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ABSTRACT

The need of Feature Compatible Learning (FCL) arises from many large scale
retrieval-based applications, where updating the entire library of embedding vec-
tors is expensive. When an upgraded embedding model shows potential, it is
desired to transform the benefit of the new model without refreshing the library.
While progresses have been made along this new direction, existing approaches
for feature compatible learning mostly rely on old training data and classifiers,
which are not available in many industry settings. In this work, we introduce
an approach for feature compatible learning without inheriting old classifier and
training data, i.e., Non-Inherent Feature Compatible Learning. Our approach re-
quires only features extracted by old model’s backbone and new training data,
and makes no assumption about the overlap between old and new training data.
We propose a unified framework for FCL, and extend it to handle the case where
the old model is a black-box. Specifically, we learn a simple pseudo classifier
in lieu of the old model, and further enhance it with a random walk algorithm.
As a result, the embedding features produced by the new model can be matched
with those from the old model without sacrificing performance. Experiments on
ImageNet ILSVRC 2012 and Places365 data proved the efficacy of the proposed
approach.

1 INTRODUCTION

In recent years, deep learning based methods achieved huge success in various of computer vision
tasks, especially for visual searching since they could provide powerful feature representations. In a
typical visual search system, the deployed deep learning model extracts the features of both gallery
and query images as discriminate representations. During the retrieval stage, gallery images will be
ranked based on their feature distances (e.g. Euclidean distance) to query images. In conventional
approaches, the query and gallery features are generated by the same model. Once the deployed
model of retrieval system is updated, the entire set of gallery features need to be ‘backfilled’ or ‘re-
indexed’ (Shen et al., 2020). As time goes by, the gallery becomes extremely large and ‘backfilling’
could be a painful process since millions even billions of images need to be re-processed by the
new model, which is computationally expensive. There has to be a new mechanism that processes
gallery images and the query image with two different models, while still maintaining the retrieval
accuracy. In other words, the new deployed model extracted features should be ‘compatible’ to the
existing ones without sacrificing accuracy. Such feature compatible learning problem is also named
as ‘Backward-Compatible Training’ (Shen et al., 2020), or ‘Asymmetric Metric Learning’ (Budnik
& Avrithis, 2020).

Existing approaches for feature compatible learning assumed significant overlap between new and
old training sets. In Shen et al. (2020), the training set for new embedding model is a superset of
the old set. In Budnik & Avrithis (2020), the training set for large and small models is the same,
which means obtaining new model in an incremental way is not possible. Besides, in Shen et al.
(2020), the classifier for old model is also needed for computing the influence loss, which is a strong
requirement in real applications. As an example, a model deployed in a recommendation system as
a black-box API takes images as input and returns the processed features, but the parameters of the
model are not accessible. In addition, its classifier and training details are not available, neither does
the formula of the loss function. This kind of setting is quite common for various practical reasons
in search, recommendation, content understanding and review applications.
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To address the limitation, we propose an approach for non-inherent feature compatible learning,
which only exploits the old model backbone and new training data. Despite the lack of old training
data or old classifier, the new model extracts compatible features without sacrificing accuracy. The
proposed approach has three contributions including:

• Study and formulate the non-inherent setting of the FCL problem for the first time

• Establish a baseline with a data-incremental approach, where performance degradation is
prevented by regularizing the training process of the new model

• Extend the baseline with a random walk algorithm that further improves accuracy

The experiments conducted on several standard data sets validated the effectiveness of the proposed
approach.

2 RELATED WORK

Our approach is most relevant to feature compatible learning (Shen et al., 2020; Budnik & Avrithis,
2020; Wang et al., 2020), which has drawn attention from the research community due to the in-
creasing size of gallery sets, and the heavy workload of re-generating gallery features.

2.1 FEATURE COMPATIBLE LEARNING

Shen et al. (2020) first formulated the ‘backward-compatible’ problem by deriving influence loss
from an empirical criterion, and solved it by utilizing the old model to regularize the optimization
process.

In Budnik & Avrithis (2020), authors investigated the problem of asymmetric test, where the gallery
images are represented by a teacher model and query images are represented by a student model. A
pair-based metric for instance-level image retrieval was proposed to achieve the goal. In Wang et al.
(2020), authors proposed Residual Bottleneck Transformation (RBT) blocks for feature embedding
transferring. Some previous works (Li et al., 2015; Yu et al., 2018) discussed the connection be-
tween features that learned by different models. However, all methods mentioned above either can
not achieve the model compatibility in a data-incremental way or need to exploit old classifier for
training. Our proposed method could achieve compatibility without old training data or utilizing any
old classifier.

2.2 INCREMENTAL LEARNING

Incremental learning and Life-long learning (Rebuffi et al., 2017; Li & Hoiem, 2017) approaches
aimed to stabilize model predictions when updating with new training data. Different from feature
compatible problem, incremental learning focuses on maintaining performance on ‘old’ classes after
introducing ‘new’ ones. In Li & Hoiem (2017), authors utilized knowledge distillation (Hinton et al.,
2015) and teacher-student models for regularizing features on new data, where model distillation
was used as a form of regularization when introducing new classes. In Rebuffi et al. (2017), authors
proposed to use old class centers to regularize the model learning when new classes were introduced.
Most approaches of incremental learning focus on the stability of classifier output, while feature
compatible learning try to solve the feature compatibility problem among different models.

2.3 EMBEDDING LEARNING

Our approach is also relevant to the embedding learning problem that optimizes a distance metric
to improve discriminative power and robustness of embedded features. There were efforts on de-
signing powerful network architectures (He et al., 2016; Simonyan & Zisserman, 2014; Szegedy
et al., 2015), discriminative loss functions (Deng et al., 2019; Wang et al., 2018), and model opti-
mizers (Kingma & Ba, 2015), but few of them set FCL as a part of their objectives.
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3 APPROACH

This section re-visits the basic criterion for feature compatible learning, and presents the formulation
and solutions to the Non-Inherent Feature Compatible Learning problem.

3.1 FORMULATION AND CRITERION FOR FEATURE COMPATIBLE LEARNING

Following the FCL formulation in learning (Shen et al., 2020; Budnik & Avrithis, 2020), an old
embedding model φold trained on old training set Dold maps an image x to a feature vector f =
φold(x), f ∈ RKold , where Kold is the feature vector dimension of f . After a period of time, a new
embedding model φnew trained on Dnew is obtained. The new embedding model φnew maps the
image x into a feature vector f with dimension of Knew, where Kold and Knew are not necessarily
equal. In our setting, as explained in Sec.1 , the old training setDold is disjoint with the new training
set Dnew (Dold ∩Dnew = ø). In addition the old classifier, training details, and the loss function are
not available.

The gallery set is defined as G. Since the amount of images in G could be extremely large, the images
in G are usually presented as extracted feature vectors by an old embedding model, φold, to save the
test time and a query image will be presented as a feature vector with the same embedding model.
However, once the embedding model is updated, all the images in G must be presented by the new
embedding model φnew, leading to an expensive refresh of the index. To avoid such computation,
we need to make it feasible to directly compare G’s embeddings produced by φold with the query
embedding by φnew.

In Shen et al. (2020), a strict criterion for feature backward compatible is defined as,

d(φnew(xi), φold(xj)) ≥ d(φold(xi), φold(xj)),

∀(i, j) ∈ {(i, j)|yi 6= yj}.
and,

d(φnew(xi), φold(xj)) ≤ d(φold(xi), φold(xj)),

∀(i, j) ∈ {(i, j)|yi = yj}, (1)

where the d(·, ·) is the Euclidean distance metric, xi and xj are the ith query image and jth gallery
image respectively, yi and yj are their labels. Such a strict criterion needs every query-gallery pair
fulfills the distance requirement, which is not feasible. Alternatively, authors in Shen et al. (2020)
proposed a empirical criterion as the following:

M(φnew, φold) > M(φold, φold). (2)

where M is a evaluation metric for the corresponding retrieval test set, consisting of gallery set G
and query set. M(φnew, φold) means to extract query features with new model φnew and gallery
features with old model φold, which is defined as cross test. Such a criterion requires the cross
test performance between the new and the old model must be better than the test using only the old
model, which is defined as self test.

To achieve the backward compatibility defined by Eq. 2, authors in Shen et al. (2020) proposed as
below an influence loss term to add into the loss function for regularizing the new embedding model
training:

LBCT(wc, wφ;Dnew) = L(wc, wφ;Dnew) + λL(wc old, wφ;Dold), (3)

where L is the loss function (normally a softmax-like loss), wc, wc old, and wφ denote the classifier
weights of the new embedding model, the classifier weights of the old embedding model, and the
weights of the new embedding model’s backbone, respectively. The influence loss is the second
term in Eq. 3, which fixes wc old and regularizes the feature output of φnew to be compatible with
φold, generating relatively small loss on the old classifier. Meanwhile, the new training set Dnew is
a superset of Dold.

Different from the setting in Shen et al. (2020), we do not assume there is overlap between the old
and new embedding training set Dold and Dnew. Moreover, the parameters of old classifier wc old

are not available, which means we need to make the feature compatibility happen in a incremental
way, without knowing the old classifier.
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Figure 1: Illustration of using averaged features extracted by old model to serve as pseudo classifier.
During the training, this pseudo classifier will be not updated by the gradient.

3.2 ACHIEVING NON-INHERENT FEATURE COMPATIBLE LEARNING

In this section, we will introduce our proposed feature backward training scheme without using
old model’s classifier wc old or old training data Dold. Although we could not obtain the ‘old’
classifier on old training data, which is essential for influence loss in Eq. 3, we can still try to
generate a ‘pseudo’ old classifier. Inspired by Rebuffi et al. (2017), Wu et al. (2018) and Xiao et al.
(2017), we found that the classifier weights actually act as feature embedding centers so that they
can generate large score with positive images’ features, which suggests that even simply averaging
images features processed by φold in each class, we could still obtain a reasonable classifier weight
for that class, which could be denoted as,

wa−pse
c old (n) =

1

m

∑
i∈Dnew(n)

φold(xni), (4)

wherem is the image amount in n−th class, i is the i-th image in that class, φold is the old embedding
model. wa−pse

c old (n) could be served as n−th column in the pseudo classifier. In practice, we found
that using averaged feature vectors as classifier may not converge, classifier consisted of normed
feature vector could lead to a much better result,

wan−pse
c old (n) =

wa−pse
c old (n)

‖wa−pse
c old (n)‖

. (5)

Another advantage of the proposed approach is that the old training set is not compulsory to use.
The ‘pseudo’ classifier for Dnew could be generated with the old embedding model easily, no data
in Dold is required, then the loss function in Eq. 3 becomes to

LBCT(wc, wφ;Dnew) = L(wc, wφ;Dnew) + λL(wan−pse
c old , wφ;Dnew). (6)

3.3 RANDOM WALK REFINEMENT FOR PSEUDO CLASSIFIER GENERATION

3.3.1 LIMITATION OF BASELINE APPROACH

The baseline method proposed in Section 3.2 exploits the old embedding model and new training set
for ‘pseudo’ classifier generation and it can provide us a reasonable result for non-inherent feature
compatible learning without ‘old’ classifier. However, due to mis-labeling or low quality, there are
some outlier images in each class, simply averaging the feature vectors extracted by old embedding
could not eliminate their negative effects. In this section, we will present our random walk approach
for refined pseudo classifier generation.
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Figure 2: Illustration of using random walk algorithm to refine features extracted by old model
before averaged to serve as a column of pseudo classifier. Negative effects of outliers in each class
will be reduced. During the training, this pseudo classifier will be not updated by the gradient.

3.3.2 RANDOM WALK FOR CLASSIFIER GENERATION REFINEMENT

Random walk algorithm (Aldous, 1989) has been widely used for ranking system (Page et al., 1999)
or retrieval results refinement (Loy et al., 2013; Bertasius et al., 2017). Random walk is operated
on a fully connected undirected graph G = (V,E), where V is the vertice and E is the edge. The
similarities between different vertices could be defined as a symmetric matrix S. Each element
on the matrix, S(i, j), represents the similarity between vertices i and j (e.g. normalized cosine
similarity).

In our context, in n-th class, i-th image’s feature fni ∈ RK could be represented as a vertice V .
All of the images’ features in one class can be concatenated as a matrix Fn ∈ RK×m, where m
is the image amount of n-th class. The edges, E, among vertices are the similarity scores between
different vertices. With notations mentioned above, random walk operation could be denoted as,

F tn = F t−1n S, (7)

where t is the iteration times, S ∈ Rm×m is the normalized similarity matrix between different
images, which is denoted as,

S′(i, j) =

{
exp(S(i,j)/T )∑
j 6=i exp(S(i,j)/T ) , i 6= j

0, i = j
, (8)

where lower temperature T leads to a more concentrate probability distribution.

In practice, the refinement by random walk also needs to be weighted with the initial feature matrix
F 0
n , which is computed as,

F tn = λF t−1n S′ + (1− λ)F 0
n , (9)

where λ ∈ [0, 1] is the weight parameter.

If t tends to infinity, the Eq. 9 has a converaged close form, which is,

F∞n = (1− λ)F 0
n(I − λS′)−1, (10)

where I is the identity matrix and ( )−1 denotes matrix inverse operation.

Once the F∞n is obtained, the wrw−pse
c old (n) could be computed with column-wised average pooling
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wrw−pse
c old (n) =

1

m

m∑
i=1

F∞n (:, i). (11)

The refined classifier is also column-wised normalized like Eq. (5), which is denoted as wrwn−pse
c old

and the influence loss changes to,

LBCT(wc, wφ;Dnew) = L(wc, wφ;Dnew) + λL(wrwn−pse
c old , wφ;Dnew). (12)

Compared with baseline method introduced in Section 3.1, our proposed random walk refinement
approach incorperates more information among images’ feature within one class to conduct the
pseudo classifier generation, which could largely eliminate the outlier effects. In the experiments,
we further show the effectiveness of the proposed method.

4 EXPERIMENTS

We validate the effectiveness of the proposed Non-Inherent Feature Compatible Learning approach
on two large public datasets. In this section, We firstly demonstrate the datasets we use and then
illustrate the baseline method performance and the effectiveness of the proposed random walk based
method. Finally, we analysis the influence of hyperparameter choosing.

4.1 DATASETS AND METRIC

We utilize ImageNet ILSVRC (Deng et al., 2009) and Place365 (Zhou et al., 2017) datasets for
training and evaluation. ImageNet dataset contains more than 1.2 million of images with 1,000
classes, Place365 contains about 1.8 million images with 365 classes. We conduct the retrieval
process on these two datasets’ validation sets, which means each image will be considered as a query
image and all other images will be considered as gallery images. The Euclidean distance is used for
ranking. The evaluation metric is Top-1 and Top-5 accuracies. We use the final global averaged
pooled feature (before feed into classifier) for the feature distance computing. When conducting the
cross test, both old and new model will be utilized for extracting features and distance metric will be
computed with old and new feature. If dimensions of old and new features are different, zero padding
will be used for dimension alignment. Following the backward-compatibility measuring setting in
Shen et al. (2020), we consider backward compatibility achieved when the cross test accuracy using
new model for queries and old model for galleries surpasses the self test result of only using old
model.

4.2 TRAINING DETAILS

We use 4 NVIDIA P40 GPUs for training. For each class on the training set, 30% of training data
will be used for old model training and 70% data will be used for new model training. We adopt two
widely used backbones, ResNet-18 and ResNet-50 (He et al., 2016), to serve as old model and new
model, the output feature dimensions of them are 512 and 2048 respectively. The image input size
is set to 224 × 224. Only random crop and random flip are used for data augmentation. We adopt
standard stochastic gradient descent (SGD) to optimize the model parameters. The learning rate is
set to 0.1 and decreases 10 times every 30 epochs and the training stops after 90 epochs. The weight
decay is set to 10−4 and momentum is 0.9. The weights of two terms in Eq. 3 are equal. The batch
size is set to 1024. Both old and new model are random initialized (from scratch). For random walk
based refinement, we set λ to 0.9.

4.3 BASELINE AND PROPOSED APPROACHES ANALYSIS

In this section, we conduct several naive baseline approaches for feature compatible learning without
old classifier and old training data. The cross test between old model and these approaches trained
new models verified the effectiveness of the method. Besides, surprisingly, the self test of these
proposed method even outperform the new model trained without any regularization.
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Old Model New Model
Cross Test Self Test

ImageNet Places365 ImageNet Places365
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

φold 30% - - - - 39.6 62.7 28.2 57.2

φold 30% φnew 70% 0.1 0.5 0.0 0.2 - - - -
φold 30% φL2

new 70% 39.4 62.5 28.2 57.3 - - - -
φold 30% φt−psenew 70% 30.6 57.6 30.7 60.3 - - - -
φold 30% φan−psenew 70%(Ours) 55.0 77.6 36.9 63.8 - - - -
φold 30% φrwn−pse

new 70%(Ours) 56.2 77.8 37.4 64.0 - - - -

φnew 70% - - - - 58.4 78.7 33.8 62.4

φL2

new 70% - - - - 41.1 64.1 29.0 58.3
φt−psenew 70% - - - - 61.3 80.0 35.5 64.4
φan−psenew 70% (Ours) - - - - 61.9 80.3 38.9 65.7
φrwn−pse
new 70% (Ours) - - - - 62.2 80.4 38.2 65.9

Table 1: Baseline and proposed approaches comparison on ImageNet Deng et al. (2009) and
Places365 Zhou et al. (2017) datasets. The self test results of φold 30% is the lower bound of the
comparison.

No regularization between φnew and φold We firstly test a simple case which was verified in Shen
et al. (2020), directly comparing the isolatedly trained new model (denoted as φnew 70%) and old
model (denoted as φold 30%). As illustrated in Section 4.2, we use 30% of training data in each class
to train φold 30% and 70% of data is used for training φnew 70%. For aligning their output feature
dimensionality, we directly use zero-padding for φold 30%’s feature output to pad it from 512 to
2048. The results on ImageNet and Places365 are shown in Table 1, such directly comparison is an
epic failure, which has already been verified in Shen et al. (2020).

L2 regression between φnew and φold output feature A simple baseline that could be proposed is
using L2 loss to minimize the output features’ Euclidean distance between ‘old’ and ‘new’ model,
which is denoted as φL2

new 70% in Table 1. Such simple baseline could not meet the requirement of
the feature compatible learning. The possible reason for L2 loss failure is that L2 loss only focuses
on decreasing distance between feature pairs from the same image, however, it ignores the distance
restriction between negative pairs.

Trained pseudo classifier with new data and φold output feature Another baseline we compared
is using old model backbone to process new training data for obtaining the corresponding features,
then these features will be fed into a linear layer. The output of this linear layer will be sent into a
softmax layer and optimized with cross-entropy loss and new training data label. The loss function
could be denoted as,

L = − 1
N

∑
i∈Dnew

log( exp(wT fi[Li])∑
j exp(wT fi[j])

), (13)

where fi is the i-th image’s feature processed by φold 30%, Li is the corresponding label, N is the
new training data amount, w is the linear classifier weight.

With minimizing the loss denoted in Eq. 13, we can obtain a linear classifier w which produces
relatively small loss with fixed old backbone φold 30% on new training data, which could be used in
influence loss (Eq. 3) to serve as wold. The ‘new’ model trained with such regularization is denoted
as φt−psenew 70%, the cross test result in Table 1 shows that although it is not a total failure, but they
can not beat the self test result of φold 30%, which is the basic requirement for feature compatible
learning.
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Old Model New Model T λ
ImageNet

top-1 top-5

φold 30% φrw−psenew 70%

1.0 0.1 55.7 77.8
1.0 0.5 55.9 77.9
1.0 0.9 55.7 78.0
0.1 0.9 56.1 77.9

0.05 0.9 56.2 78.1

Table 2: The hyperparameter analysis about softmax normalization temperature and random walk
weight parameter.

Feature averaging pseudo classifier As illustrated in Section 3.2, we could make a pseudo classi-
fier with averaged feature representation of all images in each class on new training dataset. Then
we utilize such pseudo classifier to regularize the new model training as shown in Eq. 6. The model
is denoted as φan−psenew 70%. As illustrated in Table 1, such simple approach could actually satisfy the
feature compatible learning requirement, which surpasses the self test performance of using φold 30%

by 15.4% in terms of top-1 accuracy on ImageNet dataset and 8.7 % on Places365 dataset.

Feature averaging pseudo classifier with random walk refinement Following the algorithm in-
troduced in Section 3.3, we conduct random walk refinement for generating classifier, we set tem-
perature parameter T in Eq. 8 to 0.05 and the λ in Eq. 7 to 0.9. Then the refined classifier wrwn−pse

c old
will be served as old classifier in Eq. 12. The trained new model with such regularization is denoted
as φrwn−pse

new 70%. As illustrated in Table 1, the proposed random walk refinement approach not only
fulfill the requirement of feature compatible training, but also outperforms all compared methods.

Better self test performance In Table 1, we show that with our proposed method, the self test
results of φan−psenew 70% and φrwn−pse

new 70% even surpass the performance of φnew 70%, which means with the
proposed approach, the feature could be improved with the information that provided by old model.

4.4 HYPERPARAMETERS ANALYSIS FOR RANDOM WALK

Temperature T setting for softmax normalization We firstly investigate the influence of softmax
normalization temperature in Eq. 8. High temperature in softmax function leads to a softer distribu-
tion, while based on our analysis in Section 3.3, there are some noisy images in each class. We need
to make the averaged feature more concentrate on the non-noisy images, so the temperature of the
softmax should be low. As illustrated in Table 2, such assumption is verified. Lower temperature
provides better results.

Effect of choosing different λ Another investigation is about the choice of λ in Eq. 10, larger λ
means the larger weight for random walk refined feature and less for original feature. As shown in
Table 2, larger λ will provide slightly better performance.

5 CONCLUSION

In this paper, we investigate several approaches to achieve non-inherent feature compatibility, which
aims at achieving feature compatibility without utilizing old training data and old classifier. We con-
duct comparison experiments on two large public datasets. Compared with other simple baselines,
our approach achieved better performance with limited offline computing cost increasing. Further-
more, the proposed method could even improve the feature learning and achieves better self test
result compared with model trained without any feature compatible regularization. In the future,
we would like to investigate more about the regularization scheme for filling up the accuracy gap
between cross test and self test.
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