
Under review as a conference paper at ICLR 2022

CUP: A CONSERVATIVE UPDATE POLICY ALGORITHM
FOR SAFE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe reinforcement learning (RL) is still very challenging since it requires the
agent to consider both return maximization and safe exploration. In this paper, we
propose CUP, a Conservative Update Policy algorithm with a theoretical safety
guarantee. The derivation of CUP is based on surrogate functions with respect to
our new proposed bounds. Although using bounds as surrogate functions to design
safe RL algorithms have appeared in some existing works, we develop it at least
three aspects: (i) We provide a rigorous theoretical analysis to extend the bounds
with respect to generalized advantage estimator (GAE). GAE significantly reduces
variance while maintains a tolerable level of bias, which is an efficient step for us to
design CUP; (ii) The proposed bounds are more compact than existing works, i.e.,
using the proposed bounds as surrogate functions are better local approximations to
the objective and constraints. (iii) The bound of worst-case safe constraint violation
of CUP is more compact than the existing safe RL algorithms, which explains why
CUP is so good in practice. Finally, extensive experiments show the effectiveness
of CUP where the agent satisfies safe constraints.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) has achieved significant successes in many
fields (Mnih et al., 2015; Silver et al., 2017; OpenAI, 2019; Afsar et al., 2021), robotics (Deisenroth
et al., 2013), playing Go (Silver et al., 2016; 2017), Starcraft (Vinyals et al., 2019), Dota (OpenAI,
2019), and recommendation system (Afsar et al., 2021). However, most RL algorithms improve
the performance under the assumption that an agent is free to explore any behaviors. In real-world
applications, only considering return maximization is not enough, and we also need to consider
safe behaviors. For example, a robot agent should avoid playing actions that irrevocably harm its
hardware, and a recommender system should avoid presenting offending items to users. Thus, it
is crucial to consider safe exploration for RL, which is usually formulated as constrained Markov
decision processes (CMDP) (Altman, 1999).

It is challenging to solve CMDP since traditional approaches (e.g., Q-learning (Watkins, 1989) &
policy gradient (Williams, 1992)) usually violate the safe exploration constraints, which is undesirable
for safe RL. Recently, Achiam et al. (2017); Yang et al. (2020); Bharadhwaj et al. (2021) suggest to
use some surrogate functions to replace the objective and constraints. However, their implementations
involve some convex approximations to the non-convex objective and safe constraints, which leads to
many error sources and troubles. Concretely, Achiam et al. (2017); Yang et al. (2020); Bharadhwaj
et al. (2021) approximate the non-convex objective (or constraints) with first-order or second Taylor
expansion, but their implementations still lack a theory to show the error difference between the
original objective (or constraints) and its convex approximations. Besides, their approaches involve
the inverse of a high-dimension Fisher information matrix, which causes their algorithms to require a
costly computation for each update when solving high-dimensional RL problems.

Our Main Work. To address above problems, we propose the conservative update policy (CUP)
algorithm with a theoretical safety guarantee. We derive the CUP bases on some new proposed
surrogate functions with respect to objective and constraints and provide a practical implementation
of CUP that does not depend on any convex approximation to adapt high-dimensional safe RL.

Concretely, in Section 3, Theorem 1 shows generalized difference bounds between two arbitrary
policies for the objective and constraints. Those bounds provide principled approximations to the

1

Under review as a conference paper at ICLR 2022

objective and constraints, which are theoretical foundations for us to use those bounds as surrogate
functions to replace objective and constraints to design algorithms.

Although using difference bound to replace objective or constraints has appeared in some existing
works (e.g., (Kakade & Langford, 2002; Schulman et al., 2015; Achiam et al., 2017)), Theorem
1 improves their bounds at least two aspects: (i) Firstly, our rigorous theoretical analysis extends
the bound with respect to generalized advantage estimator (GAE) (Schulman et al., 2016). GAE
significantly reduces variance while maintains a tolerable level of bias, which is one of the critical
steps for us to design efficient algorithms in the later section. Although Zhang et al. (2020); Kang
et al. (2021) have applied GAE to solve safe RL problems, their approaches are empirical and
lack a theoretical analysis with respect to GAE. Thus, our result provides a theory to illustrate the
effectiveness of the work (Zhang et al., 2020; Kang et al., 2021). (ii) Our new bounds refine classic
difference bounds. For example, our bounds are more compact than Achiam et al. (2017), i,e., using
our new bounds as surrogate functions are better local approximations to the objective and constraints.
Besides, the surrogate functions with respect to our new bounds are more accessible to be estimated
from the samples than the approaches appears in (Kakade & Langford, 2002; Schulman et al., 2015)),
for more discussions, please see Remark 1.

In Section 4, we provide the necessary details of the proposed CUP. The CUP contains two steps:
it performs a policy improvement at first, then it projects the policy back onto the safe region to
reconcile the constraint violation. Theorem 2 shows a lower bound on policy improvement and an
upper bound on constraint violation for CUP at each update. Notably, the result in Theorem 2 shows
the bound of CUP is more compact than state-of-the-art safe RL algorithms: CPO (Achiam et al.,
2017, Proposition 1-2), PCPO (Yang et al., 2020, Theorem 1) and FOCOPS (Zhang et al., 2020),
which provides a partial explanation for why CUP is so good in practice. For more discussions,
please refer to Remark 2. Finally, we provide a practical implementation of sample-based CUP. Such
an implementation allows us to use deep neural networks to train a model. Mainly, CUP does not
depend on any convex approximation for objective and constraints, and it optimizes the objective
according to the first-order optimizer. Extensive high-dimensional experiments on continuous control
tasks show the effectiveness of CUP where the agent satisfies safe constraints.

2 PRELIMINARIES

Reinforcement learning (RL) (Sutton & Barto, 1998) is often formulated as a Markov decision process
(MDP) (Puterman, 2014) that is a tupleM = (S,A,P, r, ρ0, γ). Here S is state space, A is action
space. P(s

′ |s, a) is probability of state transition from s to s
′

after playing a. r(·) : S ×S ×A → R,
and r(s′|s, a) denotes the reward that the agent observes when state transition from s to s

′
after it

plays a. ρ0(·) : S → [0, 1] is the initial state distribution and γ ∈ (0, 1).

A stationary parameterized policy πθ is a probability distribution defined on S ×A, πθ(a|s) denotes
the probability of playing a in state s. We use Πθ to denote the set of all stationary policies, where
Πθ = {πθ : θ ∈ Rp}, and θ is a parameter needed to be learned. Let Pπθ

∈ R|S|×|S| be a state
transition probability matrix, and their components are: Pπθ

[s, s′] =
∑
a∈A πθ(a|s)P(s′|s, a) =:

Pπθ
(s
′ |s), which denotes one-step state transformation probability from s to s

′
by executing πθ.

Let τ = {st, at, rt+1}t≥0 ∼ πθ be a trajectory generated by πθ, where s0 ∼ ρ0(·), at ∼ πθ(·|st),
st+1 ∼ P(·|st, at), and rt+1 = r(st+1|st, at). We use Pπθ

(st = s
′ |s) to denote the probability of

visiting the state s
′

after t time steps from the state s by executing πθ . Due to the Markov property in
MDP, Pπθ

(st = s
′ |s) is (s, s

′
)-th component of the matrix Pt

πθ
, i.e., Pπθ

(st = s
′ |s) = Pt

πθ
[s, s

′
].

Finally, let ds0πθ
(s) = (1 − γ)

∑∞
t=0 γ

tPπθ
(st = s|s0) be the stationary state distribution of the

Markov chain (starting at s0) induced by policy πθ. We define dρ0πθ
(s) = Es0∼ρ0(·)[d

s0
πθ

(s)] as the
discounted state visitation distribution on initial distribution ρ0(·).

The state value function of πθ is defined as Vπθ
(s) = Eπθ

[
∑∞
t=0 γ

trt+1|s0 = s], where Eπθ
[·|·]

denotes a conditional expectation on actions which are selected by πθ. Its state-action value
function is Qπθ

(s, a) = Eπθ
[
∑∞
t=0 γ

trt+1|s0 = s, a0 = a], and advantage function is Aπθ
(s, a) =

Qπθ
(s, a)− Vπθ

(s). The goal of reinforcement learning is to maximize J(πθ):

J(πθ) = Es∼dρ0πθ (·)[Vπθ
(s)]. (1)

2

Under review as a conference paper at ICLR 2022

2.1 POLICY GRADIENT AND GENERALIZED ADVANTAGE ESTIMATOR (GAE)

Policy gradient (Williams, 1992; Sutton et al., 2000) is widely used to solve policy optimization,
which maximizes the expected total reward by repeatedly estimating the gradient g = ∇J(πθ).
Schulman et al. (2016) summarize several different related expressions for the policy gradient:

g = ∇J(πθ) = E

[∞∑
t=0

Ψt∇ log πθ(at|st)

]
, (2)

where Ψt can be total discounted reward of the trajectory, value function, advantage function or
temporal difference (TD) error. As stated by Schulman et al. (2016), the choice Ψt = A(st, at) yields
almost the lowest possible variance, which is consistent with the theoretical analysis (Greensmith
et al., 2004; Wu et al., 2018). Furthermore, Schulman et al. (2016) propose generalized advantage
estimator (GAE) ÂGAE(γ,λ)

t (st, at) to replace Ψt: for any λ ∈ [0, 1],

Â
GAE(γ,λ)
t (st, at) =

∞∑
`=0

(γλ)`δVt+`, (3)

where δVt = rt+1 + γV (st+1)− V (st) is TD error, and V (·) is an estimator of value function. GAE
is an efficient technique for data efficiency and reliable performance of reinforcement learning.

2.2 SAFE REINFORCEMENT LEARNING

Safe RL (Ray et al., 2019) is often formulated as a constrained MDP (CMDP)M∪C (Altman, 1999),
which is a standard MDPM augmented with an additional constraint set C. The set C = {(ci, bi)}mi=1,
where ci are cost functions: ci : S ×A → R, and limits are bi, i = 1, ·,m. The cost-return is defined
as: Jci(πθ) = Eπθ

[
∑∞
t=0 γ

tci(st, at)], then we define the feasible policy set ΠC as:
ΠC = ∩mi=1 {πθ ∈ Πθ and Jci(πθ)≤bi} .

The goal of CMDP is to search the optimal policy π? such that
π? = arg max

πθ∈ΠC
J(πθ). (4)

Furthermore, we define value functions, action-value functions, and advantage functions for the
auxiliary costs in analogy to Vπθ

, Qπθ
, and Aπθ

, with ci replacing r respectively, we denote them
as V ciπθ

, Qciπθ
, and Aciπθ

. For example, V ciπθ
(s) = Eπθ

[
∑∞
t=0 γ

tci(st, at)|s0 = s]. Without loss of
generality, we will restrict our discussion to the case of one constraint with a cost function c and
upper bound b. Finally, we extend the GAE w.r.t. auxiliary cost function c:

Â
GAE(γ,λ)
C,t (st, at) =

∞∑
`=0

(γλ)`δCt+`, (5)

where δCt = rt+1 + γC(st+1)− C(st) is TD error, and C(·) is an estimator of cost function c.

3 GENERALIZED POLICY PERFORMANCE DIFFERENCE BOUNDS

In this section, we show some generalized policy optimization performance bounds for J(πθ) and
Jc(πθ). The proposed bounds provide some new certain surrogate functions w.r.t. the objective and
cost function, which are theoretical foundations for us to design efficient algorithms to improve policy
performance and satisfy constraints. Additionally, those bounds refine or extend some existing works
(e.g., (Kakade & Langford, 2002; Schulman et al., 2015; Achiam et al., 2017)) to GAE case that
significantly reduces variance while maintains a tolerable level of bias, which is one of the key steps
for us to propose efficient algorithms in the later section.

Before we present our new bounds, let us revisit a classic result about policy performance difference
from (Kakade & Langford, 2002), i.e., the next Eq.(6),

J(πθ)− J(πθ′) = (1− γ)−1Es∼dρ0πθ (·)Ea∼πθ(·|s)[Aπ
θ
′ (s, a)]. (6)

Eq.(6) shows a difference between two arbitrary policies πθ and πθ′ with different parameters θ
and θ

′
. However, as stated by Zanger et al. (2021), Eq.(6) is very intractable for sampling-based

policy optimization since it requires the data comes from a fixed policy πθ. In this section, our new
bound will refine the result (6). For more discussions about the difference between our new bound
and Eq.(6), please refer to Remark 1.

3

Under review as a conference paper at ICLR 2022

3.1 SOME ADDITIONAL NOTATIONS

We use a bold lowercase letter to denote a vector, e.g., a = (a1, a2, · · · , an), and its i-th element
a[i] =: ai. Let ϕ(·) : S → R be a function defined on S, δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st)
is TD error w.r.t. ϕ(·). For two arbitrary policies πθ and πθ′ , we denote δϕπθ,t

(s) as the expectation
of TD error, and define ∆ϕ

t (πθ, πθ′ , s) as the difference between δϕπθ,t
(s) and δϕπ

θ
′ ,t(s): ∀s ∈ S,

δϕπθ,t
(s) = E

st∼Pπθ (·|s)
at∼πθ(·|st)

st+1∼P(·|st,at)

[δϕt] ,∆ϕ
t (πθ, πθ′ , s) = E

st∼Pπ
θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
.

Furthermore, we introduce two vectors δϕπθ,t
,∆ϕ

t (πθ, πθ′) ∈ R|S|, and their components are:

δϕπθ,t
[s] = δϕπθ,t

(s), ∆ϕ
t (πθ, πθ′)[s] = ∆ϕ

t (πθ, πθ′ , s). (7)

Let matrix P
(λ)
πθ = (1 − γλ)

∑∞
t=0(γλ)tPt+1

πθ
, where λ ∈ [0, 1]. It is similar to the normalized

discounted distribution dρ0πθ
(s), we extend it to λ-version and denote it as dλπθ

(s):

dλπθ
(s) = Es0∼ρ0(·)

[
(1− γ̃)

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0)

]
,

where γ̃ = γ(1−λ)
1−γλ , the probability P(λ)

πθ (st = s|s0) is the (s0, s)-th component of the matrix product(
P

(λ)
πθ

)t
. Finally, we introduce a vector dλπθ

∈ R|S|, and its components are: dλπθ
[s] = dλπθ

(s).

3.2 MAIN RESULTS

Theorem 1 (Generalized Policy Performance Difference). For any function ϕ(·) : S → R, for two
arbitrary policies πθ and πθ′ , for any p, q ∈ [1,∞) such that 1

p + 1
q = 1, we define two error terms:

ε
ϕ,(λ)
p,q,t (πθ, πθ′) =: ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q, (8)

Lϕ,±p,q (πθ, πθ′) =:
1

1− γ̃

∞∑
t=0

γtλtEs∼dλπ
θ
′ (·)

[
∆ϕ
t (πθ, πθ′ , s)± ε

ϕ,(λ)
p,q,t (πθ, πθ′)

]
. (9)

Then, the following bound w.r.t. policy performance difference J(πθ)− J(πθ′) holds:

Lϕ,−p,q, (πθ, πθ′) ≤ J(πθ)− J(πθ′) ≤ L
ϕ,+
p,q, (πθ, πθ′). (10)

We provide its proof in Appendix E. The bound (10) is tight, i.e., if πθ = πθ′ , all the three terms in
Eq.(10) are zero identically. From Eq.(9), we know the performance difference bound Lϕ,±p,q (πθ, πθ′)
(10) can be interpreted by two distinct difference parts: (i) the first difference part, i.e., the expectation
∆ϕ
t (πθ, πθ′ , s), which is determined by the difference between TD errors of πθ and πθ′ ; (ii) the

second difference part, i.e., the discounted distribution difference εϕ,(λ)
p,q,t (πθ, πθ′), which is determined

by the gap between the normalized discounted distribution of πθ and πθ′ . Thus, the difference of
both TD errors and discounted distribution determine the policy difference J(πθ)− J(πθ′).

The different choices of p and q lead Eq.(10) to be different bounds. If p = 1, q = ∞, we denote
εϕπθ,t

=: ‖δϕπθ,t
‖q = maxst∈S Eat∼πθ(·|st),st+1∼P(·|st,at)[|δ

ϕ
t |], then, according to Lemma 2 (see

Appendix E.3), when p = 1, q =∞, then error εϕ,(λ)
p,q,t (πθ, πθ′) is reduced to:

ε
ϕ,(λ)
p,q,t (πθ, πθ′)

∣∣
p=1,q=∞ ≤

1

1− γ̃
·
γ(1− λ)εϕπθ,t

|1− 2γλ|S||A||
Es∼dλπ

θ
′ (·)

[2DTV(πθ′ , πθ)[s]] ,

where DTV(πθ′ , πθ)[s] is the total variational divergence between action distributions at state s, i.e.,

2DTV(πθ′ , πθ)[s] =
∑
a∈A
|πθ′ (a|s)− πθ(a|s)| .

Finally, let ϕ = Vπ
θ
′ , the left side of (10) in Theorem 1 implies a lower bound of performance

difference, which illustrates the worse case of approximation error, we present it in Proposition 1.

4

Under review as a conference paper at ICLR 2022

Proposition 1 (Worse case approximation error). For any two policies πθ and πθ′ , let εVπθ
(πθ′) =:

supt∈N+{εϕπθ,t
: ϕ = Vπ

θ
′ }, then the following bound holds

J(πθ)− J(πθ′) (11)

≥ 1

1− γ̃
Es∼dλπ

θ
′ (·),a∼πθ(·|s)

[
AGAE(γ,λ)
π
θ
′ (s, a)−

2γ(1− λ)εVπθ
(πθ′)

(1− γλ) |1− 2γλ|S||A||
DTV(πθ′ , πθ)[s]

]
.

If λ→ 0, then the distribution dλπ
θ
′ (·) is reduced to dρ0π

θ
′ (·) and the bound (11) is reduced to

J(πθ)− J(πθ′) ≥
1

1− γ
Es∼dρ0π

θ
′ (·),a∼πθ(·|s)

[
Aπ

θ
′ (s, a)− 2γεVπθ

(πθ′)DTV(πθ′ , πθ)[s]
]
. (12)

Let us review (Achiam et al., 2017, Corollary 1), which shows

J(πθ)− J(πθ′) ≥
1

1− γ
Es∼dρ0π

θ
′ (·),a∼πθ(·|s)

[
Aπ

θ
′ (s, a)− 2

γεVπθ
(πθ′)

1− γ
DTV(πθ′ , πθ)[s]

]
. (13)

Comparing (12) to (13), our new bound (12) is slightly tighter than the bound shown by (Achiam
et al., 2017). Concretely, our result improves the bound (13) by a factor 1

1−γ . Since the refined bound
(11) contains GAE technique that significantly reduces variance while maintains a tolerable level
of bias (Schulman et al., 2016), which implies using the bound (11) as a surrogate function could
improve performance potentially.
Remark 1 (Comparison with (Kakade & Langford, 2002)). The result (11) develops the classic
performance difference (6) at least three aspects. Firstly, the bound (11) extends from the advantage
Aπ

θ
′ (6) to GAE function AGAE(γ,λ)

π
θ
′ . Secondly, the following term in Eq.(11):

(1− γ̃)−1Es∼dλπ
θ
′ (·),a∼πθ(·|s)

[
AGAE(γ,λ)
π
θ
′ (s, a)

]
(14)

is an approximation for the difference J(πθ)− J(πθ′), while Eq.(6) shows an identity for difference
J(πθ) − J(πθ′). Comparison to Eq.(6), the proposed Eq.(14) uses the state distribution dλπ

θ
′ (·)

instead of dρ0πθ
(·), which is known the first oder expansion with respect to the policy πθ around the

neighborhood around πθ′ (Kakade & Langford, 2002; Achiam et al., 2017). Finally, although Eq.(6)
provides an identity for J(πθ)− J(πθ′), it never shows an error bound of the first oder expansion
for the performance difference J(πθ)− J(πθ′), and the proposed bound (11) makes up for such a
weakness. Such a bound (11) can be viewed as the worse-case approximation error, which provides a
fresh surrogate function for us to design algorithms in the later section.

Let ϕ = V cπ
θ
′ , Theorem 1 implies an upper bound of cost function as presented in the next Proposition

2, we will use it to make guarantee for safe policy optimization.
Proposition 2. For any two policies πθ and πθ′ , let εCπθ

(πθ′) =: supt∈N+{εϕπθ,t
: ϕ = V cπ

θ
′ }, then

Jc(πθ)− Jc(πθ′) (15)

≤ 1

1− γ̃
Es∼dλπ

θ
′ (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
π
θ
′ ,C (s, a) +

2γ(1− λ)εCπθ
(πθ′)

(1− γλ) |1− 2γλ|S||A||
DTV(πθ′ , πθ)[s]

]
,

where we calculate AGAE(γ,λ)
π
θ
′ ,C (s, a) according to the data sampled from πθ′ and (5).

All above bound results (11) and (15) can be extended for a total variational divergence to KL-
divergence between policies, which are desirable for policy optimization. We obtain

Es∼dλπ
θ
′ (·)

[DTV(πθ′ , πθ)[s]] ≤Es∼dλπ
θ
′ (·)

[√
1

2
KL(πθ′ , πθ)[s]

]
≤
√

1

2
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]],

(16)
where KL(·, ·) is KL-divergence, and KL(πθ′ , πθ)[s] = KL(πθ′ (·|s), πθ(·|s)); the first inequality
follows Pinsker’s inequality (Csiszár & Körner, 2011) and the second inequality follows Jensen’s
inequality. According to (16), we obtain the next Proposition 3.
Proposition 3. All the bounds in (11) and (15) hold if we make the following substitution:

Es∼dλπ
θ
′ (·)

[DTV(πθ′ , πθ)[s]]←
√

1

2
Es∼dλπ

θ
′ (·)

[KL(πθ′ , πθ)[s]].

5

Under review as a conference paper at ICLR 2022

4 METHODOLOGY: A CONSERVATIVE UPDATE POLICY (CUP)

According to the bounds in Proposition 1-3, we develop new surrogate functions to replace the
objective and constraints. Inspired by two recent works (Yang et al., 2020; Zhang et al., 2020),
we propose the CUP (conservative update policy) algorithm that is a two-step approach contains
performance improvement and projection. Theorem 2 proves the proposed CUP guarantees the policy
improvement and safe constraints.

Step 1: Performance Improvement. According to Proposition 1 and Proposition 3, for an appropri-
ate coefficient αk, we update policy as follows,

πθ
k+1

2

= arg max
πθ∈Πθ

{
Es∼dλπθk (·),a∼πθ(·|s)

[
AGAE(γ,λ)
πθk

(s, a)
]
− αk

√
Es∼dλπθk (·) [KL(πθk , πθ)[s]]

}
.

(17)
This step is a typical minimization-maximization (MM) algorithm (Hunter & Lange, 2004), it includes
return maximization and minimization the distance between old policy and new policy.

Step 2: Projection. According to Proposition 2 and Proposition 3, for an appropriate coefficient βk,
we project the policy πθ

k+1
2

onto the safe constraint set. Concretely, we use a measure D(·, ·) (e.g.,
KL divergence or `2-norm) to minimize distance between πθ

k+1
2

and πθ , and require the new policy
satisfies the safe constraint:

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
, (18)

s.t. Jc(πθk) +
1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

+ βk
√
Es∼dλπθk (·) [KL(πθk , πθ)[s]] ≤ b.

Until now, the particular choice of surrogate function is heuristically motivated, we show the policy
and safe constraint guarantee of the proposed CUP in Theorem 2, and its proof shown in Appendix F.

Theorem 2. Let δk = Es∼dλπθk (·)

[
KL
(
πθk , πθk+1

2

)
[s]
]
, if πθk and πθk+1

are related to (17)-(18),

then the lower bound on policy improvement, and upper bound on constraint violation are

J(πθk+1
)− J(πθk) ≥ −

γ(1− λ)αk
√

2δkε
V
πθ

(πθ′)

(1− γ) |1− 2γλ|S||A||
, Jc(πθk+1

) ≤ b+
γ(1− λ)βk

√
2δkε

C
πθ

(πθ′)

(1− γ) |1− 2γλ|S||A||
.

Remark 2. Let λ→ 0, according to Theorem 2, the performance and cost constraint of CUP satisfies

J(πθk+1
)− J(πθk) ≥ −

γαk
√

2δkε
V
πθ

(πθ′)

(1− γ)
, Jc(πθk+1

) ≤ b+
γβk
√

2δkε
C
πθ

(πθ′)

(1− γ)
. (19)

The bounds of CUP in (19) achieves at O(αkγ1−γ) or O(βkγ1−γ), which is more compact than the bounds
of CPO (Achiam et al., 2017, Proposition 1-2), PCPO (Yang et al., 2020, Theorem 1) and FOCOPS
(Zhang et al., 2020) where their bounds achieve at O

(
γ

(1−γ)2

)
.

Practical Implementation Now, we present our sample-based implementation for CUP (17)-(18).
Our main idea is to estimate the objective and constraints in (17)-(18) with samples collected by
current policy πθk , then solving its optimization problem via first-order optimizer. Due to the
limitation of space, we present pseudo-code of CUP in Algorithm 1 (see Appendix B).

For each {(st, at, rt+1, ct+1)}Tt=1 ∼ πθk , firstly, we update performance improvement step as:

θk+ 1
2

= arg max
θ

{
1

T

N∑
t=1

πθ(at|st)
πθk(at|st)

Ât − αk
√
D̂KL(πθk , πθ)

}
, (20)

where Ât is a estimator of AGAE(γ,λ)
πθk

(s, a), D̂KL(πθk , πθ) = 1
T

∑N
t=1 KL(πθk(·|st), πθ(·|st)).

Then we update projection step by replacing the distance function D by KL-divergence, and we use a
soft constraint instead of the hard constraint (18),

θk+1 = arg min
θ

{
1

T

T∑
t=1

KL
(
πθ

k+1
2

(at|st), πθ(at|st)
)

+ βkLc

}
, (21)

6

Under review as a conference paper at ICLR 2022

where Lc = ĴC + 1
1−γ̃ ·

1
T

∑T
t=1

πθ(at|st)
πθk

(at|st) Â
C
t + αk

√
1
T

∑T
t=1 KL(πold(at|st), πθ(at|st)) − b,

ĴCand ÂCt are estimators for cost-return and cost-advantage correspondingly.

5 RELATED WORK

This section reviews some typical ways to solve safe reinforcement learning: local policy search,
Lagrangian approach, and constrained policy optimization (CPO). We provide more comparisons and
discussion in Appendix A and Table 3.

Local Policy Search and Lagrangian Approach. A direct way to solve CMDP (4) is to apply local
policy search (Peters & Schaal, 2008; Pirotta et al., 2013) over the policy space ΠC , i.e.,

πθk+1
= arg max

πθ∈Πθ

J(πθ), s.t. Jc(πθ) ≤ b, and D(πθ, πθk) < δ, (22)

where δ is a positive scalar, D(·, ·) is some distance measure. For practice, the local policy search (22)
is challenging to implement because it requires evaluation of the constraint function c to determine
whether a proposed point π is feasible (Zhang et al., 2020). Besides, when updating policy according
to samples, local policy search (22) requires off-policy evaluation (Achiam et al., 2017), which is very
challenging for high-dimension control problem (Duan et al., 2016; Yang et al., 2018; 2021a). Thus,
local policy search (22) looks simple, but it is impractical for high-dimension policy optimization.

The standard way to solve CMDP (4) is Lagrangian approach (Chow et al., 2017; Xu et al., 2021)
that is also known as primal-dual policy optimization:

(π?, λ?) = arg min
λ≥0

max
πθ∈Πθ

{J(πθ)− λ(Jc(πθ)− b)} . (23)

Although extensive canonical algorithms are proposed to solve problem (23), e.g., (Liang et al., 2018;
Tessler et al., 2019; Paternain et al., 2019; Le et al., 2019; Russel et al., 2020; Xu et al., 2020; Satija
et al., 2020; Chen et al., 2021), the policy updated by Lagrangian approach may be infeasible w.r.t.
CMDP (4). This is hazardous in reinforcement learning when one needs to execute the intermediate
policy (which may be unsafe) during training (Chow et al., 2018).

Constrained Policy Optimization (CPO). Recently, CPO (Achiam et al., 2017) suggests to replace
the cost constraint with a surrogate cost function which evaluates the constraint Jc(πθ) according to
the samples collected from the current policy πθk :

πθk+1
= arg max

πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]

(24)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b, (25)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ. (26)

Existing recent works (e.g., (Achiam et al., 2017; Vuong et al., 2019; Yang et al., 2020; Han
et al., 2020; Bisi et al., 2020; Bharadhwaj et al., 2021)) try to find some convex approximations
to replace the term Aπθk

(s, a) and D̄KL(πθ, πθk) Eq.(24)-(26). Such first-order and second-order
approximations turn a non-convex problem (24)-(26) to be a convex problem, it seems to make a
simple solution, but this approach results in many error sources and troubles in practice. Firstly, it
still lacks a theory analysis to show the difference between the non-convex problem (24)-(26) and its
convex approximation. Policy optimization is a typical non-convex problem (Yang et al., 2021b);
its convex approximation may introduce some error for its original issue. Secondly, CPO updates
parameters according to conjugate gradient (Süli & Mayers, 2003), and its solution involves the
inverse Fisher information matrix, which requires expensive computation for each update. Later,
Yang et al. (2020) propose projected-based constrained policy optimization (PCPO) that also uses
second-order approximation, which also results in an expensive computation.

Instead of using a convex approximation for the objective function, the proposed CUP algorithm
improves CPO and PCPO at least two aspects. Firstly, the CUP directly optimizes the surrogate
objective function via the first-order method, and it does not depend on any convex approximation.
Thus, the CUP effectively avoids the expensive computation for the inverse Fisher information matrix.
Secondly, CUP extends the surrogate objective function to GAE. Although Zhang et al. (2020)
has used the GAE technique in experiments, to the best of our knowledge, it still lacks a rigorous
theoretical analysis involved GAE before we propose CUP.

7

Under review as a conference paper at ICLR 2022

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
w

ar
d

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(a) CarButton

0 200 400 600 800 1000
Epoch

0

5

10

15

20

Re
w

ar
d

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(b) PointGoal-Level1

0 200 400 600 800 1000
Epoch

5

0

5

10

15

Re
w

ar
ds

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(c) PointGoal-Level2

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

120

140

160

Co
st

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(d) CarButton

0 200 400 600 800 1000
Epoch

0

5

10

15

20

25

30

35

40

45

Co
st

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(e) PointGoal-Level1

0 200 400 600 800 1000
Epoch

0

20

40

60

80

100

120

Co
st

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(f) PointGoal-Level2

0 100 200 300 400 500
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
st

Ra
te

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(g) CarButton

0 200 400 600 800 1000
Epoch

0.04

0.06

0.08

0.10

0.12

Co
st

Ra
te

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(h) PointGoal-Level1

0 200 400 600 800 1000
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Co
st

Ra
te

PPO-L
TRPO
TRPO-L
CPO
PPO
PCPO
CUP

(i) PointGoal-Level2

Figure 1: Learning curves for reward, cost, and cost rate on Gym ships with three pre-made robot.

6 EXPERIMENTS

In this section, we show the effectiveness of CUP on three different sets of experiments (including
seven tasks): (i) robots with speed limit (Zhang et al., 2020); (ii) circle task (Achiam et al., 2017);
(iii) robot options and desiderata (Ray et al., 2019).

For task (i), we train different robotic agents to move along a straight line or a two-dimensional
plane, but the robot’s speed is constrained for safety purposes. For task (ii), the agent is rewarded for
running in a wide circle but is constrained to stay within a safe region smaller than the radius of the
target circle. Task (iii) is safety Gym ships with three pre-made robots that we use in the benchmark
environments from (Ray et al., 2019). All of those details are provided in Appendix G.1.

Baseline algorithms. We compare CUP to CPO (Achiam et al., 2017), PCPO (Yang et al., 2020),
FOCOPS (Zhang et al., 2020) in the task (i) and task (ii). To make a more comprehensive comparison,
we compare CUP with the unconstrained algorithms TRPO (Schulman et al., 2015) and PPO (Schul-
man et al., 2017), and compare CUP with two additional safe RL algorithms TRPO-Lagrangian and
PPO-Lagrangian, that combine the Lagrangian approach with TRPO and PPO.

Robots with Speed Limit and circle task. Table 1 shows that both CUP and FOCOPS consistently
enforce approximate constraint satisfaction while CUP has a higher performance than FOCOPS. CUP
outperforms CPO and PCPO significantly for both reward and cost. Those observations suggest the
projection step of CUP helps the agent to learn the safe constraints. We notice PCPO also has a
projection step, CUP performs better than PCPO due to CUP learning the objective and constraints

8

Under review as a conference paper at ICLR 2022

Table 1: Bootstrap mean with 100 bootstrap samples of reward/cost return after training on robot
with speed limit environments. Cost thresholds are in brackets under the environment names.

Environment FOCOPS CPO PCPO CUP
Walker2d-v3 Reward 1798.1± 0.3 1076.9± 9.8 1039.5± 5.2 2964.3 ± 10.8

(82) Cost 82.3± 0.03 107.82± 1.16 100.25± 0.67 73.9± 0.09

Hopper-v3 Reward 1869.3± 2.8 1056.0± 5.0 1071.1± 4.6 2409.8 ± 5.6
(82) Cost 83.1± 0.1 90.0± 8.2 74.8± 8.2 80.0± 0.1

AntCircle-v0 Reward 1206.3± 159.1 423.3± 12.6 342.9± 5.5 1879.7 ± 79.4
(50) Cost 44.1± 4.2 51.3± 1.5 51.2± 2.4 49.3± 2.0

HumanoidCircle-v0 Reward 963.0± 40.0 329.5± 1.7 244.5± 7.5 1029 ± 49.0
(50) Cost 50.6± 1.9 46.0± 0.4 47.1± 1.3 48.4± 2.8

Table 2: Normalized metrics from the conclusion of training averaged over various slates of environ-
ments and three random seeds per environment.

SGPoint J̄r M̄c ρ̄c SGCar J̄r M̄c ρ̄c SGDoggo J̄r M̄c ρ̄c

PPO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

PPO-L 0.552 0.553 0.638 0.299 0.241 0.237 0.0 0.028 0.288

TRPO 1.077 0.906 0.991 1.153 0.899 0.874 0.704 1.492 1.108

TRPO-L 0.726 0.672 0.628 0.302 0.182 0.226 0.061 0.016 0.283

CPO 0.957 0.794 0.869 0.801 0.406 0.501 0.560 1.071 0.891

PCPO 0.226 0.321 0.830 1.066 0.234 0.993 0.890 0.843 0.528

CUP 1.303 0.507 0.452 1.472 0.191 0.206 1.096 0.007 0.214

under a non-convex function while PCPO uses its convex approximation, which is one motivation for
us to propose CUP.

Safety Gym Ships with Three Pre-made Robots. We compare the algorithms on three environ-
ments SGPoint, SGCar, and SGDoggo, which are all six Point/Car/Doggo robot environments with
constraints in Safety Gym. Thus, it is necessary to introduce the rule for comparing the aggregate
performance of algorithms across many environments by (Ray et al., 2019), where it assigns each en-
vironment E a set of characteristic metrics, J̄Er , J̄Ec , ρ̄Ec and compute normalized return J̄r, normalized
constraint violation M̄c, and normalized cost rate ρ̄c:

J̄r =
J(πθ)

J̄Er
, M̄c =

max{0, Jc(πθ)− d}
max{10−6, J̄Ec − d}

, ρ̄c =
ρ̄c
ρ̄Ec
.

Figure 1 shows the results from benchmarking unconstrained and constrained RL algorithms on all
Point level 1 and 2 environments, and the approximately constraint-satisfying training run (CostRate
curves). All the cost are shown in [25, 30] In Table 2, we show the normalized metrics from the
conclusion of training averaged over various slates of environments and three random seeds per
environment. All experiments were run with three random seeds. Results show that cost and rewards
trade off happens in SGPoint and SGCar, while CUP achieves the best performance in those two
environments. In the SGDoggo environment, CUP achieves the best performance and constraint
satisfaction over all the baseline algorithms.

7 CONCLUSION

In this paper, we propose the CUP algorithm with a theoretical safety guarantee. We derive the CUP
bases on some new proposed surrogate functions w.r.t. objective and constraints and the practical
implementation of CUP does not depend on any convex approximation. Extensive experiments on
continuous control tasks show the effectiveness of CUP where the agent satisfies safe constraints.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of International Conference on Machine Learning (ICML), volume 70, pp. 22–31,
2017.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. arXiv preprint arXiv:2101.06286, 2021.

Eitan Altman. Constrained Markov decision processes. CRC Press, 1999.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6(5):
679–684, 1957.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations (ICLR), 2021.

Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli. Risk-averse trust
region optimization for reward-volatility reduction. In Christian Bessiere (ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4583–4589,
2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yi Chen, Jing Dong, and Zhaoran Wang. A primal-dual approach to constrained markov decision
processes. arXiv preprint arXiv:2101.10895, 2021.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Imre Csiszár and János Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for robotics.
Foundations and Trends® in Machine Learning, 2013.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning
(ICML), pp. 1329–1338, 2016.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research (JMLR), 5(Nov):
1471–1530, 2004.

Minghao Han, Lixian Tian, Yuanand Zhang, Jun Wang, and Wei Pan. Reinforcement learning control
of constrained dynamic systems with uniformly ultimate boundedness stability guarantee. arXiv
preprint arXiv:2011.06882, 2020.

David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American Statistician, 58(1):
30–37, 2004.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of International Conference on Machine Learning (ICML), volume 2, pp. 267–274,
2002.

10

Under review as a conference paper at ICLR 2022

Bingyi Kang, Shie Mannor, and Jiashi Feng. Learning safe policies with cost-sensitive advantage
estimation, 2021. https://openreview.net/forum?id=uVnhiRaW3J.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning (ICML), pp. 3703–3712, 2019.

Qingkai Liang, Fanyu Que, and Eytan Modiano. Accelerated primal-dual policy optimization for
safe reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

OpenAI. Openai five defeats dota 2 world champions, 2019. https://openai.com/blog/
openai-five-defeats-dota-2-world-champions/.

Santiago Paternain, Luiz FO Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Jan. Peters and Stefan. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Netw, 21(4):682–697, 2008.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In International
Conference on Machine Learning (ICML), pp. 307–315, 2013.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

Reazul Hasan Russel, Mouhacine Benosman, and Jeroen Van Baar. Robust constrained-mdps: Soft-
constrained robust policy optimization under model uncertainty. arXiv preprint arXiv:2010.04870,
2020.

Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via backward
value functions. In International Conference on Machine Learning (ICML), pp. 8502–8511, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pp. 1889–1897,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. International Conference on Learning
Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge university press,
2003.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

11

https://openreview.net/forum?id=uVnhiRaW3J
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/

Under review as a conference paper at ICLR 2022

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 1057–1063, 2000.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
International Conference on Learning Representation (ICLR), 2019.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojciech M
Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al. Alphastar:
Mastering the real-time strategy game starcraft ii. DeepMind blog, 2, 2019.

Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforcement
learning. In International Conference on Learning Representation (ICLR), 2019.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. International Conference on Learning Representation (ICLR), 2018.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. A primal approach to constrained policy optimization:
Global optimality and finite-time analysis. arXiv preprint arXiv:2011.05869, 2020.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. A primal approach to constrained policy optimization:
Global optimality and finite-time analysis. International Conference on Machine Learning (ICML),
2021.

Long Yang, Minhao Shi, Qian Zheng, Wenjia Meng, and Gang Pan. A unified approach for multi-step
temporal-difference learning with eligibility traces in reinforcement learning. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2984–2990,
2018.

Long Yang, Gang Zheng, Yu Zhang, Qian Zheng, Pengfei Li, and Gang Pan. On convergence of
gradient expected sarsa (λ). In AAAI, 2021a.

Long Yang, Qian Zheng, and Gang Pan. Sample complexity of policy gradient finding second-order
stationary points. In AAAI, 2021b.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representation (ICLR),
2020.

Moritz A Zanger, Karam Daaboul, and J Marius Zöllner. Safe continuous control with constrained
model-based policy optimization. arXiv preprint arXiv:2104.06922, 2021.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020.

12

Under review as a conference paper at ICLR 2022

A ADDITIONAL DISCUSSION ABOUT RELATED WORK

This section reviews three typical safe reinforcement learning algorithms: CPO (Achiam et al., 2017),
PCPO (Yang et al., 2020) and FOCOPS (Zhang et al., 2020). Those algorithms also use new surrogate
functions to replace the objective and constraints, which resembles the proposed CUP algorithm. The
goal is to present the contribution of our work.

A.1 CPO (ACHIAM ET AL., 2017)

For a given policy πθk , CPO updates new policy πθk+1
as follows:

πθk+1
= arg max

πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]

(27)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b, (28)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ. (29)

It is impractical to solve the problem (24) directly due to the computational cost. (Achiam et al.,
2017) suggest to find some convex approximations to replace the term Aπθk

(s, a) and D̄KL(πθ, πθk)
Eq.(24)-(26).

Concretely, according to (6), Achiam et al. (2017) suggest to use first-order Taylor expansion of
J(πθ) to replace the objective (24) as follows,

1

1− γ
Es∼dρ0πθk (·),a∼πθk

(·|s)

[
πθ(a|s)
πθk(a|s)

Aπθk
(s, a)

]
= J(πθ)− J(πθk) ≈ (θ − θk)>∇θJ(πθ).

Similarly, Achiam et al. (2017) use the following approximations to turn the constrained policy
optimization (24)-(26) to be a convex problem,

1

1− γ
Es∼dρ0πθk (·),a∼πθk

(·|s)

[
πθ(a|s)
πθk(a|s)

Acπθk
(s, a)

]
≈ (θ − θk)>∇θJc(πθ), (30)

D̄KL(πθ, πθk) ≈ (θ − θk)>H(θ − θk), (31)

where H is Hessian matrix of D̄KL(πθ, πθk), i.e.,

H[i, j] =:
∂2

∂θi∂θj
Es∼dρ0πθk (·) [KL(πθ, πθk)[s]] ,

Eq.(31) is the second-oder approximation of (26).

Let λ?, ν? is the dual solution of the following problem

λ?, ν? = arg max
λ≥0,ν≥0

{
−1

2λ

(
g>H−1g − 2νr + sv2

)
+ νc− λδ

2

}
;

where g = ∇θEs∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]
, a = ∇θEs∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
, r =

g>Ha, s = a>H−1a, and c = Jc(πθk)− b.
Finally, CPO updates parameters according to conjugate gradient as follows: if approximation to
CPO is feasible:

θk+1 = θk +
1

λ?
H−1(g − ν?a),

else,

θk+1 = θk −
√

2δ

a>H−1a
H−1a.

13

Under review as a conference paper at ICLR 2022

A.2 PCPO (YANG ET AL., 2020)

Projection-Based Constrained Policy Optimization (PCPO) is an iterative method for optimizing
policies in a two-step process: the first step performs a local reward improvement update, while the
second step reconciles any constraint violation by projecting the policy back onto the constraint set.

Reward Improvement:

πθ
k+1

2

= arg max
πθ∈Πθ

Es∼dρ0πθk (·),a∼πθ(·|s)

[
Aπθk

(s, a)
]
,

s.t.D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(πθ, πθk)[s]] ≤ δ;

Projection:

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
,

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼πθ(·|s)

[
Acπθk

(s, a)
]
≤ b.

Then, Yang et al. (2020) follows CPO (Achiam et al., 2017) uses convex approximation to original
problem, and calculate the update rule as follows,

θk+1 = θk −

√
2δ

g>H−1g
H−1g −max

0,

√
2δ

g>H−1g
a>H−1g + c

a>L−1a

L−1a,

where L = I if D is `2-norm, and L = H if D is KL-divergence.

A.3 FOCOPS (ZHANG ET AL., 2020)

Zhang et al. (2020) propose the First Order Constrained Optimization in Policy Space (FOCOPS)
that is a two-step approach. We present it as follows.

Step1: Finding the optimal update policy. Firstly, for a given policy πθk, we find an optimal
update policy π? by solving the optimization problem (27)-(29) in the non-parameterized policy
space.

π? = arg max
π∈Π

Es∼dρ0πθk (·),a∼π(·|s)

[
Aπθk

(s, a)
]

(32)

s.t. Jc(πθk) +
1

1− γ
Es∼dρ0πθk (·),a∼π(·|s)

[
Acπθk

(s, a)
]
≤ b, (33)

D̄KL(πθ, πθk) = Es∼dρ0πθk (·)[KL(π, πθk)[s]] ≤ δ. (34)

If πθk is feasible, then the optimal policy for (32)-(34) takes the following form:

π?(a|s) =
πθk(a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπθk

(s, a)− νAcπθk
(s, a)

))
, (35)

where Zλ,ν(s) is the partition function which ensures (35) is a valid probability distribution, λ and ν
are solutions to the optimization problem:

min
λ,ν≥0

λν + νb̃+ λEs∼dρ0πθk (·),a∼π?(·|s) [Zλ,ν(s)] ,

the term b̃ = (1− γ)(b− Jc(πθk)).

Step 2: Projection Then, we project the policy found in the previous step back into the parameterized
policy space Πθ by solving for the closest policy πθ ∈ Πθ to π? in order to obtain πθk+1

:

θk+1 = arg min
θ

Es∼dρ0πθk (·)[KL(πθ, π
?)[s]].

14

Under review as a conference paper at ICLR 2022

A.4 COMPARISON TO CUP

Comparing to CPO and PCPO, the implementation of CUP does not depend on any convex approx-
imations. CPO learns its objective with the deep neural network via the first-order method (see
Appendix B).

Concretely, CPO and PCPO approximate the non-convex objective (or constraints) with first-order or
second Taylor expansion, but their implementations still lack a theory to show the error difference
between the original objective (or constraints) and its convex approximations. Additionally, their
approaches involve the inverse of a high-dimension Fisher information matrix, which causes their
algorithms to require a costly computation for each update when solving high-dimensional RL
problems. While the proposed CUP does not depend on any convex approximations, it learns
the policy via first-order optimization approaches. Thus, CUP does not involve the inverse of a
high-dimension Fisher information matrix, which implies CUP requires less memory than CPO and
PCPO.

Although FOCOPS is also a non-convex implementation, it heavily depends on the current best-
satisfied policy. It is known that the current best policy may not be the optimal policy, and FOCOPS
requires to project this policy back into the parametric policy space, which implies FOCOPS reduce
the chances for an agent to explore the environment since it may lose in a locally optimal solution.
While the proposed CUP does not depend on the current optimal policy, in fact, CUP requires the
agent to learn the policy according to (17), the numerical solution is not the current optimal policy,
which helps CUP to explore the environment.

15

Under review as a conference paper at ICLR 2022

Ta
bl

e
3:

C
om

pa
ri

so
n

of
so

m
e

sa
fe

re
in

fo
rc

em
en

ta
lg

or
ith

m
s.

A
lg

or
ith

m
O

pt
im

iz
at

io
n

pr
ob

le
m

Im
pl

em
en

ta
tio

n
R

em
ar

k

C
PO

(A
ch

ia
m

et
al

.,
20

17
)

π
θ
k
+

1
=

a
rg

m
a
x
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
J
c
(π

θ
k
)

+
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
,

D̄
K

L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π

θ
k
)[
s]

]
≤
δ.

θ
k
+

1
=

a
rg

m
a
x
θ
g
>

(θ
−

θ
k
),

s.
t.
c

+
b
>

(θ
−

θ
k
)
≤

0
,

1 2
(θ
−

θ
k
)>

H
(θ
−

θ
k
)
≤
δ.

C
on

ve
x

Im
pl

em
en

ta
tio

n

PC
PO

(Y
an

g
et

al
.,

20
20

)

R
ew

ar
d

Im
pr

ov
em

en
t

π
θ
k
+

1 2

=
a
rg

m
a
x
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
D̄

K
L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π

θ
k
)[
s]

]
≤
δ;

Pr
oj

ec
tio

n

π
θ
k
+

1
=

a
rg

m
in
π
θ
∈

Π
θ
D

(π
θ
,π

θ
k
+

1 2

) ,

s.
t.
J
c
(π

θ
k
)

+
1

1
−
γ
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
.

R
ew

ar
d

Im
pr

ov
em

en
t

θ
k
+

1 2
=

a
rg

m
a
x
θ
g
>

(θ
−

θ
k
),

s.
t.

1 2
(θ
−

θ
k
)>

H
(θ
−

θ
k
)
≤
δ;

Pr
oj

ec
tio

n

π
θ
k
+

1
=

a
rg

m
in

θ
1 2

(θ
−

θ
k
)>

L
(θ
−

θ
k
),

s.
t.
c

+
b
>

(θ
−

θ
k
)
≤

0
.

C
on

ve
x

Im
pl

em
en

ta
tio

n

FO
C

O
PS

(Z
ha

ng
et

al
.,

20
20

)

O
pt

im
al

up
da

te
po

lic
y

π
?

=
a
rg

m
a
x
π
∈

Π
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π

(·
|s

)

[A
π
θ
k

(s
,a

)] ,

s.
t.
J
c
(π

θ
k
)

+
E s
∼
d
ρ
0
π
θ
k

(·
),
a
∼
π

(·
|s

)

[A
c π
θ
k

(s
,a

)] ≤b
,

D̄
K

L
(π

θ
,π

θ
k
)

=
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π
,π

θ
k
)[
s]

]
≤
δ;

Pr
oj

ec
tio

n
π
θ
k
+

1
=

a
rg

m
in
π
θ
∈

Π
θ
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π
?
)[
s]

].

O
pt

im
al

up
da

te
po

lic
y

π
?
(a
|s

)
=

π
θ
k

(a
|s

)

Z
λ
,ν

(s
)

ex
p
(1 λ

(A
π
θ
k

(s
,a

)
−
ν
A
c π
θ
k

(s
,a

))) ;

Pr
oj

ec
tio

n
θ
k
+

1
=

a
rg

m
in

θ
E s
∼
d
ρ
0
π
θ
k

(·
)
[K

L
(π

θ
,π
?
)[
s]

].

N
on

-C
on

ve
x

Im
pl

em
en

-
ta

tio
n

C
U

P
(O

ur
W

or
k)

Po
lic

y
Im

pr
ov

em
en

t

π
θ
k
+

1 2

=
a
rg

m
a
x

π
θ
∈

Π
θ

{ E s
∼
d
λ π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
G

A
E
(γ
,λ

)
π
θ
k

(s
,a

)]
−
α
k

√ E s
∼
d
λ π
θ
k

(·
)
[K

L
(π

θ
k
,π

θ
)[
s]

]} ,

Pr
oj

ec
tio

n

π
θ
k
+

1
=

a
rg

m
in

π
θ
∈

Π
θ

D
(π

θ
,π

θ
k
+

1 2

) ,

s.
t.J

c
(π

θ
k
)

+
1

1
−
γ̃
E s
∼
d
λ π
θ
k

(·
),
a
∼
π
θ

(·
|s

)

[A
G

A
E
(γ
,λ

)
π
θ
k
,C

(s
,a

)]
+
β
k

√ E s
∼
d
λ π
θ
k

(·
)
[K

L
(π

θ
k
,π

θ
)[
s]

]
≤
b.

Po
lic

y
Im

pr
ov

em
en

t

θ
k
+

1 2
=

a
rg

m
a
x

θ

{ 1 T

T ∑ t=
1

π
θ
(a
t
|s
t
)

π
θ
k
(a
t
|s
t
)
Â
t

−
α

√ √ √ √1 T

T ∑ t=
1

K
L

(π
θ
k
(·
|s
t
),
π
θ
(·
|s
t
))

} ;

Pr
oj

ec
tio

n

θ
k
+

1
=

a
rg

m
in θ

1 T

T ∑ t=
1

{ K
L
(π

θ
k
+

1 2

(·
|s
t
),
π
θ
(·
|s
t
))

+
ν
k

1
−
γ
λ

1
−
γ

π
θ
(a
t
|s
t
)

π
θ
k
(a
t
|s
t
)
Â
C t

} .

N
on

-C
on

ve
x

Im
pl

em
en

-
ta

tio
n

16

Under review as a conference paper at ICLR 2022

B CONSERVATIVE POLICY UPDATE (CPU) ALGORITHM

Algorithm 1 Conservative Policy Update (CPU)

Initialize: policy network parameters θ0; value network parameter ω0; cost value function
parameter ν0, step-size ν0;
Hyper-parameters: trajectory horizon T ; discount rate γ; episode number M,N , mini-batch size
B, positive constant α, η;
for k = 0, 1, 2, . . . do

Collect batch data ofM episodes of horizon T in∪Mi=1∪Tt=0{(si,t, ai,t, ri,t+1, ci,t+1)} according
to current policy πθk ;
Estimate c-return by discount averaging on each episode: ĴCi =

∑T
t=0 γ

tci,t+1;
Compute TD errors ∪Mi=1 ∪Tt=0 {δi,t}, cost TD errors ∪Mi=1 ∪Tt=0 {δCi,t}:

δi,t = ri,t + γVωk(si,t)− Vωk(si,t−1), δCi,t = ci,t + γV Cνk(si,t)− V Cνk(si,t−1);

Compute GAE: ∪Mi=1 ∪Tt=0 {Âi,t, ÂCi,t}: Âi,t =
∑T
j=t(γλ)j−tδi,j , Â

C
i,t =

∑T
j=t(γλ)j−tδCi,j ;

Compute target function for value function and cost value function as follows,

V target
i,t = Âi,t + Vωk(si,t), V

target,C
i,t = ÂCi,t + V Cνk(si,t);

Store data: Dk = ∪Mi=1 ∪Tt=0

{
(ai,t, si,t, Âi,t, Â

C
i,t, V

target
i,t , V target,C

i,t)
}

;
πold ← πθk ; Policy Improvement
for i = 0, 1, 2, . . . ,M do

θk+ 1
2

= arg max
θ

 1

T

T∑
t=1

πθ(ai,t|si,t)
πold(ai,t|si,t)

Âi,t − α

√√√√ 1

T

T∑
t=1

KL(πold(·|si,t), πθ(·|si,t))

 ;

end for
πold ← πθ

k+1
2

; Projection

νk+1 = (νk + η(ĴCi − b))+;
for i = 0, 1, 2, . . . ,M do

θk+1 = arg min
θ

1

T

T∑
t=1

{
KL(πθold(·|si,t), πθ(·|si,t)) + νk

1− γλ
1− γ

πθ(ai,t|si,t)
πθk(ai,t|si,t)

ÂCi,t

}
;

end for
for each mini-batch {(aj , sj , Âj , ÂCj , V

target
j , V target,C

j)} of size B from Dk do

ωk+1 = arg min
ω

B∑
j=1

(
Vω(sj)− V target

j

)2
,νk+1 = arg min

ν

B∑
j=1

(
V cν (sj)− V target,C

j

)2

;

end for
end for

B.1 PRACTICAL IMPLEMENTATION OF CUP

In this section, we present the practical implementation of CUP.

Step 1: Policy Improvement

17

Under review as a conference paper at ICLR 2022

For the first step,

πθ
k+1

2

= arg max
πθ∈Πθ

{
Es∼dλπθk (·),a∼πθ(·|s)

[
AGAE(γ,λ)
πθk

(s, a)
]
− αk

√
Es∼dλπθk (·) [KL(πθk , πθ)[s]]

}
,

according to

Es∼dλπθk (·),a∼πθ(·|s)

[
AGAE(γ,λ)
πθk

(s, a)
]

= Es∼dλπθk (·),a∼πθk
(·|s)

[
πθ(a|s)
πθk(a|s)

AGAE(γ,λ)
πθk

(s, a)

]
, (36)

for each data sampled from ∪Mi=1 ∪Tt=0 {(si,t, ai,t, ri,t+1, ci,t+1)} according to current policy πθk ,
we learn the parameter θk+ 1

2
as follows,

θk+ 1
2

= arg max
θ

 1

T

T∑
t=1

πθ(ai,t|si,t)
πθk(ai,t|si,t)

Âi,t − α

√√√√ 1

T

T∑
t=1

KL(πθk(·|si,t), πθ(·|si,t))

 ,

which can be solved via the first order optimizer.

Step 2: Projection

Now, consider the second step:

πθk+1
= arg min

πθ∈Πθ

D
(
πθ, πθ

k+1
2

)
,

s.t. Jc(πθk) +
1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

+ βk
√
Es∼dλπθk (·) [KL(πθk , πθ)[s]] ≤ b.

We turn the projection step as the following unconstrained problem:

min
θ,ν≥0

{
D
(
πθ, πθ

k+1
2

)
+ ν

(
Jc(πθk)+

1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

+βk
√
Es∼dλπθk (·) [KL(πθk , πθ)[s]]− b

)}
. (37)

In our implementation, we use KL-divergence as the distance measure D(·, ·), then

D
(
πθ, πθ

k+1
2

)
= Es∼dλπθk (·)

[
KL
(
πθ

k+1
2

, πθ

)
[s]
]
. (38)

To simplify the problem, we ignore the term βk
√
Es∼dλπθk (·) [KL(πθk , πθ)[s]] due to the follow-

ing two aspects: (i) firstly, βk is adapted to the term
γ(1−λ)

√
2δkε

C
πθk+1

(πθk
)

(1−γλ)|1−2γλ|S||A|| , and for the high-
dimensional state space or continuous action space, then βk is very small; (ii) secondly, if D is a
KL-divergence measure, then the direction of the policy optimization D

(
πθ, πθ

k+1
2

)
(38) is pro-

portional to βk
√
Es∼dλπθk (·) [KL(πθk , πθ)[s]], thus, in practice, we can only optimize the distance

D
(
πθ, πθ

k+1
2

)
. Above discussions implies that instead of (37), we can consider the problem

min
θ,ν≥0

L(θ, ν),

where

L(θ, ν) = D
(
πθ, πθ

k+1
2

)
+ ν

(
Jc(πθk) +

1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]
− b
)
.

Then, according to gradient decent method, we have

θ ← θ − ηL(θ, ν)

∂θ
, ν ← ν − ηL(θ, ν)

∂ν
. (39)

18

Under review as a conference paper at ICLR 2022

Particularly,

L(θ, ν)

∂ν
= Jc(πθk) +

1

1− γ̃
Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]
− b, (40)

where the term Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

can be estimated following the idea as (36).

But recall (17) is a MM-iteration, i.e., we require to minimize Es∼dλπθk (·)KL (πθ, πθk) [s], which

implies πθ is close to πθk . Thus it is reasonable Es∼dλπθk (·),a∼πθ(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]
≈ 0, thus, in

practice, we update ν following a simple way

ν ← (ν − η(Jc(πθk)− b))+,

where (·)+ denote the positive part, i.e., if x ≤ 0, (x)+ = 0, else (x)+ = x.

Finally, according to (39), for each data sampled from ∪Mi=1∪Tt=0{(si,t, ai,t, ri,t+1, ci,t+1)} according
to current policy πθk , we learn the parameter θk+1 as follows,

θk+1 = arg min
θ

1

T

T∑
t=1

{
KL
(
πθ

k+1
2

(·|si,t), πθ(·|si,t)
)

+ νk
1− γλ
1− γ

πθ(ai,t|si,t)
πθk(ai,t|si,t)

ÂCi,t

}
,

which can be solved via the first-order optimizer.

19

Under review as a conference paper at ICLR 2022

C NOTATIONS

C.1 MATRIX INDEX

In this paper, we use a bold capital letter to denote matrix, e.g., A = (ai,j) ∈ Rm×n, and its (i, j)-th
element denoted as

A[i, j] =: ai,j ,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Similarly, a bold lowercase letter denotes a vector, e.g., a =
(a1, a2, · · · , an) ∈ Rn, and its i-th element denoted as

a[i] =: ai,

where 1 ≤ i ≤ n.

C.2 KEY NOTATIONS OF REINFORCEMENT LEARNING

For convenience of reference, we list key notations that have be used in this paper.

C.2.1 VALUE FUNCTION AND DYNAMIC SYSTEM OF MDP.

rπθ
, Rπθ

(s), : rπθ
∈ R|S| is the expected vector reward according to πθ , i.e., their compo-

nents are: rπθ
[s] =

∑
a∈A

∑
s′∈S πθ(a|s)r(s′|s, a) =: Rπθ

(s), s ∈ S.
vπθ

, Vπθ
(s), : vπθ

∈ R|S| is the vector that stores all the state value functions, and its
components are: vπθ

[s] = Vπθ
(s), s ∈ S.

ρ(·),ρ : ρ(s): the initial state distribution of state s; ρ ∈ R|S|, and ρ[s] = ρ(s).
Pπθ

: Single-step state transition matrix by executing πθ.
Pπθ

(s
′ |s) : Single-step state transition probability from s to s

′
by executing πθ, and it

is the (s, s
′
)-th component of the matrix Pπθ

, i.e., Pπθ
[s, s

′
] = Pπθ

(s
′ |s).

Pπθ
(st = s

′ |s) : The probability of visiting the state s
′

after t time steps from the state s
by executing πθ, and it is the (s, s

′
)-th component of the matrix Pπθ

, i.e.,
Pt
πθ

[s, s
′
] = Pπθ

(st = s
′ |s).

ds0πθ
(s), dρ0πθ

(s) : The normalized discounted distribution of the future state s encountered
starting at s0 by executing πθ: ds0πθ

(s) =: (1− γ)
∑∞
t=0 γ

tPπθ
(st = s|s0).

Since s0 ∼ ρ(·), we define dρ0πθ
(s) =: Es0∼ρ(·)[ds0πθ

(s)].
dρ0πθ

: It stores all the normalized discounted state distributions dρ0πθ
(s), ∈ S, i.e.,

dρ0πθ
∈ R|S|, and its components are: dρ0πθ

[s] = dρ0πθ
(s).

C.2.2 EXTEND THEM TO λ-VERSION.

P
(λ)
πθ : P

(λ)
πθ = (1− γλ)

∑∞
t=0(γλ)tPt+1

πθ
.

P(λ)
πθ (s

′ |s) : P(λ)
πθ (s

′ |s) =: P
(λ)
πθ [s, s

′
] = (1− γλ)

∑∞
t=0(γλ)tPπθ

(st+1 = s
′ |s).

r
(λ)
πθ , R

(λ)
πθ (s) : r

(λ)
πθ =

∑∞
t=0(γλPπθ

)trπθ
; R

(λ)
πθ (s) =: r

(λ)
πθ [s].

γ̃ : γ̃ =
γ(1− λ)

1− γλ
.

ds0,λπθ
(s) : ds0,λπθ

(s) = (1− γ̃)
∑∞
t=0 γ̃

tP(λ)
πθ (st = s|s0).

dλπθ
(s), dλπθ

: dλπθ
(s) = Es0∼ρ0(·)

[
ds0,λπθ

(s)
]
, dλπθ

[s] = dλπθ
(s).

C.2.3 TD ERROR W.R.T. ANY FUNCTION ϕ(·).

δϕt : δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st).
δϕπθ,t

(s) : δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt].

δϕπθ,t
: δϕπθ,t

[s] = δϕπθ,t
(s).

∆ϕ
t (πθ, πθ′ , s) : Est∼Pπ

θ
′ (·|s),at∼πθ

′ (·|st),st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
.

∆ϕ
t (πθ, πθ′) : ∆ϕ

t (πθ, πθ′)[s] = ∆ϕ
t (πθ, πθ′ , s).

20

Under review as a conference paper at ICLR 2022

D PRELIMINARIES

In this section, we introduce some new notations about state distribution, policy optimization and
λ-returns.

D.1 STATE DISTRIBUTION

We use Pπθ
∈ R|S|×|S| to denote the state transition matrix by executing πθ, and their components

are:
Pπθ

[s, s′] =
∑
a∈A

πθ(a|s)P(s′|s, a) =: Pπθ
(s
′
|s), s, s

′
∈ S,

which denotes one-step state transformation probability from s to s
′
.

We use Pπθ
(st = s|s0) to denote the probability of visiting s after t time steps from the initial state

s0 by executing πθ. Particularly, we notice if t = 0, st 6= s0, then Pπθ
(st = s|s0) = 0, i.e.,

Pπθ
(st = s|s0) = 0, t = 0 and s 6= s0. (41)

Then for any initial state s0 ∼ ρ(·), the following holds,

Pπθ
(st = s|s0) =

∑
s′∈S

Pπθ
(st = s|st−1 = s

′
)Pπθ

(st−1 = s
′
|s0). (42)

Recall ds0πθ
(s) denotes the normalized discounted distribution of the future state s encountered starting

at s0 by executing πθ,

ds0πθ
(s) = (1− γ)

∞∑
t=0

γtPπθ
(st = s|s0).

Furthermore, since s0 ∼ ρ0(·), we define

dρ0πθ
(s) = Es0∼ρ0(·)[d

s0
πθ

(s)] =

∫
s0∈S

ρ0(s0)ds0πθ
(s)ds0

as the discounted state visitation distribution over the initial distribution ρ0(·). We use dρ0πθ
∈ R|S| to

store all the normalized discounted state distributions, and its components are:

dρ0πθ
[s] = dρ0πθ

(s), s ∈ S.

We use ρ0 ∈ R|S| to denote initial state distribution vector, and their components are:

ρ0[s] = ρ0(s), s ∈ S.
Then, we rewrite dρ0πθ

as the following matrix version,

dρ0πθ
= (1− γ)

∞∑
t=0

(γPπθ
)tρ0 = (1− γ)(I− γPπθ

)−1ρ0. (43)

D.2 OBJECTIVE OF MDP

Recall τ = {st, at, rt+1}t≥0 ∼ πθ, according to τ , we define the expected return J(πθ|s0) as
follows,

J(πθ|s0) =Eτ∼πθ
[R(τ)] =

1

1− γ
Es∼ds0πθ (·),a∼πθ(·|s),s′∼P(·|s,a)

[
r(s
′
|s, a)

]
, (44)

where R(τ) =
∑
t≥0 γ

trt+1, and the notation J(πθ|s0) is “conditional” on s0 is to emphasize the
trajectory τ starting from s0.

Since s0 ∼ ρ0(·), we define the objective of MDP as follows,

J(πθ) =
1

1− γ
Es∼dρ0πθ (·),a∼πθ(·|s),s′∼P(·|s,a)

[
r(s
′
|s, a)

]
. (45)

The goal of reinforcement learning is to solve the following optimization problem:

θ? = arg max
θ∈Rp

J(πθ). (46)

21

Under review as a conference paper at ICLR 2022

D.3 BELLMAN OPERATORN

Let Bπθ
be the Bellman operator:

Bπθ
: R|S| → R|S|, v 7→ rπθ

+ γPπθ
v, (47)

where rπθ
∈ R|S| is the expected reward according to πθ, i.e., their components are:

rπθ
[s] =

∑
a∈A

∑
s′∈S

πθ(a|s)r(s′|s, a) =: Rπθ
(s), s ∈ S.

Let vπθ
∈ R|S| be a vector that stores all the state value functions, and its components are:

vπθ
[s] = Vπθ

(s), s ∈ S.

Then, according to Bellman operator (47), we rewrite Bellman equation (Bellman, 1957) as the
following matrix version:

Bπθ
vπθ

= vπθ
. (48)

Furthermore, we define λ-Bellman operator Bλπθ
as follows,

Bλπθ
= (1− λ)

∞∑
t=0

λt(Bπθ
)t+1,

which implies

Bλπθ
: R|S| → R|S|, v 7→ r(λ)

πθ
+ γ̃P(λ)

πθ
v, (49)

where

P(λ)
πθ

= (1− γλ)

∞∑
t=0

(γλ)tPt+1
πθ

, r(λ)
πθ

=

∞∑
t=0

(γλPπθ
)trπθ

, γ̃ =
γ(1− λ)

1− γλ
. (50)

Let

P(λ)
πθ

(s
′
|s) = P(λ)

πθ
[s, s

′
] =: (1− γλ)

∞∑
t=0

(γλ)t
(
Pt+1
πθ

[s, s
′
]
)
, (51)

where Pt+1
πθ

[s, s
′
] is the (s, s

′
)-th component of matrix Pt+1

πθ
, which is the probability of visiting s

′

after t+ 1 time steps from the state s by executing πθ, i.e.,

Pt+1
πθ

[s, s
′
] = Pπθ

(st+1 = s
′
|s). (52)

Thus, we rewrite P(λ)
πθ (s

′ |s) (51) as follows

P(λ)
πθ

(s
′
|s) = (1− γλ)

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s), s ∈ S. (53)

D.4 λ-RETURN

Furthermore, recall the following visitation sequence τ = {st, at, rt+1}t≥0 induced by πθ, it is
similar to the probability Pπθ

(st = s
′ |s0), we introduce P(λ)

πθ (st = s
′ |s0) as the probability of

transition from state s to state s
′
after t time steps under the dynamic transformation matrix P

(λ)
πθ .

Then, the following equity holds

P(λ)
πθ

(st = s|s0) =
∑
s′∈S

P(λ)
πθ

(st = s|st−1 = s
′
)P(λ)
πθ

(st−1 = s
′
|s0). (54)

22

Under review as a conference paper at ICLR 2022

Similarly, let

R(λ)
πθ

(s) =: r(λ)
πθ

[s] =

∞∑
t=0

(γλPπθ
)trπθ

[s] =

∞∑
t=0

(γλ)t

∑
s′∈S

Pπθ
(st = s

′
|s)Rπθ

(s
′
)

=

∞∑
t=0

∑
s′∈S

(γλ)tPπθ
(st = s

′
|s)Rπθ

(s
′
). (55)

It is similar to normalized discounted distribution dρ0πθ
(s), we introduce λ-return version of discounted

state distribution dλπθ
(s) as follows: ∀s ∈ S,

ds0,λπθ
(s) = (1− γ̃)

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0), (56)

dλπθ
(s) = Es0∼ρ0(·)

[
ds0,λπθ

(s)
]
, (57)

dλπθ
[s] = dλπθ

(s), (58)

where P(λ)
πθ (st = s|s0) is the (s0, s)-th component of the matrix

(
P

(λ)
πθ

)t
, i.e.,

P(λ)
πθ

(st = s|s0) =:
(
P(λ)
πθ

)t
[s0, s].

Similarly, P(λ)
πθ (st = s

′ |s) is the (s, s
′
)-th component of the matrix

(
P

(λ)
πθ

)t
, i.e.,

P(λ)
πθ

(st = s
′
|s) =:

(
P(λ)
πθ

)t
[s, s

′
].

Finally, we rewrite dρ0,λπθ
as the following matrix version,

dλπθ
= (1− γ̃)

∞∑
t=0

(
γP(λ)

πθ

)t
ρ0 = (1− γ̃)

(
I− γ̃P(λ)

πθ

)−1

ρ0. (59)

Remark 3 (λ-Return Version of Bellman Equation). According to Bellman equation (48), vπθ
is

fixed point of λ-operator Bλπθ
, i.e.,

vπθ
= r(λ)

πθ
+ γ̃P(λ)

πθ
vπθ

. (60)

Recall τ = {st, at, rt+1}t≥0 ∼ πθ, according to (60), the value function of initial state s0 is

Vπθ
(s0) = vπθ

[s0] = r(λ)
πθ

[s0] + γ̃P(λ)
πθ

vπθ
[s0]

= R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)Vπθ

(s
′
). (61)

23

Under review as a conference paper at ICLR 2022

We unroll the expression of (61) repeatedly, then we have

Vπθ
(s0)

=R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)

R(λ)
πθ

(s
′
) + γ̃

∑
s′′∈S

P(λ)
πθ

(s2 = s
′′
|s1 = s

′
)Vπθ

(s
′′
)

︸ ︷︷ ︸

=Vπθ (s′)

=R(λ)
πθ

(s0) + γ̃
∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)R(λ)

πθ
(s
′
)

+ γ̃2
∑
s′′∈S

∑
s′∈S

P(λ)
πθ

(s1 = s
′
|s0)P(λ)

πθ
(s2 = s

′′
|s1 = s

′
)

︸ ︷︷ ︸

(54)
= :P(λ)

πθ (s2=s′′ |s0)

Vπθ
(s
′′
)

=R(λ)
πθ

(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)Vπθ
(s)

=R(λ)
πθ

(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s)

+ γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s3 = s
′
|s2 = s)Vπθ

(s
′
)

=R(λ)

πθ
(s0) + γ̃

∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)R(λ)
πθ

(s)

+ γ̃3
∑
s′∈S

(∑
s∈S

P(λ)
πθ

(s2 = s|s0)P(λ)
πθ

(s3 = s
′
|s2 = s)

)
︸ ︷︷ ︸

=P(λ)
πθ

(s3=s′ |s0)

Vπθ
(s
′
)

=R(λ)(s0) + γ̃
∑
s∈S

P(λ)
πθ

(s1 = s|s0)R(λ)
πθ

(s) + γ̃2
∑
s∈S

P(λ)
πθ

(s2 = s|s0)R(λ)
πθ

(s)

+ γ̃3
∑
s∈S

P(λ)
πθ

(s3 = s|s0)Vπθ
(s)

= · · ·

=
∑
s∈S

∞∑
t=0

γ̃tP(λ)
πθ

(st = s|s0)R(λ)
πθ

(s)
(56)
=

1

1− γ̃
∑
s∈S

ds0,λπθ
(s)R(λ)

πθ
(s). (62)

According to (44) and (62), we have

J(πθ) =
∑
s0∈S

ρ0(s0)Vπθ
(s0)

(62)
=

1

1− γ̃
∑
s0∈S

ρ0(s0)
∑
s∈S

ds0,λπθ
(s)R(λ)

πθ
(s)

=
1

1− γ̃
∑
s∈S

(∑
s0∈S

ρ0(s0)ds0,λπθ
(s)

)
︸ ︷︷ ︸

=dλπθ
(s)

R(λ)
πθ

(s)

=
1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) =

1

1− γ̃
Es∼dλπθ (·)

[
R(λ)
πθ

(s)
]
. (63)

Finally, we summarize above results in the following Lemma 1.

24

Under review as a conference paper at ICLR 2022

Lemma 1. The objective J(πθ) (45) can be rewritten as the following version:

J(πθ) =
1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) =

1

1− γ̃
Es∼dλπθ (·)

[
R(λ)
πθ

(s)
]
.

E PROOF OF THEOREM 1

We need the following Proposition 4 to prove Theorem 1, which illustrates an identity for the objective
function of policy optimization.
Proposition 4. For any function ϕ(·) : S → R, for any policy πθ, for any trajectory satisfies
τ = {st, at, rt+1}t≥0 ∼ πθ, let

δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st),

δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt] ,

then, the objective J(πθ) (63) can be rewritten as the following version:

J(πθ) =Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

(∞∑
t=0

γtλtδϕπθ,t
(s)

)
(64)

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
Es∼dλπθ (·)

[∞∑
t=0

γtλtδϕπθ,t
(s)

]
.

We present the proof of of Proposition 4 at the end of this section, see Section E.2.

We introduce a vector δϕπθ,t
∈ R|S| and its components are: for any s ∈ S

δϕπθ,t
[s] = δϕπθ,t

(s). (65)

Then, we rewrite the objective as the following vector version

J(πθ) = Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃

∞∑
t=0

γtλt〈dλπθ
, δϕπθ,t

〉, (66)

where 〈·, ·〉 denotes inner production between two vectors.

E.1 PROOF OF THEOREM 1

Theorem 1 (Generalized Policy Performance Difference) For any function ϕ(·) : S → R, for two
arbitrary policy πθ and πθ′ , for any p, q ∈ [1,∞) such that 1

p + 1
q = 1, The following bound holds:

1

1− γ̃

∞∑
t=0

γtλtMϕ,−
p,q,t(πθ, πθ′) ≤ J(πθ)− J(πθ′) ≤

1

1− γ̃

∞∑
t=0

γtλtMϕ,+
p,q,t(πθ, πθ′), (67)

where the terms Mϕ,−
p,q,t and Mϕ,+

p,q,t are defined in (83)-(84).

Proof. (of Theorem 1)

We consider two arbitrary policies πθ and πθ′ with different parameters θ and θ
′
, let

D
ϕ,(λ)
t (πθ, πθ′) =: 〈dλπθ

, δϕπθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉. (68)

According to (66), we obtain performance difference as follows,

J(πθ)− J(πθ′) =
1

1− γ̃

∞∑
t=0

γtλt
(
〈dλπθ

, δϕπθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉
)

=
1

1− γ̃

∞∑
t=0

γtλtD
ϕ,(λ)
t (πθ, πθ′), (69)

25

Under review as a conference paper at ICLR 2022

which requires us to consider the boundedness of the difference Dϕ,(λ)
t (πθ, πθ′) (68) .

Step 1: Bound the term D
ϕ,(λ)
t (πθ, πθ′) (68).

We rewrite the first term of (68) as follows,

〈dλπθ
, δϕπθ,t

〉 = 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ 〈dλπθ

− dλπ
θ
′ , δ

ϕ
πθ,t
〉, (70)

which is bounded by applying Hölder’s inequality to the term 〈dλπθ
− dλπ

θ
′ , δ

ϕ
πθ,t
〉, we rewrite (70) as

follows,

〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

≤〈dλπθ
, δϕπθ,t

〉 ≤ 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q, (71)

where p, q ∈ [1,∞) and 1
p + 1

q = 1. Let

ε
ϕ,(λ)
p,q,t (πθ, πθ′) =: ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q,

then we rewrite Eq.(71) as follows,

〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − εϕ,(λ)

p,q,t (πθ, πθ′) ≤ 〈d
λ
πθ
, δϕπθ,t

〉 ≤ 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′). (72)

Let

Mϕ
t (πθ, πθ′) =: 〈dλπ

θ
′ , δ

ϕ
πθ,t
〉︸ ︷︷ ︸

Term-I

−〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉︸ ︷︷ ︸

Term-II

, (73)

combining the (68) and (72), we achieve the boundedness of Dϕ
t (πθ, πθ′) as follows

Mϕ
t (πθ, πθ′)− ε

ϕ,(λ)
p,q,t (πθ, πθ′) ≤ D

ϕ
t (πθ, πθ′) ≤M

ϕ
t (πθ, πθ′) + ε

ϕ,(λ)
p,q,t (πθ, πθ′). (74)

Step 2: Analyze the term Mϕ
t (πθ, πθ′) (73).

To analyze (74) further, we need to consider the first term appears in Mϕ
t (πθ, πθ′) (73):

Term-I (73) =〈dλπ
θ
′ , δ

ϕ
πθ,t
〉

=
∑
s∈S

dλπ
θ
′ (s)δ

ϕ
πθ,t

(s) = Es∼dλπ
θ
′ (·)
[
δϕπθ,t

(s)
]

(75)

(65)
= Es∼dλπ

θ
′ (·)

[
Est∼Pπθ (·|s)[δ

ϕ
πθ

(st)]
]
. (76)

We notice the following relationship

δϕπθ,t
(s) = E

st∼Pπθ (·|s)
at∼πθ(·|st)

st+1∼P(·|st,at)

[δϕt] = E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[
πθ(at|st)
πθ′ (at|st)

δϕt

]
, (77)

which holds since we use importance sampling: for any distribution p(·) and q(·), for any random
variable function f(·),

Ex∼p(x)[f(x)] = Ex∼q(x)

[
p(x)

q(x)
f(x)

]
.

According to (75), (77), we rewrite the term 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 in Eq.(73) as follows,

Term-I (73) = 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 =

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[
πθ(at|st)
πθ′ (at|st)

δϕt

]
 . (78)

26

Under review as a conference paper at ICLR 2022

Now, we consider the second term appears in Mϕ
t (πθ, πθ′) (73):

Term-II (73) = 〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉

=
∑
s∈S

dλπ
θ
′ (s)δ

ϕ
π
θ
′ ,t(s) =

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[δϕt]

 . (79)

Finally, take the results (78) and (79) to (73), we obtain the difference between 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 and

〈dλπ
θ
′ , δ

ϕ
π
θ
′ ,t〉, i.e., we achieve a identity for Mϕ

t (πθ, πθ′) (73) as follows,

Mϕ
t (πθ, πθ′)

(73)
= 〈dλπ

θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉

(78,(79)
=

∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
 . (80)

To simplify expression, we introduce a notation as follows,

∆ϕ
t (πθ, πθ′ , s) =: E

st∼Pπ
θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
, (81)

and we use a vector ∆ϕ
t (πθ, πθ′) ∈ R|S| to store all the values {∆ϕ

t (πθ, πθ′ , s)}s∈S :
∆ϕ
t (πθ, πθ′)[s] = ∆ϕ

t (πθ, πθ′ , s).

Then we rewrite 〈dλπ
θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉 (80) as follows,

Mϕ
t (πθ, πθ′) =〈dλπ

θ
′ , δ

ϕ
πθ,t
〉 − 〈dλπ

θ
′ , δ

ϕ
π
θ
′ ,t〉

(80)
=
∑
s∈S

dλπ
θ
′ (s)∆

ϕ
t (πθ, πθ′ , s) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉.

Step 3: Bound on J(πθ)− J(πθ′).

Recall (74), taking above result in it, we obtain

〈dλπ
θ
′ ,∆

ϕ
t (πθ, πθ′)〉 − ε

ϕ,(λ)
p,q,t (πθ, πθ′) ≤ D

ϕ
t (πθ, πθ′) ≤ 〈d

λ
π
θ
′ ,∆

ϕ
t (πθ, πθ′)〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′).

(82)

Finally, let

Mϕ,−
p,q,t(πθ, πθ′) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉 − ε

ϕ,(λ)
p,q,t (πθ, πθ′) (83)

=
∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
− ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

=Es∼dλπ
θ
′ (·)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
− ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q.

27

Under review as a conference paper at ICLR 2022

and

Mϕ,+
p,q,t(πθ, πθ′) = 〈dλπ

θ
′ ,∆

ϕ
t (πθ, πθ′)〉+ ε

ϕ,(λ)
p,q,t (πθ, πθ′) (84)

=
∑
s∈S

dλπ
θ
′ (s)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q

=Es∼dλπ
θ
′ (·)

 E
st∼Pπ

θ
′ (·|s)

at∼πθ
′ (·|st)

st+1∼P(·|st,at)

[(
πθ(at|st)
πθ′ (at|st)

− 1

)
δϕt

]
+ ‖dλπθ

− dλπ
θ
′ ‖p‖δ

ϕ
πθ,t
‖q.

According to (69) and (82), we achieve the boundedness of performance difference between two
arbitrary policies πθ and πθ′ :

1

1− γ̃

∞∑
t=0

γtλtMϕ,−
p,q,t(πθ, πθ′)︸ ︷︷ ︸

=:Lϕ,−p,q,

≤ J(πθ)− J(πθ′) ≤
1

1− γ̃

∞∑
t=0

γtλtMϕ,+
p,q,t(πθ, πθ′)︸ ︷︷ ︸

=:Lϕ,+p,q,

. (85)

E.2 PROOF OF PROPOSITION 4

Proof. (of Proposition 4).

Step 1: Rewrite the objective J(πθ) in Eq.(63).

We rewrite the discounted distribution dλπθ
(59) as follows,

ρ0 −
1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
= 0. (86)

Let ϕ(·) be a real number function defined on the state space S, i.e., ϕ : S → R. Then we define a
vector function φ(·) ∈ R|S| to collect all the values {ϕ(s)}s∈S , and its components are

φ[s] = ϕ(s), s ∈ S.

Now, we take the inner product between the vector φ and (86), we have

0 = 〈ρ0 −
1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
,φ〉

= 〈ρ0,φ〉 −
1

1− γ̃
〈dλπθ

,φ〉+
γ̃

1− γ̃
〈P(λ)

πθ
dλπθ

,φ〉. (87)

We express the first term 〈ρ0,φ〉 of (87) as follows,

〈ρ0,φ〉 =
∑
s∈S

ρ0(s)ϕ(s) = Es∼ρ0(·)[ϕ(s)]. (88)

We express the second term 〈dλπθ
,φ〉 of (87) as follows,

− 1

1− γ̃
〈dλπθ

,φ〉 = − 1

1− γ̃
∑
s∈S

dλπθ
(s)ϕ(s) = − 1

1− γ̃
Es∼dλπθ (·)[ϕ(s)]. (89)

28

Under review as a conference paper at ICLR 2022

We express the third term 〈γ̃P
(λ)
πθ dλπθ

,φ〉 of (87) as follows,

γ̃

1− γ̃
〈P(λ)

πθ
dλπθ

,φ〉 =
γ̃

1− γ̃
∑
s′∈S

(
P(λ)
πθ

dλπθ

)
[s
′
]ϕ(s

′
)

=
γ̃

1− γ̃
∑
s′∈S

(∑
s∈S

P(λ)
πθ

(s
′
|s)dλπθ

(s)

)
ϕ(s

′
). (90)

According to Lemma 1, put the results (63) and (87) together, we have

J(πθ)

(63),(87)
=

1

1− γ̃
∑
s∈S

dλπθ
(s)R(λ)

πθ
(s) +

〈
ρ0 −

1

1− γ̃
dλπθ

+
γ̃

1− γ̃
P(λ)
πθ

dλπθ
,φ

〉

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

 , (91)

where the last equation holds since we unfold (87) according to (88)-(90).

Step 2: Rewrite the term
(
R

(λ)
πθ (s) + γ̃

∑
s′∈S P

(λ)
πθ (s

′ |s)ϕ(s
′
)− ϕ(s)

)
in Eq.(91).

Then, we unfold the second term of (91) as follows,

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s) (92)

(53),(55)
=

∞∑
t=0

(γλPπθ
)trπθ

[s] + γ̃(1− γλ)
∑
s′∈S

∞∑
t=0

(γλ)t
(
Pt+1
πθ

[s, s
′
]
)
ϕ(s

′
)− ϕ(s)

(50)
=

∞∑
t=0

(γλPπθ
)trπθ

[s] + γ(1− λ)
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s). (93)

Recall the terms P
(λ)
πθ , r

(λ)
πθ [s] defined in (50)-(55),

R(λ)
πθ

(s) + γ(1− λ)
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s) (94)

We consider the first term R
(λ)
πθ (s) of (92) as follows,

R(λ)
πθ

(s)
(50)−(55)

= r(λ)
πθ

[s] =

∞∑
t=0

(γλ)tPt
πθ

rπθ
[s] =

∞∑
t=0

∑
st∈S

(γλ)tPπθ
(st|s)Rπθ

(st). (95)

29

Under review as a conference paper at ICLR 2022

We consider the second term γ̃
∑
s∈S P

(λ)
πθ (s

′ |s)ϕ(s)− ϕ(s) of (92) as follows,

γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

(53)
= γ̃(1− γλ)

∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s) (96)

(50)
= γ(1− λ)

∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)− ϕ(s) (97)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
s′∈S

(∞∑
t=0

(γλ)t+1Pπθ
(st+1 = s

′
|s)ϕ(s

′
)

)
︸ ︷︷ ︸

=
∑∞
t=1(γλ)tPπθ (st=s

′ |s)ϕ(s′)

−ϕ(s)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
s′∈S

∞∑
t=1

(γλ)tPπθ
(st = s

′
|s)ϕ(s

′
) + ϕ(s)

︸ ︷︷ ︸

=
∑
s
′∈S

∑∞
t=0(γλ)tPπθ (st=s

′ |s)ϕ(s′)

(98)

=γ
∑
s′∈S

∞∑
t=0

(γλ)tPπθ
(st+1 = s

′
|s)ϕ(s

′
)−

∑
st∈S

∞∑
t=0

(γλ)tPπθ
(st|s)ϕ(s), (99)

where the equation from Eq.(98) to Eq.(99) holds since: according to (41), we use the following
identity

∑
s′∈S

Pπθ
(s0 = s

′
|s)ϕ(s

′
) = ϕ(s).

30

Under review as a conference paper at ICLR 2022

Furthermore, take the result (95) and (99) to (94), we have

R(λ)
πθ

(s) + γ̃
∑
s′∈S

P(λ)
πθ

(s
′
|s)ϕ(s

′
)− ϕ(s)

=

∞∑
t=0

(γλ)t

(∑
st∈S

Pπθ
(st|s)Rπθ

(st) + γ
∑
s′∈S

Pπθ
(st+1 = s

′
|s)ϕ(s

′
)︸ ︷︷ ︸

(42)
=
∑
st∈S

Pπθ (st+1=s′ |st)Pπθ (st|s)ϕ(s′)

−
∑
st∈S

Pπθ
(st|s)ϕ(st)

)
(100)

=

∞∑
t=0

(γλ)t

∑
st∈S

Pπθ
(st|s)Rπθ

(st) + γ
∑
st∈S

Pπθ
(st|s)

∑
st+1∈S

Pπθ
(st+1|st)ϕ(st+1)

−
∑
st∈S

Pπθ
(st|s)ϕ(st)

)
(101)

=

∞∑
t=0

(γλ)t
∑
st∈S

Pπθ
(st|s)

∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at)r(st+1|st, at)︸ ︷︷ ︸

=Rπθ (st)

+ γ
∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at)︸ ︷︷ ︸

=Pπθ (st+1|st)

ϕ(st+1)− ϕ(st)

=

∞∑
t=0

(γλ)t
∑
st∈S

Pπθ
(st|s)

∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, at) (r(st+1|st, at) + γϕ(st+1)− ϕ(st))

(102)

=

∞∑
t=0

(γλ)tEst∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [r(st+1|st, at) + γϕ(st+1)− ϕ(st)] , (103)

the equation from Eq.(99) to Eq.(100) holds since:

Pπθ
(st+1|s)

(42)
=
∑
st∈S

Pπθ
(st+1|st)Pπθ

(st|s);

the equation from Eq.(100) to Eq.(101) holds since we use the Markov property of the definition of
MDP: for each time t ∈ N,

Pπθ
(st+1 = s

′
|st = s) = Pπθ

(s
′
|s);

the equation (102) the following identity:∑
at∈A

πθ(at|st) = 1,
∑

st+1∈S
P(st+1|st, at) = 1,

then
ϕ(st) =

∑
at∈A

πθ(at|st)
∑

st+1∈S
P(st+1|st, a)ϕ(st).

Step 3: Put all the result together.

31

Under review as a conference paper at ICLR 2022

Finally, let

δϕt = r(st+1|st, at) + γϕ(st+1)− ϕ(st),

δϕπθ,t
(s) = Est∼Pπθ (·|s),at∼πθ(·|st),st+1∼P(·|st,at) [δϕt] ,

combining the results (91) and (103), we have

J(πθ) =Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
∑
s∈S

dλπθ
(s)

(∞∑
t=0

γtλtδϕπθ,t
(s)

)
(104)

=Es0∼ρ0(·)[ϕ(s0)] +
1

1− γ̃
Es∼dλπθ (·)

[∞∑
t=0

γtλtδϕπθ,t
(s)

]
.

This concludes the proof of Proposition 4.

E.3 LEMMA 2

Lemma 2. Let ‖Ππ
θ
′ −Ππθ

‖1,1 denote as the L1,1-norm for the difference between two policy
space {πθ(a|s)}(s,a)∈S×A, {πθ′ (a|s)}(s,a)∈S×A, i.e.,

‖Ππ
θ
′ −Ππθ

‖1,1 =:
∑
s∈S

∑
a∈A
|πθ′ (a|s)− πθ(a|s)| . (105)

The divergence between discounted future state visitation distributions, ‖dλπ
θ
′ − dλπθ

‖1, is bounded
as follows,

‖dλπ
θ
′ − dλπθ

‖1 ≤
(1− γλ)2

(1− γ)
(

1− γλ‖Ππ
θ
′ −Ππθ

‖1,1
)Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
and

‖dλπ
θ
′ − dλπθ

‖1 ≤
(1− γλ)2

(1− γ)
(

1− γλ‖Ππ
θ
′ −Ππθ

‖1,1
)Es∼dλπ

θ
′ (·)

[
2DTV(πθ′ , πθ)[s]

]
,

where
2DTV(πθ′ , πθ)[s] =:

∑
a∈A
|πθ′ (a|s)− πθ(a|s)| .

Furthermore, we achieve the boundedness of ‖dλπ
θ
′ − dλπθ

‖1 as follows,

‖dλπ
θ
′ − dλπθ

‖1 ≤
1

1− γ̃
· 1− γλ
|1− 2γλ|S||A||

Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
,

‖dλπ
θ
′ − dλπθ

‖1 ≤
1

1− γ̃
· 1− γλ
|1− 2γλ|S||A||

Es∼dλπ
θ
′ (·)

[
2DTV(πθ′ , πθ)[s]

]
.

Proof. Recall Eq.(59), let

Gπθ
=
(
I− γ̃P(λ)

πθ

)−1

, Gπ
θ
′ =

(
I− γ̃P(λ)

π
θ
′

)−1

, D = P(λ)
π
θ
′ −P(λ)

πθ
. (106)

Then, the following holds

G−1
πθ
−G−1

π
θ
′ =

(
I− γ̃P(λ)

πθ

)
−
(
I− γ̃P(λ)

π
θ
′

)
= γ̃D. (107)

Furthermore, by left-multiplying by Gπθ
and right-multiplying by Gπ

θ
′ , we achieve

Gπ
θ
′ −Gπθ

= γ̃Gπ
θ
′DGπθ

. (108)

32

Under review as a conference paper at ICLR 2022

Grouping all the results from (106)-(108), recall (59),

dλπθ
= (1− γ̃)

∞∑
t=0

(
γP(λ)

πθ

)t
ρ0 = (1− γ̃)

(
I− γ̃P(λ)

πθ

)−1

ρ0 = (1− γ̃)Gπθ
ρ0, (109)

then we have

dλπ
θ
′ − dλπθ

=(1− γ̃)
(
Gπ

θ
′ −Gπθ

)
ρ0

(108)
= (1− γ̃)γ̃Gπ

θ
′DGπθ

ρ0

(109)
= γ̃Gπ

θ
′Ddλπθ

. (110)

Applying (110), we have

‖dλπ
θ
′ − dλπθ

‖1
(110)

≤ γ̃‖Gπ
θ
′ ‖1‖Ddλπθ

‖1. (111)

Firstly, we bound the term ‖Gπ
θ
′ ‖1 as follows,

‖Gπ
θ
′ ‖1 =

∥∥∥∥(I− γ̃P(λ)
π
θ
′

)−1
∥∥∥∥

1

≤
∞∑
t=0

γ̃t
∥∥∥P(λ)

π
θ
′

∥∥∥
1

=
1

1− γ̃
=

1− γλ
1− γ

. (112)

Now, we analyze the second term as follows,

‖Ddλπθ
‖1

=
∑
s′∈S

∣∣∣∣∣∑
s∈S

D(s
′
|s)dλπθ

(s)

∣∣∣∣∣
(53)
=
∑
s′∈S

∣∣∣∣∣∑
s∈S

(
P(λ)
π
θ
′ (s
′
|s)− P(λ)

πθ
(s
′
|s)
)∣∣∣∣∣ dλπθ

(s)

(53)
=
∑
s′∈S

∣∣∣∣∣(1− γλ)

∞∑
t=0

(γλ)t
∑
s∈S

(
Pπ

θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
)∣∣∣∣∣ dλπθ

(s)

≤
∑
s∈S

(1− γλ)

∞∑
t=0

(γλ)t
∑
s′∈S

∣∣∣Pπ
θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)
∣∣∣
 dλπθ

(s) (113)

.

Before we provide a further analyze (113), we need to bound |Pπ
θ
′ (st+1 = s

′ |s)−Pπθ
(st+1 = s

′ |s)|.
Let s0 = s, then

Pπθ
(st+1 = s

′
|s) 42

=
∑
s1∈S

Pπθ
(st+1 = s

′
|s1)Pπθ

(s1|s0)

=
∑
s1∈S

∑
s2∈S

Pπθ
(st+1 = s

′
|s2)Pπθ

(s2|s1)Pπθ
(s1|s0)

= · · ·

=
∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=1

Pπθ
(si|si−1)

)

=
∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=1

(∑
ai∈A

P(si|si−1, ai)πθ(ai|si−1)

))
. (114)

Similarly, we have

Pπ
θ
′ (st+1 = s

′
|s) =

∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=1

(∑
ai∈A

P(si|si−1, ai)πθ′ (ai|si−1)

))
. (115)

33

Under review as a conference paper at ICLR 2022

Then, according to the results (114)-(115), let s0 = s, the following holds∑
s′∈S

|Pπ
θ
′ (st+1 = s

′
|s)− Pπθ

(st+1 = s
′
|s)|

=
∑
s′∈S

∣∣∣∣∣∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=1

(∑
ai∈A

P(si|si−1, ai) (πθ′ (ai|si−1)− πθ(ai|si−1))

))∣∣∣∣∣
≤
∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=1

∑
ai∈A

|πθ′ (ai|si−1)− πθ(ai|si−1)|

)

=
∑
s1∈S

∑
s2∈S

· · ·
∑
st∈S

(
t+1∏
i=2

∑
ai∈A

|πθ′ (ai|si−1)− πθ(ai|si−1)|

)
·

(∑
a1∈A

|πθ′ (a1|s0)− πθ(a1|s0)|

)

=

t+1∏
i=2

 ∑
si−1∈S

∑
ai∈A

|πθ′ (ai|si−1)− πθ(ai|si−1)|

 ·(∑
a1∈A

|πθ′ (a1|s0)− πθ(a1|s0)|

)

=

∑
s∈S

∑
a∈A
|πθ′ (a|s)− πθ(a|s)|︸ ︷︷ ︸

=:
∥∥∥Ππ

θ
′ −Ππθ

∥∥∥
1,1

t

·

(∑
a∈A
|πθ′ (a|s)− πθ(a|s)|

)
. (116)

Taking the result (116) to (113), we have

‖Ddλπθ
‖1 ≤(1− γλ)

∞∑
t=0

(γλ)t
∥∥∥Ππ

θ
′ −Ππθ

∥∥∥t
1,1

∑
s∈S

∑
a∈A
|πθ′ (a|s)− πθ(a|s)|︸ ︷︷ ︸
=:2DTV(π

θ
′ ,πθ)[s]

dλπθ
(s)

=(1− γλ)

∞∑
t=0

(γλ)t‖Ππ
θ
′ −Ππθ

‖t1,1Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
=

1− γλ
1− γλ‖Ππ

θ
′ −Ππθ

‖1,1
Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
. (117)

Finally, according to (111), (112) and (117), we have

‖dλπ
θ
′ − dλπθ

‖1 ≤
γ̃

1− γ̃
· γ(1− λ)

1− γλ‖Ππ
θ
′ −Ππθ

‖1,1
Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
. (118)

Recall (105), we have

‖Ππ
θ
′ −Ππθ

‖1,1 =
∑
s∈S

∑
a∈A
|πθ′ (a|s)− πθ(a|s)| ≤ 2|S||A|. (119)

Then, we achieve the boundedness of ‖Ππ
θ
′ −Ππθ

‖1,1 as follows,

‖dλπ
θ
′ − dλπθ

‖1 ≤
γ̃

1− γ̃
· 1− γλ
|1− 2γλ|S||A||

Es∼dλπθ (·)

[
2DTV(πθ′ , πθ)[s]

]
. (120)

34

Under review as a conference paper at ICLR 2022

F PROOF OF THEOREM 2

Theorem 2 Let δk = Es∼dλπθk (·)

[
KL
(
πθk , πθk+1

2

)
[s]
]
, if πθk and πθk+1

are related to (17)-(18),

then the lower bound on policy improvement, and upper bound on constraint violation are

J(πθk+1
)− J(πθk) ≥ −

γ(1− λ)αk
√

2δkε
V
πθ

(πθ′)

(1− γ) |1− 2γλ|S||A||
, Jc(πθk+1

) ≤ b+
γ(1− λ)βk

√
2δkε

C
πθ

(πθ′)

(1− γ) |1− 2γλ|S||A||
.

Proof. (of Theorem 2)

According to Bregman divergence, if policy πθk is feasible, policy πθk+1
is generated according to

(18), then the following

KL
(
πθk , πθk+1

2

)
≥ KL

(
πθk , πθk+1

)
+ KL

(
πθk+1

, πθ
k+1

2

)
implies

δk = Es∼dλπθk (·)

[
KL
(
πθk , πθk+1

2

)
[s]
]
≥ Es∼dλπθk (·)

[
KL
(
πθk+1

, πθk
)

[s]
]
.

According to the asymptotically symmetry of KL divergence if we update the policy within a local
region, then, we have

δk ≥ Es∼dλπθk (·)

[
KL
(
πθ

k+1
2

, πθk

)
[s]
]
≥ Es∼dλπθk (·)

[
KL
(
πθk+1

, πθk
)

[s]
]
.

Furthermore, according to Proposition 1 and Proposition 3, we have

J(πθk+1
)− J(πθk)

≥ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
AGAE(γ,λ)
πθk

(s, a)−
2γ(1− λ)εVπθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||
DTV(πθk , πθk+1

)[s]

]

≥ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
−

2γ(1− λ)αkε
V
πθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||

√
1

2
Es∼dλπθk (·)

[
KL(πθk , πθk+1

)[s]
]]

≥ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
−
γ(1− λ)αk

√
2δkε

V
πθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||

]
.

Similarly, according to Proposition 1 and Proposition 2, and since policy πθk+1
satisfies

Jc(πθk) +
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a)
]

+ βk
√
Es∼dλπθk (·)

[
KL(πθk , πθk+1

)[s]
]
≤ b,

(121)

and

Jc(πθk+1
)− Jc(πθk) (122)

≤ 1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
A

GAE(γ,λ)
πθk

,C (s, a) +
2γ(1− λ)βkε

C
πθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||
DTV(πθk , πθk+1

)[s]

]
.

Combining (121)- (123), we have

Jc(πθk+1
)− Jc(πθk) (123)

≤b+
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
2γ(1− λ)βkε

C
πθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||

√
1

2
Es∼dλπθk (·)

[
KL(πθk , πθk+1

)[s]
]]

≤b+
1

1− γ̃
Es∼dλπθk (·),a∼πθk+1

(·|s)

[
γ(1− λ)βk

√
2δkε

C
πθk+1

(πθk)

(1− γλ) |1− 2γλ|S||A||

]
. (124)

35

Under review as a conference paper at ICLR 2022

G EXPERIMENTS

The Python code for our implementation of CUP is provided along with this submission in the
supplementary material.

G.1 ENVIRONMENT

G.1.1 ENVIRONMENT 1: ROBOTS WITH SPEED LIMIT.

We consider two tasks from MuJoCo (Brockman et al., 2016): Walker2d-v3 and Hopper-v3, where
the setting of cost follows (Zhang et al., 2020). For agents move on a two-dimensional plane, the cost
is calculated as follows,

C(s, a) =
√
v2
x + v2

y;

for agents move along a straight line, the cost is calculated as

C(s, a) = |vx|,
where vx, vy are the velocities of the agent in the x and y directions respectively.

G.1.2 ENVIRONMENT 2: CIRCLE.

The Circle Environment follows (Achiam et al., 2017), and we use open-source implementation
of the circle environments from https://github.com/ymzhang01/mujoco-circle. Ac-
cording to Zhang et al. (2020), those experiments were implemented in OpenAI Gym (Brockman
et al., 2016) while the circle tasks in Achiam et al. (2017) were implemented in rllab (Duan et al.,
2016). We also excluded the Point agent from the original experiments since it is not a valid agent
in OpenAI Gym. The first two dimensions in the state space are the (x, y) coordinates of the center
mass of the agent, hence the state space for both agents has two extra dimensions compared to the
standard Ant-v0 and Humanoid-v0 environments from OpenAI Gym.

Now, we present some necessary details of this environment taken from (Zhang et al., 2020).

Figure 2: In the Circle task, reward is maximized by moving along the green circle. The agent is not
allowed to enter the blue regions, so its optimal constrained path follows the line segments AD and
BC (figure and caption taken from (Achiam et al., 2017; Zhang et al., 2020)).

In the circle tasks, the goal is for an agent to move along the circumference of a circle while remaining
within a safety region smaller than the radius of the circle. The exact geometry of the task is shown
in Figure 2. The reward and cost functions are defined as:

R(s) =
−yvx + xvy

1 + |
√
x2 + y2 − r|

, C(s) = I(|x| > xlim),

where x, y are the positions of the agent on the plane, vx, vy are the velocities of the agent along
the x and y directions, r is the radius of the circle, and xlim specifies the range of the safety region.
The radius is set to r = 10 for both Ant and Humanoid while xlim is set to 3 and 2.5 for Ant and
Humanoid respectively. Note that these settings are identical to those of the circle task in Achiam
et al. (2017); Zhang et al. (2020).

36

https://github.com/ymzhang01/mujoco-circle

Under review as a conference paper at ICLR 2022

G.1.3 ENVIRONMENT 3: SAFETY GYM SHIPS WITH THREE PRE-MADE ROBOTS.

In Safety Gym environments, the agent perceives the world through a robot’s sensors and interacts
with the world through its actuators. In our paper, we consider three environment: Point, Car, Dog
from (Ray et al., 2019). In this section, the presentation of those environments are taken from (Ray
et al., 2019), for more details, please refer to (Ray et al., 2019, Page 8–10).

(a) Point (b) Goal (c) Car (d) Button (e) Doggo (f) Push

Figure 3: Fig (a), (c), (e) show the pre-made robots in Safety Gym. These robots are used in the
benchmark environments. Fig (b), (d), (f) show the tasks for our environments. From left to right:
Goal, Button, Push. In “Goal,” the objective is to move the robot inside the green goal area. In
“Button,” the objective is to press the highlighted button (visually indicated with a faint gray cylinder).
In “Push,” the objective is to push the yellow box inside of the green goal area (figure and caption
taken from (Ray et al., 2019)).

Point: (Figure 3 (a)). A simple robot constrained to the 2D-plane, with one actuator for turning and
another for moving forward/backwards. This factored control scheme makes the robot particularly
easy to control for navigation. Point has a small square in front that makes it both easier to visually
determine the robot’s direction, and helps the point push a box element that appears in one of our
tasks.

Car: (Figure 3 (c)). Car is a slightly more complex robot that has two independently-driven parallel
wheels and a free rolling rear wheel. Car is not fixed to the 2D-plane, but mostly resides in it. For
this robot, both turning and moving forward/backward require coordinating both of the actuators. It
is similar in design to simple robots used in education.

Doggo: (Figure 3 (e)). Doggo is a quadrupedal robot with bilateral symmetry. Each of the four
legs has two controls at the hip, for azimuth and elevation relative to the torso, and one in the knee,
controlling angle. It is designed such that a uniform random policy should keep the robot from falling
over and generate some travel.

All actions for all robots are continuous, and linearly scaled to [−1,+1], which is common for 3D
robot-based RL environments and (anecdotally) improves learning with neural nets. Modulo scaling,
the action parameterization is based on a mix of hand-tuning and MuJoCo actuator defaults, and
we caution that it is not clear if these choices are optimal. Some safe exploration techniques are
action-layer interventions, like projecting to the closest predicted safe action (Dalal et al., 2018), and
these methods can be sensitive to action parameterization. As a result, action parameterization may
merit more careful consideration than is usually given. Future work on action space design might
be to find action parameterizations that respect physical measures we care about—for example, an
action space where a fixed distance corresponds to a fixed amount of energy.

The Safety Gym environment-builder currently supports three main tasks: Goal, Button, and Push
(depicted in Fig. 2). Tasks in Safety Gym are mutually exclusive, and an individual environment can
only make use of a single task. Reward functions are configurable, allowing rewards to be either
sparse (rewards only obtained on task completion) or dense (rewards have helpful, hand-crafted
shaping terms). Task details follow:

Goal: (Figure 3 (b)). Move the robot to a series of goal positions. When a goal is achieved, the goal
location is randomly reset to someplace new, while keeping the rest of the layout the same. The
sparse reward component is attained on achieving a goal position (robot enters the goal circle). The
dense reward component gives a bonus for moving towards the goal.

Button: (Figure 3 (d)). Press a series of goal buttons. Several immobile “buttons” are scattered
throughout the environment, and the agent should navigate to and press (contact) the currently-

37

Under review as a conference paper at ICLR 2022

highlighted button, which is the goal button. After the agent presses the correct button, the environ-
ment will select and highlight a new goal button, keeping everything else fixed. The sparse reward
component is attained on pressing the current goal button. The dense reward component gives a
bonus for moving towards the current goal button.

Push: (Figure 3 (f)). Move a box to a series of goal positions. Like the goal task, a new goal location
is drawn each time a goal is achieved. The sparse reward component is attained when the yellow box
enters the goal circle. The dense reward component consists of two parts: one for getting the agent
closer to the box, and another for getting the box closer to the goal.

Constraint Options and Desiderata

(a) Hazards (b) Vases (c) Buttons (d) Pillars (e) Gremlins

Figure 4: Constraint elements used in our environments (figure and caption taken from (Ray et al.,
2019)).

The constraint elements themselves are:

Hazards: (Figure 4 (a)). Dangerous areas to avoid. These are circles on the ground that are
non-physical, and the agent is penalized for entering them.

Vases: (Figure 4 (b)). Objects to avoid. These are small blocks that represent fragile objects. The
agent is penalized for touching or moving them.

Pillars: (Figure 4 (c)). Immobile obstacles. These are rigid barriers in the environment, which the
agent should not touch.

Buttons: (Figure 4 (d)). Incorrect goals. When using the “buttons” goal, pressing an incorrect button
is penalized.

Gremlins: (Figure 4 (e)). Moving objects. These are simple moving objects that the agent must
avoid contacting. Since they are moving quickly, the agent must stay out of the way of their path of
travel.

Although all constraint elements represent things for the agent to avoid, they pose different challenges
for the agent by virtue of having different dynamics. To illustrate the contrast: hazards provide
no physical obstacle, vases are moveable obstacles, pillars are immovable obstacles, buttons can
sometimes be perceived as goals, and gremlins are actively-moving obstacles. Like reward functions
in Safety Gym, cost functions are configurable in various ways; see the code for details. By default,
cost functions are simple indicators for whether an unsafe interaction has occured (ct = 1 if the agent
has done the unsafe thing, otherwise ct = 0).

Finally, SGPoint, SGCar, and SGDoggo, which are all six Point/Car/Doggo robot environments
with constraints in Safety Gym, and Ray et al. (2019) have provided an implementation for those
environments.

G.2 DETAILS OF EXPERIMENTS

In all of those experiments, we use a two-layer feedforward neural network with a tanh activation for
both policy and value networks. Experiment-specific parameters are as follows:

38

Under review as a conference paper at ICLR 2022

Parameter Walker2d Hopper HumanoidCircle AntCircle
No. of hidden layers 2 2 2 2
No. of hidden nodes 64 64 64 64

Batch size 2048 2048 50000 50000
Minibatch size 64 64 1000 1000
Rollout length 1000 1000 1000 1000

GAE parameter (cost) 0.95 0.95 0.995 0.995
GAE parameter (reward) 0.95 0.95 0.995 0.995

discounter for cost 0.99 0.99 0.995 0.995
discounter for reward 0.99 0.99 0.995 0.995

learning rate for policy 3× 10−4 3× 10−4 3× 10−4 3× 10−4

learning rate for value and reward function 3× 10−4 3× 10−4 3× 10−4 3× 10−4

39

	Introduction
	Preliminaries
	Policy Gradient and Generalized Advantage Estimator (GAE)
	Safe Reinforcement Learning

	Generalized Policy Performance Difference Bounds
	Some Additional Notations
	Main Results

	Methodology: A Conservative Update Policy (CUP)
	Related Work
	Experiments
	Conclusion
	Additional Discussion about Related Work
	CPO AchiamHTA17
	PCPO yang2020projection
	FOCOPS zhang2020first
	Comparison to CUP

	Conservative Policy Update (CPU) Algorithm
	Practical Implementation of CUP

	Notations
	Matrix Index
	Key Notations of Reinforcement Learning
	Value Function and Dynamic System of MDP.
	Extend them to -version.
	 TD error w.r.t. any function ().

	Preliminaries
	State Distribution
	Objective of MDP
	Bellman Operatorn
	-Return

	Proof of Theorem 1
	Proof of Theorem 1
	Proof of Proposition 4
	Lemma 2

	Proof of Theorem 2
	Experiments
	Environment
	Environment 1: Robots with Speed Limit.
	Environment 2: Circle.
	Environment 3: Safety Gym Ships with Three Pre-made Robots.

	Details of Experiments

