
Published in Transactions on Machine Learning Research (02/2025)

Selective Prediction via Training Dynamics

Stephan Rabanser stephan@cs.toronto.edu
University of Toronto & Vector Institute

Anvith Thudi anvith.thudi@mail.utoronto.ca
University of Toronto & Vector Institute

Kimia Hamidieh hamidieh@mit.edu
Massachusetts Institute of Technology

Adam Dziedzic adam.dziedzic@cispa.de
CISPA Helmholtz Center for Information Security

Israfil Bahceci israfil.bahceci@ericsson.com
Ericsson

Akram Bin Sediq akram.bin.sediq@ericsson.com
Ericsson

Hamza Sokun hamza.sokun@ericsson.com
Ericsson

Nicolas Papernot nicolas.papernot@utoronto.ca
University of Toronto & Vector Institute

Reviewed on OpenReview: https: // openreview. net/ forum? id= 2wgnepQjyF

Abstract

Selective Prediction is the task of rejecting inputs a model would predict incorrectly on. This
involves a trade-off between input space coverage (how many data points are accepted) and
model utility (how good is the performance on accepted data points). Current methods for
selective prediction typically impose constraints on either the model architecture or the opti-
mization objective; this inhibits their usage in practice and introduces unknown interactions
with pre-existing loss functions. In contrast to prior work, we show that state-of-the-art se-
lective prediction performance can be attained solely from studying the (discretized) training
dynamics of a model. We propose a general framework that, given a test input, monitors
metrics capturing the instability of predictions from intermediate models (i.e., checkpoints)
obtained during training w.r.t. the final model’s prediction. In particular, we reject data
points exhibiting too much disagreement with the final prediction at late stages in training.
The proposed rejection mechanism is domain-agnostic (i.e., it works for both discrete and
real-valued prediction) and can be flexibly combined with existing selective prediction ap-
proaches as it does not require any train-time modifications. Our experimental evaluation
on image classification, regression, and time series problems shows that our method beats
past state-of-the-art accuracy/utility trade-offs on typical selective prediction benchmarks.

1 Introduction

Machine learning (ML) is increasingly deployed in high-stakes decision-making environments with strong
reliability and safety requirements. One of these requirements is the detection of inputs for which the ML
model produces an erroneous prediction. This is particularly important when deploying deep neural networks

1

https://openreview.net/forum?id=2wgnepQjyF


Published in Transactions on Machine Learning Research (02/2025)

…

…

…

…

…

…

…

…

…

…

…

… …

…

…

…

…

…

…

…

…

…

…

…

Model training Intermediate models Intermediate modelsTest points

Epochs Checkpoints

C
la

ss
C

la
ss

Lo
ss

Training set

Training stage Testing stage

Low agreement with 
final class → ⊥

Large agreement with 
final class → 5

Figure 1: Our proposed SPTD method for a classification example. We store checkpoints of inter-
mediate models during model training. At inference time, given a test input, we compute various metrics
capturing the stability of intermediate predictions with respect to the final model prediction. Data points
with high stability are accepted, data points with low stability are rejected.

(DNNs) for applications with low tolerances for false-positives (i.e., classifying with a wrong label), such as
healthcare (Challen et al., 2019; Mozannar & Sontag, 2020), self-driving (Ghodsi et al., 2021), and law (Vieira
et al., 2021). This problem setup is captured by the Selective Prediction (SP) framework, which introduces
an accept/reject function (a so-called gating mechanism) to abstain from predicting on individual test points
in the presence of high prediction uncertainty (Geifman & El-Yaniv, 2017). Specifically, SP aims to (i) only
accept inputs on which the ML model would achieve high utility, while (ii) maintaining high coverage (i.e.,
correctly accepting as many inputs as possible).

Current selective prediction techniques take one of two directions: (i) augmentation of the architecture of the
underlying ML model (Geifman & El-Yaniv, 2019); or (ii) training the model using a purposefully adapted
loss function (Liu et al., 2019; Huang et al., 2020; Gangrade et al., 2021). The unifying principle behind these
methods is to modify the training stage in order to accommodate selective prediction. While many ad-hoc
experimentation setups are amenable to these changes, productionalized environments often impose data
pipeline constraints which limit the applicability of existing methods. Such constraints include, but are not
limited to, data access revocation, high (re)-training costs, or pre-existing architecture/loss modifications
whose interplay with selective prediction adaptations are unexplored. As a result of theses limitations,
selective prediction approaches are hard to deploy in production environments.

We instead show that these modifications are unnecessary. That is, our method, which establishes new
SOTA results for selective prediction across a variety of datasets, not only outperforms existing work but
our method can be easily applied on top of all existing models, unlike past methods. Moreover, our
method is not restricted to classification problems but can be applied for real-valued prediction problems, too,
like regression and time series prediction tasks. This is an important contribution as recent SP approaches
have solely focused on improving selective classification.

Our approach builds on the following observation: typical DNNs are trained using an iterative optimization
procedure, e.g., using Stochastic Gradient Descent (SGD). Due to the sequential nature of this optimization
process, as training goes on, the optimization process yields a sequence of intermediate models. Current
selective prediction methods rely only on the final model, ignoring valuable statistics available from the
model’s training sequence. In this work, however, we propose to take advantage of the information contained
in these optimization trajectories for the purpose of selective prediction. By studying the usefulness of these
trajectories, we observe that instability in SGD convergence is often indicative of high aleatoric uncertainty
(i.e., irreducible data noise such as overlap between distinct data classes). Furthermore, past work on example
difficulty (Jiang et al., 2020; Toneva et al., 2018; Hooker et al., 2019; Agarwal et al., 2020) has highlighted
faster convergence as indicative of easy-to-learn training examples (and conversely slow convergence of hard-
to-learn training examples). We hypothesize that such training time correlations with uncertainty also hold
for test points and studying how test time predictions evolve over the intermediate checkpoints is useful for
reliable uncertainty quantification.

With this hypothesis, we derive the first framework for Selective Prediction based on neural network Training
Dynamics (SPTD, see Figure 1 for an example using a classification setup). Through a formalization

2



Published in Transactions on Machine Learning Research (02/2025)

of this particular neural network training dynamics problem, we first note that a useful property of the
intermediate models’ predictions for a test point is whether they converge ahead of the final prediction. This
convergence can be measured by deriving a prediction instability score measuring how strongly predictions of
intermediate models agree with the final model. While the exact specifics of how we measure instability differs
between domains (classification vs regression), our resulting score generalizes across application domains and
measures weighted prediction instability. This weighting allows us to emphasize instability late in training
which we deem indicative of points that should be rejected. Note that this approach is transparent w.r.t.
the training stage: our method only requires that intermediate checkpoints were recorded when a model
was trained, which is an established practice (especially when operating in shared computing environments
such as GPU clusters). Moreover, when compared to competing ensembling-based methods, such as Deep
Ensembles (Lakshminarayanan et al., 2017), our approach can match the same inference-time cost while
being significantly cheaper to train.

To summarize, our main contributions are as follows:

1. We present a motivating synthetic example using a linear model, showcasing the effectiveness of
training dynamics information in the presence of a challenging classification task (Section 3.1).

2. We propose a novel method for selective prediction based on training dynamics (SPTD, Section 3.2).
To that end, we devise an effective scoring mechanism capturing weighted prediction instability of
intermediate models with the final prediction for individual test points. Our methods allow for
selective classification, selective regression, and selective time series prediction. Moreover, SPTD
can be applied to all existing models whose checkpoints were recorded during training.

3. We highlight an in-depth connection between our SPTD approach and forging (Thudi et al. (2022),
Section 3.3), which has shown that optimizing a model on distinct datasets can lead to the same
sequence of checkpoints. This connection demonstrates that our metrics can be motivated from a
variety of different perspectives.

4. We perform a comprehensive set of empirical experiments on established selective prediction bench-
marks spanning over classification, regression, and time series prediction problems (Section 4). Our
results obtained from all instances of SPTD demonstrate highly favorable utility/coverage trade-
offs, establishing new state-of-the-art results in the field at a fraction of the training time cost of
competitive prior approaches.

2 Background on Selective Prediction

Supervised Learning Setup. Our work considers the standard supervised learning setup. We assume
access to a dataset D = {(xi, yi)}M

i=1 consisting of M data points (x, y) with x ∈ X and y ∈ Y. We refer
to X := Rd as the covariate space (or input/data space) of dimensionality d. For classification problems,
we define Y := [C] = {1, 2, . . . , C} as the label space consisting of C classes. For regression and time series
problems (such as demand forecasting) we instead define Y := R and Y := RR respectively (with R being
the prediction horizon). All data points (x, y) are sampled independently from the underlying distribution p
defined over the joint covariate and label spaces X ×Y. Our goal is to learn a prediction function f : X → Y
which minimizes the risk R(fθ) with respect to the underlying data distribution p and an appropriately
chosen loss function ℓ : Y ×Y → R. We can derive the optimal parameters θ̂ via empirical risk minimization
which approximates the true risk R(fθ) through sampling, thereby ensuring that θ∗ ≈ θ̂ for a sufficiently
large amount of samples:

θ∗ = arg min
θ

R(fθ) = arg min
θ

Ep(x,y)[ℓ(fθ(x), y)] (1)

θ̂ = arg min
θ

R̂(fθ) = arg min
θ

1
M

N∑
i=1

ℓ(fθ(xi), yi) (2)

In the following, we drop the explicit dependence of f on θ and simply denote the predictive function by f .

3



Published in Transactions on Machine Learning Research (02/2025)

Selective Prediction Setup. Selective prediction alters the standard supervised learning setup by intro-
ducing a rejection state ⊥ through a gating mechanism (El-Yaniv & Wiener, 2010). In particular, such a
mechanism introduces a selection function g : X → R which determines if a model should predict on a data
point x. Given an acceptance threshold τ , the resulting predictive model can be summarized as:

(f, g)(x) =
{

f(x) g(x) ≤ τ

⊥ otherwise.
(3)

Selective Prediction Evaluation Metrics. Prior work evaluates the performance of a selective predictor
(f, g) based on two metrics: the coverage of (f, g) (i.e., what fraction of points we predict on) and the
selective utility of (f, g) on the accepted points. Note that the exact utility metric depends on the type of
the underlying selective prediction task (e.g. accuracy for classification, R2 for regression, and a quantile-
based loss for time series forecasting). Successful SP methods aim to obtain both strong selective utility
and high coverage. Note that these two metrics are at odds with each other: naïvely improving utility leads
to lower coverage and vice-versa. The complete performance profile of a model can be specified using the
risk–coverage curve, which defines the risk as a function of coverage (El-Yaniv & Wiener, 2010). These
metrics can be formally defined as follows:

coverage(f, g) = Mτ

M
(4)

utility(f, g) =
∑

{(x,y):g(x)≤τ}

u(f(x), y) (5)

Here, u(·, ·) corresponds to the specifically used utility function, Mτ =
∑M

i=1 1[xi : g(xi) ≤ τ ] corresponds
to the number of accepted data points at threshold τ , and 1[·] corresponds to the indicator function. We
define the following utility functions to be used based on the problem domain:

1. Classification: We use accuracy on accepted points as our utility function for classification:

Accuracy = 1
Mτ

Mτ∑
i=1

1[xi : f(xi) = yi] (6)

2. Regression: We use the coefficient of determination (R2 score, which is a scaled version of the mean
squared error) on accepted points as our utility function for regression:

R2 = 1−
∑Mτ

i=1(f(xi)− yi)2∑Mτ

i=1(yi − 1
Mτ

∑Mτ

j=1 yj)2
(7)

3. Time Series Forecasting: We use the Mean Scaled Interval Score (MSIS) Gneiting & Raftery (2007)
on accepted series as our utility function for time series forecasting

MSIS = 1
Mτ R

Mτ∑
i=1

∑n+R

r=n+1 (ui,r − li,r) + 2
α

(li,r − yi,r)1[yi,r < li,r ]
+ 2

α
(yi,r − ui,r)1[yi,r > ui,r ]

1
n−m

∑n

r=m+1 |yi,r − yi,r−m|
(8)

where α refers to a specific predictive quantile, n to the conditioning length of the time series, m to
the length of the seasonal period, and ui,r and li,r to the upper and lower bounds on the prediction
range, respectively.

2.1 Past & Related Work

Softmax Response Baseline (classification). The first work on selective classification was the softmax
response (SR) mechanism (Hendrycks & Gimpel, 2016; Geifman & El-Yaniv, 2017). A classification model

4



Published in Transactions on Machine Learning Research (02/2025)

typically has a softmax output layer which takes in unnormalized activations in zi ∈ RC (referred to as
logits) from a linear model or a deep neural net. These activations are mapped through the softmax function
which normalizes all entries

σ(z)i = ezi∑K
j=1 ezj

(9)

to the interval [0, 1] and further ensures that
∑C

i=1 σ(z)i = 1. As a result, the softmax output can be inter-
preted as a conditional probability distribution which we denote f(y|x). The softmax response mechanism
applies a threshold τ to the maximum response of the softmax layer: maxy∈Y f(y|x). Given a confidence
parameter δ and desired risk R̂(f), SR constructs (f, g) with test error no larger than R̂(f) with probability
≥ 1 − δ. While this approach is simple to implement, it has been shown to produce over-confident results
due to poor calibration of deep neural networks (Guo et al., 2017).1

Loss Modifications (mostly classification). The first work to deliberately address selective classifica-
tion via architecture modification was SelectiveNet (Geifman & El-Yaniv, 2019), which trains a model to
jointly optimize for classification and rejection. A loss penalty is added to enforce a particular coverage
constraint using a variant of the interior point method Potra & Wright (2000) which is often used for solving
linear and non-linear convex optimization problems. To optimize selective accuracy over the full coverage
spectrum in a single training run, Deep Gamblers (Liu et al., 2019) transform the original C-class problem
into a (C + 1)-class problem where the additional class represents model abstention. A similar approach is
given by Self-Adaptive Training (SAT) (Huang et al., 2020) which also uses a (C +1)-class setup but instead
incorporates an exponential average of intermediate predictions into the loss function. Other similar ap-
proaches include: performing statistical inference for the marginal prediction-set coverage rates using model
ensembles (Feng et al., 2021), confidence prediction using an earlier snapshot of the model (Geifman et al.,
2018), estimating the gap between classification regions corresponding to each class (Gangrade et al., 2021),
and complete precision by classifying only when models consistent with the training data predict the same
output (Khani et al., 2016).

Uncertainty Quantification (classification + regression). It was further shown by (Lakshmi-
narayanan et al., 2017; Zaoui et al., 2020) that deep model ensembles (i.e., a collection of multiple models
trained with different hyper-parameters until convergence) can provide state-of-the-art uncertainty quantifi-
cation, a task closely related to selective prediction. This however raises the need to train multiple models
from scratch. To reduce the cost of training multiple models, (Gal & Ghahramani, 2016) proposed absten-
tion based on the variance statistics from several dropout Srivastava et al. (2014) enabled forward passes at
test time. Another popular technique for uncertainty quantification, especially for regression and time series
forecasting, is given by directly modeling the output distribution (Alexandrov et al., 2019) in a parametric
fashion. Training with a parametric output distribution however can lead to additional training instability,
often requiring extensive hyper-parameter tuning and distributional assumptions. On the other hand, our
approach does not require any architecture or other training-time modifications. Finally, we note that selec-
tive prediction and uncertainty are also strongly related to the field of automated model evaluation which
relies on the construction a proximal prediction pipeline of the testing performance without the presence of
ground-truth labels (Peng et al., 2023; 2024).

Training Dynamics Approaches (classification). Checkpoint and snapshot ensembles (Huang et al.,
2017; Chen et al., 2017) constitute the first usage of training dynamics to boost model utility. Our work
is closest in spirit to recent work on dataset cartography (Swayamdipta et al., 2020) which relies on using
training dynamics from an example difficulty viewpoint by considering the variance of logits. However, their
approach does not consider selective prediction and further requires access to true label information (which
is not available in the selective prediction setting). Recent work on out-of-distribution detection (Adila &
Kang, 2022), a closely related yet distinct application scenario from selective prediction, harness similar
training dynamics based signals.

1Under miscalibration, a model’s prediction frequency of events does not match the true observed frequency of events.

5



Published in Transactions on Machine Learning Research (02/2025)

Example Difficulty. A related line of work to selective prediction is identifying difficult examples, or how
well a model can generalize to a given unseen example. Recent work Jiang et al. (2020) has demonstrated
that the probability of predicting the ground truth label with models trained on data sub-samples of different
sizes can be estimated via a per-instance empirical consistency score. Unlike our approach, however, this
requires training a large number of models. Example difficulty can also be quantified through the lens of a
forgetting event Toneva et al. (2018) in which the example is misclassified after being correctly classified.
Instead, the metrics that we introduce in Section 3, are based on the disagreement of the label at each
checkpoint with the final predicted label. Other approaches estimate the example difficulty by: prediction
depth of the first layer at which a k-NN classifier correctly classifies an example (Baldock et al., 2021), the
impact of quantization and compression on model predictions of a given sample (Hooker et al., 2019), and
estimating the leave-one-out influence of each training example on the accuracy of an algorithm by using
influence functions (Feldman & Zhang, 2020). Closest to our method, the work of Agarwal et al. (2020)
utilizes gradients of intermediate models during training to rank examples by difficulty. In particular, they
average pixel-wise variance of gradients for each given input image. Notably, this approach is more costly and
less practical than our approach and also does not study the utility/coverage trade-off which is of paramount
importance to selective prediction.

Disagreement Our SPTD method heavily relies on the presence of disagreements between intermediate
models. Past work on (dis-)agreement has studied the connection between generalization and disagreement
of full SGD runs (Jiang et al., 2021) as well as correlations between in-distribution and out-of-distribution
agreement across models (Baek et al., 2022).

3 Selective Prediction via Neural Network Training Dynamics

We now introduce our selective prediction algorithms based on neural network training dynamics. We start
by presenting a motivating example showcasing the effectiveness of analyzing training trajectories for a
linear classification problem. Following this, we formalize our selective prediction scoring rule based on
training-time prediction disagreements. We refer to the class of methods we propose as SPTD.

3.1 Method Intuition: Prediction Disagreements Generalize Softmax Response

Stochastic iterative optimization procedures, such as Stochastic Gradient Descent (SGD), yield a sequence
of models that is iteratively derived by minimizing a loss function ℓ(·, ·) on a randomly selected mini-batch
(Xi, yi) from the training set. The iterative update rule can be expressed as follows

θt+1 = θt − ν
∂ℓ(f(Xi), yi)

∂θt
(10)

where the learning rate ν controls the speed of optimization and t ∈ {1, . . . , T} represents a particular
time-step during the optimization process.

Current methods for selective prediction disregard the properties of this iterative process and only rely on
the final set of parameters θT . However, the optimization trajectories contain information that we can use
to determine prediction reliability. In particular, on hard optimization tasks, the presence of stochasticity
from SGD and the potential ambiguity of the data often leads to noisy optimization behavior. As a result,
intermediate predictions produced over the course of training might widely disagree in what the right pre-
diction would be for a given data point. Our class of selective prediction approaches explicitly make use
of these training dynamics by formalizing rejection scores based on the observed frequency of prediction
disagreements with the final model throughout training.

To illustrate and reinforce this intuition that training dynamics contain meaningfully more useful information
for selective prediction than the final model, we present a synthetic logistic regression example. First, we
generate a mixture of two Gaussians each consisting of 1000 samples: D = {(xi, 0)}1000

i=1 ∪ {(xj , 1)}1000
j=1

where xi ∼ N (
[
a 0

]⊤
, I) and xj ∼ N (

[
−a 0

]⊤
, I). Note that a controls the distance between the two

2-dimensional Gaussian clusters, allowing us to specify the difficulty of the learning task. Then, we train a

6



Published in Transactions on Machine Learning Research (02/2025)

−5 0 5

−2.5
0.0
2.5

a = 5

−5 0

−2.5
0.0
2.5

a = 1

−5 0

−2.5
0.0
2.5

a = 0.5

−2.50.0 2.5

−2.5
0.0
2.5

a = 0

−5 0 5

−2.5
0.0
2.5

−5 0

−2.5
0.0
2.5

−5 0

−2.5
0.0
2.5

−2.50.0 2.5

−2.5
0.0
2.5

0 1
0.0

0.5

1.0
SR

SPTD

0 1
0.0

2.5

0 1
0

2

0 1
0

2

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Figure 2: Synthetic example of anomaly scoring based on SR vs SPTD. The first row shows a
test set from the generative Gaussian model as well as the learned decision boundary separating the two
Gaussians. For small a, the decision boundary is overconfident. The second row shows the same data set but
instead depicts the scores yielded by applying SPTD to the full domain. SPTD highlights rightful rejection
regions more clearly than the overconfident SR score: larger regions are flagged as exhibiting noisy training
dynamics (with stronger shades of green indicating stronger disagreement) as a→ 0. The bottom row shows
the distribution of the SR and SPTD scores, clearly showing that SPTD leads to improved uncertainty
under stronger label ambiguity.

linear classification model using SGD for 1000 epochs for each a ∈ {0, 0.5, 1, 5}. Finally, we compute both
the softmax response score (SR) score, the typical baseline for selective classification, as well as our SPTD
score (details in Section 3.2).

We showcase the results from this experiment in Figure 2. We see that if the data is linearly separable
(a = 5) the learned decision boundary is optimal and the classifier’s built-in confidence score SR reflects
well-calibrated uncertainty. Moreover, the optimization process is stable as SPTD yields low scores over the
full domain. However, as we move the two Gaussians closer together (i.e., by reducing a) we see that the SR
baseline increasingly suffers from overconfidence: large parts of the domain are very confidently classified as
either 0 (red) or 1 (blue) with only a small ambiguous region (white). However, the optimization trajectory is
highly unstable with the decision boundary changing abruptly between successive optimization steps. SPTD
identifies the region of datapoints exhibiting large prediction disagreement due to this training instability
and correctly rejects them (as those are regions also subject to label ambiguity in this case). In summary, we
observe that SPTD provides improved uncertainty quantification in ambiguous classification regions (which
induce training instability) and reduces to the SR solution as the classification task becomes easier. Hence,
we expect SPTD to generalize SR performance, which is supported by this logistic regression experiment.

3.2 Method Overview: Measuring Prediction Instability During Training

We proceed to describe the statistics we collect from intermediate checkpoints which we later devise our
scores for deciding which inputs to reject on. The objective of these statistics is to capture how unstable the
prediction for a datapoint was over the training checkpoints. Let [f1, f2, . . . , fT ] be a sequence of intermediate
checkpoints, and D = Dtrain ∪Dtest be the set of all data points. We define a prediction disagreement score
at time t ∈ {1, . . . , T} as some function at : X → R+ with at(x) = 0 if ft(x) = fT (x). Note that the exact
at(·) we use depends on the problem domain (classification vs regression) and we define our choices below.

7



Published in Transactions on Machine Learning Research (02/2025)

Algorithm 1: SPTD for classification
Require: Intermediate models [f1, . . . , fT ], query

point x, weighting parameter k ∈ [0,∞).
1: for t ∈ [T ] do
2: if ft(x) = fT (x) then at ← 0 else at ← 1
3: vt ← ( t

T )k

4: end for
5: g ←

∑
t vtat

6: if g ≤ τ then f(x) = fT (x) else f(x) = ⊥

Algorithm 2: SPTD for regression
Require: Intermediate models [f1, . . . , fT ], query

point x, weighting parameter k ∈ [0,∞).
1: for t ∈ [T ] do
2: at ← ||ft(x)− fT (x)||
3: vt ← ( t

T )k

4: end for
5: g ←

∑
t vtat

6: if g ≤ τ then f(x) = fT (x) else f(x) = ⊥

In the following, when conditioning on x is understood from context, we drop the explicit dependence on x
and write at.

For a fixed data point x, our approach takes a given sequence of prediction disagreements [a1, . . . , aT ] and
associates a weight vt to each disagreement at to capture how severe a disagreement at step t is. To derive
this weighting we ask: How indicative of x being incorrectly classified is a disagreement at step t? Related
work in the example difficulty literature (see Section 2.1 for details) found that easy-to-optimize samples
are learned early in training and converge faster. While prior work specifically derived these convergence
insights for training points only, the novelty of our method is to show such conclusions for training points
also generalize to test points. Hence, we propose to use the weighting vt = ( t

T )k for k ∈ [0,∞) to penalize
late prediction disagreements as more indicative of a test point we will not predict correctly on. With this
weighting, our methods compute a weighted sum of the prediction disagreements, which effectively forms
our selection function g(·):

g(x) =
∑

t

vtat(x) (11)

Instability for Classification. For discrete prediction problems (i.e., classification) we define the label
disagreement score as at = 1−δft(x),fT (x) where δ is the Dirac-delta function: at is hence 1 if the intermediate
prediction ft at checkpoint t disagrees with the final prediction fT for x, else 0. The resulting algorithm using
this definition of at for classification is given in Algorithm 1. We remark that continuous metrics such as the
maximum softmax score, the predictive entropy (i.e., the entropy of the predictive distribution f(y|x)), or
the gap between the two most confident classes could be used as alternate measures for monitoring stability
(see Appendix A for a discussion). However, these measures only provide a noisy proxy and observing a
discrete deviation in the predicted class provides the most direct signal for potential mis-classification.

Instability for Regression. One key advantage of our method over many previous ones is that it
is applicable to any predictive model, including regression. Here, we propose the following prediction
disagreement score measuring the distance of intermediate predictions to the final model’s prediction:
at = ||ft(x) − fT (x)||.2 The resulting algorithm using this definition of at for regression is given in Al-
gorithm 2. We again highlight the fact that Algorithm 2 only differs from Algorithm 1 in the computation
of the prediction disagreement at (line 2 highlighted in both algorithms).

Instability for Time Series Prediction. We can further generalize the instability sequence used for
regression to time series prediction problems by computing the regression score for all time points on the
prediction horizon. In particular, we compute at,r = ||ft(x)r − fT (x)r|| for all r ∈ {1, . . . , R}. Recall that
for time series problems ft(x) returns a vector of predictions y ∈ RR and we use the subscript r on ft(x)r to
denote the vector indexing operation. Our selection function is then given by computing Equation 11 for each
r and summing up the instabilities over the prediction horizon: g(x) =

∑
r

∑
t vtat,r(x). The full algorithm

therefore shares many conceptual similarities with Algorithm 2 and we provide the detailed algorithm as
part of Algorithm 3. Note that the presented generalization for time series is applicable to any setting in

2We explored a more robust normalization by averaging predictions computed over the last l checkpoints: at = ||ft(x) −
1
n

∑
c∈{T −l,T −l+1,...,T } fc(x)||. Across many l, we found the obtained results to be statistically indistinguishable from the

results obtained by normalizing w.r.t. the last checkpoint fT .

8



Published in Transactions on Machine Learning Research (02/2025)

Algorithm 3: SPTD for time series forecasting
Require: Intermediate models [f1, . . . , fT ], query point x, weighting k ∈ [0,∞), prediction horizon R.

1: for t ∈ [T ] do
2: for r ∈ [R] do
3: at,r ← ||ft(x)r − fT (x)r||
4: end for
5: vt ← ( t

T )k

6: end for
7: g ←

∑
r

∑
t vtat,r

8: if g ≤ τ then f(x) = L else f(x) = ⊥

which the variability of predictions can be computed. As such, this formalism can extend to application
scenarios beyond time series prediction such as object detection or segmentation.

3.3 Selective Prediction and Forging

While our SPTD method is primarily motivated from the example difficulty view point, we remark that the
scores SPTD computes to decide which points to reject can be derived from multiple different perspectives.
To showcase this, we provide a formal treatment on the connection between selective classification and
forging (Thudi et al., 2022), which ultimately leads to the same selection function g(·) as above.

Previous work has shown that running SGD on different datasets could lead to the same final model (Hardt
et al., 2016; Bassily et al., 2020; Thudi et al., 2022). For example, this is intuitive when two datasets
were sampled from the same distribution. We would then expect that training on either dataset should
not significantly affect the model returned by SGD. For our selective prediction problem, this suggests an
approach to decide which points the model is likely to predict correctly on: identify the datasets that it could
have been trained on (in lieu of the training set it was actually trained on). Any point from the datasets the
model could have trained on would then be likely to be predicted on correctly by the model. Recent work
on forging Thudi et al. (2022) solves this problem of identifying datasets the model could have trained on by
brute-force searching through different mini-batches to determine if a mini-batch in the alternative dataset
can be used to reproduce one of the original training steps. Even then, this is only a sufficient condition
to show a datapoint could have plausibly been used to train: if the brute-force fails, it does not mean the
datapoint could not have been used to obtain the final model. As an alternative, we propose to instead
characterize the optimization behaviour of training on a dataset as a probabilistic necessary condition, i.e, a
condition most datapoints that were (plausibly) trained on would satisfy based on training dynamics. Our
modified hypothesis is then that the set of datapoints we optimized for (which contains the forgeable points)
coincides significantly with the set of points the model predicts correctly on.

3.3.1 A Framework for Being Optimized

In this section we derive an upper-bound on the probability that a datapoint could have been used to
obtain the model’s checkpointing sequence. This yields a probabilistically necessary (though not sufficient)
characterization of the points we explicitly optimized for. This bound, and the variables it depends on,
informs what we characterize as "optimizing" for a datapoint, and, hence, our selective classification methods.

Let us denote the set of all datapoints as D, and let D ⊂ D be the training set. We are interested in the
setting where a model f is plausibly sequentially trained on D (e.g., with stochastic gradient descent). We
thus also have access to a sequence of T intermediate states for f , which we denote [f1, . . . , fT ]. In this
sequence, note that fT is exactly the final model f .

Now, let pt represent the random variable for outputs on D given by an intermediate model ft where the
outputs have been binarized: we have 0 if the output agrees with the final prediction and 1 if not. In other
words, pt is the distribution of labels given by first drawing x ∼ D and then outputting 1 − δft(x),fT (x)
where δ denotes the Dirac delta function. Note that we always have both a well-defined mean and variance

9



Published in Transactions on Machine Learning Research (02/2025)

for pt as it is bounded. Furthermore, we always have the variances and expectations of {pt} converge to 0
with increasing t: as pT = 0 always and the sequence is finite convergence trivially occurs. To state this
formally, let vt = Vx∼D[pt] and let et = Ex∼D[pt] denote the variances and expectations over points in D.
In particular, we remark that eT = 0, vT = 0, so both et and vt converge. More formally, for all ϵ > 0 there
exists an N ∈ {1, . . . , T} such that vt < ϵ for all t > N . Similarly, for all ϵ > 0 there exists a (possibly
different) N ∈ {1, . . . , T} such that et < ϵ for all t > N .

However, the core problem is that we do not know how this convergence in the variance and expectation
occurs. More specifically, if we knew the exact values of et and vt, we could use the following bound on
the fraction of training data points producing a given [a1, · · · , at] as a reject option for points that are not
optimized for. We consequently introduce the notation [a1, . . . , aT ] where at = 1− δft(x),fT (x) which we call
the "label disagreement (at t)". Note that the at are defined with respect to a given input, while pt represent
the distribution of at over all inputs in D.
Lemma 1. Given a datapoint x, let {a1, . . . , aT } where at = 1− δft(x),fT (x). Assuming not all at = et then
the probability x ∈ D is ≤ minvt s.t at ̸=et

vt

|at−et|2 .

Proof. By Chebyshev’s inequality we have the probability of a particular sequence {a1, . . . , aT } occurring
for a training point is ≤ vt

|at−et|2 for every t (a bound on any of the individual at occurring as that event is
in the event |pt − et| ≥ |at − et| occurs). By taking the minimum over all these upper-bounds we obtain our
upper-bound.

We do not guarantee Lemma 1 is tight. Though we do take a minimum to make it tighter, this is a minimum
over inequalities all derived from Chebyshev’s inequality3. Despite this potential looseness, using the bound
from Lemma 1, we can design a naïve selective classification protocol based on the "optimized = correct
(often)" hypothesis and use the above bound on being a plausible training datapoint as our characterization
of optimization; for a test input x, if the upper-bound on the probability of being a datapoint in D is lower
than some threshold τ reject, else accept. However, the following question prevents us from readily using
this method: How do E[pt] and V[pt] evolve during training?

To answer this question, we propose to examine how the predictions on plausible training points evolve
during training. Informally, the evolution of E[pt] represents knowing how often we predict the final label
at step t, while the evolution of V[pt] represents knowing how we become more consistent as we continue
training. Do note that the performance of this optimization-based approach to selective classification will
depend on how unoptimized incorrect test points are. In particular, our hypothesis is that incorrect points
often appear sufficiently un-optimized, yielding distinguishable patterns for E[pt] and V[pt] when compared
to optimized points. We verify this behavior in Section 4 where we discuss the distinctive label evolution
patterns of explicitly optimized, correct, and incorrect datapoints.

3.3.2 Last Disagreement Model Score For Discrete Prediction (sMAX)

Here, we propose a selective classification approach based on characterizing optimizing for a datapoint
based off of Lemma 1. Recall the bound given in Lemma 1 depends on expected values and variances for
the pt (denoted et and vt respectively). In Section 4 we observe that et quickly converge to 0, and so
by assuming et = 0 always4 the frequentist bound on how likely a datapoint is a training point becomes
mint s.t at=1

vt

|at−et|2 = mint s.t at=1 vt. Using this result for selective classification, we would impose accep-
tance if mint s.t at=1 vt ≥ τ . Moreover, in Section 4, we further observe that vt monotonically decreases in a
convex manner (after an initial burn-in phase). Hence, imposing mint s.t at=1 vt ≥ τ simply imposes a last
checkpoint that can have a disagreement with the final prediction.

Based on these insights, we propose the following selective classification score: smax = maxt s.t at=1
1
vt

.
Note that this score directly follows from the previous discussion but flips the thresholding direction from
mint s.t at=1 vt ≥ τ to maxt s.t at=1

1
vt
≤ τ for consistency with the anomaly scoring literature (Ruff et al.,

2018). Finally, we choose to approximate the empirical trend of vt as observed in Section 4 with vt = 1− tk

3One could potentially use information about the distribution of points not in D to refine this bound.
4We tried removing this assumption and observed similar performance.

10



Published in Transactions on Machine Learning Research (02/2025)

for k ∈ [1,∞). Based on the choice of k, this approximation allows us to (i) avoid explicit estimation of vt

from validation data; and (ii) enables us to flexibly specify how strongly we penalize model disagreements
late in training.

Hence, our first algorithm for selective classification is:

1. Denote L = fT (x), i.e. the label our final model predicts.

2. If ∃t s.t at = 1 then compute smax = maxt s.t at=1
1
vt

as per the notation in Section 3.3.1 (i.e at = 1
iff ft(x) ̸= L), else accept x with prediction L.

3. If smax ≤ τ accept x with prediction L, else reject (⊥).

Note once again, as all our candidate 1
vt

increase, the algorithm imposes a last intermediate model which can
output a prediction that disagrees with the final prediction: hereafter, the algorithm must output models
that consistently agree with the final prediction.

3.3.3 Overall Disagreement Model Score (sSUM)

Note that the previous characterization of optimization, defined by the score sMAX, could be sensitive to
stochasticity in training and hence perform sub-optimally. That is, the exact time of the last disagreement,
which sMAX relies on, is subject to high noise across randomized training runs. In light of this potential lim-
itation we propose the following "summation" algorithm which computes a weighted sum over training-time
disagreements to get a more consistent statistic. Do note that typically to get a lower-variance statistic one
would take an average, but multiplying by scalars can be replaced by correspondingly scaling the threshold
we use. Hence, our proposed algorithm is:

1. Denote L = fT (x), i.e. the label our final model predicts.

2. If ∃t s.t at = 1, compute ssum =
∑T

t=1
at

vt
, else accept x with prediction L.

3. If ssum ≤ τ accept x with prediction L, else reject (⊥).

Recalling our previous candidates for vt, we have the sSUM places higher weight on late disagreements. This
gives us a biased average of the disagreements which intuitively approximates the expected last disagreement
but now is less susceptible to noise. More generally, this statistic allows us to perform selective classification
by utilizing information from all the disagreements during training. In Appendix B.2.7, we experimentally
show that sSUM leads to more robust selective classification results compared to sMAX. We remark that
the sum score sSUM corresponds exactly to our score g(·) proposed as part of SPTD (recall
Equation 11 from Section 3.2), showcasing the strong connection of our method to forging.

4 Empirical Evaluation

We present a comprehensive empirical study demonstrating the effectiveness of SPTD across domains. Our
results show that computing and thresholding the proposed weighted instability score from SPTD provides
a strong score for selective classification, regression, and time series prediction.

4.1 Classification

Key Research Goals. As part of our experiments we:

• Study the accuracy/coverage trade-off with comparison to past work, showing that SPTD outper-
forms existing work.

• Present exemplary training-dynamics-derived label evolution curves for individual examples from all
datasets.

11



Published in Transactions on Machine Learning Research (02/2025)

• Examine our method’s sensitivity to the checkpoint selection strategy and the weighting parameter k.

• Evaluate the detection performance of out-of-distribution and adversarial examples, showing that
SPTD can be applied beyond the i.i.d. assumption of selective prediction.

• Provide a detailed cost vs performance tradeoff of SPTD and competing selective prediction meth-
ods.

• Analyze distributional training dynamics patterns of both correct and incorrect data points, the
separation of which enables performative selective classification.

Datasets & Training. We evaluate SPTD on image dataset benchmarks that are common in the selective
classification literature: CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009), StanfordCars (Krause et al., 2013),
and Food101 (Bossard et al., 2014). For each dataset, we train a deep neural network following the ResNet-18
architecture (He et al., 2016) and checkpoint each model after processing 50 mini-batches of size 128. All
models are trained over 200 epochs (400 epochs for StanfordCars) using the SGD optimizer with an initial
learning rate of 10−2, momentum 0.9, and weight decay 10−4. Across all datasets, we decay the learning
rate by a factor of 0.5 in 25-epoch intervals.

Baselines. We compare our method (SPTD) to common SC techniques previously introduced in Section 2:
Softmax Response (SR) and Self-Adaptive Training (SAT). Based on recent insights from Feng et al. (2023),
we (i) train SAT with additional entropy regularization5; and (ii) derive SAT’s score by applying Softmax
Response (SR) to the underlying classifier (instead of thresholding the abstention class). We refer to this
method as SAT+ER+SR. We do not include results for SelectiveNet, Deep Gamblers, or Monte-Carlo
Dropout as previous works (Huang et al., 2020; Feng et al., 2023) have shown that SAT+ER+SR strictly
dominates these methods. In contrast to recent SC works, we do however include results with Deep Ensembles
(DE) (Lakshminarayanan et al., 2017), a relevant baseline from the uncertainty quantification literature. Our
hyper-parameter tuning procedure is documented in Appendix B.1.

Accuracy/Coverage Trade-off. Consistent with standard evaluation schemes for selective classification,
our main experimental results examine the accuracy/coverage trade-off of SPTD. We present our perfor-
mance results with comparison to past work in Table 1 where we demonstrate SPTD’s effectiveness on
CIFAR-10, CIFAR-100, StanfordCars, and Food101. We document the results obtained by SPTD, SAT,
SR, and DE across the full coverage spectrum. We see that SPTD outperforms both SAT and SR and
performs similarly as DE. To further boost performance across the accuracy/coverage spectrum, we com-
bine SPTD and DE by applying SPTD on each ensemble member from DE and then average their scores.
More concretely, we estimate DE+SPTD = 1

m

∑M
m=1 SPTDm where SPTDm computes g on each ensemble

member m ∈ [M ]. This combination leads to new state-of-the-art selective classification performance and
showcases that SPTD can be flexibly applied on top of established training pipelines. Further evidence
towards this flexibility is provided in Appendix B.2.3 where we show that applying SPTD on top of SAT
also improves selective prediction performance.

Individual Evolution Plots. To analyze the effectiveness of our disagreement metric proposed in Sec-
tion 3, we examine the evolution curves of our indicator variable at for individual datapoints in Figure 3. In
particular, for each dataset, we present the most stable and the most unstable data points from the test sets
and plot the associated label disagreement metric at over all checkpoints. We observe that easy-to-classify
examples only show a small degree of oscillation while harder examples show a higher frequency of oscilla-
tions, especially towards the end of training. This result matches our intuition: our model should produce
correct decisions on data points whose prediction is mostly constant throughout training and should reject
data points for which intermediate models predict inconsistently. Moreover, as depicted in Figure 4, we also
show that our score g(·) yields distinct distributional patterns for both correctly and incorrectly classified
points. This separation enables strong coverage/accuracy trade-offs via our thresholding procedure.

5This entropy regularization step is designed to encourage the model to be more confident in its predictions.

12



Published in Transactions on Machine Learning Research (02/2025)

Coverage SR SAT+ER+SR DE SPTD DE+SPTD

C
IF

A
R

-1
0

100 92.9 (±0.0) 92.9 (±0.0) 92.9 (±0.0) 92.9 (±0.0) 92.9 (±0.1)
90 96.4 (±0.1) 96.3 (±0.1) 96.8 (±0.1) 96.5 (±0.0) 96.7 (±0.1)
80 98.1 (±0.1) 98.1 (±0.1) 98.7 (±0.0) 98.4 (±0.1) 98.8 (±0.1)
70 98.6 (±0.2) 99.0 (±0.1) 99.4 (±0.1) 99.2 (±0.0) 99.5 (±0.0)
60 98.7 (±0.1) 99.4 (±0.0) 99.6 (±0.1) 99.6 (±0.2) 99.8 (±0.0)
50 98.6 (±0.2) 99.7 (±0.1) 99.7 (±0.1) 99.8 (±0.0) 99.9 (±0.0)
40 98.7 (±0.0) 99.7 (±0.0) 99.8 (±0.0) 99.8 (±0.1) 100.0 (±0.0)
30 98.5 (±0.0) 99.8 (±0.0) 99.8 (±0.0) 99.8 (±0.1) 100.0 (±0.0)
20 98.5 (±0.1) 99.8 (±0.1) 99.8 (±0.0) 100.0 (±0.0) 100.0 (±0.0)
10 98.7 (±0.0) 99.8 (±0.1) 99.8 (±0.1) 100.0 (±0.0) 100.0 (±0.0)

C
IF

A
R

-1
00

100 75.1 (±0.0) 75.1 (±0.0) 75.1 (±0.0) 75.1 (±0.0) 75.1 (±0.0)
90 78.2 (± 0.1) 78.9 (± 0.1) 80.2 (± 0.0) 80.4 (± 0.1) 81.1 (± 0.1)
80 82.1 (± 0.0) 82.9 (± 0.0) 84.7 (± 0.1) 84.6 (± 0.1) 85.0 (± 0.2)
70 86.4 (± 0.1) 87.2 (± 0.1) 88.6 (± 0.1) 88.7 (± 0.0) 88.8 (± 0.1)
60 90.0 (± 0.0) 90.3 (± 0.2) 90.2 (± 0.2) 90.1 (± 0.0) 90.4 (± 0.1)
50 92.9 (± 0.1) 93.3 (± 0.0) 94.8 (± 0.0) 94.6 (± 0.0) 94.9 (± 0.0)
40 95.1 (± 0.0) 95.2 (± 0.1) 96.8 (± 0.1) 96.9 (± 0.1) 96.9 (± 0.0)
30 97.2 (± 0.2) 97.5 (± 0.0) 98.4 (± 0.1) 98.4 (± 0.1) 98.5 (± 0.0)
20 97.8 (± 0.1) 98.3 (± 0.1) 99.0 (± 0.0) 98.8 (± 0.2) 99.2 (± 0.1)
10 98.1 (± 0.0) 98.8 (± 0.1) 99.2 (± 0.1) 99.4 (± 0.1) 99.6 (± 0.1)

Fo
od

10
1

100 81.1 (±0.0) 81.1 (±0.0) 81.1 (±0.0) 81.1 (±0.0) 81.1 (±0.0)
90 85.3 (±0.1) 85.5 (±0.2) 86.2 (±0.1) 85.7 (±0.0) 86.7 (±0.0)
80 87.1 (±0.0) 89.5 (±0.0) 90.3 (±0.0) 89.9 (±0.0) 91.3 (±0.1)
70 92.1 (±0.1) 92.8 (±0.1) 94.5 (±0.1) 93.7 (±0.0) 94.6 (±0.0)
60 95.2 (±0.1) 95.5 (±0.1) 97.0 (±0.0) 97.0 (±0.0) 97.0 (±0.0)
50 97.3 (±0.1) 97.5 (±0.0) 98.2 (±0.0) 98.3 (±0.2) 98.5 (±0.0)
40 98.7 (±0.0) 98.7 (±0.2) 99.1 (±0.0) 99.1 (±0.1) 99.2 (±0.1)
30 99.5 (±0.0) 99.7 (±0.2) 99.2 (±0.0) 99.6 (±0.0) 99.7 (±0.0)
20 99.7 (±0.1) 99.7 (±0.2) 99.9 (±0.1) 99.8 (±0.0) 99.9 (±0.1)
10 99.8 (±0.0) 99.8 (±0.1) 99.9 (±0.1) 99.9 (±0.1) 99.9 (±0.1)

St
an

fo
rd

C
ar

s

100 77.6 (±0.0) 77.6 (±0.0) 77.6 (±0.0) 77.6 (±0.0) 77.6 (±0.0)
90 83.0 (±0.1) 83.0 (±0.2) 83.7 (±0.1) 83.3 (±0.1) 83.7 (±0.2)
80 87.6 (±0.0) 88.0 (±0.1) 88.7 (±0.1) 89.3 (±0.0) 89.7 (±0.0)
70 90.8 (±0.0) 92.2 (±0.1) 92.4 (±0.1) 93.6 (±0.0) 93.4 (±0.1)
60 93.5 (±0.1) 95.2 (±0.1) 95.3 (±0.0) 96.2 (±0.0) 96.3 (±0.0)
50 95.3 (±0.0) 96.9 (±0.2) 96.4 (±0.1) 97.0 (±0.1) 97.1 (±0.3)
40 96.8 (±0.0) 97.8 (±0.0) 97.8 (±0.2) 97.8 (±0.1) 97.8 (±0.0)
30 97.5 (±0.1) 98.2 (±0.2) 98.6 (±0.0) 98.2 (±0.2) 98.9 (±0.0)
20 98.1 (±0.0) 98.4 (±0.1) 98.9 (±0.2) 98.6 (±0.0) 99.0 (±0.0)
10 98.2 (±0.1) 98.7 (±0.1) 99.5 (±0.1) 98.5 (±0.1) 99.5 (±0.0)

Table 1: Selective accuracy achieved across coverage levels. We find that SPTD-based methods out-
performs current SOTA error rates across multiple datasets with full-coverage accuracy alignment. Numbers
are reported with mean values and standard deviation computed over 5 random runs. Bold numbers are
best results at a given coverage level across all methods and underlined numbers are best results for methods
relying on a single training run only. Datasets are consistent with Feng et al. (2023).

Checkpoint Weighting Sensitivity. One important hyper-parameter of our method is the weighting of
intermediate predictions. Recall from Section 3 that SPTD approximates the expected stability for correctly
classified points via a weighting function vt = ( t

T )k. In Figure 5 in the Appendix, we observe that SPTD
is robust to the choice of k and that k ∈ [1, 3] performs best. At the same time, we find that increasing k
too much leads to a decrease in accuracy at medium coverage levels. This result emphasizes that (i) large
parts of the training process contain valuable signals for selective classification; and that (ii) early label
disagreements arising at the start of optimization should be de-emphasized by our method.

13



Published in Transactions on Machine Learning Research (02/2025)

CIFAR-10 CIFAR-100 Food101 StanfordCars

Figure 3: Most characteristic examples across datasets. For each dataset, we show the samples with
the most stable and most unstable (dis-) agreement with the final label along with their corresponding at

indicator function. Correct points are predominantly characterized by disagreements early in training while
incorrect points change their class label throughout (but importantly close to the end of) training. We
provide additional examples from all datasets in Figure 20 in the Appendix.

0.0 0.5
0

25S
R

CIFAR-10

correct
incorrect

0.0 0.5 1.0
0

10
CIFAR-100

0.0 0.5 1.0
0

10

StanfordCars

0.0 0.5 1.0
0

10

Food101

0.0 0.5
0

50

S
A
T

0.0 0.5 1.0
0

5

0.0 0.5 1.0
0

2

0.0 0.5 1.0
0

5

0.0 0.5
0

20

D
E

0.0 0.5 1.0
0

5

0.0 0.5 1.0
0

5

0.0 0.5 1.0
0

5

0 200 400
0.000

0.025

S
P
T
D

0 200 400
0.00

0.02

0 100 200
0.000

0.025

0 200 400 600
0.00

0.01

Figure 4: Distribution of g for different datasets and selective classification methods. Since all
methods are designed to address the selective prediction problem, they all manage to separate correct from
incorrect points (albeit at varying success rates). We see that SPTD spreads the scores for incorrect points
over a wide range with little overlap. We observe that for SR, incorrect and correct points both have their
mode at approximately the same location which hinders performative selective classification. Although SAT
and DE show larger bumps at larger score ranges, the separation with correct points is weaker as correct
points also result in higher scores more often than for SPTD.

Checkpoint Selection Strategy. The second important hyper-parameter of our method is the checkpoint
selection strategy. In particular, to reduce computational cost, we study the sensitivity of SPTD with respect
to the checkpointing resolution in Figure 6. Our experiments demonstrate favorable coverage/error trade-offs
between 25 and 50 checkpoints when considering the full coverage spectrum. However, when considering
the high coverage regime in particular (which is what most selective prediction works focus on), even sub-
sampling 10 intermediate models is sufficient for SOTA selective classification. Hence, with only observing
the training stage, our method’s computational overhead reduces to only 10 forward passes at test time when
the goal is to reject at most 30% − 50% of incoming data points. In contrast, DE requires to first train E
models (with E = 10 being a typical and also our particular choice for DE) and perform inference on these
E models at test time. Further increasing the checkpointing resolution does offer increasingly diminishing
returns but also leads to improved accuracy-coverage trade-offs, especially at low coverage.

14



Published in Transactions on Machine Learning Research (02/2025)

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc
ur
ac
y

CIFAR-10

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
Food101

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

1
2
3

5
10

Figure 5: Coverage/error trade-off of SPTD for varying checkpoint weighting k as used in vt. We
observe strong performance for k ∈ [1, 3] across datasets.

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc
ur
ac
y

CIFAR-10

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
Food101

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

full
200
100

50
25
10

Figure 6: Coverage/error trade-off of SPTD for varying checkpoint counts. SPTD delivers consistent
performance independent of the checkpointing resolution at high coverage. At low coverage, a more detailed
characterization of training dynamics helps.

Examining the Convergence Behavior of Training and Test Points. The effectiveness of SPTD
relies on our hypothesis that correctly classified points and incorrectly classified points exhibit distinct
training dynamics. We verify this hypothesis in Figure 7 where we examine the convergence behavior of the
disagreement distributions of correct (ctr

t ) / incorrect (itr
t ) training and correct (cte

t ) / incorrect (ite
t ) test

points. We observe that the expected disagreement for both correctly classified training ctr
t and test points

cte
t points converge to 0 over the course of training. The speed of convergence is subject to the difficulty of

the optimization problem with more challenging datasets exhibiting slower convergence in predicted label
disagreement. We also see that the variances follow an analogous decreasing trend. This indicates that
correctly classified points converge to the final label quickly and fast convergence is strongly indicative of
correctness. Furthermore, the overlap suggests that correct test points are more likely to be forgeable as
their dynamics look indistinguishable to correct training points (recall Section 3.3 on the connection between
our method and forging). In contrast, incorrectly classified points itr

t and ite
t show significantly larger mean

and variance levels. This clear separation in distributional evolution patterns across correct and incorrect
points leads to strong selective prediction performance in our SPTD framework.

Detection of Out-of-Distribution and Adversarial Examples. Out-of-distribution (OOD) and ad-
versarial example detection are important disciplines in trustworthy ML related to selective prediction. We
therefore provide preliminary evidence in Figure 8 that our method can be used for detecting OOD and
adversarial examples. While these results are encouraging, we remark that adversarial and OOD samples
are less well defined as incorrect data points and can come in a variety of different flavors (i.e., various kinds
of attacks or various degrees of OOD-ness). As such, we strongly believe that future work is needed to
determine whether a training-dynamics-based approach to selective prediction can be reliably used for OOD
and adversarial sample identification.

Cost vs Performance Tradeoff. In Table 2, we report both the time and space complexities for all SC
methods at training and test time along with their selective classification performance as per our results
in Table 1 and Figure 6. We denote with E the number of DE models and with T the number of SPTD
checkpoints. Although SR and SAT are the cheapest methods to run, they also perform the poorest at SC.
SPTD is significantly cheaper to train than DE and achieves competitive performance at T ≈ E. Although
DE+SPTD is the most expensive model, it also provides the strongest performance.

15



Published in Transactions on Machine Learning Research (02/2025)

0.0

0.5

E[
·]

CIFAR-10

0

1
CIFAR-100

0.5

1.0
Food101

0.5

1.0
StanfordCars

0 1000
Checkpoints

0.0

0.2

V
[·]

0 1000
Checkpoints

0.1

0.2

0 1000 2000
Checkpoints

0.0

0.2

0 500
Checkpoints

0.0

0.2

ctr
t : correct training points itrt : incorrect training points cte

t : correct test points itet : incorrect test points

Figure 7: Monitoring expectations E[·] and variances V[·] for correct/incorrect training and test
points. We observe that correctly classified points (cold colors) have both their expectations and variances
quickly decreasing to 0 as training progresses. Incorrectly classified points (warm colors) both exhibit large
expectations and variances and stay elevated over large periods.

−25 0 25 50 75

Score

0.000

0.025

D
en

si
ty

CIFAR10 – OOD

ood

test

−25 0 25 50 75

Score

0.00

0.05

D
en

si
ty

CIFAR10 – ADV

adv

test

−25 0 25 50 75

Score

0.00

0.05

D
en

si
ty

CIFAR100 – OOD

ood

test

−25 0 25 50 75

Score

0.00

0.05

D
en

si
ty

CIFAR100 – ADV

adv

test

0.0 0.5 1.0

False Positive Rate

0

1

T
ru

e
P

os
it

iv
e

R
at

e

AUC 0.896

0.0 0.5 1.0

False Positive Rate

0

1

T
ru

e
P

os
it

iv
e

R
at

e

AUC 0.905

0.0 0.5 1.0

False Positive Rate

0

1

T
ru

e
P

os
it

iv
e

R
at

e

AUC 0.820

0.0 0.5 1.0

False Positive Rate

0

1

T
ru

e
P

os
it

iv
e

R
at

e

AUC 0.786

Figure 8: Performance of SPTD on out-of-distribution (OOD) and adversarial sample detection.
The first row shows the score distribution of the in-distribution CIFAR-10/100 test set vs the SVHN OOD
test set or a set consisting of adversarial samples generated via a PGD attack in the final model. The second
row shows the effectiveness of a thresholding mechanism by computing the area under the ROC curve. Our
score enables separation of anomalous data points from in-distribution test points.

4.2 Regression Experiments

Datasets. Our experimental suite for regression considers the following datasets: California housing
dataset (Pace & Barry, 1997) (N = 20640, D = 8), the concrete strength dataset (Yeh, 2007) (N = 1030,
D = 9), and the fish toxicity dataset (Ballabio et al., 2019) (N = 546, D = 9).

Model Setup & Baselines. We split all datasets into 80% training and 20% test sets after a random
shuffle. Then, we train a fully connected neural network with layer dimensionalities D → 10→ 7→ 4→ 1.
Optimization is performed using full-batch gradient descent using the Adam optimizer with learning rate
10−2 over 200 epochs and weight decay 10−2. We consider the following baseline methods for rejecting
input samples: (i) approximating the predictive variance using deep ensembles (DE) (Lakshminarayanan
et al., 2017; Zaoui et al., 2020); (ii) SelectiveNet (SN) which explicitly optimizes utility given a desired
coverage constraint; and (iii) training the model with a Gaussian parametric output distribution (ODIST)
via maximum likelihood maximization (Alexandrov et al., 2019).

16



Published in Transactions on Machine Learning Research (02/2025)

0.5 1.0
Coverage

25

50
M

SI
S

M4 Hourly

0.5 1.0
Coverage

20

30

M4 Daily

0.5 1.0
Coverage

10
20

M4 Weekly

0.5 1.0
Coverage

2.5

5.0
Hospital

SPTD

DE

ODIST

Figure 9: MSIS/coverage trade-off across various time series prediction datasets. SPTD offers
comparable performance to DE but provides improved results at low coverage.

Method Train Time Train Space Inf Time Inf Space Rank

SR O(1) O(1) O(1) O(1) 5
SAT O(1) O(1) O(1) O(1) 4
DE O(E) O(E) O(E) O(E) =2

SPTD O(1) O(T ) O(T ) O(T ) =2
DE+SPTD O(E) O(ET ) O(ET ) O(ET ) 1

Table 2: Cost vs performance tradeoff in terms of training time/space, inference time/space
and the performance rank. SPTD is comparable in performance (at T ≈ E) and cheaper to train than
DE. DE+SPTD is the most expensive model, but delivers the best performance across datasets.

Main results. We document our results in Figure 10. We see that the ODIST only delivers subpar results
(likely due to mis-calibration) and does not provide a meaningful signal for selective prediction. On the
other hand, DE and SPTD perform comparably with SPTD outperforming DE at low coverage. We stress
again that SPTD’s training cost is significantly cheaper than DE’s while matching the inference-time cost
when sub-sampling a reduced set of checkpoints.

4.3 Time Series Experiments

Datasets. As part of our time series experiments, we mainly consider the M4 forecasting competition
dataset (Makridakis et al., 2020) which contains time series aggregated at various time intervals (e.g., hourly,
daily). In addition, we also provide experimentation on the Hospital dataset (Hyndman, 2015).

Models & Setup. Our experimentation is carried out using the GluonTS time series framework (Alexan-
drov et al., 2019). We carry out our experimentation using the DeepAR model (Salinas et al., 2020), a
recurrent neural network designed for time series forecasting. We train all models over 200 epochs and eval-
uate performance using the mean scaled interval score (MSIS) performance metric (Makridakis et al., 2020).
Our baselines correspond to the same as presented for regression in Section 4.2: deep ensembles (DE), and
output parameterization using a Student-t distribution (ODIST).

Main results. Our time series results are shown in Figure 9 and are consistent with our results for
regression: ODIST does not provide a meaningful signal for selective prediction while SPTD and DE perform
similarly well. SPTD further improves results over DE at low converge.

5 Conclusion

In this work we have proposed SPTD, a selective prediction technique that relies on measuring prediction
instability of test points over intermediate model states obtained during training. Our method offers several
advantages over previous works. In particular (i) it can be applied to all existing models whose checkpoints
were recorded (hence the potential for immediate impact); (ii) it is composable with existing selective predic-
tion techniques; (iii) it can be readily applied to both discrete and real-valued prediction problems; and (iv) it
is more computationally efficient than competing ensembling-based approaches. We verified the performance
of SPTD using an extensive empirical evaluation, leading to new state-of-the-art performance in the field.

17



Published in Transactions on Machine Learning Research (02/2025)

Figure 10: R2/coverage trade-off across various regression datasets. SPTD offers comparable per-
formance to DE but provides improved results at low coverage.

Beyond our work, we expect training dynamics information to be useful for identifying and mitigating other
open problems in trustworthy machine learning such as (un)fairness, privacy, and model interpretability.

Acknowledgements

This work was supported by CIFAR (through a Canada CIFAR AI Chair), by NSERC (under the Discovery
Program), and by a gift from Ericsson. Anvith Thudi is supported by a Vanier Fellowship. We are also
grateful to the Vector Institute’s sponsors for their financial support. In particular, we thank Roger Grosse,
Chris Maddison, Franziska Boenisch, Natalie Dullerud, Mohammad Yaghini, Sierra Wyllie, Jonas Guan,
Michael Zhang, and Tom Ginsberg for fruitful discussions. We would also like to thank the Vector ops and
services teams for making the office such a wonderful place to work, and for the (limitless) free hot chocolate.

References
Dyah Adila and Dongyeop Kang. Understanding out-of-distribution: A perspective of data dynamics. In I

(Still) Can’t Believe It’s Not Better! Workshop at NeurIPS 2021, pp. 1–8. PMLR, 2022.

Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of gradients.
arXiv preprint arXiv:2008.11600, 2020.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, et al. Gluonts:
Probabilistic time series models in python. arXiv preprint arXiv:1906.05264, 2019.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-the-line: Predicting
the performance of neural networks under distribution shift. Advances in Neural Information Processing
Systems, 35:19274–19289, 2022.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of example
difficulty. Advances in Neural Information Processing Systems, 34, 2021.

Davide Ballabio, Matteo Cassotti, Viviana Consonni, and Roberto Todeschini. QSAR fish toxicity. UCI
Machine Learning Repository, 2019. DOI: https://doi.org/10.24432/C5JG7B.

Guy Bar-Shalom, Yonatan Geifman, and Ran El-Yaniv. Window-based distribution shift detection for deep
neural networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient descent
on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:4381–4391, 2020.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative components
with random forests. In European Conference on Computer Vision, 2014.

Luís Felipe P Cattelan and Danilo Silva. Improving selective classification performance of deep neural
networks through post-hoc logit normalization and temperature scaling. arXiv preprint arXiv:2305.15508,
2023.

18



Published in Transactions on Machine Learning Research (02/2025)

Robert Challen, Joshua Denny, Martin Pitt, Luke Gompels, Tom Edwards, and Krasimira Tsaneva-
Atanasova. Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28(3):231–237, 2019.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural
networks by emphasizing high variance samples. Advances in Neural Information Processing Systems, 30,
2017.

Hugh Chen, Scott Lundberg, and Su-In Lee. Checkpoint ensembles: Ensemble methods from a single training
process. arXiv preprint arXiv:1710.03282, 2017.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. Journal of Machine
Learning Research, 11(53):1605–1641, 2010. URL http://jmlr.org/papers/v11/el-yaniv10a.html.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail
via influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.

Jean Feng, Arjun Sondhi, Jessica Perry, and Noah Simon. Selective prediction-set models with coverage rate
guarantees. Biometrics, 2021.

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir H Abdi. Towards better selective
classification. In The Eleventh International Conference on Learning Representations, 2023.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059. PMLR, 2016.

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. What can we learn from the selective prediction and
uncertainty estimation performance of 523 imagenet classifiers. arXiv preprint arXiv:2302.11874, 2023.

Aditya Gangrade, Anil Kag, and Venkatesh Saligrama. Selective classification via one-sided prediction. In
International Conference on Artificial Intelligence and Statistics, pp. 2179–2187. PMLR, 2021.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. Advances in neural
information processing systems, 30, 2017.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject option.
In International Conference on Machine Learning, pp. 2151–2159. PMLR, 2019.

Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. Bias-reduced uncertainty estimation for deep neural
classifiers. arXiv preprint arXiv:1805.08206, 2018.

Zahra Ghodsi, Siva Kumar Sastry Hari, Iuri Frosio, Timothy Tsai, Alejandro Troccoli, Stephen W Keckler,
Siddharth Garg, and Anima Anandkumar. Generating and characterizing scenarios for safety testing of
autonomous vehicles. arXiv preprint arXiv:2103.07403, 2021.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. Journal
of the American statistical Association, 102(477):359–378, 2007.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do compressed
deep neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

19

http://jmlr.org/papers/v11/el-yaniv10a.html


Published in Transactions on Machine Learning Research (02/2025)

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger. Snapshot
ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk minimization.
Advances in neural information processing systems, 33:19365–19376, 2020.

RJ Hyndman. expsmooth: Data sets from “forecasting with exponential smoothing”. R package version, 2,
2015.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of sgd via
disagreement. arXiv preprint arXiv:2106.13799, 2021.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural regularities
of labeled data in overparameterized models. arXiv preprint arXiv:2002.03206, 2020.

Fereshte Khani, Martin Rinard, and Percy Liang. Unanimous prediction for 100% precision with application
to learning semantic mappings. arXiv preprint arXiv:1606.06368, 2016.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained catego-
rization. In Proceedings of the IEEE international conference on computer vision workshops, pp. 554–561,
2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R Salakhutdinov, Louis-Philippe Morency, and Masahito
Ueda. Deep gamblers: Learning to abstain with portfolio theory. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000 time
series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74, 2020.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In Interna-
tional Conference on Machine Learning, pp. 7076–7087. PMLR, 2020.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):
291–297, 1997.

Ru Peng, Qiuyang Duan, Haobo Wang, Jiachen Ma, Yanbo Jiang, Yongjun Tu, Xiu Jiang, and Junbo
Zhao. Came: Contrastive automated model evaluation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 20121–20132, 2023.

Ru Peng, Heming Zou, Haobo Wang, Yawen Zeng, Zenan Huang, and Junbo Zhao. Energy-based automated
model evaluation. arXiv preprint arXiv:2401.12689, 2024.

Florian A Potra and Stephen J Wright. Interior-point methods. Journal of computational and applied
mathematics, 124(1-2):281–302, 2000.

Stephan Rabanser, Anvith Thudi, Abhradeep Thakurta, Krishnamurthy Dvijotham, and Nicolas Papernot.
Training private models that know what they don’t know. arXiv preprint arXiv:2305.18393, 2023.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International conference on machine
learning, pp. 4393–4402. PMLR, 2018.

20

https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf


Published in Transactions on Machine Learning Research (02/2025)

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191, 2020.

Sara Sangalli, Ertunc Erdil, and Ender Konukoglu. Expert load matters: operating networks at high accuracy
and low manual effort. Advances in Neural Information Processing Systems, 36, 2024.

Andrew I Schein and Lyle H Ungar. Active learning for logistic regression: an evaluation. Machine Learning,
68(3):235–265, 2007.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith,
and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training dynamics. arXiv
preprint arXiv:2009.10795, 2020.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable algorithmic
definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX Security 22), pp.
4007–4022, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Ge-
offrey J Gordon. An empirical study of example forgetting during deep neural network learning. arXiv
preprint arXiv:1812.05159, 2018.

Lucas Nunes Vieira, Minako O’Hagan, and Carol O’Sullivan. Understanding the societal impacts of machine
translation: a critical review of the literature on medical and legal use cases. Information, Communication
& Society, 24(11):1515–1532, 2021.

Yu-Chang Wu, Shen-Huan Lyu, Haopu Shang, Xiangyu Wang, and Chao Qian. Confidence-aware contrastive
learning for selective classification. arXiv preprint arXiv:2406.04745, 2024.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007. DOI:
https://doi.org/10.24432/C5PK67.

Ahmed Zaoui, Christophe Denis, and Mohamed Hebiri. Regression with reject option and application to
knn. Advances in Neural Information Processing Systems, 33:20073–20082, 2020.

21



Published in Transactions on Machine Learning Research (02/2025)

A Alternate Metric Choices

We briefly discuss additional potential metric choices that we investigated but which lead to selective clas-
sification performance worse than our main method.

A.1 Jump Score sjmp

We also consider a score which captures the level of disagreement between the predicted label of two successive
intermediate models (i.e., how much jumping occurred over the course of training). For jt = 0 iff ft(x) =
ft−1(x) and jt = 1 otherwise we can compute the jump score as sjmp = 1 −

∑
vtjt and threshold it as in

§ 3.3.2 and § 3.3.3.

A.2 Variance Score svar for Continuous Metrics

We consider monitoring the evolution of continuous metrics that have been shown to be correlated with
example difficulty. These metrics include (but are not limited to):

• Confidence (conf): maxc∈Y ft(x)

• Confidence gap between top 2 most confident classes (gap): maxc∈Y ft(x)−maxc ̸=ŷ ft(x)

• Entropy (ent): −
∑C

c=1 ft(x)c log (ft(x)c)

Jiang et al. (2020) show that example difficulty is correlated with confidence and entropy. Moreover, they
find that difficult examples are learned later in the training process. This observation motivates designing
a score based on these continuous metrics that penalises changes later in the training process more heavily.
We consider the maximum softmax class probability known as confidence, the negative entropy and the gap
between the most confident classes for each example instead of the model predictions. Assume that any of
these metrics is given by a sequence z = {z1, . . . , zT } obtained from T intermediate models. Then we can
capture the uniformity of z via a (weighted) variance score svar =

∑
t wt(zt − µ)2 for mean µ = 1

T

∑
t zt and

an increasing weighting sequence w = {w1, . . . , wT }.

In order to show the effectiveness of the variance score svar for continuous metrics, we provide a simple
bound on the variance of confidence maxy∈Y ft(x) in the final checkpoints of the training. Assuming that
the model has converged to a local minima with a low learning rate, we can assume that the distribution of
model weights can be approximated by a Gaussian distribution.

We consider a linear regression problem where the inputs are linearly separable.
Lemma 2. Assume that we have some Gaussian prior on the model parameters in the logistic regres-
sion setting across m final checkpoints. More specifically, given T total checkpoints of model parameters
{w1, w2, . . . , wT } we have p(W = wt) = N (w0 | µ, sI) for t ∈ {T −m + 1, . . . , T} and we assume that final
checkpoints of the model are sampled from this distribution. We show that the variance of model confidence
maxy∈{−1,1} p(y | xi, wt) for a datapoint (xi, yi) can be upper bounded by a factor of probability of correctly
classifying this example by the optimal weights.

Proof. We first compute the variance of model predictions p(yi | xi, W ) for a given datapoint (xi, yi).
Following previous work (Schein & Ungar, 2007; Chang et al., 2017), the variance of predictions over these
checkpoints can be estimated as follows:

Taking two terms in Taylor expansion for model predictions we have p(yi | xi, W ) ≃ p(yi | xi, w) +
gi(w)⊤(W −w) where W and w are current and the expected estimate of the parameters and gi(w) = p(yi |
xi, w)(1− p(yi | xi, w))xi is the gradient vector. Now we can write the variance with respect to the model
prior as:

V (p(yi | xi, W )) ≃ V
(
gi(w)⊤(W −w)

)
= gi(w)⊤F −1gi(w)

22



Published in Transactions on Machine Learning Research (02/2025)

where F is the variance of posterior distribution p(W | X, Y ) ∼ N (W | w, F −1). This suggests that the
variance of probability of correctly classifying xi is proportional to p(yi | xi, w)2(1 − p(yi | xi, w))2. Now
we can bound the variance of maximum class probability or confidence as below:

V
(

max
y∈{−1,1}

p(y | xi, W )
)
≤ V (p(yi | xi, W )) + V (p(−yi | xi, W ))

≈ 2p(yi | xi, w)2(1− p(yi | xi, w))2x⊤
i F −1xi

We showed that if the probability of correctly classifying an example given the final estimate of model
parameters is close to one, the variance of model predictions following a Gaussian prior gets close to zero,
we expect a similar behaviour for the variance of confidence under samples of this distribution.

B Extension of Empirical Evaluation

B.1 Full Hyper-Parameters

We document full hyper-parameter settings for our method (SPTD) as well as all baseline approaches in
Table 3.

Table 3: Hyper-parameters used for all algorithms for classification.

Dataset SC Algorithm Hyper-Parameters

CIFAR-10

Softmax Response (SR) N/A
Self-Adaptive Training (SAT) P = 100

Deep Ensembles (DE) E = 10
Selective Prediction Training Dynamics (SPTD) T = 1600, k = 2

CIFAR-100

Softmax Response (SR) N/A
Self-Adaptive Training (SAT) P = 100

Deep Ensembles (DE) E = 10
Selective Prediction Training Dynamics (SPTD) T = 1600, k = 2

Food101

Softmax Response (SR) N/A
Self-Adaptive Training (SAT) P = 100

Deep Ensembles (DE) E = 10
Selective Prediction Training Dynamics (SPTD) T = 2200, k = 3

StanfordCars

Softmax Response (SR) N/A
Self-Adaptive Training (SAT) P = 100

Deep Ensembles (DE) E = 10
Selective Prediction Training Dynamics (SPTD) T = 800, k = 5

B.2 Additional Selective Prediction Results

B.2.1 Extended Synthetic Experiments

We extend the experiment from Figure 2 to all tested SC methods in Figure 11. We also provide an extended
result using Bayesian Linear Regression in Figure 12.

B.2.2 CIFAR-100 Results With ResNet-50

We further provide a full set of results using the larger ResNet-50 architecture on CIFAR-100 in Figure 4.

23



Published in Transactions on Machine Learning Research (02/2025)

Table 4: Selective accuracy achieved across coverage levels for CIFAR-100 with ResNet-50.

Cov. SR SAT+ER+SR DE SPTD DE+SPTD
100 77.0 (±0.0) 77.0 (±0.0) 77.0 (±0.0) 77.0 (±0.0) 77.0 (±0.0)
90 79.2 (± 0.1) 79.9 (± 0.1) 81.2 (± 0.0) 81.4 (± 0.1) 82.1 (± 0.1)
80 83.1 (± 0.0) 83.9 (± 0.0) 85.7 (± 0.1) 85.6 (± 0.1) 86.0 (± 0.2)
70 87.4 (± 0.1) 88.2 (± 0.1) 89.6 (± 0.1) 89.7 (± 0.0) 89.8 (± 0.1)
60 90.5 (± 0.0) 90.8 (± 0.2) 90.7 (± 0.2) 90.6 (± 0.0) 90.9 (± 0.1)
50 93.4 (± 0.1) 93.8 (± 0.0) 95.3 (± 0.0) 95.1 (± 0.0) 95.4 (± 0.0)
40 95.4 (± 0.0) 95.5 (± 0.1) 97.1 (± 0.1) 97.2 (± 0.1) 97.2 (± 0.0)
30 97.4 (± 0.2) 97.7 (± 0.0) 98.6 (± 0.1) 98.6 (± 0.1) 98.7 (± 0.0)
20 97.9 (± 0.1) 98.4 (± 0.1) 99.0 (± 0.0) 99.2 (± 0.1) 99.2 (± 0.1)
10 98.1 (± 0.0) 98.8 (± 0.1) 99.2 (± 0.1) 99.4 (± 0.1) 99.6 (± 0.1)

B.2.3 Applying SPTD on Top of SAT

Our main set of results suggest that applying SPTD on top of DE further improves performance. The same
effect holds when applying SPTD on top of non-ensemble-based methods such as SAT. We document this
result in Figure 13.

B.2.4 Ablation on k

We provide a comprehensive ablation on the weighting parameter k in Figures 5 and 14.

B.2.5 Comparison With Logit-Variance Approaches

We showcase the effectiveness of SPTD against LOGITVAR (Swayamdipta et al., 2020), an approach that
also computes predictions of intermediate models but instead computes the variance of the correct prediction.
We adapt this method to our selective prediction approach (for which true labels are not available) by
computing the variance over the maximum predicted logit instead of the true logit. In Figure 15, we see
that the weighting of intermediate checkpoints introduced by SPTD leads to stronger performance over the
LOGITVAR baseline approach.

B.2.6 Estimating τ on Validation VS Test Data

Consistent with prior works (Geifman & El-Yaniv, 2017; Liu et al., 2019; Huang et al., 2020; Feng et al.,
2023), we estimate τ directly on the test set. However, a realistically deployable approach has to compute
thresholds based on a validation set for which labels are available. In the case of selective classification,
the training, validation, and test sets follow the i.i.d. assumption, which means that an approach that
sets the threshold based on a validation set should work performantly on a test set, too. Under consistent
distributional assumptions, estimating thresholds on a validation set functions as an unbiased estimator of
accuracy/coverage tradeoffs on the test set. By the same virtue, setting thresholds directly on the test set
and observing the SC performance on that test set should be indicative for additional test samples beyond
the actual provided test set. It is important to remark that the validation set should only be used for setting
the thresholds and not for model selection / early stopping which would indeed cause a potential divergence
between SC performance on the validation and test sets. Further note that violations of the i.i.d assumption
can lead to degraded performance due to mismatches in attainable coverage as explored in Bar-Shalom et al.
(2023).

To confirm this intuition, we present an experiment in Figure 16 and Figure 17 where we select 50% of the
samples from the test set as our validation set (and maintain the other 50% of samples as our new test set).
We first generate 5 distinct such validation-test splits, set the thresholds for τ based on the validation set,
and then evaluate selective classification performance on the test set by using the thresholds derived from

24



Published in Transactions on Machine Learning Research (02/2025)

the validation set. We compare these results with our main approach which sets the thresholds based on the
test set directly (ignoring the validation set). We provide an additional experiment where we partition the
validation set from the training set in Figure 18. We see that the results are statistically indistinguishable
from each other, confirming that this evaluation practice is valid for the selective classification setup we
consider.

B.2.7 Comparing sMAX and sSUM

As per our theoretical framework and intuition provided in Section 3, the sum score sSUM should offer the
most competitive selective classification performance. We confirm this finding in Figure 19 where we plot
the accuracy/coverage curves across all datasets for both sMAX and sSUM. Overall, we find that the sum
score sSUM consistently outperforms the more noisy maximum score sMAX.

B.3 The Importance of Accuracy Alignment

Our results in Table 1 rely on accuracy alignment: We explicitly make sure to compare all methods on an
equal footing by disentangling selective prediction performance from gains in overall utility. This is done by
early stopping model training when the accuracy of the worst performing model is reached.

We expand on the important point that many previous approaches conflate both (i) generalization perfor-
mance and (ii) selective prediction performance into a single score: the area under the accuracy/coverage
curve. This metric can be maximized either by improving generalization performance (choosing different
architectures or model classes) or by actually improving the ranking of points for selective prediction (accept-
ing correct points first and incorrect ones last). As raised by a variety of recent works Geifman et al. (2018);
Rabanser et al. (2023); Cattelan & Silva (2023), it is impossible and problematic to truly assess whether a
method performs better at selective prediction (i.e., determining the correct acceptance ordering) without
normalizing for this inherent difference yielded as a side effect by various SC methods. In other words, an SC
method with lower base accuracy (smaller correct set) can still outperform another SC method with higher
accuracy (larger correct set) in terms of the selective acceptance ordering (an example of which is given
in Table 3 of Liu et al. (2019)). Accuracy normalization allows us to eliminate these confounding effects
between full-coverage utility and selective prediction performance by identifying which models are better
at ranking correct points first and incorrect ones last. This is of particular importance when comparing
selective prediction methods which change the training pipeline in different ways, as is done in the methods
presented in Table 1.

However, when just comparing SPTD to one other method, we do not need to worry about accuracy
normalization. Showcasing this, we run SPTD on top of an unnormalized SAT+ER+SR run and provide
these experiments in Figure 13. We see that the application of SPTD on top of SAT+ER+SR allows us
to further boost performance (similar to the results where we apply SPTD on top of DE in Table 1). So
to conclude, experimentally, when using the best model, we see that SPTD still performs better at selective
prediction than the relevant baseline for that training pipeline. We wish to reiterate that this issue of
accuracy normalization highlights another merit of SPTD, which is that it can easily be applied on top
of any training pipeline (including those that lead to the best model) and allows easy comparison to the
selective classification method that training pipeline was intended to be deployed with.

B.4 Evaluation using other performance metrics

We further provide results of summary performance metrics across datasets in Table 5:

• The area under the accuracy-coverage curve (AUACC) as discussed in Geifman et al. (2018).

• The area under the receiver operating characteristic (AUROC) as suggested by Galil et al. (2023).

• The accuracy normalized selective classification score (ANSC) from Geifman et al. (2018) and Ra-
banser et al. (2023).

25



Published in Transactions on Machine Learning Research (02/2025)

Table 5: Evaluation of SC approaches using various evaluation metrics.

Dataset Method 1− AUACC ANSC AUROC

CIFAR10

SR 0.053 ± 0.002 0.007 ± 0.000 0.918 ± 0.002
SPTD 0.048 ± 0.001 0.004 ± 0.000 0.938 ± 0.002
DE 0.046 ± 0.002 0.004 ± 0.000 0.939 ± 0.003
SAT 0.054 ± 0.002 0.006 ± 0.000 0.924 ± 0.005
DG 0.054 ± 0.001 0.006 ± 0.000 0.922 ± 0.005

CIFAR100

SR 0.181 ± 0.001 0.041 ± 0.001 0.865 ± 0.003
SPTD 0.174 ± 0.002 0.037 ± 0.000 0.872 ± 0.002
DE 0.159 ± 0.001 0.030 ± 0.001 0.880 ± 0.003
SAT 0.180 ± 0.001 0.041 ± 0.001 0.866 ± 0.003
DG 0.182 ± 0.001 0.041 ± 0.001 0.867 ± 0.002

GTSRB

SR 0.020 ± 0.002 0.001 ± 0.000 0.986 ± 0.003
SPTD 0.019 ± 0.002 0.001 ± 0.000 0.986 ± 0.005
DE 0.015 ± 0.001 0.001 ± 0.000 0.986 ± 0.002
SAT 0.027 ± 0.001 0.001 ± 0.000 0.984 ± 0.002
DG 0.019 ± 0.003 0.001 ± 0.000 0.986 ± 0.002

SVHN

SR 0.027 ± 0.000 0.006 ± 0.001 0.895 ± 0.004
SPTD 0.025 ± 0.003 0.003 ± 0.001 0.932 ± 0.005
DE 0.021 ± 0.001 0.005 ± 0.000 0.912 ± 0.003
SAT 0.028 ± 0.001 0.006 ± 0.000 0.895 ± 0.002
DG 0.026 ± 0.001 0.007 ± 0.000 0.896 ± 0.006

B.5 Evaluation of more competing approaches

We further compare our method with two more contemporary selective prediction approaches:

• AUCOC (Sangalli et al., 2024): This work uses a custom cost function for multi-class classification
that accounts for the trade-off between a neural network’s accuracy and the amount of data that
requires manual inspection from a domain expert.

• CCL-SC (Wu et al., 2024): This work proposes optimizing feature layers to reduce intra-class variance
via contrastive learning.

Across both methods, we find that they do not outperform ensemble-based methods like DE and hence also
do not outperform SPTD. See Table 6 for detailed results.

26



Published in Transactions on Machine Learning Research (02/2025)

Table 6: Selective accuracy achieved across coverage levels for AUCOC and CCL-SC. Similar as
Table 1. Neither AUCOC nor CCL-SC is able to outperform DE or SPTD. Bold numbers are best results
at a given coverage level across all methods and underlined numbers are best results for methods relying on
a single training run only.

Coverage AUCOC CCL-SC SPTD DE

C
IF

A
R

-1
0

100 92.9 (±0.0) 92.9 (±0.0) 92.9 (±0.0) 92.9 (±0.0)
90 96.0 (±0.1) 95.9 (±0.2) 96.5 (±0.0) 96.8 (±0.1)
80 98.1 (±0.2) 98.0 (±0.3) 98.4 (±0.1) 98.7 (±0.0)
70 99.0 (±0.3) 98.5 (±0.2) 99.2 (±0.1) 99.4 (±0.1)
60 99.3 (±0.1) 99.1 (±0.2) 99.6 (±0.2) 99.6 (±0.1)
50 99.4 (±0.2) 99.0 (±0.3) 99.8 (±0.0) 99.7 (±0.0)
40 99.5 (±0.1) 99.4 (±0.2) 99.8 (±0.1) 99.8 (±0.0)
30 99.5 (±0.2) 99.2 (±0.3) 99.8 (±0.1) 99.8 (±0.0)
20 99.6 (±0.1) 99.4 (±0.2) 100.0 (±0.0) 99.8 (±0.0)
10 99.7 (±0.0) 99.4 (±0.1) 100.0 (±0.0) 99.8 (±0.0)

C
IF

A
R

-1
00

100 75.1 (±0.0) 75.1 (±0.0) 75.1 (±0.0) 75.1 (±0.0)
90 78.7 (±0.2) 76.5 (±0.3) 80.4 (±0.0) 80.2 (±0.0)
80 83.2 (±0.1) 82.2 (±0.2) 84.6 (±0.1) 84.7 (±0.1)
70 87.4 (±0.1) 86.1 (±0.2) 88.7 (±0.0) 88.6 (±0.1)
60 89.8 (±0.2) 88.6 (±0.3) 90.1 (±0.0) 90.2 (±0.2)
50 93.3 (±0.1) 92.1 (±0.2) 94.6 (±0.0) 94.8 (±0.0)
40 95.9 (±0.2) 95.2 (±0.3) 96.9 (±0.1) 96.8 (±0.1)
30 98.2 (±0.1) 96.6 (±0.2) 98.4 (±0.1) 98.4 (±0.1)
20 98.6 (±0.2) 98.4 (±0.3) 98.8 (±0.2) 99.0 (±0.0)
10 98.8 (±0.1) 98.7 (±0.2) 99.4 (±0.1) 99.2 (±0.1)

27



Published in Transactions on Machine Learning Research (02/2025)

−5 0 5

−2.5

0.0

2.5

a = 5

−5 0 5

−2.5

0.0

2.5

a = 1

−2.5 0.0 2.5

−2.5

0.0

2.5

a = 0.5

−2.50.0 2.5

−2.5

0.0

2.5

a = 0

−5 0 5

−2.5

0.0

2.5

−5 0 5

−2.5

0.0

2.5

−2.5 0.0 2.5

−2.5

0.0

2.5

−2.50.0 2.5

−2.5

0.0

2.5

−5 0 5

−2.5

0.0

2.5

−5 0 5

−2.5

0.0

2.5

−2.5 0.0 2.5

−2.5

0.0

2.5

−2.50.0 2.5

−2.5

0.0

2.5

−5 0 5

−2.5

0.0

2.5

−5 0 5

−2.5

0.0

2.5

−2.5 0.0 2.5

−2.5

0.0

2.5

−2.50.0 2.5

−2.5

0.0

2.5

0 1
0

5000

10000

15000
SR

SPTD

SAT

DE

0 1
0

2

4

6

0 1
0

2

4

0 1
0

2

4

6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 11: Extended Gaussian experiment. The first row corresponds to the anomaly scoring result of
SR, the second to the result of SAT, the third to the result of DE, and the fourth to the result of SPTD.
The bottom row shows the score distribution for each method over the data points. We see that all methods
reliably improve over the SR baseline. At the same time, we notice that SAT and DE still assign higher
confidence away from the data due to limited use of decision boundary oscillations. SPTD addresses this
limitation and assigns more uniform uncertainty over the full data space.

28



Published in Transactions on Machine Learning Research (02/2025)

−5 0 5

−2.5

0.0

2.5

−5 0

−2.5

0.0

2.5

−2.5 0.0 2.5

−2.5

0.0

2.5

−2.5 0.0 2.5

−2.5

0.0

2.5

0.00
0.25
0.50
0.75
1.00

Figure 12: Bayesian linear regression experiment on Gaussian data. Results comparable to DE.

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y

CIFAR-10

SAT

SAT+SPTD

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

0.9

1.0
StanfordCars

CIFAR-10

CIFAR-100

StanfordCars

0.9

1.0

A
U

C

Figure 13: Applying SPTD on top of SAT. Similar as with DE, we observe that the application of SPTD
improves performance.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of checkpoints

0.0

0.5

1.0

W
ei

gh
tin

g

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y unif
0.1
0.2
0.5

1
2
5
10

unif 0.1 0.2 0.5 1 2 5 10

k

0.984

0.986

A
U

C

Figure 14: Extended ablation results on k on CIFAR-10. We now also consider k ∈ (0, 1] as well as a
uniform weighting assigning the same weight to all checkpoints. We confirm that a convex weighting yields
best performance.

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y

CIFAR-10

LOGITVAR

SPTD

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

0.9

1.0
StanfordCars

CIFAR-10

CIFAR-100

StanfordCars

0.9

1.0

A
U

C

Figure 15: Comparison of LOGITVAR vs SPTD. We observe that SPTD, which incorporates weighting
of intermediate checkpoints using vt, outperforms LOGITVAR.

29



Published in Transactions on Machine Learning Research (02/2025)

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y

CIFAR-10

val sel
test sel

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

CIFAR-10

CIFAR-100

StanfordCars

0.9

1.0

A
U

C

0 200 400
g

0.00

0.02

D
en

si
ty val

test

0 200 400 600
g

0.00

0.01

0 100 200 300
g

0.00

0.01

CIFAR-10

CIFAR-100

StanfordCars
0

1

p-
va

lu
e

Figure 16: SPTD accuracy/coverage trade-offs and score distributions on test data obtained by
computing τ on a validation set or directly on the test set. The first row shows the obtained accu-
racy/coverage trade-offs with the respective AUC scores. In the second row, we show the score distribution
for both the picked validation and test sets, along with p-values from a KS-test to determine the statistical
closeness of the distributions. Overall, we observe that both methods are statistically indistinguishable from
each other.

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y

CIFAR-10

val sel
test sel

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

CIFAR-10

CIFAR-100

StanfordCars

0.9

1.0

A
U

C

0 25 50 75
g

0.0

0.1

D
en

si
ty val

test

0 25 50 75
g

0.0

0.1

0 100 200 300
g

0.00

0.01

CIFAR-10

CIFAR-100

StanfordCars
0

1
p-

va
lu

e

Figure 17: SAT accuracy/coverage trade-offs and score distributions on test data obtained by
computing τ on a validation set or directly on the test set. Same as Figure 16 but with SAT.

0.0 0.5 1.0
Coverage

0.9

1.0

A
cc

ur
ac

y

CIFAR-10

val sel (from train)
test sel

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

CIFAR-10

CIFAR-100

StanfordCars

0.9

1.0

A
U

C

0 200 400
g

0.00

0.02

D
en

si
ty val (from train)

test

0 200 400 600
g

0.00

0.01

0 100 200 300
g

0.00

0.01

CIFAR-10

CIFAR-100

StanfordCars
0

1

p-
va

lu
e

Figure 18: SPTD accuracy/coverage trade-offs and score distributions on test data obtained
by computing τ on a validation set or directly on the test set. Same as Figure 16 but with the
validation set is taken from the original training set.

30



Published in Transactions on Machine Learning Research (02/2025)

0.0 0.5 1.0
Coverage

0.95

1.00

A
cc

ur
ac

y

CIFAR-10

sum
max

0.0 0.5 1.0
Coverage

0.8

1.0
CIFAR-100

0.0 0.5 1.0
Coverage

0.8

1.0
Food101

0.0 0.5 1.0
Coverage

0.8

1.0
StanfordCars

Figure 19: Comparing sMAX and sSUM performance. It is clear that sSUM effectively denoises sMAX.

31



Published in Transactions on Machine Learning Research (02/2025)

(a) CIFAR-10 (b) CIFAR-100 (c) Food101 (d) StanfordCars

Figure 20: Additional individual examples across datasets.

32


	Introduction
	Background on Selective Prediction
	Past & Related Work

	Selective Prediction via Neural Network Training Dynamics
	Method Intuition: Prediction Disagreements Generalize Softmax Response
	Method Overview: Measuring Prediction Instability During Training
	Selective Prediction and Forging
	A Framework for Being Optimized
	Last Disagreement Model Score For Discrete Prediction (sMAX)
	Overall Disagreement Model Score (sSUM)


	Empirical Evaluation
	Classification
	Regression Experiments
	Time Series Experiments

	Conclusion
	Alternate Metric Choices
	Jump Score sjmp
	Variance Score svar for Continuous Metrics

	Extension of Empirical Evaluation
	Full Hyper-Parameters 
	Additional Selective Prediction Results
	Extended Synthetic Experiments
	CIFAR-100 Results With ResNet-50
	Applying SPTD on Top of SAT
	Ablation on k
	Comparison With Logit-Variance Approaches
	Estimating  on Validation VS Test Data
	Comparing sMAX and sSUM

	The Importance of Accuracy Alignment
	Evaluation using other performance metrics
	Evaluation of more competing approaches


