
Automated Efficient Estimation using
Monte Carlo Efficient Influence Functions

Raj Agrawal
Basis Research Institute, Broad Institute

raj@basis.ai

Sam Witty
Basis Research Institute, Broad Institute

sam@basis.ai

Andy Zane
Basis Research Institute, UMass Amherst

andy@basis.ai

Eli Bingham
Basis Research Institute, Broad Institute

eli@basis.ai

Abstract

Many practical problems involve estimating low dimensional statistical quantities
with high-dimensional models and datasets. Several approaches address these esti-
mation tasks based on the theory of influence functions, such as debiased/double
ML or targeted minimum loss estimation. We introduce Monte Carlo Efficient
Influence Functions (MC-EIF), a fully automated technique for approximating
efficient influence functions that integrates seamlessly with existing differentiable
probabilistic programming systems. MC-EIF automates efficient statistical estima-
tion for a broad class of models and functionals that previously required rigorous
custom analysis. We prove that MC-EIF is consistent, and that estimators using
MC-EIF achieve optimal

√
N convergence rates. We show empirically that estima-

tors using MC-EIF are at parity with estimators using analytic EIFs. Finally, we
present a novel capstone example using MC-EIF for optimal portfolio selection.

1 Introduction

Over the past several decades, there has been remarkable progress on robust and efficient statistical
estimation, especially for high dimensional problems. A particularly compelling class of such
methods are built on a foundation of efficient influence functions (EIF), i.e., functional derivatives
in the space of probability distributions [Ken22]. These methods have been particularly fruitful in
causal inference applications, where estimating quantities such as the average treatment effect require
modeling high-dimensional nuisance parameters relating confounders to treatment and outcome
variables. Intuitively, these methods focus finite statistical resources on quantities that matter, and not
on nuisance parameters that only indirectly inform the statistical quantities we wish to estimate.

Despite their successes, estimation methods based on the EIF have lagged behind the kinds of
automation that machine learning practitioners have grown accustomed to, instead requiring complex
manual derivation on a case-by-case basis. This is contrasted with the generality of automatic
differentiation (AD) systems [BPRS18] and probabilistic programming languages (PPLs) such as
Pyro [BCJ+19] or Gen [CTSLM19], which automate numerical computations for probabilistic
inference. EIF-based estimators have historically eluded this level of automation and generality,
because exact recovery of the EIF requires solving high-dimensional integral equations.

Contributions. We introduce Monte Carlo Efficient Influence Functions (MC-EIF), a general and
automated technique for numerically computing EIFs using only quantities that are already available
from existing AD and PPL systems. Our key insight is that EIFs can be expressed equivalently as a
product of (i) the gradient of the functional, (ii) the inverse Fisher information matrix, and (iii) the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

gradient of the log-likelihood, as shown in Theorem 3.4 in Section 3. In Section 4, we show how
MC-EIF can be used to automatically construct a variety of efficient estimators for a broad class of
models and functionals, avoiding the need for complex manual and error-prone derivations.

In summary, we show that: (i) MC-EIF provides accurate estimates of the true EIF, enabling efficient
estimation, and (ii) MC-EIF is very general, applying to many functionals and models that can be
written as probabilistic programs. In Section 3, we introduce MC-EIF and provide a non-asymptotic
error bound on the quality of our approximation. We show how estimators using MC-EIF achieve the
same asymptotic guarantees as using analytic EIFs in Section 4. In Section 5, we show empirically
that MC-EIF produces more accurate estimates of the EIF than existing automated approaches, and
using MC-EIF as a drop-in replacement for the analytic EIF does not degrade estimation accuracy in
a variety of benchmarks, including a novel capstone on optimal portfolio allocation.

Related Work. Influence function-based estimators have a rich history in the statistics and machine
learning literature [BKB+93, Tsi06, Ken22, HDDOV22]. Despite their effectiveness, these methods
have historically required custom and complex mathematical analysis for specific combinations of
models and functional. Even an incomplete recent survey of the influence function-based estimation
literature yields a large collection of complex scenario-specific research. For targeted minimum loss
estimation (TMLE) [VDLR06]; cluster-randomized trials [BvdLA+23], continuous time-dependent
interventions [RGvdL22], mixed experimental and observational data [DTA+22], mediation analysis
with longitudinal data [WvdLP+23], subgroup treatment effect estimation [WPvdL+23], survival and
competing risks analysis [RvdL24], continuous time-to-event outcomes [REvdL23], and variable im-
portance measures for effect estimates [LHvdL23]. For double/debiased machine learning [CCD+18];
difference-in-differences [Cha20], instrumental variable designs [JTB21a], and mediation analy-
sis [FHL+22].. Importantly, our work does not introduce novel efficient estimators; instead it aims to
lower the mathematical burden for practitioners who wish to use existing influence function-based
efficient estimator templates (see Section 4) with custom models and/or functionals.

Our work is not the first to attempt to automate and generalize computations for efficient statistical
estimation. Perhaps the closest technique we are aware of is approximating the influence function
using finite differences on kernel-smoothed empirical distributions [FQWD15, CLvdL19, JWZ22a].
We provide a thorough comparison with this method in Section 5, demonstrating how MC-EIF
automates and scales better to high dimensional problems, exactly the settings where efficient
estimation is most useful. Recent work has made progress towards general efficient estimators, but
still impose strong restrictions on models and/or functionals. DML-ID [JTB21b] extends double
machine learning to nonparametric causal graphs and marginal density under intervention functionals.
Similarly, the kernel debiased plugin estimator [CGMM23] implements a version of TMLE that
bypasses the influence function computations for models defined in a RKHS. Finally, other recent
work [CNS22, FS23, CNQMS21, CNQMS22] approximates the efficient influence function for
generalized method-of-moment estimators.

Finally, we note that there are a number of intriguing connections between three related but distinct
mathematical objects: the efficient influence function in semiparametric statistics [Tsi06], the natural
gradient in information geometry [Ama16], and the so-called empirical influence function in robust
statistics and machine learning [Law86]. A comprehensive review of these connections is beyond the
scope of this paper, and we focus here on two particularly important points for contextualizing our
work. First, we emphasize that the efficient and empirical influence functions are not equivalent:
the efficient influence function is a fundamental mathematical object in semiparametric statistical
theory which quantifies the effect of perturbing a functional in an arbitrary direction in the space
of probability measures, while the empirical influence function is a distinct and somewhat more
specialized [BNL+22] object quantifying the effect of perturbing individual training points in a para-
metric statistical model. More specifically, in the parametric setting the efficient influence function
is defined as shown in Theorem 3.4 in terms of the Fisher information matrix [Tsi06], whereas the
empirical influence function is defined in terms of the Hessian of a model at the training points, two
quantities with very different mathematical and statistical properties that are not straightforwardly
interchangeable [KHB19]. Second, we note that existing algorithms for computing natural gradi-
ents and empirical influence functions cannot immediately be adapted to efficient estimation.
Specifically, our algorithm described in Section 3 for Monte Carlo approximation of the efficient
influence function is similar in structure to some previous algorithms developed for estimating the
natural gradient [TR19] and empirical influence function [KL17, GSL+19]. This would seem to
suggest porting other methods that compute more heavily biased approximations of the natural gradi-

2

ent [GLB+18] and empirical influence function to computing the efficient influence function, as some
of these methods are known to scale to even the largest neural network models deployed in practice
today [GBA+23]. However, these approximations are not directly applicable in our setting because
provably efficient estimation is only known to be possible with tight control over any approximation
error introduced in computing the efficient influence function, as discussed in Section 4 below and
in [JWZ22a]. Relaxing these restrictions to enable similarly scalable variations on the basic MC-EIF
framework of Section 3 is an important direction for future work.

2 Problem Statement

General Problem. We consider the estimation of some estimand θ∗ ∈ RL, where L ∈ N denotes the
dimension of the target quantity. Typically, we can express θ∗ = Ψ(P∗) for some known functional Ψ,
where Ψ maps a probability distribution to a vector in RL, and P∗(x) denotes the true data-generating
distribution over some vector of observables x ∈ RD, D ∈ N. Many estimation tasks involve high-
dimensional nuisance parameters, or quantities of no immediate value to the analyst. For example, to
estimate the average treatment effect, one might need to adjust for high-dimensional confounders.

Semiparametric Solution. Semiparametric statistics provides a mathematical framework for opti-
mally estimating θ∗ in the presence of potentially complex, high-dimensional nuisance parameters. A
standard way to estimate θ∗ is with the plug-in approach; construct an estimate P̂ of P∗ and report
θ̂ = ψ(P̂). Unfortunately, the plug-in approach can lead to provably sub-optimal estimates of θ∗ due
to poor estimates of P∗ [Tsi06, CCD+18, FS23]. Instead, a general recipe for efficiently estimating
θ∗ from finite data {xn}Nn=1, where xn

iid∼ P∗(x) for n = 1, · · · , N , is given by the following
three-steps: (i) use N/2 samples to construct an initial estimate P̂ of P∗, (ii) compute the influence
function (to be defined shortly) of Ψ at the estimate P̂, and (iii) evaluate the influence function at the
held out N/2 datapoints to derive a corrected estimate.1 In Section 4, we elaborate on how influence
functions are used to construct several popular efficient estimators.

Influence Functions. A central premise of this paper is that to automate efficient estimation, it
suffices to automate the computation of influence functions, which can be thought of as gradients in
function space. We make this precise below.

Definition 2.1. (Gateaux derivative) Consider the ϵ-perturbed probability distribution Pϵ := (1−
ϵ)P+ ϵQ = P+ ϵ(Q− P), where Q is some probability distribution. Ψ is Gateaux differentiable at
Q if the following limit exists:

d

dϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

= lim
ϵ→0

Ψ(Pϵ)−Ψ(P)
ϵ

.

The Gateaux derivative can be viewed as a generalization of the directional derivative from ordinary
calculus; it characterizes how much a functional changes at a point P in the direction Q− P.

Definition 2.2. (Influence function) Suppose there exists a square integrable function φ ∈ L2(P)
such that

d

dϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

= ⟨φ, q − p⟩L2 =

∫
x∈RD

φ(x)(q(x)− p(x))dx

for all Q ∈ M and Ex∼P[φ(x)] = 0, where M denotes some space of probability distributions
and p(·) and q(·) are the density functions for Q and P, respectively. Then, φ is called an influence
function for Ψ at P.

An influence function is a re-centered "functional gradient" in L2(P): just as the Euclidean inner
product between the gradient of a function and a vector yields the directional derivative in ordinary
differential calculus, the L2(P) inner product between the influence function and perturbation
Q − P yields the Gateaux directional derivative. Influence functions, however, are not always
unique [Tsi06, Ken16] — some may lead to higher asymptotic variance estimators than others. The
optimal influence function minimizes asymptotic variance, and is called the efficient influence function

1There are some small variations to this three-step recipe such as using cross-fitting [CCD+18] instead of a
simple equal split of the data; see also Section 4.

3

(EIF). When the EIF exists, it is P almost everywhere unique, and found through a Hilbert space
projection onto what is known as the nuisance tangent space. We defer details to [Tsi06] and [Ken16].

As the influence function in Definition 2.2 is defined implicitly as a solution to an infinite set of
integral constraints overM, it is often hard to find. Entire papers have been written to analytically
derive influence functions; see, for example, the papers listed in Section 1. For even experts in
machine learning and statistics, such derivations are out-of-reach, time consuming, and error prone.

3 Monte Carlo Efficient Influence Function

Much of the work in semiparametric statistics and efficient estimation has focused on scenarios where
the nuisance function is modeled nonparametrically [Tsi06, VDLR06, CCD+18, Ken22]. However,
practitioners often use high-dimensional parametric models such as generalized linear models, neural
networks, and tensor splines in practice due to their flexibility and ability to scale to large datasets.
Due to the richness of these high-dimensional spaces, inference is still statistically challenging and
benefits from efficient estimation; see, for example, Table 1 in [CCD+18]. Specifically, in contrast to
traditional low-dimensional parametric models where maximum likelihood estimation is typically
efficient [FR22, Rao45], high-dimensional parametric models often exhibit distinct asymptotic
behaviors [vdV98, KBB+13, HTW15]. In these high-dimensional models, estimates may converge
slower than classic Op(1√

N
) rates without the application of efficient inference methods [VDLR06,

CCD+18, Ken22]. A key question we address is whether using a high-dimensional parametric model
simplifies the process of solving Definition 2.2. We show that it does below.

Notation. We let ϕ ∈ Φ ⊂ Rp denote a finite-dimensional parameter specifying a distribution on the
observed random variables x ∈ RD for p <∞, p ∈ N. Pϕ(x) corresponds to a distribution in this
space, and Pϕ∗(x) the true distribution, or the one closest to the true data-generating distribution in
Kullback–Leibler distance. We let ψ(ϕ) denote a function Rp 7→ RL that equals the evaluation of the
functional Ψ(Pϕ) for all ϕ ∈ Φ. Under mild differentiability assumptions, we provide the analytic
formula for the EIF in Theorem 3.4.

The first assumption states that the density of Pϕ(x) is continuous and differentiable with respect to
ϕ, a condition satisfied by many parametric model families. For example, the univariate Gaussian
density 1√

2π
exp

(
−0.5(x− ϕ)2

)
is a continuous and differentiable function of its mean, ϕ ∈ R.

Assumption 3.1. ∀x ∈ RD, the map ϕ 7→ Pϕ(x) is continuous and differentiable with respect to ϕ.

The next assumption is also satisfied for many functionals. For example, consider the mean functional
Ψ(Pϕ) = Ex∼Pϕ

[x]. Continuing with the univariate Gaussian example from above, where the mean
is unknown, we have ψ(ϕ) = ϕ, which is a continuous and differentiable function of ϕ.
Assumption 3.2. ψ(ϕ) is a continuous and differentiable function of ϕ.

The last assumption requires that the Fisher information matrix be invertible, which is necessary for
ϕ to be identifiable [Tsi06].
Assumption 3.3. Fisher information I(ϕ) := Ex∼Pϕ(x)[∇ϕ logPϕ(x)∇ϕ logPϕ(x)T] is invertible.
Theorem 3.4. (Theorem 3.5 in [Tsi06]) Suppose Assumption 3.1, Assumption 3.2, and Assumption 3.3
hold. Then, the efficient influence function φϕ(x̃) at ϕ evaluated at the point x̃ ∈ RD equals

[∇ϕψ(ϕ)]T I(ϕ)-1∇ϕ logPϕ(x̃). (1)

While Equation 1 has been around for many decades, it has mainly been used as a theoretical tool for
mathematical statisticians. In particular, Equation 1 is typically evaluated at the true data generating
parameter ϕ∗ to characterize the theoretical asymptotic variance of an estimator. In other instances,
it is used to derive approximate confidence intervals; see, for example, Chapter 3 in [Tsi06]. In the
following Sections, we discuss how Equation 1 provides a key ingredient in automating efficient
estimation in high-dimensional parametric models.

3.1 Numerically Approximating the EIF

Given a model Pϕ(·) and functional Ψ(·), we seek to automatically compute Equation 1. Our Monte
Carlo efficient influence function (MC-EIF) estimator achieves this automation by replacing ψ(ϕ) and

4

I(ϕ), which are typically unknown, with stochastic approximations ψ̂M (ϕ) and ÎM (ϕ) computed
from M ∈ N Monte Carlo samples:

φ̂ϕ,M (x̃) := [∇ϕψ̂M (ϕ)]T ÎM (ϕ)-1∇ϕ logPϕ(x̃). (2)

Here, we show that Equation 2 leads to an automated and accurate approach to numerically computing
EIFs using only quantities provided by existing AD and PPL systems.

Approximating ÎM(ϕ)-1∇ϕ logPϕ(x̃). We draw xm
iid∼ Pϕ(x), 1 ≤ m ≤M for M ∈ N, and let

ÎM (ϕ) =
1

M

M∑
m=1

∇ϕ logPϕ(xm)∇ϕ logPϕ(xm)T . (3)

A naive approach for computing ÎM (ϕ)-1∇ϕ logPϕ(x̃) is calculating the full p×pmatrix in Equation
3, inverting it, and then taking its product with the score vector∇ϕ logPϕ(xm)T ∈ Rp computed from
AD. This naive approach takes O(Mp2 + p3) time and O(p2) memory which might be too expensive
for large p. Instead, we exploit AD and numerical linear algebra techniques to avoid explicitly storing
and inverting the approximate Fisher information matrix, similar to [KL17]. Suppose that we have a
black-box method to compute Fisher vector products ÎM (ϕ)v for arbitrary vectors v ∈ Rp. Then, we
could use the conjugate gradient algorithm to iteratively find ÎM (ϕ)∇-1

ϕ logPϕ(x̃), where the cost
of each conjugate gradient step is determined by the cost to compute ÎM (ϕ)v. While the number of
conjugate gradient steps needs to be p for an exact inverse, often far fewer iterations are required for
a close approximate solution [WPG+19]. To make computing ÎM (ϕ)v efficient, we collect the M
simulated datapoints in the matrix XM ∈ RM×D and let

logPϕ(XM) := (logPϕ(x1), · · · , logPϕ(xM))T ∈ RM .

Then, ÎM (ϕ)v equals [
1

M
JTMJM

]
v =

[
1

M
JTM

]
[JMv] , (4)

where JM = ∇ϕ logPϕ(XM) ∈ RM×p is the Jacobian matrix. We use Pearlmutter’s trick to avoid
computing the entire Jacobian matrix [Pea94]. In particular, this method allows us to compute the
Jacobian vector product vM = [JMv] ∈ RM in time proportional to a single evaluation of logPϕ(X)
and O(M + p) memory. Similarly, we use the vector Jacobian product to compute JTMvM .

Approximating ∇ϕψ̂M(ϕ). Robust estimation with MC-EIF does not require exact gradients.
Instead, it only requires a sequence of gradient estimators {∇ϕψ̂m(ϕ)}∞m=1 of ∇ϕψ(ϕ) whose error
can be bounded above by some ∆m > 0, where the M th iterate ∇ϕψ̂M (ϕ) is used in Equation
2.2 Using such a sequence guarantees that the approximation error of Equation 2 is not dominated
by ∇ϕψ̂M (ϕ). In practice, the target functional ψ(θ) might be quite complex, making gradient
estimation challenging. For example, it might involve taking expectations with respect to conditionals
of Pϕ(x), or be defined implicitly as a solution to an optimization problem as in [JWZ22a].

One particularly simple and general way to address this challenge is to implement a Monte Carlo
estimator of ψ that can be transformed via automatic differentiation into an efficient Monte Carlo
estimator for its gradient, a well-understood problem that is beyond the scope of this paper to
review. We note that for the very wide class of functionals that can be written as nested expectations,
recent work [RCY+18, SW23, LHSM23] gives formal statements of smoothness assumptions and
theoretical results sufficient to obtain the oracle rate ∆m in terms of numbers of samples, as well as
algorithms that can be implemented using automatic differentiation software like PyTorch [PGC+17].
For example code snippets of functionals, see Appendix B.

3.2 Theoretical Guarantees for MC-EIF

We conclude by deriving a non-asymptotic error bound for how well Equation 2 approximates
Equation 1. For fixed input dimension D and model sizes p, Equation 2 converges to Equation 1 at a

2In Section 3.2, we require that ∆m = o
(√

m−1p log p
)

.

5

Op(1/
√
M) rate by the Law of Large Numbers. As we are interested in high-dimensional parametric

families, we analyze the behavior of our approximation as a function of both input dimension D and
model size p. To prove our result, we use standard tools and assumptions from empirical process
theory such as the requirement of sub-Gaussian tails [vdV98].
Assumption 3.5. Suppose x ∼ Pϕ(x). There exists a universal constant 0 < C1 <∞ such that the
normalized score vector x̃ := 1√

D
∇ϕ logPϕ(x) is a sub-Gaussian random vector with parameter C1.

As E[∥∇ϕj
logPϕ(x)∥22] = O(D), 1 ≤ j ≤ p, the division by

√
D in Assumption 3.5 ensures that

the variance of the score does not grow unboundedly as D → ∞. Thus, our assumption that x̃ is
sub-Gaussian is mild. Assumption 3.6 below ensures that the functional and score are smooth enough
by bounding their gradients.
Assumption 3.6. There exist universal constants C2, C3 < ∞ such that ∥∇ϕψ(ϕ)∥F < C2 and∥∥∥∇ϕ log Pϕ(x

∗)
D

∥∥∥
2
< C3 for any x∗ ∈ RD, for any p and D.

Unlike our Monte Carlo approximation to the Fisher information matrix, we do not assume a particular
type of estimator for ∇ϕψ(ϕ). To prove convergence of MC-EIF to the true EIF, we assume that
∇ϕψ̂M (ϕ) converges to∇ϕψ(ϕ) at the following rate:

Assumption 3.7. Let δM := ∇ϕψ(ϕ)−∇ϕψ̂M (ϕ) ∈ RL×p denote the approximation error. There
exists a universal constant Cψ <∞ such that for M > Cψ for any ϵ > 0,

P

(
∥δM∥F >

√
p log p+ ϵ

M

)
< exp(-ϵ), and P

(
∥∇ϕψ̂M (ϕ)∥F > C2

)
< exp(-ϵ),

In Appendix A.1, we prove that Monte Carlo estimators of∇ϕψ(ϕ) with gradient clipping [ZHSJ20]
satisfy Assumption 3.7. Hence, Assumption 3.7 is a mild condition. Under these three assumptions,
and the ones in Theorem 3.4, we prove the following result in Appendix A.1, which states that M
must scale linearly with p log p to guarantee close pointwise approximation.
Theorem 3.8. Suppose Assumption 3.1, Assumption 3.2, Assumption 3.3, Assumption 3.5, Assump-
tion 3.6, and Assumption 3.7 hold. Then, there exists universal constants 0 < C4 and C5 <∞, such
that for any ϵ > 0 and M > max(C5(p+ ϵ)C2

1 , Cψ),

|φϕ(x∗)− φ̂ϕ,M (x∗)| ≤ C4λmax(Σ
-1)

√
p log p+ ϵ

M
, (5)

for x∗ ∈ RD with probability at least 1 − 2 exp(−ϵ), where Σ := cov(x̃) and λmax(·) denotes the
largest eigenvalue of a matrix.

4 MC-EIF for Automated Efficient Inference

In Theorem 3.8, we proved that MC-EIF is close to the true efficient influence function pointwise.
In this Section we; (i) show how MC-EIF can be used to automate the construction of popular
efficient estimators, and (ii) prove how many Monte Carlo samples are needed to ensure that key
statistical properties hold when MC-EIF is used instead of the true EIF. In doing so, MC-EIF brings
conceptual clarity to the practice of constructing efficient estimators, and how these estimators can be
implemented using existing differentiable probabilistic programming languages like Pyro [BCJ+19].

All three of the efficient estimator templates we explore in this Section involve some combination
of plug-in estimation and EIF-based computations. A key practical benefit of our work is that
MC-EIF-based efficient estimators are entirely modular; advances in general-purpose probabilistic
inference technology directly translate to advances in efficient estimation under our framework.

4.1 Von Mises One Step Estimator

We start with the simple Von Mises One Step Estimator, which corrects the plug-in estimator in
Section 2 by adding the average value of the efficient influence function on a held out dataset. Despite
its simplicity, this estimator achieves optimal statistical rates [Ken22]. Our one step estimator using
MC-EIF (φ̂ϕ,M (x)) instead of the true efficient influence function (φϕ(x)) is provided in Algorithm 1.

6

Algorithm 1 MC-EIF one step estimator

Input: Target functional ψ, initial estimate of parameters ϕ̂, held out datapoints {xn}Nn=N/2+1,
Number of Monte Carlo samples M
θ̂plug-in ← ψ(ϕ̂) {plug-in estimate}
C = 2

N

∑N
n=N/2+1 φ̂ϕ̂,M (xn) {MC-EIF one step correction}

Return: θ̂plug-in + C

Theoretical Guarantees. We call the one step estimator that uses the true EIF instead of MC-EIF in
Algorithm 1 the analytic one step estimator. Below we prove how many MC samples are needed to
ensure our estimator for finite M has the same statistical properties as the analytic one step estimator.

Proposition 4.1. Let θ̂∗ denote the output of the analytic one step estimator and θ̂ the output of
Algorithm 1 for M = ∞ and M < ∞, respectively. If M = Ω(Np log p), p > O(logN) and the
assumptions in Theorem 3.8 hold, then ∥θ̂∗ − θ̂∥2 = op(1/

√
N).

By Proposition 4.1, MC-EIF is asymptotically efficient when the number of Monte Carlo samples in
Algorithm 1 grows faster than Np log p.

4.2 Debiased/Double ML

Next, we express debiased/double ML (DML) [CCD+18] in terms of MC-EIF. To rewrite DML
explicitly in terms of MC-EIF, we largely follow [CCD+18, IN22].

Algorithm 2 MC-EIF debiased ML

Input: Vector of estimating equations g, initial estimate of parameters ϕ̂, held out datapoints
{xn}Nn=N/2+1, Number of Monte Carlo samples M

f(θ)← 2
N

∑N
n=N/2+1 g(xn, η(pϕ̂), θ) + φ̂ϕ̂,M (xn, θ) {MC-EIF orthogonal moment function}

Return: {θ : f(θ) = 0}

Construction of Orthogonal Generalized Method of Moment (GMM) Estimators. GMM-based
estimators are defined by a nuisance functional η(·) ∈ RJ , J ∈ N, and a set of K ∈ N functions
{gk(x, η(Pϕ), θ)}Kk=1, often called estimating equations. These estimating equations are selected so
that their roots uniquely identify θ∗ when the nuisance parameters η(Pϕ) are estimated correctly:

Ex∼Pϕ∗ (x)[g(x, η(Pϕ∗), θ)] = 0 ⇐⇒ θ = θ∗, (6)

where g := (g1, · · · , gK). As an example, g might be the gradient of the log-likelihood function.
To make GMM-based estimators less sensitive to incorrect estimation of the nuisance parameters,
[CCD+18, IN22, CNS22] replace g(·) with the orthogonal moment function, constructed using
influence functions. In our setting3 , the orthogonal moment function equals the following:

g(x, η(Pϕ), θ) + φϕ(x, θ), (7)

where φϕ(x, θ) is the efficient influence function associated with the functional µθ(ϕ) =
Ex∼Pϕ

[g(x, η(Pϕ), θ)] for fixed θ by Equation 2.6 in [IN22]. By Theorem 3.4,

φϕ(x, θ) := [∇ϕµθ(ϕ)]T I(ϕ)-1∇ϕ logPϕ(x). (8)

Since g is a known by assumption, we can readily use the Monte Carlo methods in [KW14, SHWA15]
to automatically approximate∇ϕµθ(ϕ). We summarize the DML algorithm in Algorithm 2 which
replaces Equation 8 with our MC-EIF approximation.

Theoretical Guarantees. For general estimating equations, it is difficult to quantity how errors in
our MC-EIF approximation to Equation 8 lead to changes in final estimates. When the estimating
equations have more structure, however, we obtain a similar result as in Proposition 4.1.

3DML can handle functionals which are not pathwise differentiable. As we only consider parametric model
families, however, we can assume without loss of generality that the functional is pathwise differentiable [FS23]
and that the range space of the nuisance functional is finite-dimensional. Consequently, we can express DML in
terms of efficient influence functions.

7

Assumption 4.2. g(xn, η(Pϕ), θ) = m(xn, η(Pϕ))− θ for some vector of known functions m(·).

Assumption 4.2 was made in several works [CNS22, IN22] already. We prove an analogous rate
guarantee as in Proposition 4.1 under Assumption 4.2.

Proposition 4.3. Let θ̂∗ denote the output of the analytic DML estimator and θ̂ the output of
Algorithm 2 for M = ∞ and M < ∞, respectively. If M = Ω(Np log p), p > O(logN) and the
assumptions in Theorem 3.8and Assumption 4.2 hold, then ∥θ̂∗ − θ̂∥2 = op(1/

√
N).

4.3 Targeted Minimum Loss Estimation

We conclude by writing targeted minimum loss estimation (TMLE) [VDLR06] explicitly in terms of
MC-EIF. Unlike the one step estimator or DML, TMLE directly corrects the estimated distribution
pϕ̂(x) and then plugs in the corrected distribution into the functional Ψ as the final estimate. To
perform this correction it perturbs pϕ̂ in the direction of the influence function, searching for the
optimal step size by maximizing the perturbed likelihood on the held out dataset. Intuitively, TMLE
can be viewed as a form of gradient ascent in function space. We show one step TMLE [VDLR06]
in Algorithm 3. The multi-step TMLE version is computed by iterating Algorithm 3 multiple times
until ϵ approximately equals 0 [VDLR06].

Algorithm 3 MC-EIF one step TMLE

Input: Target functional Ψ, initial estimate of parameters ϕ̂, held out datapoints {xn}Nn=N/2+1,
Number of Monte Carlo samples M
p(ϵ, x)← (1 + ϵT φ̂ϕ̂,M (x))pϕ̂(x) {MC-EIF projected ϵ-perturbed density function}

ϵ̂← argmaxϵ∈RL:p(ϵ,x)∈M
2
N

∑N
n=N/2+1 log p(ϵ, xn) {Maximum likelihood search over ϵ}

Return: Ψ(p(ϵ̂, ·))

5 Experiments

We start by comparing the quality of MC-EIF against other methods for influence function approxima-
tion. Then, we show how MC-EIF behaves when; (i) the number of Monte Carlo samples is varied, (ii)
the dimensionality of the input is varied, and (iii) the efficient estimator type is varied. Our empirical
results ultimately validate our theoretical results in Section 3 and Section 4. Finally, we show how
MC-EIF can be used to automate the construction of efficient estimators for new functionals by
revisiting a classic problem in optimal portfolio theory. Our MC-EIF implementation is publicly
available in the Python package ChiRho. All results shown here are end-to-end reproducible.

In [JWZ22a], the authors target the nonparametric influence function, which is the unique influence
function whenM = L2(P) in Definition 2.1. By contrast, we target the efficient influence function.
Thus, for evaluation, we compare how well the empirical Gateaux method from [JWZ22a] approx-
imates the nonparametric influence function and how well our MC-EIF method approximates the
efficient influence function on the same data-generating process.

To have a ground truth for comparison, we select a simple model and functional where we can
analytically compute the nonparametric and efficient influence functions. To this end, we consider the
problem of estimating the expected density, Ψ(P) =

∫
P(x)2dx as in [BR88, CLvdL19]. We further

suppose that x ∼ N(µ, σ). We consider two parametric model families: one where µ is unknown but
σ = 1, and one where both µ and σ are unknown, which we callM1 andM2 respectively. As the
nonparametric influence function makes no assumptions on the underlying model family, it remains
fixed acrossM1 andM2 and always equals 2(P(X)−Ψ(P)) [CLvdL19]. However, the EIF equals
zero forM1, as the expected density does not depend on µ. Hence, any plug-in estimate for models
inM1 will result in a correct value of the expected density, and thus no distributional perturbations
produce any change. InM2, the efficient influence function for the expected density depends on the
unknown σ. See Figure 7 in the Appendix for further intuition around the expected density influence
functions in parametric (in unknown σ) and non-parametric settings.

Figure 1 summarizes how well the empirical Gateaux derivative method approximates the nonpara-
metric influence function and how well our MC-EIF method approximates the EIF at the point

8

https://github.com/BasisResearch/chirho

Value of x

−0.04

−0.02

0.00

0.02

0.04

In
flu

en
ce

F
un

ct
io

n
at
x

(a) known σ2

Value of x
−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

In
flu

en
ce

F
un

ct
io

n
at
x

Analytic EIF

Monte Carlo EIF

(b) unknown σ2 (c) Empirical Gateaux

Figure 1: Comparison between MC-EIF and
empirical Gateaux approximation. MC-EIF (a
and b) is less sensitive to hyperparameters (ϵ and
λ) than the empirical Gateaux baseline (c).

Figure 2: Empirical evidence for conver-
gence theory. Increasing p for the ATE ex-
periments produces MC-EIF approximation
errors that closely match and sit below the
worst-case error rates given by Theorem 3.8.

Pϕ = N(0, 1). We see that MC-EIF is able to approximate the efficient influence function very well
(M = 104 samples). By contrast, the empirical Gateaux derivative is highly sensitive to the choice of
two kernel smoothing hyperparameters, ϵ and λ. As the true influence function is not known, it is not
always clear how to select ϵ and λ.4 Such numerical instability was already discussed in [CLvdL19],
where the precision necessary must get exponentially smaller with input dimension, making it infeasi-
ble when D ≈ 10.5 MC-EIF, however, has only a single tunable parameter (M), where larger M
unambiguously provides a better approximation. In Theorem 3.8, we provided conditions for this
improvement, and Figure 9 of the Appendix corroborates the unsurprising improvement empirically.
We further discuss challenges in automating the empirical Gateaux method in Appendix C. We
attempted to use the empirical Gateaux derivative as a baseline for other experiments, but were unable
to achieve numerically stable solutions for any p > 2 without prohibitively long run-times.

Next, we focus on a classic model consisting of a binary treatment, high-dimensional continuous
confounders, and Gaussian distributed response; see Appendix E for the precise model formula. We
assume that the analyst is interested in estimating the average treatment effect (ATE), where the
true ATE is zero but unknown. All influence function computations are relative to an initial point
estimate ϕ̂, found through maximum a posteriori estimation using 500 training datapoints. Due to the
exponential runtime in dimension for the methods in [JWZ22a, CLvdL19], we focus on comparing
MC-EIF with the analytic influence function for ATE below.

Sensitivity to Dimensionality. Theorem 3.8 implies that for a fixed number of Monte Carlo samples
M , the quality of the approximation degrades with the square root of model dimension p. In Figure 2,
we empirically show how approximation quality degrades as p increases for M = 104 fixed. Based
on Figure 2, the empirical results closely match the theoretical behavior predicted by Theorem 3.8.6
We also show how the computational complexity of MC-EIF scales as p increases in Figure 2.

Sensitivity to Estimator Type. Here, we consider a high-dimensional setup where there are 200
confounders but only 500 training datapoints. We simulate 100 different datasets with this configura-
tion to approximate the sampling distribution of different efficient estimators. In Figure 3, we see
that across estimators, using MC-EIF instead of the true EIF results in minimal downstream error.
This is consistent with our theoretical results in Section 4. While MC-EIF is agnostic to the choice of

4One suggestion is to visually inspect an epsilon-lambda plot (like the one in Figure 1) for a “...possibly
curvilinear triangular region nested in the upper left portion of the [plot]. In this region, the finite-difference
approximation of the EIF value should be essentially constant ([CLvdL19], §4.3).”

5Specifically, where the non-parametric dimensionality of the data unit is d = d1 + d2, current theory
requires ϵ ≪ λd1 , or even ϵ ≪ λd in some largely avoidable cases ([CLvdL19], §4.1). If functional evaluation
is approximate, smaller ϵ requires significantly more compute for the finite difference to dominate Monte Carlo
error in estimating the difference between the functional evaluated on the plugin distribution, and the functional
evaluated on the ϵ-perturbed distribution. ϵ might even be so small as to overrun floating point accuracy on
modern machines — even .116 exceeds standard precision recommendations for 64-bit floating point values.

6As discussed in Section 3.2, to make the error not grow with p, we would need M ≍ p log p.

9

(a) One Step (b) TMLE (c) Double ML
Figure 3: Comparison between ATE estimators
using MC-EIF and analytic EIF. MC-EIF pro-
duces ATE estimates very close to the diagonal,
representing an oracle estimator of the EIF.

Metric One Step MC-EIF Plug-in
REV 1.86± .35 2.60± .35

RMSE .08± .02 .14± .02

Table 1: Empirical results for Markowitz
optimal portfolio optimization. Using MC-
EIF, Algorithm 1 achieves lower relative ex-
pected volatility (REV) and RMSE compared
to the oracle estimator.

efficient estimator, one may prefer some over others depending on the problem. See Figures 5 and 6
of the Appendix for an example performance comparison between efficient estimators of the ATE.

Ability to Handle New Functionals. To illustrate MC-EIF’s flexibility, we revisit a classic problem
in optimal portfolio theory. Suppose that x ∈ RD is a vector of asset returns. We are interested
in estimating the optimal portfolio weights θ∗ ∈ RD that maximize the expected return while
minimizing the variance of the portfolio. Then, the Markowitz optimal portfolio [Mar52] is given by:

Ψλ(Pϕ) = arg max
θ∈RD

θTEPϕ
[x]− λθTCov(x;Pϕ)θ, subject to

D∑
i=1

θi = 1, (9)

where λ is the tradeoff between expected return and variance (measure of risk), and Cov(x;Pϕ)
denotes the covariance matrix with respect to Pϕ. Hence, the optimal weights functional Ψλ(Pϕ)
depends on a high-dimensional nuisance, namely the D ×D covariance matrix of returns. The target
θ∗ϕ,λ = Ψλ(Pϕ) is a much lower D-dimensional target parameter. Setting λ =∞ corresponds to the
global minimum variance portfolio [HB91, JM03, ARU20], for which there is (to our knowledge) no
efficient estimator in the literature. We show results in Table 1 indicating substantial improvement in
a synthetic data experiment; a detailed description of this experiment may be found in Appendix E.2.

6 Limitations

As discussed in Assumptions 3.1 and 3.2, both the likelihood and the target functional must be
differentiable with respect to ϕ. In practice, especially if the model involves latent discrete random
variables, some degree of relaxation, marginalization, or reparameterization may be required to
ensure differentiability [JGP17]. Recall also that while MC-EIF operates on models with finite
parametrizations (Section 3), its capacity to handle high-dimensional nuisance parameters means it can
likely apply to, for example, function approximators that recover some of the value proposition offered
by non-parametric model components [HSW89]. Additionally, as discussed in Appendix D, infinite-
dimensional models (like the Gaussian process) can often be reduced to finite ones where MC-EIF can
be applied. That said, future work is needed to fully explore the practical and empirical capabilities
of MC-EIF in these settings, including how the polynomial complexity of Fisher information matrix
inversions plays out in practice.

7 Conclusion

We have shown both theoretically and empirically that MC-EIF can reliably be used to automate
efficient estimation. Our key contributions include MC-EIF’s consistency and capability to achieve
optimal convergence rates. Empirical evidence shows that MC-EIF performs comparably to tradi-
tional estimators using analytic EIFs. Additionally, we illustrate the practical application of MC-EIF
in scenarios where the analytic EIF is not known. Given these contributions, there are many exciting
areas of future work. For example, one may with to construct more powerful provably efficient
estimators on top of MC-EIF (see Appendix D) and explore the growing connection between semi-
parametric theory and heuristic methods in deep learning [VACB22, BNL+22, DKSM21, ZDJ+23].
Additionally, there are many methods that could be used to accelerate the calculation of the Fisher
information matrix, which is a computational bottleneck in MC-EIF. Given its foundational role in
statistics, various techniques—such as using Kronecker-factored approximations [GM16]—could
improve efficiency without sacrificing performance.

10

Acknowledgments and Disclosure of Funding

The authors would like to thank DARPA for funding this work through the Automating Scientific
Knowledge Extraction and Modeling (ASKEM) program, Agreement No. HR0011262087. The
views, opinions and/or findings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.
The authors would also like to thank Tamara Broderick, David Burt, and Ryan Giordano for helpful
discussions.

References
[Ama16] Shun-ichi Amari. Information geometry and its applications, volume 194. Springer,

2016.

[ARU20] Raj Agrawal, Uma Roy, and Caroline Uhler. Covariance matrix estimation under total
positivity for portfolio selection. Journal of Financial Econometrics, 20(2):367–389,
09 2020.

[BCJ+19] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.

[BKB+93] Peter J Bickel, Chris AJ Klaassen, Peter J Bickel, Ya’acov Ritov, J Klaassen, Jon A
Wellner, and YA’Acov Ritov. Efficient and adaptive estimation for semiparametric
models, volume 4. Springer, 1993.

[BKW23] Sivaraman Balakrishnan, Edward H Kennedy, and Larry Wasserman. The fundamental
limits of structure-agnostic functional estimation. arXiv preprint arXiv:2305.04116,
2023.

[BNL+22] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If
influence functions are the answer, then what is the question? Advances in Neural
Information Processing Systems, 35:17953–17967, 2022.

[BPRS18] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal
of Marchine Learning Research, 18:1–43, 2018.

[BR88] P. J. Bickel and Y. Ritov. Estimating integrated squared density derivatives: Sharp
best order of convergence estimates. Sankhyā: The Indian Journal of Statistics,
50(3):381–393, 1988.

[BvdLA+23] Laura B Balzer, Mark van der Laan, James Ayieko, Moses Kamya, Gabriel Chamie,
Joshua Schwab, Diane V Havlir, and Maya L Petersen. Two-stage tmle to reduce
bias and improve efficiency in cluster randomized trials. Biostatistics, 24(2):502–517,
2023.

[CCD+18] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for
treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68, 01
2018.

[CGMM23] Brian Cho, Kyra Gan, Ivana Malenica, and Yaroslav Mukhin. Kernel debiased plug-in
estimation. arXiv preprint arXiv:2306.08598, 2023.

[Cha20] Neng-Chieh Chang. Double/debiased machine learning for difference-in-differences
models. The Econometrics Journal, 23(2):177–191, 2020.

[CLvdL19] Marco Carone, Alexander R. Luedtke, and Mark J. van der Laan. Toward computerized
efficient estimation in infinite-dimensional models. Journal of the American Statistical
Association, 114(527):1174–1190, 2019.

11

[CNQMS21] Victor Chernozhukov, Whitney K Newey, Victor Quintas-Martinez, and Vasilis Syrgka-
nis. Automatic debiased machine learning via neural nets for generalized linear
regression. arXiv preprint arXiv:2104.14737, 2021.

[CNQMS22] Victor Chernozhukov, Whitney Newey, Victor M Quintas-Martinez, and Vasilis
Syrgkanis. Riesznet and forestriesz: Automatic debiased machine learning with
neural nets and random forests. In International Conference on Machine Learning,
pages 3901–3914. PMLR, 2022.

[CNS22] Victor Chernozhukov, Whitney K Newey, and Rahul Singh. Automatic debiased
machine learning of causal and structural effects. Econometrica, 90(3):967–1027,
2022.

[CTSLM19] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mans-
inghka. Gen: a general-purpose probabilistic programming system with programmable
inference. In Proceedings of the 40th acm sigplan conference on programming lan-
guage design and implementation, pages 221–236, 2019.

[DJS08] Arnak S. Dalalyan, Anatoly Juditsky, and Vladimir Spokoiny. A new algorithm for
estimating the effective dimension-reduction subspace. Journal of Machine Learning
Research, 9(53):1647–1678, 2008.

[DKSM21] Tri Dao, Govinda M Kamath, Vasilis Syrgkanis, and Lester Mackey. Knowledge
distillation as semiparametric inference. arXiv e-prints, pages arXiv–2104, 2021.

[DTA+22] Lauren Eyler Dang, Jens Magelund Tarp, Trine Julie Abrahamsen, Kajsa Kvist, John B
Buse, Maya Petersen, and Mark van der Laan. A cross-validated targeted maximum
likelihood estimator for data-adaptive experiment selection applied to the augmentation
of rct control arms with external data. arXiv preprint arXiv:2210.05802, 2022.

[FHL+22] Helmut Farbmacher, Martin Huber, Lukáš Lafférs, Henrika Langen, and Martin
Spindler. Causal mediation analysis with double machine learning. The Econometrics
Journal, 25(2):277–300, 2022.

[FQWD15] Constantine E Frangakis, Tianchen Qian, Zhenke Wu, and Ivan Diaz. Deductive deriva-
tion and turing-computerization of semiparametric efficient estimation. Biometrics,
71(4):867–874, 2015.

[FR22] R. A. Fisher and Edward John Russell. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 222(594-604):309–368,
1922.

[FS23] Dylan J. Foster and Vasilis Syrgkanis. Orthogonal statistical learning. The Annals of
Statistics, 51(3):879 – 908, 2023.

[GBA+23] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein
Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large lan-
guage model generalization with influence functions. arXiv preprint arXiv:2308.03296,
2023.

[GLB+18] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent.
Fast approximate natural gradient descent in a kronecker factored eigenbasis. Advances
in Neural Information Processing Systems, 31, 2018.

[GM16] Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for
convolution layers. In International Conference on Machine Learning, pages 573–582,
2016.

[GSL+19] Ryan Giordano, William Stephenson, Runjing Liu, Michael Jordan, and Tamara
Broderick. A swiss army infinitesimal jackknife. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 1139–1147. PMLR, 2019.

12

[HB91] Robert A. Haugen and Nardin L. Baker. The efficient market inefficiency of
capitalization-weighted stock portfolios. Journal of Portfolio Management, 17:35–40,
1991.

[HDDOV22] Oliver Hines, Oliver Dukes, Karla Diaz-Ordaz, and Stijn Vansteelandt. Demystifying
statistical learning based on efficient influence functions. The American Statistician,
76(3):292–304, 2022.

[Hil11] Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of
Computational and Graphical Statistics, 20(1):217–240, 2011.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[HTW15] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with
Sparsity: The Lasso and Generalizations. Chapman & Hall/CRC, 2015.

[IN22] Hidehiko Ichimura and Whitney K. Newey. The influence function of semiparametric
estimators. Quantitative Economics, 13(1):29–61, 2022.

[JGP17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax, 2017.

[JM03] Ravi Jagannathan and Tongshu Ma. Risk reduction in large portfolios: Why imposing
the wrong constraints helps. The Journal of Finance, 58(4):1651–1683, 2003.

[JTB21a] Yonghan Jung, Jin Tian, and Elias Bareinboim. Double machine learning density esti-
mation for local treatment effects with instruments. Advances in Neural Information
Processing Systems, 34:21821–21833, 2021.

[JTB21b] Yonghan Jung, Jin Tian, and Elias Bareinboim. Estimating identifiable causal effects
through double machine learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12113–12122, 2021.

[JWZ22a] Michael Jordan, Yixin Wang, and Angela Zhou. Empirical gateaux derivatives for
causal inference. Advances in Neural Information Processing Systems, 35:8512–8525,
2022.

[JWZ22b] Michael I Jordan, Yixin Wang, and Angela Zhou. Data-driven influence functions for
optimization-based causal inference. arXiv preprint arXiv:2208.13701, 2022.

[KBB+13] Noureddine El Karoui, Derek Bean, Peter J. Bickel, Chinghway Lim, and Bin Yu.
On robust regression with high-dimensional predictors. Proceedings of the National
Academy of Sciences, 110(36):14557–14562, 2013.

[Ken16] Edward H. Kennedy. Semiparametric Theory and Empirical Processes in Causal
Inference, pages 141–167. Springer International Publishing, 2016.

[Ken22] Edward H Kennedy. Semiparametric doubly robust targeted double machine learning:
a review. arXiv preprint arXiv:2203.06469, 2022.

[KHB19] Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical
fisher approximation for natural gradient descent. Advances in neural information
processing systems, 32, 2019.

[KK21] Zeljko Kereta and Timo Klock. Estimating covariance and precision matrices along
subspaces. Electronic Journal of Statistics, 15(1):554 – 588, 2021.

[KKP+15] Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman,
et al. Nonparametric von mises estimators for entropies, divergences and mutual
informations. Advances in Neural Information Processing Systems, 28, 2015.

[KL17] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In International conference on machine learning, pages 1885–1894. PMLR,
2017.

13

[KW14] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Interna-
tional Conference on Learning Representations, 2014.

[Law86] John Law. Robust statistics—the approach based on influence functions, 1986.

[LHSM23] Alexander K Lew, Mathieu Huot, Sam Staton, and Vikash K Mansinghka. Adev:
Sound automatic differentiation of expected values of probabilistic programs. Pro-
ceedings of the ACM on Programming Languages, 7(POPL):121–153, 2023.

[LHvdL23] Haodong Li, Alan Hubbard, and Mark van der Laan. Targeted learning on variable im-
portance measure for heterogeneous treatment effect. arXiv preprint arXiv:2309.13324,
2023.

[Mar52] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[Pea94] Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation,
6(1):147–160, 1994.

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch, 2017.

[Rao45] Calyampudi Radhakrishna Rao. Information and the accuracy attainable in the es-
timation of statistical parameters. Bulletin of the Calcutta Mathematical Society,
37(3):81–91, 1945.

[RCY+18] Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood.
On nesting monte carlo estimators. In International Conference on Machine Learning,
pages 4267–4276. PMLR, 2018.

[REvdL23] Helene CW Rytgaard, Frank Eriksson, and Mark J van der Laan. Estimation of
time-specific intervention effects on continuously distributed time-to-event outcomes
by targeted maximum likelihood estimation. Biometrics, 79(4):3038–3049, 2023.

[RGvdL22] Helene C Rytgaard, Thomas A Gerds, and Mark J van der Laan. Continuous-time
targeted minimum loss-based estimation of intervention-specific mean outcomes. The
Annals of Statistics, 50(5):2469–2491, 2022.

[RLT+08] James Robins, Lingling Li, Eric Tchetgen, Aad van der Vaart, et al. Higher order
influence functions and minimax estimation of nonlinear functionals. In Probability
and statistics: essays in honor of David A. Freedman, volume 2, pages 335–422.
Institute of Mathematical Statistics, 2008.

[RvdL24] Helene CW Rytgaard and Mark J van der Laan. Targeted maximum likelihood
estimation for causal inference in survival and competing risks analysis. Lifetime Data
Analysis, 30(1):4–33, 2024.

[SHWA15] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient
estimation using stochastic computation graphs. In Neural Information Processing
Systems, 2015.

[SW23] Yasa Syed and Guanyang Wang. Optimal randomized multilevel monte carlo for
repeatedly nested expectations. arXiv preprint arXiv:2301.04095, 2023.

[TR19] Da Tang and Rajesh Ranganath. The variational predictive natural gradient. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6145–6154. PMLR, 09–15 Jun 2019.

[Tsi06] Anastasios A Tsiatis. Semiparametric theory and missing data. Springer, 2006.

[VACB22] Matthew J Vowels, Sina Akbari, Necati Cihan Camgoz, and Richard Bowden. A free
lunch with influence functions? improving neural network estimates with concepts
from semiparametric statistics. arXiv preprint arXiv:2202.09096, 2022.

14

[VDLR06] Mark J Van Der Laan and Daniel Rubin. Targeted maximum likelihood learning. The
international journal of biostatistics, 2(1), 2006.

[vdV98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998.

[vdV14] Aad van der Vaart. Higher order tangent spaces and influence functions. Statistical
Science, pages 679–686, 2014.

[Wai19] Martin (Martin J.) Wainwright. High-dimensional statistics : a non-asymptotic
viewpoint. Cambridge University Press, 2019.

[WPG+19] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and
Andrew Gordon Wilson. Exact gaussian processes on a million data points. Advances
in neural information processing systems, 32, 2019.

[WPvdL+23] Waverly Wei, Maya Petersen, Mark J van der Laan, Zeyu Zheng, Chong Wu, and
Jingshen Wang. Efficient targeted learning of heterogeneous treatment effects for
multiple subgroups. Biometrics, 79(3):1934–1946, 2023.

[WvdLP+23] Zeyi Wang, Lars van der Laan, Maya Petersen, Thomas Gerds, Kajsa Kvist, and
Mark van der Laan. Targeted maximum likelihood based estimation for longitudinal
mediation analysis. arXiv preprint arXiv:2304.04904, 2023.

[ZDJ+23] Banghua Zhu, Mingyu Ding, Philip Jacobson, Ming Wu, Wei Zhan, Michael Jordan,
and Jiantao Jiao. Doubly robust self-training. arXiv preprint arXiv:2306.00265, 2023.

[ZHSJ20] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clip-
ping accelerates training: A theoretical justification for adaptivity. In International
Conference on Learning Representations, 2020.

A Proofs

A.1 Proof of Theorem 3.8

Proof. Let {xm}Mm=1 denote the M Monte Carlo samples in Equation 3, and let x̃m :=
1√
D
∇ϕ logPϕ(xm) for 1 ≤ m ≤ M . Let Σ̂ = 1

M

∑M
m=1 x̃mx̃

T
m denote the sample covariance

matrix. Then, Σ = 1
D I(ϕ) and Σ̂ = 1

D Î(ϕ). Hence,

|φϕ(x)− φ̂ϕ,M (x)| =
∣∣∣∣[∇ϕψ̂M (ϕ)]T (Σ-1 − Σ̂-1)

∇ϕ logPϕ(x∗)
D

+ δMΣ-1∇ϕ logPϕ(x∗)
D

∣∣∣∣
≤
∣∣∣∣[∇ϕψ̂M (ϕ)]T (Σ-1 − Σ̂-1)

∇ϕ logPϕ(x∗)
D

∣∣∣∣+ ∣∣∣∣δMΣ-1∇ϕ logPϕ(x∗)
D

∣∣∣∣
≤
∣∣∣∣[∇ϕψ̂M (ϕ)]T (Σ-1 − Σ̂-1)

∇ϕ logPϕ(x∗)
D

∣∣∣∣+ ∣∣δMΣ-1C3

∣∣
≤
∣∣∣∣[∇ϕψ̂M (ϕ)]T (Σ-1 − Σ̂-1)

∇ϕ logPϕ(x∗)
D

∣∣∣∣+ C3λmax(Σ
-1)∥δM∥F

(10)

By Assumption 3.7, ∥δM∥F <
√

p+ϵ
M with probability greater than 1− exp(−ϵ) when M > Cψ . If

we can prove that there exists a constant C4∣∣∣∣[∇ϕψ̂M (ϕ)]T (Σ-1 − Σ̂-1)
∇ϕ logPϕ(x∗)

D

∣∣∣∣ ≤ C4λmax(Σ
-1)

√
p log p+ ϵ

M
(11)

with probability greater than 1− 2 exp(−ϵ), the claim follows by an application of the union bound.
By Theorem 10 in [KK21], the claim follows if we can prove that there exists a universal constant C4

such that ∥∥∥∥∥∇ϕ logPϕ(x∗)D

T

Σ-1x̃

∥∥∥∥∥
ψ2

∥∥∥∇ϕψ̂M (ϕ)TΣ-1x̃
∥∥∥
ψ2

< C4λmax(Σ
-1), (12)

15

with probability greater than 1− exp(−ϵ), where ∥ · ∥ψ2 denotes the Orlicz sub-Gaussian norm; see
Equation 9 in [KK21] for a precise definition of the Orlicz norm of a random vector. With probability
greater than 1− exp(−ϵ), ∥∇ϕψ̂M (ϕ)∥F < C2 by Assumption 3.7. Hence, with probability greater
than 1− exp(−ϵ),∥∥∥∥∥∇ϕ logPϕ(x∗)D

T

Σ-1x̃

∥∥∥∥∥
ψ2

∥∥∥∇ϕψ̂TMΣ-1x̃
∥∥∥
ψ2

≤ C2C3

∥∥Σ-1x̃
∥∥2
ψ2

≤ C2C3∥Σ−1/2∥22∥Σ−1/2x̃∥2ψ2

≤ C1C2C3∥Σ−1/2∥22∥cov(Σ−1/2x̃)∥2
= C1C2C3∥Σ−1/2∥22
= C1C2C3λmax(Σ

-1),

(13)

where the first inequality follows from Assumption 3.6, the third by [DJS08] and Assumption 3.5,
and last by the definition of the spectral norm of a matrix. The result now follows by setting
C4 = C1C2C3.

Assumption 3.7 Holds for Monte Carlo Estimators. Here we show if ψ̂M is also approximated
with M Monte Carlo samples, then Assumption 3.7 holds. To this end, suppose

∇ϕψ̂M (ϕ) =
1

M

M∑
m=1

∇ϕgϕ(wm), wm
iid∼ q(w) 1 ≤ m ≤M, s.t. E[∇ϕgϕ(wm)] = ∇ϕψ(ϕ),

(14)
for some distribution q(w) and function gϕ. Such a decomposition exists, for example, when the
functional is expressible as a stochastic computation graph [SHWA15] or for reparameterizable
densities [KW14]. Suppose further that there exists a universal constant such that∇ϕj

gϕ(wm) ∈ RL
is a sub-Gaussian random vector with parameter σψ for 1 ≤ j ≤ p. Then,

∥δM∥F =

√√√√ p∑
j=1

L∑
l=1

([(∇ϕj
gϕ(wm)]l − [(∇ϕj

ψ(wm)]l)2

≤
√
pL max

1≤l≤L,1≤j≤p
|[(∇ϕjgϕ(wm)]l − [(∇ϕjψ(wm)]l|

(15)

By Exercise 2.12 in [Wai19],

max
1≤l≤L,1≤j≤p

|[(∇ϕjgϕ(wm)]l − [(∇ϕjψ(wm)]l| = Op

(
σψ

√
log(pL)

M

)
(16)

Hence, since L is a constant, ∥δM∥F = Op

(√
p log(p)
M

)
. Thus, the first equation in Assumption 3.7

holds. Under Assumption 3.6, the second equation in Assumption 3.7 trivially holds using gradient
clipping with C2.

A.2 Proof of Theorem 4.1

Proof. We want to prove that difference between the analytic one step estimator and Algorithm 1
with finite M decays at a op

(
1√
N

)
rate. Their difference equals∣∣∣∣∣∣ 2N

N∑
n=N/2+1

(
φϕ̂(xn)− φ̂ϕ̂,M (xn)

)∣∣∣∣∣∣ ≤ max
n=N/2+1,··· ,N

∣∣∣φϕ̂(xn)− φ̂ϕ̂,M (xn)
∣∣∣ . (17)

Let ϵ > 0 and supposeM ′ = C2
4 max(C5, 1)(p log(p)+ϵ)max(C2

1 , 1)Nλ
2
max(Σ

-1) = O(p log pN),
where C1 is defined in Assumption 3.5, and C5 and Σ-1 are defined in Theorem 3.8. If

P∗

(
max

n=N/2+1,··· ,N

∣∣∣φϕ̂(xn)− φ̂ϕ̂,M ′(xn)
∣∣∣ >√ 2

N

)
≤ exp(−ϵ). (18)

16

holds, then the proof is complete since M grows faster than M ′. Let ϵN = ϵ + log(N/2). By
Theorem 3.8 and the union bound,

P∗

(
max

n=N/2+1,··· ,N

∣∣∣φϕ̂(xn)− φ̂ϕ̂,M ′(xn)
∣∣∣ > C4λmax(Σ

-1)

√
p log(p) + ϵN

M ′

)

≤ N

2

N∑
n=N/2+1

P∗

(∣∣∣φϕ̂(xn)− φ̂ϕ̂,M ′(xn)
∣∣∣ > C4λmax(Σ

-1)

√
p log(p) + ϵN

M ′

)
≤ N/2 exp(−ϵN)

= exp(−ϵN + logN/2)

= exp(−ϵ)

(19)

Now,

C4λmax(Σ
-1)

√
p log(p) + ϵN

M ′ = C4λmax(Σ
-1)

√
p log(p) + ϵ+ log(N/2)

C2
4 max(C5, 1)(p+ ϵ)max(C2

1 , 1)Nλ
2
max(Σ

-1)

≤
√
p log(p) + ϵ+ log(N/2)

(p log(p) + ϵ)N

≤
√

2

N
.

(20)

The proof now follows from Equation 19 and Equation 20.

A.3 Proof of Theorem 4.3

Lemma A.1. Suppose Assumption 4.2 holds. Then, θ̂DML = 2
N

∑N
n=N/2+1m(xn, η(pϕ̂)) +∑N

n=1 φϕ̂(xn), where φϕ(x) is the influence function associated with the functional ψ(ϕ) =

Ex∼Pϕ(x)[m(xn, η(Pϕ))].

Proof. We claim φϕ(x, θ) = φϕ(x) for all θ. To prove this claim, notice that∇ϕµθ(ϕ) = ∇ϕµθ′(ϕ)
for arbitrary θ and θ′ since µθ(ϕ) = Ex∼Pϕ

[m(xn, η(Pϕ))] − θ. Hence, the claim follows from
Equation 8. Now,

2

N

N∑
n=N/2+1

[
g(xn, η(pϕ̂), θ) + φϕ̂(xn, θ)

]
=

1

N

N∑
n=1

[
m(xn, η(pϕ̂)) + φϕ̂(xn)

]
− θ. (21)

Hence, θ̂DML = 2
N

∑N
n=N/2+1m(xn, η(pϕ̂)) +

∑N
n=1 φϕ̂(xn).

Proof of Proposition 4.3. By Lemma A.1, Algorithm 2 uses the same correction term C in Algo-
rithm 1. Hence, the proof of Proposition 4.3 now follows from Proposition 4.1.

Remark A.2. By Lemma A.1, the only difference between Algorithm 2 and Algorithm 1 is a
different value for the initial estimate of θ∗. Specifically, in DML, the initial estimate of θ∗ is
2
N

∑N
n=N/2+1m(xn, η(pϕ̂)), which averages over datapoints drawn from the true distribution. By

contrast, Algorithm 1 uses θ̂plug-in, which averages over datapoints simulated from pϕ̂.

B Code Examples

B.1 Automatically Differentiable Functionals

The implementation of differentiable functional approximations is fairly straightforward when using
modern autodifferentation tools. For example, the squared density functional for a mean-zero,
univariate normal can be approximated using Monte Carlo as follows:

17

1

N

N∑
n=1

N
(
xn, σ

2
)
; xn ∼ N

(
0, σ2

)
(22)

This can be implemented in pytorch [PGC+17], and thus automatically differentiated with respect to
σ (called “scale” in the code block below) using, for example, torch.autograd.grad.

Listing 1: Automatically Differentiable Monte Carlo Approximation of Integrated Squared Normal
Density
import t o r c h

def d i f f a b l e _ m c _ i n t e g _ s q u a r e d _ n o r m _ d e n s i t y (s c a l e : t o r c h . Tensor , num_monte_car lo : i n t) :
a s s e r t s c a l e . r e q u i r e s _ g r a d
Sample from t h e d e n s i t y
sample s = t o r c h . d i s t r i b u t i o n s . Normal (0 . , s c a l e) . sample ((num_monte_car lo ,))
E v a l u a t e t h o s e samples under t h e d e n s i t y .
l o g p r o b s = t o r c h . d i s t r i b u t i o n s . Normal (0 . , s c a l e) . l o g _ p r o b (samples)
R e t ur n t h e mean p d f v a l u e i n a n u m e r i c a l l y s t a b l e way .
re turn t o r c h . exp (t o r c h . logsumexp (l o g p r o b s , dim = 0)) / t o r c h . numel (samples)

C So, What’s Automatic?

Figure 4: We taxonomize the workflow of robust estimation into three stages: the derivation of an
(approximate and/or efficient) influence function, the numerical derivation and analysis required for
its computation, and the code required to compute it. For the analytic workflow, the derivation of
the IF results in Equation 24. This largely involves terms already required by the original plug-in
(Equation 23), but still must be implemented on a case-by-case basis in code. For the “Empirical
Gateaux” workflow, the first stage requires only the general purpose Equation 25, but demands
case-specific numerical considerations and derivations like the one shown in Equation 26. In stark
contrast, given a differentiable approximation to the functional of interest, MC-EIF “automates” each
stage through use of an end-to-end, general purpose solution.

The work required to perform robust estimation can be subdivided into a few key steps. The process
begins with a functional of interest, Ψ. With this functional in hand, an analyst must first derive
the influence function (or an approximation thereof), and consider any nuances in numerically
approximating that quantity. Finally, an engineer must implement that approximation as executable
code. Different approaches boast varying levels of “automation” for each step. We claim that
in problems where our conditions hold (as outlined in Section 3.2), MC-EIF provides end-to-end
automation via a general-purpose solution at each stage. Here, we contrast our approach with both
the analytic (see e.g. [Ken16]) and “Empirical Gateaux” workflows [JWZ22b, CLvdL19]. We will
track a workflow’s “products” at each of the three stages: first, the derivation of the (efficient and/or
approximate) influence function; second, a tractable version of the influence function that properly
considers its numerical nuances; third, executable code that computes the influence function. Because
our approach uses a general purpose formulation for each of these three stages, we call our approach
“automated.”

18

We assume the workflow starts having identified a functional of interest and having implemented,
in code, a plug-in estimator for it. Throughout, we will use the mean-potential outcome (MPE)
functional as our working example7:

Ψ(P) = EP [EP [Y | X,A = 1]] =

∫ ∫
y
p (y,A = 1, x)

p (A = 1, x)
p (x) dydx (23)

C.1 Analytic Workflow

The analytic workflow begins by deriving a closed form influence function — a challenging task even
for seasoned experts. This first stage culminates in the following analytic influence function for the
MPE [Ken16].

φ (O;P) =
I (A = 1)

P (A = 1 | X)
{Y − EP [Y | X,A = 1]}+ EP [Y | X,A = 1]−Ψ(P) (24)

For general functionals, the derivation resulting in Equation 24 is challenging, even for experts — but
given such a derivation, it is often the case that the computation of the quantities composing it can
share code and numerical considerations developed to estimate the original, plug-in functional (e.g.
Equation 23). Indeed, the influence function of the MPE (Equation 24) involves only terms that an
analyst has already considered and implemented for the plug-in (Equation 23). For this reason, we say
that in the “analytic” workflow, most of the labor must be allocated to deriving the influence function
— tractable, well behaved computation of that influence function tends to involve straightforward
extensions of tooling and analysis that already exists for the plug-in.

The last stage is the implementation of that tooling in computer code, which will always require some
work on a case-by-case basis.

C.2 Empirical Gateaux Workflow

The workflow presented by [JWZ22b] and [CLvdL19] significantly reduces the resources required
in the first stage — the derivation of the influence function — by providing a general purpose,
finite-difference approximation to the influence function (Equation 25). P̃ϵ,λ, here, represents a
perturbation of the estimated distribution P̃ of size ϵ in the direction of a λ-smooth kernel centered at
observation O.

φ̃
(
O; P̃

)
=

1

ϵ

(
Ψ
(
P̃Oϵ,λ

)
−Ψ

(
P̃
))

(25)

At first glance, it seems that computing this term would follow easily given a general purpose
framework for the perturbation of P̃ , and then applying the plug-in functional to that perturbed
density. Unfortunately, computing Ψ

(
P̃Oϵ,λ

)
presents a number of numerical challenges in practice.

As exhibited in Figure 1 (which echoes figure 1 in the work by [CLvdL19]), selecting appropriate
perturbation parameters ϵ and λ a priori is challenging, and a battle-tested framework for doing so
has not yet been developed. Further, in high dimensions (where MC-EIF excels), the required ϵ can
be so small as to quickly overrun floating point accuracy on modern computers when even D ≈ 10
[CLvdL19]. Indeed, [JWZ22b] have explicitly left thorough numerical analysis of this approach to
further work. In footnote 7, they anecdotally report that quadrature methods were overly sensitive in
evaluating perturbed densities in the MPE functional, and instead present a Monte Carlo approach
tailored to the task. Unfortunately, neither the numeric considerations or code-implementations of
the plug-in estimator easily translate when computing the plug-in with respect to the perturbed data
distribution. Below, we show their numeric approximation8 of Equation 25 for the MPE, where
observation o comprises (x, a, y), the perturbation kernel K has bandwidth λ, and they use N Monte
Carlo samples from a uniform kernel over confounder x.

7For simplicity in exposition, but without loss of generality in regards to this description of what is and isn’t
automated, we follow [JWZ22b] in assuming that outcome and confounders are continuous real numbers, while
the treatment is binary.

8This is their equation 73 in appendix E.3.

19

φ̃λ,ϵ (o) =
1

N

∑
k

 (1− ϵ)
(∑

j:Aj=1K(Xj − x̃k)Yj
)
P (A = 1) + ϵyiI [ai = 1] · 1

(1− ϵ)p(A = 1, x̃k) + ϵI [ai = 1]

+ (1− ϵ) 1

N

∑
k

p̃(x̃k)

p̃ϵ(A = 1, x̃k)
I [ai = 1] {yi − EP̃ [Y |A = 1, x̃k]}

(26)

Indeed, just like finite differencing can simplify multivariate calculus, but introduce numeric chal-
lenges, the empirical-gateaux approach makes variational calculus easier, but introduces numeric
challenges. In sum, we consider the second, “numerical,” stage of this workflow to be both labor and
expertise intensive, even when the curse of dimensionality does not render it moot.

Like in the analytic workflow, the “coding” stage of course requires case-by-case implementations.
Moreover, added numerical challenges here introduce significant nuance in implementation that isn’t
present in the analytic case.

C.3 Our Workflow

In stark contrast, our workflow exploits general solutions in all three stages for the “price” of
differentiability of a parametric plug-in estimator. When our general conditions are met (as outlined
in Section 3), Equation 1 provides the general purpose solution to the first stage of deriving an
(approximate, efficient) influence function, and the second stage is achieved with the Monte Carlo
approximation in Equation 2.

The third stage is met in software implementing this general purpose solution that operates on
functional implementations using one of many auto-differentiation tools now ubiquitous in machine
learning (see Appendix B.1 for a simple example). As discussed at the end of Section 3.1, this
sometimes requires the ability to exploit methods like the reparameterization trick for the functional
of interest. In many cases, modern automatic differentiation software makes this trivial (as shown in
Appendix B.1). For some functionals, however, like those involving inner optimizations, this may be
more challenging.

This general purpose approximation underpins the end-to-end automation of MC-EIF, and is to the
best of our knowledge the only such general purpose approximation for efficient influence functions.

D Towards an EIF Cookbook

As a generalization of the gradient operator on ordinary functions, the EIF viewed as an operator on
functionals can be shown to have a number of convenient algebraic properties [Ken16, Ken22], many
of which are inherited directly by the MC-EIF estimator. In this section, we speculate on several ways
in which these properties could be used to extend the basic MC-EIF framework (and the MC-EIF-
based robust estimators in Section 4) to new classes of models and functionals, significantly increasing
the range of practical use cases addressable by an implementation of MC-EIF in a differentiable
probabilistic programming language like Pyro [BCJ+19].

Multi-argument functionals Many important quantities in statistics and machine learning, like the
mutual information I[X;Y] or KL-divergence KL[P ;Q] are functionals of more than one probability
distribution. As shown in [KKP+15], we can define partial EIFs analogous to partial derivatives for
these quantities (which can then be plugged into the efficient estimators of Section 4) by treating
all but one argument as part of the functional and computing the ordinary EIF with respect to that
argument.

Higher-order EIFs Although all of the efficient estimators of Section 4 are derived from the
first-order EIF, there are some circumstances where incorporating higher-order EIFs can be shown
to be theoretically necessary for achieving certain statistical properties [RLT+08, BKW23]. Just
as ordinary higher-order derivatives are computed by recursively applying a first-order derivative
operator to its output, higher-order EIFs can be computed by recursively applying a first-order EIF
operator to its own output [vdV14], a property straightforwardly inherited by MC-EIF.

20

Models with latent variables Thus far, we have assumed that we can exactly simulate from model
predictive distributions x ∼ pϕ and compute log-densities log pϕ(x), score functions∇ϕ log pϕ(x)
and Hessian-vector products. However, our MC-EIF estimator can be extended straightforwardly
to models with latent variables and intractable densities and score functions by using a nested
Monte Carlo procedure [RCY+18, SW23] to approximate the prior predictive or posterior predictive
distributions and plugging the resulting stochastic estimates into the vanilla MC-EIF framework. We
expect our theoretical results to extend to this case provided the approximation error can be made
small relative to the Monte Carlo error in estimating the Fisher matrix from a finite set of model
Monte Carlo samples.

Infinite-dimensional models and targets Semiparametric statistics is by definition fundamentally
concerned with models that contain infinite-dimensional (i.e. function-valued) components. There
is also intense interest in deriving efficient, doubly robust estimators for infinite-dimensional target
functionals like the conditional average treatment effect (CATE) in causal inference. Fortunately,
in many of these settings the infinite-dimensional quantities can be reduced to finite ones (and
ultimately must be to be representable on a digital computer) to which MC-EIF may be applied in a
straightforward way. For example, a Gaussian process is fully characterized by the latent function’s
values on a finite set of test points; computing the EIF for a functional of the GP reduces to computing
the EIF of the finite-dimensional joint distribution on function values at the test points, which is
straightforward to estimate with MC-EIF. Similarly, in the case of the CATE, we are ultimately
interested in the values of the CATE function on a finite set of test inputs, reducing the problem to
ordinary MC-EIF for a finite-dimensional target functional.

E Additional Experiment Details

E.1 Model Details

In Section 5, we consider the following model with confounders c, treatment t, and response y:

µ0 ∼ N (0, 1), (intercept)

ξ ∼ N
(
0,

1√
F
IF

)
, (outcome weights)

π ∼ N
(
0,

1√
F
IF

)
, (propensity weights)

τ ∼ N (0, 1), (treatment weight)
cn ∼ N (0, ID), (confounders)

tn | cn, π ∼ Bernoulli(logits = πT cn), (treatment assignment)

yn ∼ N (τtn + ξT cn + µ0, 1), (response)

(27)

where F ∈ N denotes the number of confounders. In this example, x = (c, t, y) ∈ RD, where
D = F + 2 and ϕ = (µ0, ξ, π, τ) ∈ R2F+2. To obtain a point estimate in Section 5, we take the
maximum a posteriori estimate. In Section 5, we vary the model dimension p by varying F since
p = 2F + 2.

E.2 Portfolio optimization details

We assume x is drawn from a multivariate Gaussian distribution with unknown covariance matrix
for D = 25 and N = 1000 datapoints. We randomly sample the true covariance matrix using a
Lewandowski-Kurowicka-Joe distribution on positive definite matrices. We evaluate MC-EIF and
the one step estimator using the relative expected volatility (REV) and the root mean-squared-error
(RMSE) between the estimated and the true optimal portfolio weights. Here, the expected volatility is
calculated by applying the estimated weights with the actual covariance to the objective in Equation
9. Repeating our experiment using 50 randomly generated datasets, we find that MC-EIF enables
substantially improved estimates, as shown in Table 1.

21

E.3 Additional Figures

Here, we provide experimental results that provide interesting insight, but do not directly support the
key claims of our paper.

Figure 5: Comparison of plug-in estimator and efficient estimators using MC-EIF and analytic
EIF for estimating ATE with synthetic data. The true ATE is 0. Closer to zero the better. The
distribution is over 100 simulated datasets. Dashed lines represent the estimates using the analytic
EIF, and the solid lines represent using MC-EIF (when applicable). Given the high-dimensionality of
the problem, the estimation leads to non-zero centering (i.e., some bias remains even after influence
function based corrections). Importantly, this is a property of the influence corrected estimators, and
is not an artifact introduced by MC-EIF. Instead, we chose our empirical study to demonstrate that
MC-EIF produces near-identical results for a diversity of statistical tasks, with a diversity of statistical
implications.

22

Figure 6: Comparison of plug-in estimator and efficient estimators using MC-EIF and analytic
EIF for estimating ATE with real data. Here, we use the Infant Health and Development Program
semi-synthetic data [Hil11] commonly used for effect estimation benchmarking with the same causal
GLM as our synthetic data experiments. Here, MC-EIF produces estimates that are closely aligned
with the analytic EIF estimators and, in the case of double machine learning, produce estimates that
are much closer to the true ATE. Again, we emphasize that the choice of influence corrected estimator
is separable from the choice of how to estimate the efficient influence function, which is our focus in
this work.

−3 −2 −1 0 1 2 3

Value of x

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

In
flu

en
ce

F
un

ct
io

n
at
x

Efficient Influence (Known SD)

Efficient Influence (Unknown SD)

Nonparametric Influence

Figure 7: Nonparametric and efficient influence functions for expected density.

23

Figure 8: Runtime of fitting point estimate and computing MC-EIF as a function of model size.

Figure 9: Median relative error between MC-EIF and true efficient influence function for unknown
variance model and expected density functional. Median absolute error computed by randomly
sampling points to evaluate EIF, computing the relative error at each point, and then taking the
median.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly state the claims, contributions, and a
concise description of assumptions. We also discuss the evidence for these claims, which
is supported later in the paper. Specifically, we discuss MC-EIF’s asymptotic theoretical
guarantees, as well the empirical study on finite data in a variety of case studies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly describe the limitation of our work both by; (i) clearly stating the
assumptions behind the theoretical results, and (ii) emphasizing throughout that MC-EIF
produces approximate evaluations of the true EIF. We discuss the computational efficiency
of the approach in detail, and provide explicit bounds on its accuracy.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

25

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide an appropriately formal description of each assumption and the
theorem statements in the main body of the paper, and provide proofs in the appendix. We
also provide some insight into why the theorems hold throughout.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly explain our experiments in Section 5 and provide hyperparameter
configurations in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

26

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a documented implementation with substantial unit tests, as well
as code to reproduce experiments, and a README.md.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We clearly explain our experiments in Section 5 and provide hyperparameter
configurations in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the figures we either show the entire distribution (Figure 3) or provide
standard errors (see Table 1) to showcase the uncertainty of presented results.
Guidelines:

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] ,
Justification: All experiments were run on an Apple M2 pro. In Figure 8, we plot the runtime
of our method under various conditions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our practices
conform to them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

28

https://neurips.cc/public/EthicsGuidelines

Justification: The research presented in this submission does not represent societal impacts
except for those shared by all fundamental research. Our work represents general method-
ological progress for estimating statistical quantities using modern automatic differentiation
and probabilistic programming systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

29

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

30

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Problem Statement
	Monte Carlo Efficient Influence Function
	Numerically Approximating the EIF
	Theoretical Guarantees for MC-EIF

	MC-EIF for Automated Efficient Inference
	Von Mises One Step Estimator
	Debiased/Double ML
	Targeted Minimum Loss Estimation

	Experiments
	Limitations
	Conclusion
	Proofs
	Proof of Theorem 3.8
	Proof of Theorem 4.1
	Proof of Theorem 4.3

	Code Examples
	Automatically Differentiable Functionals

	So, What's Automatic?
	Analytic Workflow
	Empirical Gateaux Workflow
	Our Workflow

	Towards an EIF Cookbook
	Additional Experiment Details
	Model Details
	Portfolio optimization details
	Additional Figures

