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Abstract

As generative Al systems, including large language models (LLMs) and diffusion
models, advance rapidly, their growing adoption has led to new and complex
security risks often overlooked in traditional Al risk assessment frameworks. This
paper introduces a novel formal framework for categorizing and mitigating these
emergent security risks by integrating adaptive, real-time monitoring, and dynamic
risk mitigation strategies tailored to generative models’ unique vulnerabilities.
We identify previously under-explored risks, including latent space exploitation,
multi-modal cross-attack vectors, and feedback-loop-induced model degradation.
Our framework employs a layered approach, incorporating anomaly detection,
continuous red-teaming, and real-time adversarial simulation to mitigate these risks.
We focus on formal verification methods to ensure model robustness and scalability
in the face of evolving threats. Though theoretical, this work sets the stage for
future empirical validation by establishing a detailed methodology and metrics for
evaluating the performance of risk mitigation strategies in generative Al systems.
This framework addresses existing gaps in Al safety, offering a comprehensive
road map for future research and implementation.

1 Introduction

Generative Al models, including large language models (LLMs) and multimodal systems like
diffusion models, have dramatically transformed a variety of industries. These models enable
advanced capabilities in content creation, natural language understanding, and image generation, yet
their complex architectures present substantial and often unforeseen security vulnerabilities. The
rapid deployment of generative Al systems has far outpaced the development of comprehensive
security frameworks, leaving critical gaps in our ability to identify and mitigate risks. Traditional Al
safety approaches, while effective in identifying issues like adversarial attacks and data leakage, are
insufficient to manage the dynamic, emergent threats specific to generative Al

Current risk assessment models fall short in addressing the evolving nature of these systems, particu-
larly their susceptibility to latent space exploitation, adversarial prompt manipulation, and feedback-
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loop-induced degradation. Moreover, the integration of multimodal capabilities introduces novel
attack surfaces, allowing adversaries to exploit vulnerabilities across text, image, and video simultane-
ously. These emergent risks pose significant threats to both the functionality of generative Al systems
and the broader ecosystem in which they operate, particularly in fields like healthcare, finance, and
security. This paper seeks to address these gaps by proposing a formal framework for assessing and
mitigating emergent security risks in generative AI models. To guide the development and evaluation
of this framework, we pose the following research questions (RQs):

* RQ1: How can emergent security risks in generative Al models, such as latent space ex-
ploitation and multimodal cross-attack vectors, be systematically identified and categorized
across the model lifecycle?

* RQ2: What adaptive, real-time monitoring techniques can be integrated into generative
models to provide continuous risk assessment and dynamic mitigation in response to evolving
threats?

¢ RQ3: How can formal verification methods be utilized to ensure the robustness and scalabil-
ity of generative Al models against emergent threats while maintaining system efficiency?

This paper presents a layered risk identification approach that spans the entire lifecycle of generative
models, from data ingestion to model inference, incorporating continuous adversarial testing, anomaly
detection, and dynamic watermarking techniques. While this framework is theoretical, it offers a
robust foundation for future empirical validation and sets forth a roadmap for the development of
scalable, adaptive security measures in generative Al.

By addressing both the theoretical underpinnings and practical challenges of securing generative Al
models, this paper aims to fill critical gaps in Al safety research. Our framework not only enhances
existing methods but also introduces novel solutions designed to evolve alongside the generative
models they protect, ensuring their secure deployment in increasingly complex environments.

2 Literature Review

Security Risks in Generative AI Generative Al systems, such as large language models (LLMs)
and diffusion models, present unique security challenges due to their complex architectures and
emergent capabilities. Barrett et al. discuss the dual-use dilemma of generative Al, highlighting both
its capabilities and the security risks it poses. They synthesize findings from a workshop held at
Google, co-organized by Stanford University and the University of Wisconsin-Madison, emphasizing
the need for robust security measures [2]]. Similarly, Humphreys et al. examine the ethical obligations
companies have when implementing generative Al, focusing on the potential cyber security risks and
the moral responsibilities involved [8]. Feffer et al. explore the concept of red-teaming in generative
Al, analyzing its effectiveness and limitations in identifying and mitigating security risks [7].

Risk Assessment in AI Risk assessment is a critical component of Al governance. Novelli et al.
propose a methodology for assessing Al risk magnitudes, focusing on the construction of real-world
risk scenarios and applying a proportionality test to balance competing values [10]. Schmitz et
al. provide a systematic overview of risk aggregation schemes used in existing Al risk assessment
frameworks, focusing on how trade-offs among risk dimensions are incorporated [[13].

Risk Mitigation in AI  Effective risk mitigation strategies are essential for securing Al systems.
Kaminski describes the growing convergence around risk regulation in Al governance, offering an
analytic framework for understanding the use of risk regulation in Al governance [9]. Parimala
provides a comprehensive overview of recent advances in anomaly detection techniques, highlighting
the role of Al and machine learning in this field [[L1]].

AI Safety Al safety is a crucial aspect of Al development and deployment. Shah and Mishra
review the advancements in Al-driven occupational health and safety technologies, offering predictive
insights and risk mitigation strategies [[14]. Deepak discusses the global enthusiasm around Al safety,
highlighting the challenges and potential issues associated with current Al safety measures [3]].

Multi-Modal Evaluation in AI Multi-modal evaluation is essential for assessing the performance
of Al systems across different modalities. Chen et al. introduce a comprehensive benchmark for



evaluating large vision-language models in medical applications, addressing the limitations of current
benchmarks [3l].

Dynamic Watermarking in AI Dynamic watermarking is a promising technique for protecting
the integrity of Al-generated content. Zhong et al. present a comprehensive overview of deep
learning-based image watermarking techniques, focusing on robustness and adaptability [[16].

Real-Time Anomaly Detection in AI Real-time anomaly detection is critical for identifying and
mitigating security threats in Al systems. Dini and Saponara explore the design and assessment of
real-time anomaly detection techniques for automotive cybersecurity, leveraging neural networks and
fingerprinting techniques [6]].

While the existing body of work provides valuable insights into the security risks, risk assessment
methods, and mitigation strategies for Al systems, they fall short in addressing the dynamic and
evolving nature of generative Al models. Current methods often lack the ability to continuously adapt
to new, unforeseen vulnerabilities that arise post-deployment. Our proposed framework addresses
these gaps by integrating continuous risk monitoring, real-time adversarial simulations, and adaptive
mitigation techniques that evolve alongside the AI models. This dynamic approach ensures that
emergent threats are detected and mitigated in real-time, providing a more robust and scalable solution
compared to static, pre-deployment assessments.

3 Novel Security Risks in GenAl

3.1 Introduction of New Vulnerabilities:

While current research has identified some key vulnerabilities in generative Al (GenAl) systems, such
as hallucinations, data leakage, and adversarial prompt manipulation, emerging threats have not been
fully explored. In this section, we analyze a set of novel security risks, focusing on unsupervised
learning dynamics, self-improving models, latent space exploitation, and cross-modal attacks in
multimodal systems. These vulnerabilities represent critical areas for future research, particularly in
terms of adaptive, real-time risk monitoring.

3.2 Unsupervised Learning Vulnerabilities

Risk Overview: Generative Al models, particularly those trained on unsupervised or self-supervised
datasets, rely heavily on vast, uncurated data sources scraped from public repositories. Without the
explicit labeling present in supervised learning, these systems are prone to absorbing noisy, biased,
or harmful data. As models continue to evolve based on this data, they may reinforce incorrect
associations or harmful biases, often without detection. This risk is exacerbated when feedback loops
emerge between model outputs and training data.

Potential Impact:

* Bias Amplification: Generative models trained on unsupervised datasets may inadvertently
learn and perpetuate societal biases, including racial, gender, or cultural biases. The absence
of real-time oversight makes these biases ingrained, resulting in systemic output biases.

* Feedback Loops: When generative models interact with user-generated content on platforms
like social media, a feedback loop can develop. In this cycle, the biased or harmful outputs
generated by the model are reintroduced as new data, further reinforcing incorrect or
problematic patterns. Over time, this can degrade the model’s accuracy and increase its
vulnerability to adversarial manipulation.

Example Case: A GenAl model trained on uncurated social media data may generate biased outputs
when asked to summarize trending topics. If the model then scrapes its own generated content as part
of future training data, it perpetuates and amplifies the biases present in the original input [2| 4]]



3.3 Self-Improvement Risks

Risk Overview: One of the most exciting but risky developments in GenAl is the emergence of
self-improving models. These systems are designed to fine-tune themselves in real time based on
feedback from their interactions. While this self-adaptive capability offers efficiency gains, it also
introduces the risk of unchecked bias reinforcement and the propagation of security vulnerabilities.
Without human oversight, these models may learn from harmful inputs, deepening their vulnerabilities
over time.

Potential Impact:

* Bias Reinforcement: Self-improving models that adjust based on real-world data without
external oversight may unintentionally reinforce harmful biases. Over time, small vulnerabil-
ities could become more severe as the model’s weights and parameters shift to accommodate
flawed or adversarial inputs

» Exacerbating Security Issues: Without structured validation, self-improving models could
become increasingly susceptible to adversarial prompts. Malicious users might feed the
model adversarial or biased inputs, which the model could learn from, thereby worsening its
vulnerabilities in subsequent interactions.

Example Case: A self-improving chatbot that interacts with malicious users may start learning from
harmful, biased, or adversarial inputs, causing it to produce increasingly flawed or harmful outputs.
As the chatbot fine-tunes itself based on these interactions, it becomes more vulnerable to adversarial
attacks, with its security issues compounding over time [4}, [15]].

3.4 Hidden Information Leakage: Latent Space Vulnerabilities

Risk Overview: One of the less-discussed but critical risks in generative models is latent space
exploitation. The latent space represents the internal high-dimensional feature representations learned
by the model. While latent spaces are crucial for model functionality, they can inadvertently retain
sensitive patterns from the training data. Attackers with knowledge of the model’s architecture can
exploit these latent spaces to extract sensitive information, leading to significant privacy concerns in
sectors like healthcare and finance.

Potential Impact:

* Latent Space Exploitation: Attackers with sophisticated knowledge of a model’s archi-
tecture could manipulate inputs to probe the latent space and retrieve sensitive information
embedded in these internal representations. For example, in healthcare models, the latent
space might reveal sensitive patient data even when the output is anonymized.

* Inferred Privacy Leaks: Through adversarial probing, an attacker could generate out-
puts that reveal latent correlations, potentially identifying individuals from supposedly
anonymized data or uncovering proprietary business strategies from models trained on
confidential data.

Example Case: In financial systems, attackers could probe the latent space of a generative model
used for stock prediction to uncover sensitive market trends or proprietary investment strategies,
leading to significant financial or privacy breaches [2, 4]]

3.5 Simultaneous Multimodal Exploitation

Risk Overview: Multimodal generative models that process and generate text, images, audio, and
video simultaneously present new attack surfaces. These models integrate multiple types of data,
making them vulnerable to cross-modal exploits. An attack targeting one modality (e.g., text) could
expose weaknesses in another modality (e.g., images or videos), enabling adversaries to exploit the
model across different dimensions simultaneously.

Potential Impact:



* Cross-Modal Consistency Exploits: Attackers can inject adversarial inputs into one
modality (e.g., an image) that lead to harmful outputs in another modality (e.g., misleading
or biased text). For instance, an adversarial image might be paired with a deceptive or biased
textual description, which reinforces false or harmful narratives.

* Coordinated Multimodal Attacks: Attackers could simultaneously manipulate multiple
modalities to generate realistic yet harmful content, such as deepfakes. This is particu-
larly concerning in scenarios like news generation or multimedia content creation, where
both visual and audio elements can be manipulated to spread misinformation or discredit
individuals.

Example Case: In a news generation scenario, an adversary could generate fake articles supported by
Al-generated deepfake images or videos. These multimodal attacks make it more challenging for users
to distinguish between legitimate and fake content, amplifying the potential for misinformation [2} 4}
15].

4 Parameters for Risk Categorization

Based on the insights from NIST’s Risk Management Framework (RMF) and the ISO 27001 cyberse-
curity standards [[12} [1]], we can classify risks using the following parameters

Potential Impact

* Low: Minimal consequences if exploited, affecting a limited number of users or non-critical
processes. For instance, generating biased but non-malicious text in an isolated scenario.

* Medium: Significant impact on some operations or users, such as privacy breaches affecting
identifiable groups.

» High: Severe consequences, such as critical system failures or widespread misinformation,
impacting infrastructure, security, or public trust.

Exploitability

» Low: Requires a sophisticated attack vector or rare conditions, making exploitation unlikely.

* Medium: Moderate effort or specific conditions required for an exploit, such as known
vulnerabilities in handling adversarial inputs

» High: Easily exploitable due to well-known vulnerabilities or lack of adequate safeguards,
such as unsupervised learning models prone to bias without regular updates.

Scope of Effect

* Low: Localized effects with minimal spread, possibly confined to a single user or output.
* Medium: Broader reach, affecting multiple systems, users, or outputs.

» High: Extensive impact, potentially leading to cascading failures across multiple systems,
modalities, or platforms.

By combining these parameters, we can systematically assess the severity of each security risk in
generative Al models. Refer to the Appendix for a table to categorize the key risks outlined in Section
3 of the paper.

5 Novel Risk Mitigation Strategies

We propose a series of novel risk mitigation strategies for generative Al models, focusing on adaptive
mechanisms that evolve in response to new attack patterns. These strategies include real-time filtering,
dynamic watermarking, multi-layered mitigation, and human-AlI collaboration.

Contextual Real-Time Filtering We introduce a real-time filtering system that evolves based on
new attack patterns. For example, a filtering mechanism could detect and block problematic prompts
(e.g., adversarial input) before they are processed, learning from each failed attack.



Dynamic Watermarking We propose the development of a self-evolving watermarking system,
where watermark techniques adapt as adversaries develop new removal methods. The watermarking
algorithm can evolve based on detection failures [2].

Multi-Layered Mitigation We propose a multi-tier system for mitigating risks at various stages of
the model lifecycle:

* Tier 1: Pre-deployment filtering, applied during model training to ensure that adversarial
inputs are detected and mitigated before deployment.

* Tier 2: Inference-time defense, focusing on real-time output filtering to detect and block
potentially harmful outputs.

* Tier 3: Post-inference validation, where high-risk interactions are validated after generation
to reduce false positives and mitigate any remaining risks.

Human-AI Collaboration In decision-critical environments, we suggest mechanisms for human
oversight. Feedback loops can be incorporated where human analysts intervene when GenAl outputs
are flagged as potentially harmful. This collaboration between human oversight and Al-driven analysis
will ensure that higher-risk outputs receive necessary validation and correction when required.

Refer to Appendix Figure 1 for a visualization of the Working Structure of the Formal Framework for
Risk Assessment in Generative Al

6 Formal Framework for Risk Assessment

In this section, we present a comprehensive formal framework for systematically assessing and
mitigating security risks in generative Al models. This framework leverages formal verification,
continuous monitoring, and adaptive risk mitigation to address both known and emergent threats. By
adopting a layered approach, we ensure that risks are identified and mitigated at critical stages of the
GenAl lifecycle, from data ingestion to model inference.

6.1 Theoretical Grounding

The framework is grounded in formal verification methods, which have been widely used in software
engineering and Al safety to mathematically guarantee that a system behaves according to its
specifications [12} [1]]. Formal verification is particularly suitable for assessing generative Al models
because of their complexity and the emergent behaviors they exhibit. These methods allow us to
model expected behavior and prove that deviations—such as biases, adversarial attacks, or data
leakage—will be detected and mitigated before deployment.

6.2 Risk Identification Layers

Our framework operates through a layered approach, designed to identify and mitigate risks at three
key stages of the generative Al lifecycle: the data layer, model training layer, and model inference
layer. Each stage involves distinct methodologies for risk identification, leveraging formal verification,
adversarial testing, and real-time anomaly detection.

6.2.1 Data Layer

At the data layer, risks primarily involve biases, noisy data, and privacy violations that could influence
model behavior later in the lifecycle. This layer applies formal verification techniques to ensure that
the data used for training is both consistent and free from harmful biases or inaccuracies.

Formal Verification Algorithm: We deploy a bias filtering algorithm that uses mathematical models
to verify that the training data does not reinforce societal biases, such as gender or racial biases. This
approach detects anomalies within the dataset, ensuring that harmful patterns are flagged before they
can affect model outputs. This algorithm functions by analyzing patterns in the data that deviate from
established baselines of fairness and accuracy [1]].

Dynamic Data Monitoring: In addition to formal verification, continuous monitoring is deployed
to detect new patterns of bias that may emerge in real time. A real-time anomaly detection system



monitors the data for unexpected shifts in distribution or content. If a bias or noisy data is detected,
the data can be flagged, and the model training process is halted for further review.

6.2.2 Model Training Layer

During model training, adversarial manipulation becomes a significant threat, where attackers may
attempt to perturb the training data to manipulate the model’s learning. Our framework integrates
automated adversarial testing directly into the training process, enabling the system to continuously
probe for weaknesses before the model is deployed.

Adversarial Testing Module: This module employs real-time adversarial simulation that introduces
adversarial inputs at various points during the training process to test the model’s robustness. The
simulation leverages adversarial perturbations—slight modifications to the input data that are designed
to mislead the model. These perturbations mimic real-world attacks, allowing the framework to detect
vulnerabilities before deployment. The module monitors how effectively the model resists adversarial
inputs and adjusts accordingly.

Metrics for Robustness: Metrics used to evaluate the effectiveness of adversarial testing include the
model’s accuracy under adversarial conditions, the degree of perturbation required to mislead the
model, and the model’s ability to maintain consistency in outputs across multiple adversarial inputs.
These metrics help define what constitutes a "high-risk" versus "low-risk" vulnerability. For example:

* High-risk: If a small perturbation results in significantly misleading outputs, indicating that
the model is highly susceptible to adversarial attacks.

* Low-risk: If the model remains robust even under large adversarial perturbations, demon-
strating strong resistance to manipulation.

6.2.3 Model Inference Layer

At the inference stage, risks are primarily associated with real-time attacks and unforeseen vulnerabil-
ities that manifest when the model interacts with external environments. This is where dynamic risk
monitoring becomes critical.

Real-time Adversarial Simulation and Response: During inference, each input-output pair is sub-
jected to real-time adversarial simulation. This system continuously analyzes the model’s interactions
with external inputs, looking for any signs of adversarial activity. For instance, when the model
encounters a prompt, the adversarial simulation generates variations of the input designed to probe
for weaknesses (e.g., modifying a prompt to generate biased or harmful outputs). These adversarial
tests run concurrently with the model’s normal operation, ensuring that vulnerabilities can be detected
and responded to in real-time [12].

Latent Space Monitoring: Anomaly detection in the latent space is employed to track patterns that
emerge deep within the model’s architecture. By establishing a statistical baseline of what constitutes
"normal" latent space activity, the framework can detect deviations that suggest potential risks, such
as information leakage or bias amplification. The system continuously monitors latent space activity
for anomalies, which could indicate an ongoing attack or emergent bias that was not detected during
training [[1].

Dynamic Watermarking: To further secure the inference layer, the framework implements dynamic
watermarking, which involves embedding invisible markers in the outputs generated by the model.
These watermarks evolve to resist adversarial removal techniques. If the watermark is compromised
or missing, it indicates potential tampering or misuse of the model outputs.

6.3 Dynamic Risk Monitoring

To address the continuously evolving threat landscape, our framework incorporates dynamic risk
monitoring mechanisms that operate at all stages of the model lifecycle. These include:

* Real-time Adversarial Simulations: These simulations are continuously applied during
both training and inference to detect potential vulnerabilities early and predict the likelihood
of exploitation. The feedback loop generated by adversarial testing informs the model’s
security posture, dynamically adjusting its architecture as new threats are identified.



* Anomaly Detection Algorithms: Anomalies in the model’s performance or latent space
activity are flagged in real-time, triggering preemptive countermeasures. These algorithms
are particularly focused on detecting latent space leaks—high-dimensional spaces where
information from the training data can leak into the model’s predictions.

¢ Continuous Model Refinement: When vulnerabilities are detected, the model is fine-tuned
in real time. This process leverages reinforcement learning techniques, where the model
autonomously learns from adversarial inputs and updates its parameters to resist similar
attacks in the future. This continuous adjustment ensures that the model remains secure
even as new threats emerge [[1].

6.4 Metrics for Evaluating the Framework
The success of the proposed framework is evaluated through a series of well-defined metrics:

» Attack Detection Rate: The percentage of adversarial attacks successfully detected during
training and inference.

* Response Time to Threats: The time it takes for the system to detect and respond to an
identified vulnerability.

* Model Robustness: The model’s accuracy and consistency when subjected to adversarial
inputs or anomalies.

* False Positive Rate: The frequency of incorrectly flagged inputs or behaviors that do not
represent actual security risks.

* Latency Impact: The effect of continuous monitoring and adversarial simulation on the
model’s real-time performance, ensuring that security measures do not compromise system
efficiency.

These metrics are essential for distinguishing between "high-risk" and "low-risk" scenarios, enabling
the model to prioritize mitigation efforts where they are most needed.

Refer to Appendix Figure 2 for a visualization of the Formal Framework for Risk Assessment in
Generative AL

By integrating formal verification, continuous adversarial simulation, and real-time anomaly detection,
this framework provides a comprehensive, adaptive approach to securing generative Al models. The
framework’s layered architecture ensures that vulnerabilities are identified and mitigated throughout
the entire model lifecycle, from deployment training. Though theoretical, this framework lays the
foundation for empirical validation and future development in securing generative Al systems against
evolving threats.

7 Limitations

This paper presents a theoretical framework for assessing and mitigating emergent security risks in
generative Al models. While the framework is rooted in existing risk management methodologies
such as those from NIST, ISO, and MITRE, there are several inherent limitations:

Absence of Empirical Validation As this work is purely theoretical, none of the proposed mit-
igation strategies have been tested in real-world environments. The effectiveness of dynamic risk
monitoring, adversarial simulations, and anomaly detection systems must be empirically validated
before they can be widely adopted. The lack of empirical testing means the practical feasibility of
the framework remains unproven, especially in diverse Al use cases such as healthcare, finance, and
large-scale media generation.

Dynamic Threat Landscape The constantly evolving nature of generative Al means that new,
unforeseen vulnerabilities could emerge that are beyond the scope of this framework. Models like
GPT and other multimodal systems are rapidly changing, and novel forms of attacks or biases may
arise that our current framework may not fully address. As these systems scale, managing real-time
risk also becomes more complex, and our framework may need to be adapted over time to incorporate
future security trends.



Resource and Scalability Constraints The continuous risk monitoring and real-time adversarial
simulation components of this framework could be resource-intensive. Ensuring that these defenses
operate effectively without slowing down model performance or requiring significant computational
power poses a real challenge. Small- to medium-sized organizations may find it difficult to implement
such resource-heavy solutions.

Latent Space Monitoring Monitoring the latent space in real time presents significant technical
challenges. While we propose anomaly detection for latent space monitoring, the ability to interpret
the high-dimensional features in latent spaces and identify security risks remains an under-explored
area. Future research will need to refine this approach and improve the interpretability of latent space
representations.

8 Future Directions

Despite these limitations, the theoretical framework presented in this paper provides a solid foundation
for further research and development in generative Al security. Key avenues for future work include:

Empirical Testing and Validation The next logical step is to empirically validate this framework by
applying it to real-world generative models across different domains, such as NLP, image generation,
and multi-modal applications. This includes testing the effectiveness of adversarial simulations,
dynamic watermarking, and latent space anomaly detection in identifying and mitigating risks. Future
research could focus on benchmarking the proposed methods against existing mitigation strategies to
determine their practical viability.

Adapting to Evolving AI Models As generative models continue to evolve, particularly with
advances in self-improving Al and reinforcement learning, the framework will need to be continu-
ously refined. Research should focus on adapting the framework to handle more sophisticated Al
architectures and emergent behaviors. For example, future work could explore how the framework
might extend to self-supervised learning or more advanced multi-modal Al systems.

Resource Optimization While the current framework is resource-intensive, future work should
explore ways to optimize real-time monitoring without compromising performance. Research
could focus on developing more efficient adversarial testing methods or scalable anomaly detection
algorithms to minimize computational overhead while maintaining robust security. This will be crucial
for making the framework accessible to a wider range of organizations with varying computational
resources.

Ethical and Societal Implications Further exploration is needed regarding the ethical implications
of deploying dynamic risk assessment frameworks. Future research should assess how these systems
align with data privacy laws, intellectual property rights, and societal norms, particularly when used
in high-stakes domains like healthcare, education, and finance. Incorporating human oversight and
ensuring compliance with ethical Al standards will be critical as these models become more integrated
into decision-making processes.

9 Conclusion

As generative Al models become increasingly integrated into various industries and applications,
the need for robust security frameworks is paramount. This paper presents a theoretical framework
for assessing and mitigating emergent security risks in generative Al, focusing on both existing
vulnerabilities and novel threats such as unsupervised learning dynamics, self-improving models, and
latent space exploitation. By leveraging formal verification techniques, dynamic risk monitoring,
and continuous real-time adversarial simulations, we aim to provide a comprehensive solution for
addressing both known and unforeseen security threats in generative models. We introduced a layered
risk assessment approach that addresses risks at the data, training, and inference stages, emphasizing
the importance of continuous monitoring and adaptation as models evolve. While the framework
proposed is theoretical, it provides a critical foundation for future research, with clear pathways for
empirical validation, scalability improvements, and integration of ethical and societal considerations.



In addressing the limitations of the proposed framework, we recognize that empirical validation is
essential, and future work should focus on testing the effectiveness of the mitigation strategies across
real-world generative Al applications. Additionally, the dynamic and rapidly evolving nature of Al
will require ongoing refinement of this framework to ensure that it remains relevant and effective
against new and emerging threats. Ultimately, this work contributes to the broader field of Al safety
by offering a scalable and adaptable framework designed to ensure the safe deployment of generative
Al models in increasingly complex and high-stakes environments.

10



References

[1] Nist cyber risk scoring (crs) - program overview. https://csrc.nist.gov/CSRC/
media/Presentations/nist-cyber-risk-scoring-crs-program-overview/
images-media/NIST/20Cyber’20Risk/20Scoring20 (CRS) /%20-%20Program/,
200verview.pdf} 2024. Accessed: 2024-09-20.

[2] Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Carlini, Brad Chen, Jihye Choi, Amrita Roy
Chowdhury, Mihai Christodorescu, Anupam Datta, Soheil Feizi, et al. Identifying and mitigating

the security risks of generative ai. Foundations and Trends® in Privacy and Security, 6(1):1-52,
2023.

[3] Pengcheng Chen, Jin Ye, Guoan Wang, Yanjun Li, Zhongying Deng, Wei Li, Tianbin Li,
Haodong Duan, Ziyan Huang, Yanzhou Su, et al. Gmai-mmbench: A comprehensive multimodal
evaluation benchmark towards general medical ai. arXiv preprint arXiv:2408.03361, 2024.

[4] Jaymari Chua, Yun Li, Shiyi Yang, Chen Wang, and Lina Yao. Ai safety in generative ai large
language models: A survey. arXiv preprint arXiv:2407.18369, 2024.

[5] P Deepak. Ai safety: necessary, but insufficient and possibly problematic. arXiv preprint
arXiv:2403.17419, 2024.

[6] Pierpaolo Dini and Sergio Saponara. Design and experimental assessment of real-time anomaly
detection techniques for automotive cybersecurity. Sensors, 23(22):9231, 2023.

[7] Michael Feffer, Anusha Sinha, Zachary C Lipton, and Hoda Heidari. Red-teaming for generative
ai: Silver bullet or security theater? arXiv preprint arXiv:2401.15897, 2024.

[8] Declan Humphreys, Abigail Koay, Dennis Desmond, and Erica Mealy. Ai hype as a cyber
security risk: the moral responsibility of implementing generative ai in business. Al and Ethics,
pages 1-14, 2024.

[9] Margot E. Kaminski. Regulating the risks of ai. Boston University Law Review, 103:1347,
2023.

[10] Claudio Novelli, Federico Casolari, Antonino Rotolo, Mariarosaria Taddeo, and Luciano Floridi.
Ai risk assessment: A scenario-based, proportional methodology for the ai act. Digital Society,
3(1):13, 2024.

[11] Venkata Krishna Parimala. Introductory chapter: Anomaly detection—recent advances, ai and
ml perspectives and applications. Anomaly Detection-Recent Advances, Al and ML Perspectives
and Applications, 2024.

[12] Privacy Engine. Iso 27001 vs. nist cybersecurity framework comparison, 2023. URL https:
//www.privacyengine.io/blog/is0-27001-vs-nist-cybersecurity-framework/\

[13] Anna Schmitz, Michael Mock, Rebekka Gorge, Armin B Cremers, and Maximilian Poretschkin.
A global scale comparison of risk aggregation in ai assessment frameworks. Al and Ethics,
pages 1-26, 2024.

[14] Immad A Shah and SukhDev Mishra. Artificial intelligence in advancing occupational health
and safety: an encapsulation of developments. Journal of Occupational Health, 66(1):uiad017,
2024.

[15] Alexander Sisto and K.C. Halm. Latest nist guidance identifies genera-
tive ai risks and corresponding mitigation strategies, 2024. URL https:
//www.dwt.com/blogs/artificial-intelligence-law-advisor/2024/08/
new-nist-guidance-on-generative-ai-risks.

[16] Xin Zhong, Arjon Das, Fahad Alrasheedi, and Abdullah Tanvir. A brief, in-depth survey of
deep learning-based image watermarking. Applied Sciences, 13(21):11852, 2023.

11


https://csrc.nist.gov/CSRC/media/Presentations/nist-cyber-risk-scoring-crs-program-overview/images-media/NIST%20Cyber%20Risk%20Scoring%20(CRS)%20-%20Program%20Overview.pdf
https://csrc.nist.gov/CSRC/media/Presentations/nist-cyber-risk-scoring-crs-program-overview/images-media/NIST%20Cyber%20Risk%20Scoring%20(CRS)%20-%20Program%20Overview.pdf
https://csrc.nist.gov/CSRC/media/Presentations/nist-cyber-risk-scoring-crs-program-overview/images-media/NIST%20Cyber%20Risk%20Scoring%20(CRS)%20-%20Program%20Overview.pdf
https://csrc.nist.gov/CSRC/media/Presentations/nist-cyber-risk-scoring-crs-program-overview/images-media/NIST%20Cyber%20Risk%20Scoring%20(CRS)%20-%20Program%20Overview.pdf
https://www.privacyengine.io/blog/iso-27001-vs-nist-cybersecurity-framework/
https://www.privacyengine.io/blog/iso-27001-vs-nist-cybersecurity-framework/
https://www.dwt.com/blogs/artificial-intelligence-law-advisor/2024/08/new-nist-guidance-on-generative-ai-risks
https://www.dwt.com/blogs/artificial-intelligence-law-advisor/2024/08/new-nist-guidance-on-generative-ai-risks
https://www.dwt.com/blogs/artificial-intelligence-law-advisor/2024/08/new-nist-guidance-on-generative-ai-risks

Appendix

This appendix provides a set of algorithms and pseudocode to illustrate the key components of the
framework proposed in this paper for assessing and mitigating emergent security risks in generative Al
models. The included algorithms cover various aspects such as dynamic risk monitoring, adversarial
simulations, anomaly detection in latent spaces, and multi-layered risk mitigation strategies.

The primary purpose of these algorithms is to offer conceptual clarity and a deeper understanding of
the mechanisms underpinning our framework. While these pseudocodes represent the core logic and
processes, they are intended to serve as illustrative examples and are not fully optimized for direct
implementation in production environments. Further empirical testing, validation, and refinement are
required before they can be applied in real-world applications.

Below, we present the key algorithms that reflect the dynamic, real-time nature of our proposed
approach to securing generative Al systems.

Algorithm 1 Dynamic Risk Monitoring for Generative AI Models

1: Input: Model M, Real-time input data D,..,;, Monitoring frequency f
2: QOutput: Detected threats and triggered countermeasures

3: Initialize threat detection system Tyetect

4: Initialize countermeasure system Cresponse

5: while Model M is active do
6
7
8

Retrieve real-time input x € D,y
Evaluate x using T}jc¢ec+ for potential adversarial behavior or anomalies
if Tjctect flags an input as suspicious then

9: Trigger appropriate countermeasure from Cresponse
10: Log detected threat and corresponding countermeasure
11: else
12: Continue normal model operation
13: end if
14: Wait for next monitoring interval 1/ f

15: end while

Algorithm 2 Adversarial Simulation for Model Robustness Testing

—_

Input: Training data Dy,4;,, Model M, Adversarial perturbation function P, 4,
Output: Adjusted model M, opy st
Initialize adversarial example generator G g4,
for each training sample x € Dy,.q;,, do
Generate adversarial sample .4, = Pugy(2) using Gy
Train model M on x4, to update parameters
Evaluate the robustness of M to adversarial examples
end for
return updated model M, ,py st

R AN A ol

Algorithm 3 Latent Space Anomaly Detection for Generative Al

[

Input: Latent space representations L, Baseline statistics Spqseiine, Anomaly threshold 7
Output: Detected latent space anomalies
Initialize anomaly detection model Agepect
Compute statistical baseline S, serine for latent space L
for each latent representation [ € L do
Compare lto Sbaseline
if deviation from Sy, seiine > 7 then
Flag [ as an anomaly
Log and alert potential anomaly in latent space
end if
end for

TeYRedaunhswn

—_——
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Algorithm 4 Dynamic Watermarking for Generative Al Outputs

: Imput: Model output O, Watermark embedding function W44, Adversarial detection system

Adetect
Output: Watermarked output O yatermarked
Initialize watermark embedding process
Owatermarked = Wembed(O) > Embed watermark into output
while Model is deployed do
Monitor Oyqtermarked fOr tampering or adversarial removal
if Agetect flags an adversarial removal attempt then
Adjust watermark We,,peq to prevent future removal
Re-embed watermark and update O atermarked
end if

: end while
: return Owatermarked

Algorithm 5 Multi-Layered Risk Mitigation Strategy for Generative Al

Input: Model M, Training data Dy, q;,, Real-time inputs D,.cq;
Output: Mitigated security risks across all layers
Tier 1: Pre-deployment Filtering
for each sample x € Dy,.qir, do
Apply pre-deployment filtering to detect adversarial inputs
if adversarial input detected then
Remove or correct input
end if
end for
Tier 2: Inference-Time Defense

: while Model M is deployed do

Monitor real-time input € D,eq;
Apply real-time defense mechanisms to filter harmful outputs

: end while
: Tier 3: Post-Inference Validation
: for each high-risk interaction O do

Apply post-inference validation to check for tampering or risk
if risk detected then

Flag and mitigate the risk, and revalidate O
end if

: end for

Algorithm 6 Latent Space Monitoring and Continuous Feedback Loop

Input: Latent space representations L, Baseline statistics Spqseline, Model M
Output: Updated model M with fine-tuning
Compute statistical baseline Spqserine for latent space L
while Model M is active do
for each latent representation [ € L do
Compare [ to Spasetine
if deviation from Spgseiine €xceeds threshold 7 then
Flag [ as anomalous
Adjust model parameters to mitigate anomaly
end if
end for
Fine-tune M based on flagged anomalies

: end while
. return updated model M
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Algorithm 7 Real-Time Filtering of Adversarial and Harmful Prompts

1: Input: Real-time prompt P, Adversarial detection system Agesect, Threshold 7

2: Output: Filtered prompt or blocked request

3: Initialize filtering system Fystem

4: while Model M is deployed do

5: Receive real-time prompt P

6: Evaluate P using Agegect to assess risk level

7: if Risk score R(P) > 7 then

8: Block prompt and log the event

9: Provide feedback to user or system
10: else
11: Allow P to pass through to the model
12: end if

13: end while

Algorithm 8 Reinforcement Learning-Based Model Fine-Tuning

1: Input: Model M, Adversarial input set A, Feedback loop F'

Output: Updated model M, paateq

Initialize reinforcement learning agent RLqgent

while Model M is deployed do

for each adversarial input x4, € A do
Process x4, through model M
Receive feedback F' from RLggen: based on model’s response
Update model parameters based on F' to resist similar attacks
9: end for

10: Continuously fine-tune M with each adversarial input

11: end while

12: return updated model M, pqated

A A i

Algorithm 9 Cross-Modal Consistency Check for Text-Image-Video Alignment

1: Input: Text 7', Image I, Video V'

2: Output: Verified consistency or flagged inconsistency

3: Initialize consistency checking function Cepeck

4: while Model is deployed for multimodal tasks do

5: Receive text T', image I, and video V'

6: Compare T" and [ using Cepecr (T, I)

7: Compare I and V using Cepecr (1, V)

8: Compare T and V using Cepecr (T, V)

9: if Inconsistency found between any pair (e.g., Cepeck (T, I) fails) then
10: Flag the inconsistency and log it for further analysis
11: else
12: Confirm consistency and proceed with the output generation
13: end if

14: end while

Algorithm 10 Risk Classification Based on Thresholds for High, Medium, and Low Risk

—_

Input: Risk score I, Thresholds 7p,ign, Tmedium
Output: Classified risk level (High, Medium, Low)
if R > Th;gn then
Classify as "High Risk"
else if 7,,,cqium < R < Thign then
Classify as "Medium Risk"
else
Classify as "Low Risk"
end if
Log the risk classification for further analysis

A A A

—_
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Risk Name Severity Potential Im- | Exploitability Scope of Effect
pact
Hallucinations Medium Misleading or | Moderate Localized, affect-
incorrect outputs ing isolated out-
affecting  non- puts
critical tasks
Data Leakage High Privacy  viola- | High Broad, particu-
tions, especially larly in models
with  sensitive trained on un-
data like PII curated data
sources
Adversarial High Harmful or | Moderate to | Extensive, affect-
Prompt Manipu- biased con- | High ing multiple out-
lation tent generated puts across sys-
through manipu- tems
lated prompts
Bias Reinforce- | Medium to High | Reinforces soci- | High Broad, impacts
ment etal biases in out- a large range of
puts (e.g., race, outputs in vari-
gender) ous domains
Unsupervised Medium Bias ampli- | Moderate to | Broad, affecting
Learning Vulner- fication and | High large datasets
abilities feedback loops
Self- High Reinforcement High Wide, with po-
Improvement of harmful be- tential cascading
Risks haviors effects on model
behavior
Hidden Infor- | High Privacy breaches | High Broad, with the
mation Leakage in sensitive sec- potential for sig-
(Latent Space) tors (e.g., health- nificant privacy
care, finance) violations
Simultaneous High Cross-modal Moderate to | Extensive,
Multimodal misinformation | High across multiple
Exploitation or deepfakes content formats
Training Data | High Compromised Moderate Broad, affecting
Poisoning outputs, leading model integrity
to unreliable or and user trust
harmful results
Model Confabu- | Medium Creation of plau- | Low to Moderate | Localized but
lation sible but incor- recurring, par-
rect outputs, po- ticularly in

tentially mislead-
ing users

text-based mod-
els

Table 1: Risk Categorization for Generative AI Models
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Working Structure of the Formal Framework for Risk Assessment in Generative Al
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Figure 1: Working structure of the formal framework for risk assessment in Generative Al
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Formal Framework for Risk Assessment in Generative Al
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Figure 2: Formal Framework for Risk Assessment in Generative Al
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