ⊆ T be a sub-set of all hourly blocks T = {1, . . . , T} from a given
participant that a query at time t is allowed to attend to, where a query represents a missing hourly
block we would like to make the prediction for. To construct a self-attention based model for our
long time series which have over 50, 000 hourly blocks on average, we require |A(t)| ≪ |T | for all

1https://www.researchallofus.org
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Figure 1: Left: Autocorrelation function (ACF) over all the participants of ∆t = 1, . . . , 504 hrs
(within three weeks). Blue line: median ACF. Red line: ∆t = 168 × N hrs (i.e. N weeks).
Right: Multi-timescale context window. The missing hourly block is at the center and indicated as
red. Numbers are day differences between each day and the center day (i.e. difference is 0) which
contains the target hourly block (red). Letters indicate days of the week. The center day is Monday
in this example.

t, where | · | is the size of a set. Additionally, we define a mask function m(t, t′) in Equation 1 that
indicates both whether time point t can attend to time point t′ and whether time point t′ is observed.

In order to construct the self-attention set A(t) which captures useful information to impute step
count at time t, we consult the hourly step count autocorrelation function of our data set, which is
presented in Figure 1 (Left). We can see that the autocorrelation is highest for the smallest time lags
indicating high correlation between nearby hourly blocks. We can also see strong correlations at
time lags of 24 hours (1 day) and 168 hours (1 week).

Based on these observations, we propose the multi-time scale context window shown in Figure 1
(Right) as our sparse self-attention set A(t). Letting d be the day number of the target hourly block
t, the context window includes data from day d to day d ± 7 as well as d ± 7k for k ∈ {2, 3, 4, 5}.
Given that time points t′ with hour of the day closer to the target hour t have higher correlations, we
limit the context window to include time points t′ with hours of the day close to that of t. Letting h
be the hour of the day for the target hourly block t, the context window includes hours h to h ± 4.
Of course, the center of the context window, which corresponds to the target hourly block t, is not
included in the sparse self-attention set.

Feature Representation Individual hourly blocks in our case are featurized by step count, step rate,
average heart rate, wear time minutes, hour of the day, and day of the week. However, the target
hourly block has unobserved step count, step rate and heart rate. A self-attention computation based
on comparing the observed features of the target hourly block to the corresponding features of blocks
in the self-attention set would thus be limited to expressing similarity based on hour of the day and
day of the week. To overcome this problem, we augment the representation of an hourly block’s step
rate data using a window of activity data from t−W to t+W , which allows for learning much richer
notions of similarity. We refer to this feature as the “local activity profile” representation (LAPR).

Proposed Model The proposed model is summarized in the equations below. st is the predicted
step rate at time t. att′ is the attention weight from hourly block t to hourly block t′. m(t, t′) is the
sparse attention mask function defined in Equation 1.

st =
∑
t′ ̸=t

att′vt′ att′ =
m(t, t′) exp(q⊤

t kt′ + θI(t,t′))∑
u̸=t m(t, u) exp(q⊤

t ku + θI(t,u))
(2)

The value vt′ , the query vector qt and the key vector kt′ are produced using distinct neural network-
based transformations of the input features for their respective time points. First, the LAPR is
processed through an encoder network Conv → LayerNorm→ ReLU → AveragePool, which
extracts more abstract features and prevents the overfitting problem by lowering the input dimension.
Then the output of the encoder is concatenated with other observed features from the time point.
Lastly, the whole feature set is projected through linear layers to produce the final vt′ , qt and kt′ .

A relative time encoding θI(t,t′) is employed to encode information based on time difference be-
tween the target hourly block t and another block t′, which provides similarity measures indepen-
dent of the input features. The function θI(t,t′) returns the value of the relative time encoding bias
parameter for time point t′ in the context window A(t) centered at time t. If t′ falls outside of the
context window, this function returns 0.
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Missing Rate
Method Category Method [0%, 20%) [20%, 40%) [40%, 60%) [60%, 80%) [80%, 100%) Overall

Zero Fill 474.03 ± 34.43 408.37 ± 28.70 384.86 ± 33.68 440.94 ± 43.45 422.73 ± 58.58 395.79 ± 18.08
Forward Fill 416.22 ± 32.09 373.31 ± 29.22 329.69 ± 30.76 381.71 ± 40.83 352.61 ± 47.99 351.87 ± 16.05
Backward Fill 411.61 ± 30.16 368.52 ± 28.74 324.53 ± 28.92 373.68 ± 39.72 343.54 ± 49.93 346.46 ± 15.98Basic Fill

Avg. F+B Fill 350.79 ± 26.43 316.96 ± 25.38 278.37 ± 25.75 321.10 ± 34.29 295.56 ± 41.23 306.80 ± 13.86

Participant 414.57 ± 32.10 375.79 ± 27.87 329.57 ± 27.44 385.16 ± 37.74 367.59 ± 54.93 356.03 ± 16.32
Day of Week 411.82 ± 31.97 373.30 ± 27.70 327.20 ± 27.36 380.14 ± 37.34 355.83 ± 51.14 351.70 ± 15.74
Hour of Day 373.93 ± 29.07 343.80 ± 25.07 303.03 ± 24.84 351.89 ± 32.28 311.45 ± 35.07 326.44 ± 12.88Micro Mean Fill

DW+HD 357.56 ± 27.79 330.69 ± 24.15 288.72 ± 23.93 325.40 ± 29.62 253.56 ± 30.15 304.08 ± 12.12

Participant 416.01 ± 32.22 378.09 ± 27.99 332.59 ± 27.72 389.68 ± 38.32 370.80 ± 53.86 358.64 ± 16.27
Day of Week 413.29 ± 32.10 375.67 ± 27.83 330.21 ± 27.64 384.73 ± 37.88 359.88 ± 50.41 354.50 ± 15.74
Hour of Day 375.40 ± 29.19 346.02 ± 25.17 305.75 ± 25.09 356.46 ± 32.80 317.22 ± 35.80 329.50 ± 13.04Mean Fill

DW+HD 359.07 ± 27.90 332.97 ± 24.26 291.78 ± 24.21 330.89 ± 29.97 262.46 ± 30.73 308.03 ± 12.21

Participant 369.17 ± 26.48 331.99 ± 23.03 299.41 ± 24.88 341.93 ± 32.48 323.09 ± 46.69 323.69 ± 14.12
Day of Week 366.66 ± 26.38 329.82 ± 22.84 297.14 ± 24.76 337.97 ± 32.19 314.87 ± 45.49 320.37 ± 13.92
Hour of Day 335.85 ± 24.41 307.19 ± 21.37 276.57 ± 22.96 316.67 ± 29.11 280.66 ± 32.40 300.62 ± 11.85Median Fill

DW+HD 322.03 ± 23.78 295.09 ± 20.67 262.29 ± 22.04 292.01 ± 26.82 230.54 ± 27.15 280.39 ± 11.18

Uniform 332.70 ± 25.34 306.68 ± 24.28 270.34 ± 23.74 321.63 ± 36.07 295.93 ± 40.81 305.46 ± 13.93
kNN Softmax 331.37 ± 25.08 305.90 ± 24.19 269.58 ± 23.65 315.26 ± 33.16 290.78 ± 37.53 302.58 ± 13.22

Model-based

Iterative Imputation (Azur et al., 2011) 313.23 ± 23.26 290.48 ± 21.32 260.61 ± 22.02 304.16 ± 28.86 289.20 ± 37.43 291.54 ± 12.29
CNN-DAE (Jang et al., 2020) 317.26 ± 23.42 287.35 ± 21.27 256.22 ± 22.38 299.14 ± 30.66 284.27 ± 40.75 288.85 ± 12.93
Regression Imputation (Little, 1992) 307.96 ± 22.88 284.06 ± 20.69 254.82 ± 21.69 296.01 ± 27.76 282.21 ± 36.75 285.01 ± 12.01
BRITS (Cao et al., 2018) 299.46 ± 21.59 275.58 ± 19.93 248.21 ± 21.40 289.82 ± 28.34 275.09 ± 36.46 277.63 ± 11.85
USGAN (Miao et al., 2021) 299.58 ± 21.58 275.58 ± 19.91 248.34 ± 21.43 289.68 ± 28.36 274.56 ± 36.36 277.55 ± 11.84
MRNN (Yoon et al., 2018) 295.30 ± 20.91 270.38 ± 19.66 243.96 ± 21.21 280.69 ± 27.25 263.42 ± 33.20 270.75 ± 11.27
Sparse Self-Attention (ours) 285.76 ± 20.41 262.96 ± 19.16 239.01 ± 20.58 270.32 ± 25.62 250.36 ± 30.12 261.68 ± 10.62

Table 1: Macro MAE ± 95% CI on completely held-out test participants. There are 100 randomly
sampled participants in each missing interval. The entire held-out test cohort contains 500 partici-
pants in total. Red: overall best performance with statistical significance. Blue: best performance
with statistical significance within each method category. Statistical significance level: p < 0.05.

Loss Function and Training We use mean absolute error (MAE) between true and predicted step
counts as the loss function during model training. We use a stochastic gradient descent-based train-
ing approach where each batch contains instances sampled from different participants. We compute
the MAE with equal weights on all samples in the batch. Additional hyper-parameter optimization
and training details can be found in in Appendix C.

4 EXPERIMENTS

Baselines We compare our proposed model to several commonly used strategies for imputing miss-
ing values in time series data, as well as to the state-of-the-art step count imputation method on the
actigraphy data proposed by Jang et al. (2020). We group methods into several categories as shown
in Table 1. Please refer to Appendix C for more details about baseline models.

Data Partitioning To set the hyper-parameters, we partition the training data described in Section
2 into training, validation and a in-domain test set with the ratio of 80%, 15% and 5%. Since our
prediction target (i.e. step counts) in our data are significantly skewed toward low step count values
(refer to Appendix E for the distribution), we apply a 10-fold stratified random sampling validation
approach with per-participant uniform density bins, so that on average the validation set and the
training set have the same overall and participant-level step count distribution. We emphasize that
in this work we focus on the fully held out test set described in Section 2 to provide results covering
multiple levels of missing data.

Model Evaluation Results are reported per missing data bin as well as on the overall test set. We
report Macro Mean Absolute Error (MAE) and its 95% confident interval. This is the mean over
participants in the test set of the mean absolute error per test participant (refer to Appendix D for
details). For models where hyper-parameters are selected using the 10 validation splits, we deter-
mine the optimal hyper-parameter values using the validation set and average the test predictions of
the 10 corresponding models to form a final test prediction.

5 RESULTS

Overall Imputation Results Table 1 shows the overall imputation results (last column) for each
method. Methods highlighted in blue have a statistically significantly lower error than other methods
in their group (p < 0.05). Methods highlighted in red have a statistically significantly lower error
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than other methods across all groups (p < 0.05). As we can see, our sparse self-attention model
achieves the best overall performance and does so with statistical significance relative to all other
methods considered.

Imputation Results by Missingness Rates The remaining columns in Table 1 show the imputation
results for each missingness rate interval. As we can see, our sparse self-attention model achieves the
best performance on all but the highest missing data rate bin. On participants with extremely high
missing rates (i.e. ≥ 80%), DW+HD Median Fill performs best and is better than our self-attention
model with statistical significance (p < 0.05). This is likely due to the fact that at over 80% missing
data, the context windows for the proposed model will contain relatively few observations. It may
be possible to further improve performance for high missing rate bins by using adaptive context
window sizes or by adaptively smoothing the model’s prediction towards that of simpler models as
the volume of observed data in the context window decreases.

6 CONCLUSIONS

In this work, we consider the problem of imputing missing step count data collected by wearable
devices. To enable this research, we curated a novel dataset consisting of 100 training participants
and 500 test participants with more than 5.5 million total hourly step count observations extracted
from the All of Us dataset. We proposed a customized model for this task based on a novel multi-
timescale sparse self attention structure to mitigate the quadratic complexity of the standard dense
self-attention mechanism. Our experiments show that the proposed model outperform all of the the
baseline approaches and prior state-of-the-art RNN-based models on the fully held-out test data.
This includes outperforming all baselines on nearly all missing data rate bins.
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A DATA CURATION AND PREPROCESSING PIPELINE

Figure 2 presents the data curation pipeline. Figure 3 presents the data preprocessing pipeline.

Figure 2: Flow chart for cohort curation
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Figure 3: Data preprocessing pipeline
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B COMPARISON BETWEEN CURATED COHORT AND ALL All of Us
PARTICIPANTS

To compare our curated training cohort with 100 participants and the entire All of Us Fitbit dataset
with 11,520 participants, we draw the histogram of (1) total number of hourly blocks, (2) total
number of valid hourly blocks (i.e. have at least one minute of wearing time), (3) missing rate
between 6:00am to 10:00pm in Figure 4, as well as (4) participant level average heart rates and
hourly block step rates, (5) hourly step rates for each hourly of the day and (6) missing rate of each
hour of the day from 0:00am to 11:00pm in Figure 5.

Figure 4: Blue: Statistics of the entire All of Us Fitbit dataset with 11,520 participants. Orange:
Statistics of our curated cohort with 100 participants. First column: Distribution of the total number
of hourly blocks from each participant. Second column: The total number of valid hourly blocks
(i.e. hourly blocks with non-zero wearing minutes) from each participant. Third column: Missing
rate (i.e. the number of invalid hourly blocks divided by the total number of hourly blocks), including
all hours of the day, not only from 6:00am to 22:00pm, of each participant.

Figure 5: Blue: Statistics of the entire All of Us Fitbit dataset with 11,520 participants. Orange:
Statistics of our curated cohort with 100 participants. First column: Distribution of average heart
rates over all the participants. Second column: Distribution of average hourly step rates over all
the participants. Third column: Distribution of hourly step rates of each hour of the day. Fourth
column: Missing rate of each hour of the day. The average heart rates and average step rates are
computed over all the hourly blocks with non-zero wearing minutes for each participant.
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C MODEL CONFIGURATIONS, HYPERPARAMETERS AND TRAINING
PROCEDURES

In this section, we introduce the details about all the models used in our experiments, including their
configurations, hyperparameters and training procedures.

C.1 MULTI-TIMESCALE SPARSE SELF-ATTENTION MODEL

For the context window, we set the number of hours on each side of the imputing hourly block as 4
and search for the number of weeks on each side within {1, 2, 3, 4, 5}. We found the best number of
weeks is 5, and beyond 5 the performance gain is neglected. Therefore, since the first week is always
full, the context window size in our case is kh = 2× 4 + 1 = 9 and kw = 2× (7 + 4) + 1 = 23.

Figure 6: Context window for the multi-timescale sparse self-attention model. In the experiment,
we set ∆h = 4 and ∆d = 7 + 4 = 11. Therefore, the context window size is kh × kw =
(2∆h+ 1)× (2∆w + 1) = 9× 23.

For local activity profile representations, we set its length as 2W + 1 = 2 × 72 + 1 = 145. We
fill missing values using the median step rate of day of the week and hour of the day (i.e. DW+HD
Median). To prevent data leakage, we set as missing all positions in local activity representations
that contain the ground-truth value of the center hourly block of the local context window, which
is we are imputing for. Also, the model contains three identical encoding modules: Conv →
LayerNorm→ ReLU → AveragePool, one for each of query, key and value. The configuration
of the Conv layer is: out channels=1, kernel size=49, stride=1, padding=24 and no bias. The kernel
size and stride of AveragePool is set as 7 and 6, respectively.

As for input features, we include one-hot vectors for day of the week and hour of the day indica-
tors in query, key, and value. Furthermore, we observe incorporating normalized step rates of the
corresponding hourly block into query and value, along with adding normalized heart rates to value,
can enhance the performance. The encoded local activity profile representation is concatenated with
other input features. We use three linear layers to map input features to q, k and v. We search for
dk within {4, 8, 16}.
During training, we use the Adam optimizer with batch size of 20,000 and search for learning rate
within {0.1, 0.01, 0.001}. The best learning rate is 0.01 and the number of training epochs is set
as 30. We conduct early stopping based on validation Micro MAE for each split. Also, average
validation Micro MAE over 10 splits is used to choose the best hyperparameters. We train the
model using two NVIDIA Tesla T4 GPUs with 32 CPUs and 208 RAM memory within All of Us
workspace. We implement the model using PyTorch 1.13.1.
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C.2 FILLING METHODS

All the filling methods impute missingness on the level of unnormalized step rates (i.e. before in-
stance z-normalization). Also, as mentioned in the loss function section, the predicted step rate will
go through a non-linearity to limit the upper and lower bound of step rates and will be converted
back to step counts using hourly wearing minutes to report the performance. All the filling methods
leverage personal statistics, which means all the statistics (e.g. mean and median) are computed
specifically from each participant, when filling missing values within that participant. When com-
puting the mean and median w.r.t each factor (e.g. day of the week), all the test hourly blocks are
removed to avoid the data leakage. For forward and backward based fillings, during testing, the
imputing test hourly block can be filled with the ground-truth value of the other test hourly block if
they are contiguous. More details of each filling method are as follows.

• Zero Fill: fill missing step rates as zeros. This means when a hourly block has zero wearing
minutes, we consider there is no physical activity.

• Micro Mean Fill: we define the micro mean step rate as the total number of step counts
divided by the total number of wearing minutes in all the hourly blocks regarding: each
participant, each day of the week, each hour of the day, or each combination of day of the
week and hour of the day (e.g. 8am on Mondays). The factors are shared with mean fill
and median fill methods. Also, since we only care about 6:00 to 22:00, all the statistics are
calculated using data within this period.

• Mean Fill: we compute the mean step rate by computing the uniform mean over all the
step rates from hourly blocks with non-zero wearing minutes.

• Median Fill: we compute the median step rate by calculating the median over all the step
rates from hourly blocks with non-zero wearing minutes.

• Forward and Backward Fill: different from above filling methods, all the data out of
6:00 to 22:00 are utilized when conducting forward and backward fillings. If there are
still missing steps after fillings (e.g. all the hourly blocks are missing before 10:00, then
after forward fill, they still remain missing), then they will be filled by the median step rate
computed from all the participant non-missing hourly blocks. When computing the average
of the forward and backward fill (Avg.F+B), if the results after either forward or backward
fill still have the missing step rates, we use the results from the other method to fill.

C.3 REGRESSION IMPUTATION

We use the linear regression model to impute missing step counts for this method. Input features of
the linear regression model for each missing hourly block consists of: (1) normalized step rates and
heart rate from all the hourly blocks in the context window, except for the center one, which is under
imputation, (2) one-hot vectors of day of the week and hour of the day from the currently imputing
center hourly block. We fill missing step rates and heart rates in the context window by zeros. The
linear regression model has the same context window size, training protocol and loss function as
the sparse self-attention model. We set the batch size as 50,000 and search for the learning rate
in {0.1, 0.01, 0.001, 0.0001} and use Adam optimizer to train the model for 20 epochs with the
learning rate of 0.001.

C.4 k-NEAREST NEIGHBORS (kNN) IMPUTATIONS

We search for nearest neighbors for each missing hourly block within all the non-missing hourly
data, including those outside 6:00 to 22:00, from the same participant data containing the missing
hourly block. The feature of hourly blocks is all the step rates within W hours on each side (same as
the local activity profile representation in the self-attention model), resulting in the total dimension
of 2W +1. Missing hourly blocks and the center hourly block within this 2W +1 window are filled
with the median step rate w.r.t the day of the week and hour of the day (DW+HD median).

Two k-NN variations are tested: (1) uniform averaging (kNN-Uniform) and (2) weighted averaging
(kNN-Softmax) based on RBF kernel and the square distance between the imputing hourly block
and its neighbors in the 2W + 1 feature space. Mathematically, let N denote the set of nearest
neighbors of the missing hourly block t′ where |N | = K. Let B(t′, t) : T × T → R≥0 be the
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function to return the square distance in the feature space between t′ and t, then two variations are
defined in the following equations:

st′ =
1

K

∑
t∈N

st, st′ =
∑
t∈N

exp(B(t′, t)/τ)∑
u∈N exp(B(t′, u)/τ)

st (3)

where st is the step rate at time t. Then we use the same procedure to convert it back to the step
count. In experiments, we set W = 72, which is the same as the local physical activity profile
representation dimension in the self attention model. We search for K in {1, 7, 14, 21, 28, 35}
for both variations and search for the RBF parameter τ in {0.1, 0.01, 0.001, 0.0001, 0.00001} for
kNN-Softmax.

C.5 MULTIPLE ITERATIVE IMPUTATION METHODS (ITERATIVE IMPUTATION)

We implement a similar idea as Multiple Imputation with Chained Equations (MICE) method, which
uses chained equations to impute every variable conditioned on the others for multiple iterations.
However, during the training phase, the algorithm performs a deterministic imputation for each
variable instead of probabilistic sampling.

When training the model, we create the same local context window as used in the self-attention
model. Each window is centered at each training instance and includes all the z-normalized step
rates within it, which serve as the input and output variables for chained equations. Additionally,
we incorporate one-hot vectors representing day of the week and hour of the day for the center
imputation instance as observed variables, which can only be conditioned on during training. Math-
ematically, we denote xi as the normalized step rate of some position i in the context window, and
let x−i be normalized step rates from all the other positions in the same context window. Also, θ
is the concatenation of two one-hot vectors for day of the week and hour of the day. Therefore, the
prediction for xi is defined as: x̂i = g(x−i, θ), i ∈ {1, . . . , I}, where I is the number of positions
in the context window and g is the linear regression in our case: gi(xi) = wix−i + bi, where θ is
ignored for simplicity.

To train our iterative imputation model, we set the initial normalized step rate value be-
longing to originally missing hourly blocks and test hourly blocks as zeros. We use
sklean.linear model.SGDRegressor with partial fit method to train each linear regression model in
the chained equation using mini-batch SGD with the batch size of 10,000 for 2 epochs. We initialize
the learning rate as 0.001 and use the invscaling scheduler implemented by sklean to conduct the
learning rate decay. The loss function is epsilon insensitive loss with ϵ = 0.01. The number of
imputation iterations is set as 2, so that before the second iteration, the missing values have already
been filled by the first iteration. Also, weight decay with the coefficient 0.0001 is leveraged to reg-
ularize each linear regression model. We specify the imputation order of context window positions
as alternating between the positions from the start and from the end, so that before filling the cen-
ter hourly block, missing values of all the other positions in the context window have already been
imputed. Figure 7 provides an example.

During inference, we perform multiple imputations for each position by sampling from a Gaus-
sian distribution. The mean for the distribution is derived from a trained linear regression, and the
variance is estimated from the average squared error between the predictions and the ground-truth
values. Also, the sampled step rate will go through the same non-linearity used in other methods to
limit its range within zero and 1.5 times maximum step rate from the same participant. In our exper-
iment, we configure the number of samples as 5, and the final prediction for each position is based
on the average of them. Algorithm 1 illustrates the inference procedure with multiple imputation.

Step-by-step explanation of Algorithm 1:

Line 0: before illustration, we need to reiterate: direct outputs from the model are z-normalized step
rates and we evaluate the model on step counts. In the following, SC means step counts, sr or SR
means unnormalized step rates, and x is normalized step rate.

Line 1: initialize a variable to record average step counts sampled by the algorithm for the center
position I in a context window from participant n.

12
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Figure 7: The order of prediction positions within the local context window using iterative imputa-
tions. The order is alternating between the start (i.e. upper left) and the end (i.e. lower right). The
direction from the start is from top to bottom from left to right, while the direction from the end is
from bottom to top, from right to left. The plot on the right gives an example. The number means
the order of computation and the same color means the same relative position from the start and
from the end.

Line 2 and 3: the outer for-loop is for sampling, the inner for-loop is to iterate every position in the
context window with the order in Figure 7. I is the last position, which is the center of the local
window.

Line 4: draw a sample for position i from Gaussian distribution with zero mean. The variance is
estimated by the mean square error between predicted values from the linear regression g and true z-
normalized step rate values at position i over the entire validation or test set. The variance is shared
across position i in local context windows from all the participants.

Line 5: use the linear regression and the sampled noise to get the normalized step rate at position
i in a context window from participant n. We limit the range of predicted unnormalized step rates
between zero and 1.5 fold maximum step rate in the training dataset of participant n. Here, we
convert this range into the normalized step rate level using personalized mean µ

(n)
SR and standard

deviation σ
(n)
SR derived from all the unnormalized step rates from participant n.

Line 7: after predicting the normalized step rate for poisition I , we convert it back to the unnormal-
ized step rate using the same personalized mean and standard deviation as above.

Line 8: Convert the normalized step rate into the step count within the same hourly block using
wearing minutes VM . Record this sampled step count in the current iteration for later averaging.

Algorithm 1: Inference with Multiple Imputations

1 SC
(n)
I ← 0 ;

2 for s← 1 to S do
3 for i← 1 to I do
4 ϵi,s ∼ N (0, σ2

i ) ; /* σ2
i ≈ 1

mi

∑Mi

m=1 ∥x̂i,m − xtrue
i,m ∥2 */

5 x̂
(n)
i,s ← P(wix

(n)
−i + bi + ϵi,s) ;

/* P(x(n)) = max(−µ
(n)
SR

σ
(n)
SR

,min(x,
1.5max sr(n),train−µ

(n)
SR

σ
(n)
SR

)) */

6 end
7 ŝr

(n)
I = x̂

(n)
I × σ

(n)
SR + µ

(n)
SR ;

8 SCI ← SCI +
1
S ŝrI × VMI

9 end

C.6 CONVOLUTIONAL DENOISE AUTOENCODER (CNN-DAE)

We use the symmetric encoder-decoder architecture to implement CNN-DAE. The encoder consists
of three 1D convolutional layers, each followed by BatchNorm and ReLU activation. Similarly, the
decoder includes three 1D transposed convolutional layers, with the first two layers being followed

13



Accepted as a Workshop Paper at TS4H@ICLR2024

by Batch Normalization and ReLU activation. The configurations of convolutional and transposed
convolutional layers are in Table 2.

Table 2: Configurations for Convolutional and Transpose Convolutional Layers in CNN-DAE

Layer Input Channels Output Channels Kernel Size Stride Padding

Conv1 2 4 31 2 11
Conv2 4 8 20 2 9
Conv3 8 16 10 2 4

TransConv1 16 8 10 2 4
TransConv2 8 4 20 2 9
TransConv3 4 2 31 2 11

For the input, we include both z-normalized step rates and heart rates within the same local context
window used in other model-based methods. To represent the data in a 1D format with two variables,
we flatten the context window column by column.

During training, we set as zeros all the hourly blocks belonging to (1) the center of each context
window (i.e. what we are actually imputing for) (2) the test set (3) positions which are originally
missing in the participant data. We calculate the MAE loss between reconstructed and ground-truth
z-normalized step rates of all the hourly blocks belonging to the training set in the context window.

Also, we consider the heart rate reconstruction as the auxiliary task and minimize the com-
bined reconstruction MAE loss on step rates and heart rates as total loss = MAE(step rates) +
λMAE(heart rates). We search for λ within {0.0, 0.5, 1.0}. However, since our final goal is to
reconstruct the step count of the center hourly block of each local context window, we compute the
MAE on step counts over all the center hourly blocks belonging to the validation set to select the
best hyperparameters and conduct the early stopping.

We use Adam optimizer and set the batch size as 50,000 to train the model of each split for 20
epochs. The learning rate is searched within {0.1, 0.01, 0.001}.

C.7 BRITS

We adhere to the settings outlined in the original paper, utilizing LSTM as the RNN architecture.
Input features are derived from hourly blocks within the same multi-timescale context window,
ensuring a fair comparison with other models. The context window is chronologically flattened,
enabling the RNN model to process information sequentially.

We impute both heart rates and step rates at each time step, utilizing the BRITS loss, which is a com-
bination of the reconstruction loss (i.e., MAE) and the consistency loss (i.e., ensuring forward and
backward LSTM predictions consistent at each step). Notably, our BRITS loss is at the normalized
step rate and normalized heart rate level.

Validation involves monitoring the Micro MAE, computed on the step count level across all the
validation hourly blocks. This choice is reflective of our ultimate task, which centers on imputing
step counts rather than step rates or normalized step rates. Early stopping is implemented, and the
best hyperparameters are selected based on the optimal validation loss.

Training the BRITS model spans 30 epochs with a batch size of 10,000 and a learning rate of 0.01.
The LSTM hidden state dimension is searched within {4, 8, 16, 32}.

C.8 MRNN

MRNN comprises an interpolation block and an imputation block. In the interpolation block, we
employ two bidirectional-GRU models to fill in missing values in step rates and heart rates. Given
that the interpolation block calculates missing values within each data stream, day of the week and
hour of the day one-hot vectors, which are always observed, are excluded from the model input.
In the imputation block, as MRNN handles missing values based on information across different
variables, we include day of the week and hour of the day features in the input features.
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During training, the visibility of train/valid and test sets, along with the context window, aligns with
that in the self-attention model. Like BRITS, the context window is flattened in chronological order
for RNN processing. To keep consistent with other models, we employ Mean Absolute Error (MAE)
instead of Mean Squared Error (MSE) for model training, different from the original paper.

We train MRNN for 40 epochs, utilizing a batch size of 20,000 and a learning rate of 0.01. The GRU
hidden state dimension is searched within {4, 8, 16, 32}.

C.9 USGAN

We employ the BRITS model as the generator and a bidirectional GRU model as the discriminator.
The generator configurations align with those outlined in Section C.7. As our data does not have
labels for each time series, we omit the classifier mentioned in the original paper. In contrast to
the original implementation, which updates the discriminator five times after each generator update,
we observe that updating the discriminator only once results in more stable training and improved
performance in our case.

We train the USGAN model for 30 epochs with a batch size of 10,000 and a learning rate of 0.01.
The RNN hidden state dimensions for both the generator and discriminator are explored within {4,
8, 16, 32, 64}. Additionally, we search for the weight of the discriminator loss during training,
which balances it and BRITS loss, within {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

C.10 COMPUTING INFRASTRUCTURE

We use Faiss-cpu 2 to search for k-nearest neighbors. Iterative imputation method is implemented
using scikit-learn v1.0.2. Regression Imputation, CNN-DAE, Self-Attention, BRITS, MRNN and
USGAN are implemented using PyTorch v1.13.1 and trained with NVIDIA Tesla T4 GPUs provided
in the All of Us workspace.

D FORMAL DEFINITIONS OF EVALUATION METRICS

Let mn ∈ M(n) indicates the index of a single hourly block to be imputed from participant n in
either train, valid or test set. Then, Micro and Macro MAE and RMSE are defined as below:

Micro MAE =
1∑

n

∑
mn

1

N∑
n=1

|M(n)|∑
mn=1

AEn,mn

Macro MAE =
1

N

N∑
n=1

1

|M(n)|

|M(n)|∑
mn=1

AEn,mn

Micro RMSE =

√√√√ 1∑
n

∑
mn

1

N∑
n=1

|M(n)|∑
mn=1

SEn,mn

Macro RMSE =
1

N

N∑
n=1

√√√√ 1

|M(n)|

|M(n)|∑
mn=1

SEn,mn

where N is the number of participants in the dataset and |M(n)| is the number of imputed hourly
blocks from participant n.

2https://github.com/facebookresearch/faiss
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E STEP COUNT DISTRIBUTION OF THE TRAINING DATA SET

Figure 8 shows the distribution of our imputation target variable (i.e. step count) between 6:00am to
10:00pm for the training cohort with 100 participants. It is clear that the distribution is significantly
skewed towards low step count values.

Figure 8: Histogram of observed hourly step counts between 6:00am and 10:00pm for the 100
training participants. Step count values are truncated at 3, 000 for a better illustration.
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