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Abstract

We extend the options framework for temporal abstraction in reinforcement learn-
ing from discounted Markov decision processes (MDPs) to average-reward MDPs.
Our contributions include general convergent off-policy inter-option learning algo-
rithms, intra-option algorithms for learning values and models, as well as sample-
based planning variants of our learning algorithms. Our algorithms and conver-
gence proofs extend those recently developed by Wan, Naik, and Sutton. We
also extend the notion of option-interrupting behavior from the discounted to the
average-reward formulation. We show the efficacy of the proposed algorithms with
experiments on a continuing version of the Four-Room domain.

1 Introduction

Reinforcement learning (RL) is a formalism of trial-and-error learning in which an agent interacts
with an environment to learn a behavioral strategy that maximizes a notion of reward. In many
problems of interest, a learning agent may need to predict the consequences of its actions over
multiple levels of temporal abstraction. The options framework provides a way for defining courses
of actions over extended time scales, and for learning, planning, and representing knowledge with
them (Sutton, Precup, & Singh 1999, Sutton & Barto 2018). The options framework was originally
proposed within the discounted formulation of RL in which the agent tries to maximize the expected
discounted return from each state. We extend the options framework from the discounted formulation
to the average-reward formulation in which the goal is to find a policy that maximizes the rate of
reward.

The average-reward formulation is of interest because, once genuine function approximation is
introduced, there is no longer a well-defined discounted formulation of the continuing RL problem
(see Sutton & Barto 2018, Section 10.4; Naik et al. 2019). If we want to take advantage of options
in acting, learning, and planning in the continuing (non-episodic) RL setting, then we must extend
options to the average-reward formulation.

Given a Markov decision process (MDP) and a fixed set of options, learning and planning algorithms
can be divided into two classes. The first class consists of inter-option algorithms, which enable an
agent to learn or plan with options instead of primitive actions. Given an option, the learning and
planning updates for this option in these algorithms occur only after the option’s actual or simulated
execution. Algorithms in this class are also called semi-MDP (SMDP) algorithms because given
an MDP, the decision process that selects among a set of options, executing each to termination,
is an SMDP (Sutton et al. 1999). The second class consists of algorithms in which learning or
planning updates occur after each state-action transition within options’ execution — these are called
intra-option algorithms. From a single state-action transition, these algorithms can learn or plan to
improve the values or policies for all options that may generate that transition, and are therefore
potentially more efficient than SMDP algorithms.

Several inter-option (SMDP) learning algorithms have been proposed for the average-reward formu-
lation (see, e.g., Das et al. 1999, Gosavi 2004, Vien & Chung 2008). To the best of our knowledge,
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Gosavi’s (2004) algorithm is the only proven-convergent off-policy inter-option learning algorithm.
However, its convergence proof requires the underlying SMDP to have a special state that is recur-
rent under all stationary policies. Recently, Wan, Naik, and Sutton (2021) proposed Differential
Q-learning, an off-policy control learning algorithm for average-reward MDPs that is proved to
converge without requiring any special state. We extend this algorithm and its convergence proof
from primitive actions to options and highlight some challenges we faced in developing inter-option
Differential Q-learning. For planning, we propose inter-option Differential Q-planning, which is the
first convergent incremental (sampled-based) planning algorithm. The existing proven-convergent
inter-option planning algorithms (e.g., Schweitzer 1971, Puterman 1994, Li & Cao 2010) are not
incremental because they perform a full sweep over states for each planning step.

Additionally, the literature lacks intra-option learning and planning algorithms within the average-
reward formulation for both values and models. We fill this gap by proposing such algorithms in the
average-reward formulation and provide their convergence results. These algorithms are stochastic
approximation algorithms solving the average-reward intra-option value and model equations, which
are also introduced in this paper for the first time.

Sutton et al. (1999) also introduced an algorithm to improve an agent’s behavior given estimated
option values. Instead of letting an option execute to termination, this algorithm involves potentially
interrupting an option’s execution to check if starting a new option might yield a better expected
outcome. If so, then the currently-executing option is terminated, and the new option is executed. Our
final contribution involves extending this notion of an interruption algorithm from the discounted to
the average-reward formulation.

2 Problem Setting

We formalize an agent’s interaction with its environment by a finite Markov decision process (MDP)
M and a finite set of options O. The MDP is defined by the tupleM .

= (S,A,R, p), where S
is a set of states, A is a set of actions, R is a set of rewards, and p : S × R × S × A → [0, 1]
is the dynamics of the environment. Each option o in O has two components: the option’s policy
πo : A× S → [0, 1], and a probability distribution of the option’s termination βo : S → [0, 1]. For
simplicity, for any s ∈ S, o ∈ O, we use π(a | s, o) to denote πo(a, s) and β(s, o) to denote βo(s).
Sutton et al.’s (1999) options additionally have an initiation set that consists of the states at which
the option can be initiated. To simplify the presentation in this paper, we allow all options to be
initiated in all states of the state space; the algorithms and theoretical results can easily be extended
to incorporate initiation from specific states.

In the continuing (non-episodic) setting, the agent-environment interactions go on forever without
any resets. If an option o is initiated at time t in state St, then the action At is chosen according to the
option’s policy π(· | St, o). The agent then observes the next state St+1 and reward Rt+1 according
to p. The option terminates at St+1 with probability β(St+1, o) or continues with action At+1 chosen
according to π(· | St+1, o). It then possibly terminates in St+2 according to β(St+2, o), and so on.
At an option termination, one way to govern an agent’s behavior is to choose a new option according
to a hierarchical policy µb : S × O 7→ [0, 1]. In this case, when an option terminates at time t, the
next option is selected stochastically according to µb(·|St). The option initiates at St and terminates
at St+K , where K is a random variable denoting the number of time steps the option executed. At
St+K , a new option is again chosen according to µb(·|St+K), and so on. We use the notation Ot to
denote whatever option is being executed at time step t. Note that Ot will remain the same for as
many steps as the option executes. Also note that actions are a special case of options: every action a
is an option o that terminates after exactly one step (β(s, o) = 1, ∀s) and whose policy is to pick a
in every state (π(a | s, o) = 1, ∀s).
Let Tn denote the time step when the n− 1th option terminates and the nth option is chosen. Denote
the nth option by Ôn

.
= OTn , its starting state by Ŝn

.
= STn , the cumulative reward during its

execution by R̂n
.
=
∑Tn+1

t=Tn+1Rt, the state it terminates in by Ŝn+1
.
= STn+1

, and its length by
L̂n

.
= Tn+1 − Tn. Note that every option’s length is a random variable taking values among positive

integers. The option’s transition probability is then defined as p̂(s′, r, l | s, o) .
= Pr(Ŝn+1 = s′, R̂n =

r, L̂n = l | Ŝn = s, Ôn = o). Throughout the paper, we assume that the expected execution time of
every option starting from any state is finite.
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An MDPM and a set of options O results in an SMDP M̂ = (S,O, L̂, R̂, p̂), where L̂ is the set
of all possible lengths of options and R̂ is the set of all possible options’ cumulative rewards. For
this SMDP, the reward rate of a policy µ given a starting state s and option o can be defined as
rC(µ)(s, o)

.
= limt→∞ Eµ[

∑t
i=1Ri | S0 = s,O0 = o]/t. Alternatively, at the level of option

transitions, r(µ)(s, o)
.
= limn→∞ Eµ[

∑n
i=0 R̂i | Ŝ0 = s, Ô0 = o]/Eµ[

∑n
i=0 L̂i | Ŝ0 = s, Ô0 = o].

Both the limits exist and are equivalent (Puterman’s (1994) propositions 11.4.1 and 11.4.7) under the
following assumption:

Assumption 1. The Markov chain induced by any stationary policy in the MDP (S,O, R̂, p′) is
unichain, where p′(s′, r | s, o) .

=
∑
l p̂(s

′, r, l | s, o) ∀ s′, r, s, o.

Note: In a unichain MDP, there could be some states that only occur a finite number of times in a
single stream of experience. In other words, these states are transient under all stationary policies.
Thus, their values can not be correctly estimated by any learning algorithm. However, this inaccurate
value estimation is not a problem because the decisions made in these transient states do not affect the
reward rate. We refer to the non-transient states as recurrent states and denote their set by S ′ ⊆ S.

Under Assumption 1, the reward rate does not depend on the starting state-option pair and hence
we can denote it by just r(µ). The optimal reward rate can then be defined as r∗

.
= supµ∈Π r(µ),

where Π denotes the set of all policies. The differential option-value function for a policy µ is defined
for all s ∈ S, o ∈ O as qµ(s, o)

.
= Eµ[Rt+1 − r(µ) + Rt+2 − r(µ) + · · · | St = s,Ot = o ]. The

evaluation and optimality equations for SMDPs, as given by Puterman (1994), are:

q(s, o) =
∑
s′,r, l

p̂(s′, r, l | s, o)
(
r − r̄ · l +

∑
o′

µ(o′|s′)q(s′, o′)
)
, (1)

q(s, o) =
∑
s′,r, l

p̂(s′, r, l | s, o)
(
r − r̄ · l + max

o′
q(s′, o′)

)
, (2)

where q and r̄ denote estimates of the option-value function and the reward rate respectively. If
Assumption 1 holds, the SMDP Bellman equations have a unique solution for r̄ — r(µ) for evaluation
and r∗ for control — and a unique solution for q only up to a constant (Schweitzer & Federgruen
1978). Given an MDP and a set of options, the goal of the prediction problem is, for a given policy µ,
to find the reward rate r(µ) and the differential value function (possibly with some constant offset).
The goal of the control problem is to find a policy that achieves the optimal reward rate r∗.

3 Inter-Option Learning and Planning Algorithms

In this section, we present our inter-option learning and planning, prediction and control algorithms,
which extend Wan et al.’s (2021) differential learning and planning algorithms for average-reward
MDPs from actions to options. We begin with the control learning algorithm and then move on to the
prediction and planning algorithms.

Consider Wan et al.’s (2021) control learning algorithm:

Qt+1(St, At)
.
= Qt(St, At) + αtδt, R̄t+1

.
= R̄t + ηαtδt,

where Q is a vector of size |S × A| that approximates a solution of q in the Bellman optimality
equation for MDPs, R̄ is a scalar estimate of the optimal reward rate, αt is a step-size sequence, η is a
positive constant, and δt is the temporal-difference (TD) error: δt

.
= Rt − R̄t + maxaQt(St+1, a)−

Qt(St, At). The most straightforward inter-option extension of Differential Q-learning is:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn, (3)

R̄n+1
.
= R̄n + ηαnδn, (4)

where Q is a vector of size |S × O| that approximates a solution of q in (2), R̄ is a scalar estimate of
r∗, αn is a step-size sequence, and δn is the TD error:

δn
.
= R̂n − L̂nR̄n + max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (5)

Such an algorithm is prone to instability because the sampled option length L̂n can be quite large,
and any error in the reward-rate estimate R̄n gets multiplied with the potentially-large option length.
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Using small step sizes might make the updates relatively stable, but at the cost of slowing down
learning for options of shorter lengths. This could make the choice of step size quite critical, especially
when the range of the options’ lengths is large and unknown. Alternatively, inspired by Schweitzer
(1971), we propose scaling the updates by the estimated length of the option being executed:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αnδn/Ln(Ŝn, Ôn), (6)

R̄n+1
.
= R̄n + ηαnδn/Ln(Ŝn, Ôn), (7)

where αn is a step-size sequence, Ln(·, ·) comes from an additional vector of estimates L : S ×O →
R that approximates the expected lengths of state-option pairs, updated from experience by:

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βn(L̂n − Ln(Ŝn, Ôn)), (8)

where βn is an another step-size sequence. The TD-error δn in (6) and (7) is

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n + max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn), (9)

which is different from (5) with the estimated expected option length Ln(Ŝn, Ôn) being used instead
of the sampled option length L̂n. (6–9) make up our inter-option Differential Q-learning algorithm.

Similarly, our prediction learning algorithm, called inter-option Differential Q-evaluation, also has
update rules (6–8) with the TD error:

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n +

∑
o

µ(o | Ŝn+1)Qn(Ŝn+1, o)−Qn(Ŝn, Ôn). (10)

Theorem 1 (Convergence of inter-option algorithms; informal). If Assumption 1 holds, step sizes are
decreased appropriately, all state-option pairs (s, o) in S ′ and O are visited for an infinite number of
times, and the relative visitation frequency between any two pairs is finite:

1. inter-option Differential Q-learning (6–9) converges almost surely, R̄n to r∗ and Qn(s, o)
to a solution of q(s, o) in (2) for all s ∈ S ′, o ∈ O, and r(µn) to r∗, where µn is a greedy
policy w.r.t. Qn,

2. inter-option Differential Q-evaluation (6–8, 10) converges almost surely, R̄n to r(µ) and
Qn(s, o) to a solution of of q(s, o) in (1) for all s ∈ S ′, o ∈ O.

G2

G1

G3

Figure 1: A continuing vari-
ant of the Four-Room do-
main where the task is to re-
peatedly go from the yellow
start state to one of the three
green goal states. There is
one goal state per experi-
ment, chosen to demonstrate
particular aspects of the pro-
posed algorithms. Also
shown is an option policy to
go to the upper hallway cell;
more details in-text.

The convergence proofs for the inter-option (as well as the subsequent
intra-option) algorithms are based on a result that generalizes Wan
et al.’s (2021) and Abounadi et al.’s (2001) proof techniques from
primitive actions to options. We present this result in Appendix A.1;
the formal theorem statements and proofs in Appendix A.2.

Remark: It is important for the scaling factor in the algorithm to be
the expected option length Ln(Ŝn, Ôn) and not the sampled option
length L̂n. Scaling the updates by the expected option lengths ensures
that fixed points of the updates are the solutions of (2). This is not
guaranteed to be true when using the sampled option length. We
discuss this in more detail in Appendix C.1.

The inter-option planning algorithms for prediction and control are
similar to the learning algorithms except that they use simulated experi-
ence generated by a (given or learned) model instead of real experience.
In addition, they only have two update rules, (6) and (7), not (8), be-
cause the model provides the expected length of a given option from
a given state (see Section 5 for a complete specification of option
models). The planning algorithms and their convergence results are
presented in Appendix A.2.

Empirical Evaluation. We tested our inter-option Differential Q-
learning with Gosavi’s (2004) algorithm as a baseline in a variant of
Sutton et al.’s (1999) Four-Room domain (shown in Figure 1). The
agent starts in the yellow cell. The goal states are indicated by green cells. Every experiment in this
paper uses only one of the green cells as a goal state; the other two are considered as empty cells.
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There are four primitive actions of moving up, down, left, right. The agent receives a reward of
+1 when it moves into the goal cell, 0 otherwise.

In addition to the four primitive actions, the agent has eight options that take it from a given room
to the hallways adjoining the room. The arrows in Figure 1 illustrate the policy of one of the eight
options. For this option, the policy in the empty cells (not marked with arrows) is to uniformly-
randomly pick among the four primitive actions. The termination probability is 0 for all the cells
with arrows and 1 for the empty cells. The other seven options are defined in a similar way. Denote
the set of primitive actions as A and the set of hallway options asH. Including the primitive actions,
the agent has 12 options in total.

In the first experiment, we tested inter-option Differential Q-learning with three different sets of
options, O ∈ {A,H,A+H}. The task was to reach the green cell G1, which the agent can achieve
with a combination of options and primitive actions. The shortest path to G1 from the starting state
takes 16 time steps, hence the best possible reward rate for this task is 1/16 = 0.0625. The agent used
an ε-greedy policy with ε = 0.1. For each of the two step-sizes αn and βn, we tested five choices:
2−x, x ∈ {1, 3, 5, 7, 9}. In addition, we tested five choices of η : 10−x, x ∈ {0, 1, 2, 3, 4}. Q and
R̄ were initialized to 0, L to 1. Each parameter setting was run for 200,000 steps and repeated 30
times. The left subfigure of Figure 2 shows a typical learning curve for each of the three sets of
options, with α = 2−3, β = 2−1, and η = 10−1. The parameter study for O = A+H w.r.t. α and
η, with β = 2−1, is presented in the right subfigure of Figure 2. The metric is the average reward
obtained over the entire training period. Complete parameter studies for all the three sets of options
are presented in Appendix B.1.

The learning curves in the left panel of Figure 2 show that the agent achieved a relatively stable
reward rate after 100,000 steps in all three cases. Using just primitive actions A, the learning curve
rises the slowest, indicating that hallway options indeed help the agent reach the goal faster. But
solely using the hallway optionsH is not very useful in the long run as the goal G1 is not a hallway
state. Note that because of the ε-greedy behavior policy, the learning curves do not reach the optimal
reward rate of 0.0625. These observations mirror those by Sutton et al. (1999) in the discounted
formulation.

The sensitivity curves of inter-option Differential Q-learning (right panel of Figure 2) indicate that,
in this Four-Room domain, the algorithm was not sensitive to parameter η, performed well for a
wide range of step sizes α, and showed low variance across different runs. We also found that the
algorithm was not sensitive to β either; this parameter study is also presented in Appendix B.1.

50000 100000 150000 200000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Hallway Options and Actions

Actions

Hallway Options

2�12�32�52�72�9

Step-size

0.00

0.02

0.04

0.06

0.08

Reward
Rate

η = 10−4
η = 10−3

η = 10−2

η = 10−1
η = 100

Figure 2: Plots showing some learning curves and the parameter study of inter-option Differential
Q-learning on the continuing Four-Room domain when the goal was to go to G1. Left: A point
on the solid line denotes reward rate over the last 1000 time steps and the shaded region indicates
one standard error. The behavior using the three different sets of options was as expected. Right:
Sensitivity of performance to α and η when using O = A +H and β = 2−1. The x-axis denotes
step size α; the y-axis denotes the rate of the rewards averaged over all 200,000 steps of training,
reflecting the rate of learning. The error bars denote one standard error. The algorithm’s rate of
learning varied little over a broad range of η.
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β = 2−9
β = 2−7

β = 2−5

β = 2−3

β = 2−1

Figure 3: Parameter studies showing the
baseline algorithm’s (Gosavi 2004) rate
of learning is relatively more sensitive to
the choices of its two parameters com-
pared to our inter-option Differential Q-
learning. The experimental setting and
the plot axes are the same as mentioned
in Figure 2’s caption.

We also tested Gosavi’s (2004) algorithm as a baseline. We
chose not to compare the proposed algorithms in this paper
with Sutton et al.’s (1999) discounted versions because the
discounted and average-reward problem formulations are
different; comparing the performance of their respective
solution methods would be inappropriate and difficult to
interpret. We have proposed new solution methods for the
average-reward formulation, hence in this case Gosavi’s
(2004) algorithm is the most appropriate baseline. Recall
it is the only proven-convergent average-reward SMDP
off-policy control learning algorithm prior to our work.
It estimates the reward rate by tracking the cumulative
reward C̄ obtained by the options and dividing it by the
another estimate T̄ the tracks the length of the options.
If the nth option executed is a greedy choice, then these
estimates are updated using:

C̄n+1
.
= C̄n + βn(R̂n − C̄n),

T̄n+1
.
= T̄n + βn(L̂n − T̄n),

R̄n+1
.
= C̄n+1/T̄n+1.

When Ôn is not greedy, R̄n+1 = R̄n. The option-value function is updated with (3) with δn as defined
in (5). αn and βn are two step-size sequences. The sensitivity of this algorithm with O = A+H
is shown in Figure 3. Compared to inter-option Differential Q-learning, this baseline has one less
parameter, but its performance was found to be more sensitive to the values of both its step-size
parameters. In addition, the error bars were generally larger, suggesting that the variance across
different runs was also higher.

To conclude, our experiments with the continuing Four-Room domain show that our inter-option
Differential Q-learning indeed finds the optimal policy given a set of options, in accordance with
Theorem 1. In addition, its performance seems more robust to the choices of parameters compared to
the baseline. Experiments with the prediction algorithm, inter-option Differential Q-evaluation, are
presented in Appendix B.4.

4 Intra-Option Value Learning and Planning Algorithms

In this section, we introduce intra-option value learning and planning algorithms. The objectives are
same as that of inter-option value learning algorithms. As mentioned earlier, intra-option algorithms
learn from every transition St, At, Rt+1, St+1 during the execution of a given option Ot. Moreover,
intra-option algorithms also make updates for every option o ∈ O, including ones that may potentially
never be executed.

To develop our algorithms, we first establish the intra-option evaluation and optimality equations in
the average-reward case. The general form of the intra-option Bellman equation is:

q(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
r − r̄ + uq(s′, o)

)
(11)

where q ∈ R|S|×|O| and r̄ ∈ R are free variables. The optimality and evaluation equations use
uq = uq∗ and uq = uqµ respectively, defined ∀ s′ ∈ S, o ∈ O as:

uq(s′, o) = uq∗(s
′, o)

.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o) max

o′
q(s′, o′), (12)

uq(s′, o) = uqµ(s′, o)
.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o)

∑
o′

µ(o′|s′)q(s′, o′). (13)

Intuitively, the uq term accounts for the two possibilities of an option terminating or continuing in
the next state. These equations generalize the average-reward Bellman equations given by Puterman
(1994). The following theorem characterizes the solutions to the intra-option Bellman equations.
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Theorem 2 (Solutions to intra-option Bellman equations). If Assumption 1 holds, then:

1. a) there exists a r̄ ∈ R and a q ∈ R|S|×|O| for which (11) and (12) hold,
b) the solution of r̄ is unique and is equal to r∗, let q1 be one solution of q, the solutions of q
form a set {q1 + c e | c ∈ R} where e is an all-one vector of size |S| × |O|,
c) a greedy policy w.r.t. a solution of q achieves the optimal reward rate r∗.

2. a) there exists a r̄ ∈ R and a q ∈ R|S|×|O| for which (11) and (13) hold,
b) the solution of r̄ is unique and is equal to r(µ), the solutions of q form a set {qµ + c e |
c ∈ R}.

The proof extends those of Corollary 8.2.7, Theorem 8.4.3, Theorem 8.4.4 by Puterman (1994) and is
presented in Appendix A.3.

Our intra-option control and prediction algorithms are stochastic approximation algorithms solving the
intra-option optimality and evaluation equations respectively. Both the algorithms maintain a vector
of estimates Q(s, o) and a scalar estimate R̄, just like our inter-option algorithms. However, unlike
inter-option algorithms, intra-option algorithms need not maintain an estimator for option lengths
(L) because they make updates after every transition. Our control algorithm, called intra-option
Differential Q-learning, updates the estimates Q and R̄ by:

Qt+1(St, o)
.
= Qt(St, o) + αtρt(o)δt(o), ∀ o ∈ O, (14)

R̄t+1
.
= R̄t + ηαt

∑
o∈O

ρt(o)δt(o), (15)

where αt is a step-size sequence, ρt(o)
.
= π(At|St,o)

π(At|St,Ot)
is the importance sampling ratio, and:

δt(o)
.
= Rt+1 − R̄t + uQt

∗ (St+1, o)−Qt(St, o). (16)

Our prediction algorithm, called intra-option Differential Q-evaluation, also updates Q and R̄ by (14)
and (15) but with the TD error:

δt(o)
.
= Rt+1 − R̄t + uQt

µ (St+1, o)−Qt(St, o). (17)

Theorem 3 (Convergence of intra-option algorithms; informal). Under the conditions of Theorem 1:
1. intra-option Differential Q-learning algorithm (14–16) converges almost surely, R̄t to r∗,
Qt(s, o) to a solution of q(s, o) in (11) and (12) for all s ∈ S ′, o ∈ O, and r(µt) to r∗,
where µt is a greedy policy w.r.t. Qt,

2. intra-option Differential Q-evaluation algorithm (14,15,17) converges almost surely, R̄t to
r(µ), Qt(s, o) to a solution of q(s, o) in (11) and (13) for all s ∈ S ′, o ∈ O.
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Total Steps

0.00
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0.04

0.06

0.08

Reward
Rate

Figure 4: Learning curve showing that
the greedy policy corresponding to the
hallway options’ option-value function
achieves the optimal reward rate on the
continuing Four-Room domain. The
value function was learned via intra-
option Differential Q-learning using a
behavior policy consisting only of prim-
itive actions; the hallway options were
never executed.

Remark: The intra-option learning methods introduced
in this section can be used with options having stochastic
policies. This is possible with the use of the important
sampling ratios as described above. Sutton et al.’s (1999)
discounted intra-option learning methods were restricted
to options having deterministic policies.

Again, the intra-option value planning algorithms are sim-
ilar to the learning algorithms except that they use simu-
lated experience generated by a given or learned model
instead of real experience. The planning algorithms and
their convergence results are presented in Appendix A.4.

Empirical Evaluation. We conducted another experi-
ment in the Four-Room domain to show that intra-option
Differential Q-learning can learn the values of hallway
optionsH using only primitive actions A. As mentioned
earlier, there are no baseline intra-option average-reward
algorithms, so this is a proof-of-concept experiment.

The goal state for this experiment was G2, which can be
reached using the option that leads to the lower hallway.

7



The optimal reward rate in this case is 1/14 ≈ 0.714 with both O = H and O = A. We applied
intra-option Differential Q-learning using a behavior policy that chose the four primitive actions with
equal probability in all states. This choice of behavior policy and goal G2 would test if the intra-option
algorithm leads to a policy consisting exclusively of options by interacting with the environment
using only primitive actions. Each parameter setting was run for 200,000 steps and repeated 30 times.
For evaluation, we saved the learned option value function after every 1000 steps and computed the
average reward of the corresponding greedy policy over 1000 steps.

Figure 4 shows the learning curve of this average reward across the 30 independent runs for parameters
α = 0.125, η = 0.1. The agent indeed succeeds in learning the option-value function corresponding
to the hallway options using a behavior policy consisting only of primitive actions. The parameter
study of intra-option Differential Q-learning is presented in Appendix B.2. Experiments with the
prediction algorithm, intra-option Differential Q-evaluation, are presented in Appendix B.4.

5 Intra-Option Model Learning and Planning Algorithms

In this section, we first describe option models within the average-reward formulation. We then
introduce an algorithm to learn such models in an intra-option fashion. This option-model learning
algorithm can be combined with the planning algorithms from the previous section to obtain a
complete model-based average-reward options algorithm that learns option models and plans with
them (we present this combined algorithm in Appendix C.2).

The average-reward option model is similar to the discounted options model but with key distinctions.
Sutton et al.’s (1999) discounted option model has two parts: the dynamics part and the reward
part. Given a state and an option, the dynamics part predicts the discounted occupancy of states
upon termination, and the reward part predicts the expected (discounted) sum of rewards during the
execution of the option. In the average-reward setting, apart from the dynamics and the reward parts,
an option model has a third part — the duration part — that predicts the duration of execution of
the option. In addition, the dynamics part predicts the state distribution upon termination without
discounting and reward part predicts the undiscounted cumulative rewards during the execution of
the option.

Formally, the dynamics part approximates mp(s′|s, o) .
=
∑
r,l p̂(s

′, r, l |s, o), the probability that
option o terminates in state s′ when starting from state s. The reward part approximates mr(s, o)

.
=∑

s′,r,l p̂(s
′, r, l |s, o) r, the expected cumulative reward during the execution of option o when

starting from state s. Finally, the duration part approximates ml(s, o)
.
=
∑
s′,r,l p̂(s

′, r, l |s, o) l, the
expected duration of option o when starting from state s.

We now present a set of recursive equations that are key to our model-learning algorithms. These
equations extend the discounted Bellman equations for option models (Sutton et al. 1999) to the
average-reward formulation.

m̄p(x | s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
β(s′, o)I(x = s′) +

(
1− β(s′, o)

)
m̄p(x | s′, o)

)
, (18)

m̄r(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
r + (1− β(s′, o))m̄r(s′, o)

)
, (19)

m̄l(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)
(
1 + (1− β(s′, o))m̄l(s′, o)

)
. (20)

The first equation are different from the other two because the total reward and length of the option o
are incremented irrespective of whether the option terminates in s′ or not. The following theorem
shows that (mp,mr,ml) is the unique solution of (18–20) and therefore the models can be obtained
by solving these equations (see Appendix A.5 for the proof).

Theorem 4 (Solutions to Bellman equations for option models). There exist unique m̄p ∈
R|S|×|O|×|S|, m̄r ∈ R|S|×|O|, and m̄l ∈ R|S|×|O| for which (18), (19), and (20) hold. Further,
if m̄p, m̄r, m̄l satisfy (18), (19), and (20), then m̄p = mp, m̄r = mr, m̄l = ml.
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Our intra-option model-learning algorithm solves the above recursive equations using the following
TD-like update rules for each option o:

Mp
t+1(x | St, o)

.
= Mp

t (x | St, o) + αtρt(o)
(
β(St+1, o)I(St+1 = x)

+
(
1− β(St+1, o)

)
Mp
t (x | St+1, o)−Mp

t (x | St, o)
)
, ∀ x ∈ S, (21)

Mr
t+1(St, o)

.
= Mr

t (St, o) + αtρt(o)
(
Rt+1 +

(
1− β(St+1, o)

)
Mr
t (St+1, o)−Mr

t (St, o)
)

(22)

M l
t+1(St, o)

.
= M l

t(St, o) + αtρt(o)
(

1 +
(
1− β(St+1, o)

)
M l
t(St+1, o)−M l

t(St, o)
)

(23)

where Mp is a |S|× |O|× |S|-sized vector of estimates, Mr and M l are both |S|× |O|-sized vectors
of estimates, and αt is a sequence of step sizes. Standard stochastic approximation results can be
applied to show the algorithm’s convergence (see Appendix A.6 for details).

Theorem 5 (Convergence of the intra-option model learning algorithm; informal). If the step sizes
are set appropriately and all the state-option pairs are updated an infinite number of times, then
intra-option model-learning (21–23) converges almost surely, Mp

t to mp, Mr
t to mr, and M l

t to ml.

Our intra-option model-learning algorithms (21–23) can be applied with simulated one-step transitions
generated by a given action model, resulting in a planning algorithm that produces an estimated
option model. The planning algorithm and its convergence result are presented in Appendix A.6.

6 Interruption to Improve Policy Over Options

In all the algorithms we considered so far, the policy over options would select an option, execute
the option policy till termination, then select a new option. Sutton et al. (1999) showed that the
policy over options can be improved by allowing the interruption of an option midway through its
execution to start a seemingly better option. We now show that this interruption result applies for
average-reward options as well (see Appendix A.7 for the proof).

Theorem 6 (Interruption). For any MDP, any set of options O, and any policy µ : S ×O → [0, 1],
define a new set of options, O′, with a one-to-one mapping between the two option sets as follows:
for every o = (π, β) ∈ O, define a corresponding o′ = (π, β′) ∈ O′ where β′ = β, but for any state
s in which qµ(s, o) < vµ(s), β′(s, o) = 1 (where vµ(s)

.
=
∑
o µ(o | s)qµ(s, o)). Let the interrupted

policy µ′ be such that for all s ∈ S and for all o′ ∈ O′, µ′(s, o′) = µ(s, o), where o is the option in
O corresponding to o′. Then:

1. the new policy over options µ′ is not worse than the old one µ, i.e., r(µ′) ≥ r(µ),
2. if there exists a state s ∈ S from which there is a non-zero probability of encountering an

interruption upon initiating µ′ in s, then r(µ′) > r(µ).

100000 200000 300000 400000
Total Steps

0.00

0.02

0.04

0.06

0.08

Reward
Rate

Acting without Interruption

Acting with Interruption

Figure 5: Learning curves showing that
executing options with interruptions can
achieve a higher reward rate than execut-
ing options till termination in the domain
described in the adjoining text.

In short, the above theorem shows that interruption pro-
duces a behavior that achieves a higher reward rate than
without interruption. Note that interruption behavior is
only applicable with intra-option algorithms; complete
option transitions are needed in inter-option algorithms.

Empirical Evaluation. We tested the intra-option Differ-
ential Q-learning algorithm with and without interruption
in the Four-Room domain. We set the goal as G3 and al-
lowed the agent to choose and learn only from the set of
all hallway optionsH. With just hallway options, without
interruption, the best strategy is to first move to the lower
hallway and then try to reach the goal by following options
that pick random actions in the states near the hallway and
goal. With interruption, the agent can first move to the
left hallway, then take the option that moves the agent to
the lower hallway but terminate when other options have
higher option-values. This termination is most likely to occur in the cell just above G3. The agent
then needs a fewer number of steps in expectation to reach the goal.
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Figure 5 shows learning curves using intra-option Differential Q-learning with and without interrup-
tions on this problem. Each parameter setting was run for 400,000 steps and repeated 30 times. The
learning curves shown correspond to α = 0.125 and η = 0.1. As expected, the agent achieved a
higher reward rate by using interruptions. The parameter study of the interruption algorithm along
with the rest of the experimental details is presented in Appendix B.3.

7 Conclusions, Limitations, and Future Work

In this paper, we extended learning and planning algorithms for the options framework — originally
proposed by Sutton et al. (1999) for discounted-reward MDPs — to average-reward MDPs. The
inter-option learning algorithm presented in this paper is more general than previous work in that
its convergence proof does not require existence of any special states in the MDP. We also derived
the intra-option Bellman equations in average-reward MDPs and used them to propose the first
intra-option learning algorithms for average-reward MDPs. Finally, we extended the interruption
algorithm and its related theory from the discounted to the average-reward setting. Our experiments
on a continuing version of the classic Four-Room domain demonstrate the efficacy of the proposed
algorithms. We believe that our contributions will enable widespread use of options in the average-
reward setting.

We now briefly comment on the novelty of our theoretical and algorithmic contributions. Our primary
theoretical contribution is to generalize Wan et al.’s (2021) proof techniques to obtain a unified
convergence proof for actions and options. The same proof techniques then apply for both the inter-
and intra-option algorithms. Our primary algorithmic contribution is the scaling of the updates by
option lengths in the inter-option algorithms. The lack of scaling makes the algorithms unstable and
prone to divergence. Furthermore, we show the correct way of scaling involves estimated option
lengths, not sampled option lengths.

The most immediate line of future work involves extending these ideas from the tabular case to the
general case of function approximation, starting with linear function approximation. One way to
incorporate function approximation is to extend algorithms presented in this paper to those using
linear options (Sorg & Singh 2010, Yao et al. 2014), perhaps by building on Zhang et al.’s (2021)
work. Using the results developed in this paper, we also foresee extensions to more ideas from the
discounted formulation involving function approximation, such as Bacon et al.’s (2017) option-critic
architecture, to the average-reward formulation.

This paper assumes that a fixed set of options is provided and the agent then learns or plans using
them. One of the most important challenges in the options framework is the discovery of options. We
think the discovery problem is orthogonal to the problem formulation. Hence, another line of future
work is to extend existing option-discovery algorithms developed for the discounted formulation to
the average-reward formulation (e.g., algorithms by McGovern & Barto 2001, Menache et al. 2002,
Şimşek & Barto 2004, Singh et al. 2004, Van Djik & Polani 2011, Machado et al. 2017) . Relatively
more work might be required in extending approaches that couple the problems of option discovery
and learning (e.g., Gregor et al. 2016, Eysenbach et al. 2018, Achiam et al. 2018, Veeriah et al. 2021).

Another limitation of this paper is that it deals with learning and planning separately. We also need
combined methods that learn models as well as plan with them; we discuss some ideas in Appendix C.
Finally, we would like to get more empirical experience with the algorithms proposed in this paper,
both in pedagogical tabular problems and challenging large-scale problems. Nevertheless, we believe
this paper makes novel contributions that are significant for the use of temporal abstractions in
average-reward reinforcement learning.
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