
Multi-granularity Temporal Question Answering over Knowledge Graphs

Ziyang Chen1, Jinzhi Liao2, Xiang Zhao1,∗

1 Laboratory for Big Data and Decision, National University of Defense Technology, China
2 National Defense University, China

{chenziyangnudt, liaojinzhi12, xiangzhao}@nudt.edu.cn

Abstract

Recently, question answering over temporal
knowledge graphs (i.e., TKGQA) has been in-
troduced and investigated, in quest of reasoning
about dynamic factual knowledge. To foster re-
search on TKGQA, a few datasets have been
curated (e.g., CRONQUESTIONS and Complex-
CRONQUESTIONS), and various models have
been proposed based on these datasets. Never-
theless, existing efforts overlook the fact that
real-life applications of TKGQA also tend to be
complex in temporal granularity, i.e., the ques-
tions may concern mixed temporal granularities
(e.g., both day and month). To overcome the
limitation, in this paper, we motivate the notion
of multi-granularity temporal question answer-
ing over knowledge graphs and present a large-
scale dataset for multi-granularity TKGQA,
namely MULTITQ. To the best of our knowl-
edge, MULTITQ is among the first of its
kind, and compared with existing datasets on
TKGQA, MULTITQ features at least two desir-
able aspects—ample relevant facts and multiple
temporal granularities. It is expected to better
reflect real-world challenges, and serve as a
test bed for TKGQA models. In addition, we
propose a competing baseline MultiQA over
MULTITQ, which is experimentally demon-
strated to be effective in dealing with TKGQA.
The data and code are released at https:
//github.com/czy1999/MultiTQ.

1 Introduction

In real-life applications factual knowledge is apt to
evolve over time (Nonaka et al., 2000; Roddick and
Spiliopoulou, 2002; Hoffart et al., 2011; Gottschalk
and Demidova, 2018); for instance, The host city of
the Winter Olympic Games in 2018 was South Ko-
rea, while in 2022 it was Beijing.In this connection,
there is a current trend to investigate knowledge
graphs (KGs) involving time, and these KGs are
coined as temporal knowledge graphs (TKGs). In a

∗Corresponding author.

Figure 1: Examples of temporal question answering.

TKG, fact triplets are equipped with temporal infor-
mation (e.g., timestamps), and a temporal fact can
be stated in the form like “(Beijing, held, Winter
Olympic Games, 2022)”.

To exploit the value of TKGs, recent research
effort has been devoted to process natural language
questions over TKG, i.e., question answering over
TKG (TKGQA in short) (Saxena et al., 2021).
Given a question and a background TKG, it re-
trieves from the TKG an answer to the question.
To foster research on TKGQA, several datasets
have been introduced, among which CRONQUES-
TIONS (Saxena et al., 2021) is by far the largest. We
explain the task with a sample question in CRON-
QUESTIONS.

Example 1 In the upper part of Figure 1, the agent
is supplied with the question “What award did
Carlo Taverna receive in 1863?” as well as a TKG.
By considering the semantic relevance of the facts,
the agent locates the candidate fact “(Carlo Tav-
erna, receive, Order of Saints Maurice and Lazarus,
1863)”, and hence, Order of Saints Maurice and
Lazarus is returned as the answer.

Specifically, CRONQUESTIONS comprises 410k
temporal questions, each of them has a temporal
constraint, e.g., “in 1863” in the example above.
Albeit large scale, the questions in CRONQUES-
TIONS tend to be “pseudo-temporal” (Chen et al.,
2022). By looking into the construction of CRON-

https://github.com/czy1999/MultiTQ
https://github.com/czy1999/MultiTQ


QUESTIONS, we find that most of the questions
are related to, respectively, only one fact, which
can be well located without enforcing the tempo-
ral constraint in the question; for example, Carlo
Taverna only received one award, which was Or-
der of Saints Maurice and Lazarus. In this case,
the temporal constraint does not further restrict
the candidate facts to answering the question, and
the question is essentially atemporal in the con-
text of the given KG. Moreover, in CRONQUES-
TIONS, questions and the TKG are designed to be
both described in the temporal granularity of year.
This simplification, however, is less practical, since
questions and knowledge in the real world are not
limited to the time frame of years. For instance,
as shown in the lower part of Figure 1, the agent
is likely to be given a question in the granularity
of month, which is common in the real world. In
short, these two important aspects are not well at-
tended by existing TKGQA datasets, which thus
may be insufficient in evaluating TKGQA models.

In this research, we are motivated to address
the shortcomings by presenting a new dataset for
TKGQA, namely MULTITQ. MULTITQ is a large-
scale dataset featuring ample relevant facts and mul-
tiple temporal granularities (comparison of statis-
tics in Table 1). To avoid the pseudo-temporal
issue, we intentionally generate temporal questions
that are relevant to more than one fact triplet, such
that the temporal constraint is always necessary
to correctly locate the answer. This characteris-
tic is of importance to evaluating TKGQA models,
since temporal reasoning is a unique challenge aris-
ing out of the task. Further, MULTITQ features
multiple temporal granularities, which is largely
overlooked by existing datasets. We resort to a
template-based question generation method, which
automatically constructs question templates (and
hence questions) of multiple temporal granulari-
ties. In this way, MULTITQ is expected to serve
as a test bed for evaluating TKGQA models, espe-
cially in reasoning with temporal constraints and
coordinating between temporal granularities. In
addition, to provide a competing baseline on MUL-
TITQ, we propose a transformer-based model for
multi-granularity TKGQA, namely MultiQA.

In summary, our contribution is three-fold:

• To the best of our knowledge, we are among
the first to elicit the notion and motivate the
challenges of multi-granularity TKGQA.

• We present a multi-granularity TKGQA

dataset MULTITQ. Besides multiple temporal
granularities, the dataset is also prominent in
its large scale with ample relevant facts regard-
ing each questions therein.

• We propose MultiQA, a strong baseline to
handle multi-granularity TKGQA, the perfor-
mance of which is demonstrated by compre-
hensive experiments on MULTITQ.

2 Related Work

2.1 Datasets for TKGQA

TEMPQUESTIONS (Jia et al., 2018a) is one of the
first publicly available TKGQA datasets consisting
of 1,271 questions. SYGMA (Neelam et al., 2021)
introduced a subset of TEMPQUESTIONS that can
be answered over Wikidata called TEMPQA-
WD. Previous collections on temporal questions
contain only about a thousand questions and are
not suitable for building neural models. TIME-
QUESTIONS (Jia et al., 2021) searches through
eight datasets of question answering over conven-
tional KGs for time-related questions and contains
16k questions. CRONQUESTIONS (Saxena et al.,
2021) is another TKGQA dataset that uses its KG
drawn from Wikidata, which comprises a total
of 410k questions. While it alleviates problem of
incomplete learning of large models due to small
amount of data, CRONQUESTIONS contains a large
number of pseudo-temporal questions (Chen et al.,
2022). This reduces the applicability of CRON-
QUESTIONS for evaluating the temporal reasoning
capability of TKGQA models.

Since these datasets focus on single-time granu-
larity, consistent with the KGs, they do not reflect
the real-world challenges of multi-granularity tem-
poral question answering. It motivates us to close
the gap by presenting a novel dataset for TKGQA.

2.2 TKGQA Models

There are two streams of approaches to tackle
TKGQA. The first decomposes the original ques-
tion into several non-temporal questions and time
constraints. Then models designed for question
answering over conventional KGs are applied to
answer these questions, and time constraints fi-
nally compare and select the most proper answer,
e.g., TEQUILA (Jia et al., 2018b). However, this
approach needs handcrafted decomposition rules
and cannot cope with complex questions (Jia et al.,
2021).



The methods in the second stream try to
acquire TKG embedding to calculate the se-
mantic similarities for the answer determination.
CronKGQA (Saxena et al., 2021) provides a learn-
able reasoning process for TKGQA, which does not
rely on handcrafted rules. Although CronKGQA
performs well in answering simple questions, it
fails to solve complex questions requiring inference
of certain time constraints. TempoQR (Mavroma-
tis et al., 2021) introduces time scope information
for each question and employs EaE method (Févry
et al., 2020) to enhance the semantic information
of the question representation.

However, limited by the single granularity of
available datasets, none of these methods have
considered the multi-granularity problem, making
them lacking in real-world applications. In this pa-
per, we address the challenges by proposing multi-
granularity temporal QA methods, MultiQA.

2.3 Analysis for Temporal Questions

It is noted that temporality also gains attention in
community question answering (CQA) and multi-
modal question answering (MQA).

Models (Duan et al., 2018; Wu et al., 2017;
Zhang et al., 2020) and datasets (Pal et al., 2012;
Figueroa, 2010; Figueroa et al., 2016, 2019) for
temporal community questions are emerging in re-
cent years. There are two viewpoints for temporal-
ity across CQA sites: 1) a measure of the usefulness
of the answers (Pal et al., 2012), and 2) the recur-
rent attention given to questions during different
time-frames (Figueroa et al., 2016). Based on these
two viewpoints, a new set of time-frame specific
categories are proposed (Figueroa et al., 2019).

In the field of multimodal question answering, a
series of temporal question answering datasets in-
tegrating audio and video have been proposed (Lei
et al., 2020; Fayek and Johnson, 2020; Jang et al.,
2017). Techniques such as spatio-temporal atten-
tion (Jang et al., 2017), motion-appearance mem-
ory (Gao et al., 2018), spatio-temporal grounded
audio-visual network (Li et al., 2022) and spatio-
temporal graph models (Cherian et al., 2022) have
been proposed and demonstrated their effectiveness
on different VideoQA and AudioQA datasets.

3 The MULTITQ Dataset

MULTITQ is a new complex temporal question
answering dataset with multi-granularity tempo-
ral information. Compared to existing datasets,

our dataset features in a few advantages, including
large scale, ample relations and multiple temporal
granularity, which hence better reflects real-world
scenarios, as shown in Table 1.

3.1 Analysis of KG

Most TKGQA datasets use Wikidata as the
KG. However, Wikidata suffers from relation-
sparsity problem. Specifically, for each entity in the
KG, the number of relation types involved is fairly
homogeneous. We define semantic complexity.

Definition 1 For a TKG K := (E ,R, T ,F),
where E ,R, T denote entities, relations, and times-
tamps respectively. KG semantic complexity SCK
is defined as the average of the number of relation
types involved in each entity:

SCK =
1

|E|
∑
ei∈E

N
rtype
ei , (1)

where N
rtype
ei is the number of relation types in-

volved in ei.

A larger SCK indicates a richer KG K in terms
of relation semantic information. For example,
CRONQUESTIONS uses a subset of Wikidata
as the KG, but the SC value of this KG is only
1.32, i.e., an average of 1.32 types of relation per
entity, which is more descriptive, with over 80%
of entities having only one relation type and 99%
of entities having no more than two relation types.
Thus, even though it contains a rich number of en-
tities and relations, the KG of CRONQUESTIONS

is fairly sparse at semantic level.
Unlike previous datasets, we take

ICEWS05-15 (García-Durán et al., 2018),
a subset from the Integrated Crisis Early Warning
System (ICEWS) database, as the KG for MUL-
TITQ. ICEWS captures and processes millions
of pieces of data from digital news media, social
media and other sources, with a wealth of dynamic
semantic information that provides an adequate
KG for temporal question answering. As shown
in Table 2, ICEWS05-15 is rich in semantic
information with SC value 7.05. The richness of
relation types makes it more in line with real-life
scenarios.

3.2 Question Construction

Following CRONQUESTIONS, we filter through
ICEWS05-15 to find 22 most frequent relations
to build templates and generate questions.



Dataset KG SC Value Multiple
Temporal

No Pseudo-
temporal

Multi-
Granularity #Questions

TEMPQUESTIONS FreeBase / % % % 1,271
TEMPQA-WD FreeBase,Wikidata / % % % 839

TIMEQUESTIONS WikiData / % % % 160k
CRONQUESTIONS WikiData 1.32 ! % % 410k

Complex-CRONQUESTIONS WikiData 1.32 ! ! % 45k
MULTITQ ICEWS 7.05 ! ! ! 500k

Table 1: Comparison of TKGQA datasets. SC value denotes semantic complexity of a KG.

Wikidata Subset ICEWS05-15
Entities 125,726 10,488
Relations 203 251
Timestamps 1,643 4,017
Fact triplets 328,635 479,329
SC value 1.32 7.05
Time Span 0 - 96201 2005 - 2015

Table 2: Statistics for various KGs.

Category Representative expanded templates
Equal Who visited to {tail} in {time}?
Before/After Before {tail2}, who visited {tail}?
First/Last Who first visited {tail}?
Equal Multi Who visited {tail} on the same year of {tail2}?
Before Last Who visited {tail} last before {tail2} did?
After First After {time}, Who visited {tail} first?

Table 3: Representative expanded templates for core
template ‘Who first visited {tail}’.

Firstly, 246 unique core templates are con-
structed by five experts in social computing based
on the 22 most frequently occurring relations. Tak-
ing the relation ‘make a visit’ as an example, hu-
man experts have constructed several core tem-
plates based on their expert knowledge, e.g., “Who
first visited {tail}”. Next, the core template will
be expanded by the question category (cf. Sec-
tion 3.2.2). Time constraints and multi-granularity
temporal information are added to the core tem-
plate, as shown in Table 3, enriching and diversify-
ing the semantics of templates. Finally, we ended
up with 7,334 templates. Each of these templates
has a corresponding procedure that could be exe-
cuted over the TKG to extract all possible answers
for that template. These templates were then filled
using entity aliases from ICEWS to generate 500k
unique question-answer pairs.

3.2.1 Multi-Granularity Temporal Questions
Time is naturally multi-granular, a property that
previous models have ignored. The motivation for
proposing Multi-Granularity Temporal Questions
is to drive the attention of temporal questions rea-

1This abnormality is brought by some science fiction-type
knowledge, and some erroneous time information.

Figure 2: Multi-granular time generation.

Train Dev Test

Single
Equal 135,890 18,983 17,311

Before/After 75,340 11,655 11,073
First/Last 72,252 11,097 10,480

Multiple
Equal Multi 16,893 3,213 3,207
After First 43,305 6,499 6,266
Before Last 43,107 6,532 6,247

Total 386,787 587,979 54,584

Table 4: Statistics of question categories in MULTITQ.

soning on multi-granular time.
ICEWS provides time information at a day gran-

ularity, which allows us to generate higher granular-
ity information, such as year and month granular-
ity. Questions in MULTITQ contain three temporal
granularities, i.e., day, month and year. In order
to generate multi-granular time information, we
have designed a time generation module that can
randomly generate different formats and types of
year-month-day granularity time expressions from
the daily granularity time according to syntactic cri-
teria, as shown in Figure 2, effectively increasing
the variety and complexity of the question texts.

3.2.2 Question Categorization

To make the problem more challenging, we propose
the concept of multiple temporal reasoning ques-
tions, where there are multiple temporal constraint
words in one question and the QA model needs
multiple complex reasoning to obtain final. We
categorize questions into “Single questions” and
“Multiple questions”. Please refer Table 5 for ex-
amples of these questions.



Single questions. These questions contain a sin-
gle temporal constraint, where the answer can be
either an entity or a time instance. For example, the
question “Who visited the United States in 2008?”
requires a single temporal constraint to answer the
question, namely Equal. In our dataset, single ques-
tions are further categorized into three types: Equal,
Before/After and First/Last.

Multiple questions. These questions contain
multiple temporal constraints to answer and can
be more varied. For example “Which country first
visited United States in 2015?” This requires rea-
soning over multiple temporal constraints, includ-
ing Equal and First. In our dataset, Multiple
questions are further categorized into three types:
Equal multi, Before last and After first.

3.2.3 Question Filtering and Splitting
We follow CRONQUESTIONS and ensure that there
is no entity overlap between train questions and
test questions. This policy ensures that models
are doing temporal reasoning rather than guessing
from entities seen during training. Specifically,
we split the ICEWS05-15 into train/dev/test folds
without entity overlap, and then perform question
generation protocol on each divided TKG.

Automatic question generation via templates
may lead to some questions with low quality, in-
cluding pseudo-temporal questions and nonsensi-
cal questions. To compensate for these shortcom-
ings, we follow Chen et al. (2022) and eliminate
all pseudo-temporal questions, making the dataset
more challenging. Furthermore, due to the factual
sparsity of the KG, automatic generation through
templates may result in questions such as "Who vis-
ited the United States in 2005?" where there may
be hundreds of answers. To avoid this, we elimi-
nate questions with more than 20 answers to ensure
that the questions in the dataset are of practical
importance.

Finally, we get train/dev/test folds with a ratio of
roughly 8:1:1, and 500k questions in total. Dataset
statistics are shown in Table 4. We believe that pro-
viding entity and time annotations directly would
significantly affect the performance of the model,
reducing reasoning on simple questions to a KG
query task. Therefore, we do not provide corre-
sponding entity and time annotations in our dataset.
Summarizing, each of our examples contains a nat-
ural language temporal question and a set of ‘gold’
answers (entity or time).

Property Sample Question
By question type

Equal Which country provided humanitarian
aid to Sudan in 2007?

Before/After Who commended the Military of Mali
before the Armed Rebel of Mali did?

First/Last When did the Militant of Taliban first
commend the Government of Pakistan?

Equal Multi In 2012, who last did Barack Obama
appeal for?

Before Last Who was threatened by Benjamin
Netanyahu last before Middle East?

After First Who first wanted to negotiate with Evo
Morales after the Citizen of Brazil did?

By time granularity

Year Who first made Abu Sayyaf suffer from
conventional military forces In 2015?

Month In Dec, 2008, who would wish to
negotiate with the Senate of Romania?

Day In Jul 21st, 2011, who criticized the
Media of Ecuador?

By answer type
Entity Which country visited Japan in 2013?

Time When did China express intent to meet
with the Government of Pakistan?

Table 5: Representative examples from MULTITQ.

Statistic Train Dev. Test
#tokens per question 13.50 11.28 11.41
#tokens per answer 2.15 2.02 1.96
#answers per question 1.88 2.36 2.43
#entities per question 1.61 1.65 1.64
#distinct words 14,714 5,712 5,843
#distinct timestamps 4,159 3,787 3,763

Table 6: Core statistics of each split in MULTITQ

3.3 Statistics of MULTITQ

We summarize the number of questions in MUL-
TITQ across different types in Table 4, and the core
statistics of each split in Table 6. In Table 5, we
present sample questions from MULTITQ as per
question type, time granularity and answer type.

Overall, the resulting MULTITQ dataset contains
500k questions from 22 relations (More statistic
are listed in Appendix A.3). In Figure 3, we show
how questions in our benchmark are distributed by
length (in words), and contrast this with CRON-
QUESTIONS and TEMPQUESTIONS. Questions in
our benchmark are between 4 and 35 words long,
and the average question length is 13.01 words.
The figure shows that a good proportion of ques-
tions in MULTITQ are relatively verbose, implying
increased parsing difficulty for QA systems.

4 The MultiQA Model

We overview the model architecture in Figure 4.



Figure 3: Length distribution of datasets.

4.1 Question Pre-processing

To obtain the entity and time information in the
question, we use named entity recognition (NER)
and time extraction tools to enable the model to
more accurately access the information in the KG
by aligning it with the entities and times in the KG
(See Appendix A.2).

We obtain the semantic information of ques-
tions by a pre-trained language model. Specifically,
the natural language form of the question qtext is
transformed into a semantic matrix QR by the pre-
trained RoBERTa (Liu et al., 2019).

QR = WR RoBERTa (qtext) , (2)

where QR = [qCLS,qR1 , ...,qRN
] is a D × L em-

bedding matrix. L is the number of tokens and D is
the dimensions of the TKG embeddings. WR is a
D ×Droberta projection matrix where Droberta is
the dimension of the RoBERTa embeddings. The
finial question representation q = qCLS.

4.2 Multi-Granularity Time Aggregation

As the facts provided by the KG are all at day
granularity, e.g., 2008-03-19, the TKG embedding
thus trained contains only semantic information at
day granularity (See Appendix A.1). However, the
question contains reasoning about year and month
granularity, and no semantic information can be
obtained directly from the pre-trained TKG em-
beddings. To solve this problem and obtain time
embeddings at a coarser granularity, we propose a
multi-granularity time aggregation module. Taking
the example of month granularity time aggregation,
we want to aggregate all related day information to
get that of month granularity in the question.

Specifically, For the month granularity time m
in the question, we first extract all contained day
timestamps d1, d2, ..., dN and their TKG embed-
dings td1 , td2 , ..., tdN , which are rich in temporal

information. N is the number of related days. To
obtain the time representation at month granularity,
we construct the temporal semantic matrix Td,

Td = [td1 , td2 , ..., tdN ], (3)

where Td ∈ RN×D is a matrix containing all day
embeddings for month m.

Time as an ordering sequence has an inherent
similarity to the positions of words in the text, so
we enrich its sequential property by employing
a sinusoidal position encoding method (Vaswani
et al., 2017; Jia et al., 2021). Here, the kth position
in Td will be encoded as:

PE(k, j) =

sin
(
k/10000

2i
D

)
, if j = 2i

cos
(
k/10000

2i
D

)
, if j = 2i+ 1

(4)

where j is the (even/odd) position in the D-
dimensional vector. Further, we get T′

d by adding
positional embedding to Td. Adding positional
embedding ensures sequential ordering among the
timestamps, which is vital for reasoning signals
like before and after in temporal questions.

Next, we propose an information fusion layer
to fuse the information into a single time represen-
tation tm. Following Févry et al. (2020), we use
an information fusion layer that consists of a ded-
icated learnable encoder Transformer(·) which
consists of 2 Transformer encoding layers (Vaswani
et al., 2017). This encoder allows the time tokens
to attend each other, which fuses all days’ embed-
dings into a single month embedding. The final
token embedding matrix Tm is calculated as

Tm = Transformer(T′
d), (5)

where Tm = [tCLS, tm1 , ..., tmN ], and the finial
question representation tm = tCLS.

Repeating the aggregation, we obtain a time rep-
resentation of year granularity ty. The final time
representation is tτ for the question at τ .

4.3 Answer Scoring Module
Finally, we get the scores of the candidate answers,
consisting of all entities and timestamps,

max (ϕ (es,Weq, eϵ, tτ ) ,

ϕ (eo,Weq, eϵ, tτ ))

+⃝ϕ (es,Wtq, eo, tτ ) .

(6)

where s, o and τ are the annotated subject, object
and timestamp, respectively. ϵ represents candidate
answers (all entities in the TKG). We and Wt are
D ×D learnable matrix specific for entity predic-
tions and time predictions respectively. ϕ denotes



Question: Which country visited China in in December 2015?
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Figure 4: Model architecture of MultiQA. The question text is parsed to obtain the corresponding entity and time.
TKG embedding is utilized to obtain the semantic information of KG, and the temporal semantic embeddings of
different granularities are obtained by the multi-granularity aggregation module. Finally, the candidate answers are
calculated by the scoring function.

the score function in TComplEx (Lacroix et al.,
2020). We treat the annotated subject and object
interchangeably, and max(·) function ensures that
we ignore the scores when s or o is a dummy entity.

During training, softmax is used to calculate
probabilities over this combined score vector, and
cross-entropy loss is employed.

5 Experiments

We experimentally evaluates MultiQA against five
baselines. In the interest of space, experiment set-
tings are in Appendix A.6.

5.1 Baseline Methods

• Pre-trained LMs: To evaluate BERT (Devlin
et al., 2019), DistillBERT (Sanh et al., 2019)
and ALBERT (Lan et al., 2020), we gener-
ate their LM-based question embedding and
concatenate it with the entity and time em-
beddings, followed by a learnable projection.
The resulted embedding is scored against all
entities and timestamps via dot-product.

• EmbedKGQA (Saxena et al., 2020) is de-
signed with static KGs. To deal with mul-
tiple temporal granularities, timestamps are
ignored during pre-training and random time
embeddings are used.

• CronKGQA (Saxena et al., 2021) is designed
for single temporal granularity. To deal with
multiple granularities, time embeddings at the

year/month granularity are drawn at random
from corresponding day embeddings.

5.2 Overall Results
Table 7 shows the results of our method compared
to other baselines on MULTITQ. First, by compar-
ing EmbedKGQA to pre-trained LMs (BERT, Dis-
tillBERT, ALBERT), we see that introducing KG
representations with score function significantly im-
proves the model’s reasoning ability, even without
providing any temporal information. We hypothe-
size that this is because KG embeddings specific to
the TKG helps the model to focus on those entities.

Since EmbedKGQA has non-temporal embed-
dings, its performance on questions where the
answer is a time is very low. By comparing
CronKGQA to EmbedKGQA, we see that intro-
ducing a pre-trained time representation it refers
significantly helps in answering temporal ques-
tions. In this case, the absolute improvement
for all questions is 7% and 15% at Hits@1 and
Hits@10, respectively. Further, we see the bene-
fit of multi-granular time aggregation to the ques-
tion, which effectively improves the inference on
multi-granularity temporal questions (cf. Sec-
tion 5.3). The absolute improvement of MultiQA
over CronKGQA is 1% at Hits@1.

With the results of the paired t-test, we find
that the MultiQA outperforms the best baseline
significantly in most tasks, which demonstrates
that multi-granular time aggregation is an effec-



Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type
Multiple Single Entity Time Multiple Single Entity Time

BERT 0.083 0.061 0.092 0.101 0.040 0.441 0.392 0.461 0.531 0.222
DistillBERT 0.083 0.074 0.087 0.102 0.037 0.482 0.426 0.505 0.591 0.216

ALBERT 0.108 0.086 0.116 0.139 0.032 0.484 0.415 0.512 0.589 0.228
EmbedKGQA 0.206 0.134 0.235 0.290 0.001 0.459 0.439 0.467 0.648 0.001
CronKGQA 0.279 0.134 0.337 0.328 0.156 0.608 0.453 0.671 0.696 0.392

MultiQA 0.293∗∗ 0.159∗∗ 0.347∗ 0.349∗∗ 0.157 0.635∗∗ 0.519∗∗ 0.682∗ 0.733∗∗ 0.396

Table 7: Overall results of baselines and our methods on the MULTITQ dataset. ∗(p ≤ 0.05) and ∗∗(p ≤ 0.005)
indicate paired t-test of MultiQA versus the best baseline.

Model Equal Before/After Equal Multi
Day Month Year Day Month Year Day Month Year

BERT 0.049 0.103 0.136 0.150 0.164 0.175 0.064 0.102 0.090
DistillBERT 0.041 0.087 0.113 0.160 0.150 0.186 0.096 0.127 0.089

ALBERT 0.069 0.082 0.132 0.221 0.277 0.308 0.103 0.144 0.144
EmbedKGQA 0.200 0.336 0.218 0.392 0.518 0.511 0.145 0.321 0.263
CronKGQA 0.425 0.389 0.331 0.375 0.474 0.450 0.295 0.333 0.251

MultiQA 0.445∗∗ 0.393∗ 0.350∗∗ 0.379 0.548∗∗ 0.525∗∗ 0.308∗ 0.321 0.283∗∗

Table 8: Experiment results of multi-granular time on Hits@1. ∗(p ≤ 0.05) and ∗∗(p ≤ 0.005) indicate paired t-test
of MultiQA versus the best baseline.

Figure 5: Model performance (Hits@1) against question
types for MultiQA and CronKGQA.

tive solution to improve the overall performance
of multi-granularity TKGQA. As shown in Fig-
ure 5, MultiQA achieves a better performance than
CronKGQA in most categories of questions.

5.3 Results on Multi-Granular Time

To verify the effectiveness of the model on multi-
granularity temporal reasoning, we experiment on
multi-granularity temporal questions.

First, by comparing CronKGQA to Embed-
KGQA, paradoxically, CronKGQA, while outper-
forming EmbedKGQA in overall results, is rather
less effective at multi-granularity temporal reason-
ing. We argue that CronKGQA’s introduction of
a single granularity time representation improves
inference at the corresponding time granularity, but

misleads inference at the other granularities, caus-
ing the results to fall instead on multi-granularity
TKGQA. This also highlights previous models’
lack of inference capability for multi-granularity
temporal question answering.

In addition, due to the multi-granularity aggre-
gation module, MultiQA improves significantly at
month and year granularity. Specifically, it out-
performs by 7% at month and year granularity on
before/after types, respectively. Similar pattern is
also observed on the other types.

5.4 Effect of Training Dataset Size

Figure 6: Model performance (Hits@1) against training
dataset size (percentage) for MultiQA.

Although the dataset is constructed from tem-
plates and is semantically narrowed, the large



dataset is still effective in improving model ef-
fectiveness. Figure 6 shows the effect of training
dataset size on model performance. As we can see,
for MultiQA, increasing the training dataset size
from 10% to 100% steadily increases its perfor-
mance for both single and Multiple reasoning type
questions. We hypothesize that this is because the
large number of entities and facts in the KG and the
large number of model trainable parameters. These
results affirm the hypothesis that having a large,
even if synthetic, the dataset is useful for training
temporal reasoning models (Saxena et al., 2021).

6 Conclusion and Limitation

In this paper, we introduce the concept of multi-
granularity temporal question answering and con-
struct a benchmark dataset MULTITQ, which fea-
tures ample relevant facts and multiple temporal
granularities. We also propose a multi-granularity
temporal question Answering model MultiQA,
serving as a strong baseline for follow-up research.

Limitation. The main drawback of our data cre-
ation protocol is that the question/answer pairs
were generated automatically, leading the question
distribution to be artificial from a semantic perspec-
tive. In addition, the KG adopted in the research
focuses on a single event domain, and extending
the dataset to multiple domains is planned as future
work.
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A Appendix

A.1 TKG Embeddings
A TKG K := (E ,R, T ,F) is a multi-relational di-
rected graph with time-stamped edges between enti-
ties. A fact in K can be formalized as (s, r, o, τ) ∈
F , where s, o ∈ E denote the subject and ob-
ject entities, r ∈ R denotes the relation between
them, and τ ∈ T is the timestamp associated with
that relation. TKG embedding methods learn a
K-dimensional vector eϵ,vr, tτ ∈ RK of each
ϵ ∈ E , r ∈ R and τ ∈ T in K, such that each
fact (s, r, o, τ) ∈ F has a higher score than the one
(s′, r′, o′, τ ′) /∈ F through a scoring function ϕ(·),
formally ϕ (es,vr, eo, tτ ) > ϕ (es′ ,vr′ , eo′ , tτ ′) .
TComplEx (Lacroix et al., 2020) is an extension
of ComplEx (Trouillon et al., 2016) considering
time information, which encodes each entity, rela-
tion and timestamp to complex vector. The score
function ϕ(·) of TComplEx is defined by

ϕ (es,vr, eo, tτ ) = Re (⟨es,vr ⊙ tτ , eo⟩) , (7)

where Re(·) denotes the real part, (·) is the complex
conjugate of the embedding vector and ⊙ is the
element-wise product.

We train TComplEx on ICEWS05-15 with the
TKG completion task. We learn the entity and
relation representations in the complex space Cd,
where d denotes the dimension of the complex vec-
tors.

A.2 Entity and Time Retrieval
Unlike previous QA datasets, our dataset does not
contain entities and time annotations, so the only
information the QA model can use is the text of
the questions and the corresponding KG informa-
tion. This is also in line with the TKGQA task in a
practical application scenario. Due to the lack of
entity linking tools for the ICEWS, we first used a
pre-trained generic NER tool (Schweter and Akbik,
2020) to extract the question text, filter out the en-
tity names in it, and then match it with the entities
in the KG through fuzzy matching to find the most
similar entity as the entity result for subsequent
inference.

Qentity = FuzzyMatch (Qner, E) , (8)



where Qner is the list of identified entities, and we
fuzzy match the identified entities with the entities
E in the KG by calculating the similarity,

Sim(e1, e2) = 2 · Me1e2

Le1 + Le2

, (9)

where Le is the text length of entity e, Me1e2 is the
the maximum length that can be matched between
e1 and e2. Entity with highest similarity in E will
be added to entity linking set Qentity.

As the expression of time is more fixed, we adopt
a rule-based method to extract time information
from the question text for subsequent reasoning.
Specifically, a series of regular expressions based
on common time formats have written to extract
the corresponding time information in the question.

A.3 More Statistics of MULTITQ
We summarize the statistics of different time gran-
ularities in Table 9 and distribution of relations in
Figure 7 in MULTITQ.

Time granularities
Day Month Year

Equal 77,738 55,221 39,225
Before/After 65,641 20,443 11,984
Equal Multi 2,364 7,971 12,978

Total 145,743 83,635 64,187

Table 9: Statistics for the various time granularities.

Figure 7: Relation distribution in MULTITQ.

A.4 Results on Single-Granularity Time
We conduct an additional experiment to analyze the
behavior of baseline models on single-time gran-
ularity datasets. We partition MULTITQ by time

granularity, ensuring that there is only single granu-
larity of time in each divided dataset (Day, Month,
and Year). At the setting of single-day, since the
temporal granularity of KG coincides with that of
the dataset, our model degenerates to CronKGQA.
From the experiment results at a single granular-
ity, even if the time granularity of the KG is kept
consistent with that of the questions, the existing
model still struggles to achieve excellent results as
that on previous datasets (e.g., CRONQUESTIONS),
mainly because our proposed dataset has more com-
plex question types and KG with higher semantic
complexity, which hence better reflects real-world
scenarios.

As observed in Table 10, we can see that the
introduction of time information on fine-grained
questions can significantly improve the perfor-
mance of the temporal QA system. Consistent
with the observations on the multi-granularity ex-
periments discussed in Section 5.3, MultiQA is
able to achieve substantially improved performance
at coarse-grained timescales thanks to the multi-
granularity time aggregation module. This further
validates the efficacy of this module.

Model Hits@1

Day

ALBERT 0.091
EmbedKGQA 0.186
CronKGQA 0.270
MultiQA /

Month

ALBERT 0.083
EmbedKGQA 0.269
CronKGQA 0.303
MultiQA 0.317

Year

ALBERT 0.117
EmbedKGQA 0.184
CronKGQA 0.254
MultiQA 0.266

Table 10: Experiment results of single-granularity time
on Hits@1.

A.5 Error Analysis
For error analysis, we randomly sample 100 error
instances from the test set and summarized the fol-
lowing three types of typical errors: (1) Retrieving
irrelevant entities , meaning the model obtained
wrong entities from the KG; Although our entity
linking model can achieve a high prediction accu-
racy, wrong entities still exist in some questions. (2)
Wrong reasoning at the semantic level, meaning the
model failed to obtain the entities related to the se-
mantics of the question. Limited by the representa-
tion of the question and the reasoning ability, even
when the time constraint is not taken into account,



there are still cases where the reasoning yields ir-
relevant entities or times. Such a phenomenon is
especially common in complex questions. (3) Lack-
ing the ability of reasoning about complex temporal
constraints, meaning the model design cannot sup-
port complex temporal constraints. The inference
ability of MultiQA comes from the complemen-
tary inference ability obtained in the pre-training
of TKG Embedding, which is limited to simple
temporal inference. This prevents our model from
achieving efficient reasoning about complex con-
straints such as First, before, etc.

This demonstrates more efforts are needed to
strengthen the model’s reasoning capability, espe-
cially in semantic reasoning and complex temporal
constraints reasoning. Also, using more advanced
NEL models would be an effective direction for
enhancement.

A.6 Reproducibility
In this section, we report more experimental details
to ensure the reproducibility of this paper.

The model is implemented with PyTorch (Paszke
et al., 2019). We use TComplEx (Lacroix et al.,
2020) as our TKG embeddings, and their dimen-
sions D = 512. We use BERT-base, Distill-
BERT-base and ALBERT-base in our implemen-
tation. Both LM’s parameters and the TKG em-
beddings are not updated during the training. We
set the number of transformer layers of the en-
coder Transformer(·) to l = 2 with 4 heads
per layer. The model’s parameters are updated
with Adam (Kingma and Ba, 2015) with a learn-
ing rate of 0.0002. All the experiments are con-
ducted on a server that has an Intel(R) Core(TM)
i9-10900K@3.70GHz CPU and a 24-GB Nvidia
RTX 3090 GPU. The operating system is Ubuntu
20.04. More details about the implementation, e.g.,
dependency libraries, can be found in the README
file of the software.

In addition, our model has about 195M parame-
ters. And the average training time is 2.5h.
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