
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Provably Learning from Language Feedback
Anonymous authors

Paper under double-blind review

Keywords: large language models, sequential decision-making, no-regret learning, bandit.

Summary
Interactively learning from observation and language feedback is an increasingly studied

area driven by the emergence of large language model (LLM) agents. While impressive empir-
ical demonstrations have been shown, so far a principled framing of these decision problems
remains lacking. In this paper, we formalize the Learning from Language Feedback (LLF)
problem, assert sufficient assumptions to enable learning despite latent rewards, and intro-
duce “transfer eluder dimension” as a complexity measure to characterize the hardness of LLF
problems. We show that the transfer eluder dimension captures the intuition that information in
feedback changes the learning complexity of LLF. We demonstrate cases where learning from
rich language feedback can be exponentially faster than learning from reward. We develop a
no-regret algorithm, called LLF-UCB, that provably solves LLF problems through sequential
interactions, with performance guarantees that scale with the transfer eluder dimension of the
problem. Our contributions mark a first step towards designing principled agent learning from
generic language feedback.

Contribution(s)
1. We formalize the interface in which agents sequentially interact while reasoning with feed-

back produced by an underlying hypothesis (summarized by Fig. 1) and define a verifier
which evaluates the semantic consistency between candidate hypotheses and observed feed-
back. Through the notion of hypothesis and verifier, we give a precise definition of infor-
mative feedback and establish conditions such that LLF is feasible and can be efficiently
solved.
Context: To work with the generality of language, we rely on the concept of hypothesis
testing and elimination in machine learning (De Jong et al., 1993; Lehmann & Romano,
2022) except with hypotheses that can be expressed in words.

2. We capture the learning difficulty with a new notion of complexity, which we call transfer
eluder dimension. This complexity measure captures how efficiently language feedback can
reduce uncertainty about rewards.
Context: This complexity measure is based on eluder dimension (Russo & Van Roy, 2013)
and adapted to the LLF setting.

3. We develop LLF-UCB, a provably efficient algorithm for LLF. We prove that LLF-UCB
achieves a regret bound that scales gracefully with the transfer eluder dimension and time
horizon T . Crucially, our analysis shows that in certain environments, LLF-UCB can be
exponentially more efficient than learning from reward alone.
Context: Our result marks the first formal connection between no-regret learning and
language feedback.

4. We empirically validate the efficacy of LLF-UCB by implementing an approximate version
that utilizes LLMs as verifiers. Our experiments on Wordle, Battleship and Minesweeper
confirm that LLF-UCB and its variants consistently outperform in-context learning LLM
baselines.
Context: We compare to the ReAct (Yao et al., 2023) baseline agent.

Provably Learning from Language Feedback

Provably Learning from Language Feedback

Anonymous authors
Paper under double-blind review

Abstract
Interactively learning from observation and language feedback is an increasingly stud-1
ied area driven by the emergence of large language model (LLM) agents. While im-2
pressive empirical demonstrations have been shown, so far a principled framing of these3
decision problems remains lacking. In this paper, we formalize the Learning from Lan-4
guage Feedback (LLF) problem, assert sufficient assumptions to enable learning despite5
latent rewards, and introduce “transfer eluder dimension” as a complexity measure to6
characterize the hardness of LLF problems. We show that the transfer eluder dimension7
captures the intuition that information in feedback changes the learning complexity of8
LLF. We demonstrate cases where learning from rich language feedback can be expo-9
nentially faster than learning from reward. We develop a no-regret algorithm, called10
LLF-UCB, that provably solves LLF problems through sequential interactions, with11
performance guarantees that scale with the transfer eluder dimension of the problem.12
Our contributions mark a first step towards designing principled agent learning from13
generic language feedback.14

1 Introduction15

Large language models (LLMs) have reshaped the landscape of how machines learn and interact16
with the world, demonstrating remarkable capabilities across a wide range of tasks (Bommasani17
et al., 2021; BIG-bench authors, 2023; Anil et al., 2024; Hurst et al., 2024; Jaech et al., 2024; Guo18
et al., 2025; Yamada et al., 2025). Trained on large corpra of web data, these models can interact19
with the world through natural language, opening up new settings for sequential decision-making20
problems. Unlike traditional sequential decision-making approaches where agents learn from scalar21
reward signals (Sutton & Barto, 2018), LLM can act as agents that interpret and reason with natural22
language feedback such as critique (Du et al., 2023; Akyürek et al., 2023a), guidance (Fu et al.,23
2024; Nie et al., 2023; Wei et al., 2024; Cheng et al., 2024), or detailed explanations (Chen et al.,24
2023; Cheng et al., 2023).25

Consider an LLM agent that produces a summary of a story, and receives feedback: “The summary is26
mostly accurate, but it overlooks the main character’s motivation.” Such feedback conveys notably27
richer information than a numerical score, e.g., 0.7 out of 1, as it identifies a specific flaw and28
suggests a direction for improvement. With LLMs’ abilities to understand and respond in natural29
language Touvron et al. (2023), such feedback can be leveraged to drastically increase learning30
efficiency. This represents a fundamental shift in how AI systems can learn through continuous, rich31
interactions beyond rewards alone (Silver & Sutton, 2025). Despite promising empirical results in32
utilizing language feedback for sequential decision-making (Liu et al., 2023; Chen et al., 2024), a33
rigorous theoretical framework remains lacking.34

We introduce a formal framework of Learning from Language Feedback (LLF), the first mathemati-35
cal model of learning from language feedback in decision making. The LLF paradigm was proposed36
in (Cheng et al., 2023) as an interface to benchmark LLM agents’ learning ability, which general-37
izes the classical learning-from-reward reinforcement learning setting to general in-context problem38
solving by replacing numerical rewards with text feedback. However, it is unclear when LLF is39

1

Under review for RLC 2025, to be published in RLJ 2025

feasible or whether it is harder to learn than the more traditional reward-aware RL setting. Intu-40
itively, one might think language feedback can provide more information to help learning. Indeed,41
people have empirically found constructive feedback to be more effective for LLM agents to learn42
from than conveying reward alone in words (Mu et al., 2022; Liu et al., 2024; Zhong et al., 2024).43
The complexity and generality of language make it difficult to formally quantify the information in44
language feedback. For general language feedback, can we precisely define helpful versus noisy45
feedback? Can we capture the complexity of LLF based on the information in feedback and does46
constructive feedback indeed lead to a lower problem complexity? Can we design a provably correct47
algorithm that learn solely from language? The goal of this paper is to provide constructive answers48
to all these questions.49

To work with the generality of language, we rely on the concept of hypothesis testing and elimination50
in machine learning (De Jong et al., 1993; Lehmann & Romano, 2022) except with hypotheses51
that can be expressed in words. We formalize the interface in which agents sequentially interact52
while reasoning with feedback produced by an underlying hypothesis (summarized by Fig. 1). We53
also define a verifier which evaluates the semantic consistency between candidate hypotheses and54
observed feedback. Through the notion of hypothesis and verifier, we give a precise definition of55
informative feedback and establish conditions such that LLF is feasible and can be efficiently solved.56

Specifically, we capture the learning difficulty with a new notion of complexity based on eluder57
dimension (Russo & Van Roy, 2013), which we call transfer eluder dimension. This complexity58
measure captures how efficiently language feedback can reduce uncertainty about rewards. Build-59
ing on this concept, we develop LLF-UCB, a provably efficient algorithm for LLF. We prove that60
LLF-UCB achieves a regret bound that scales gracefully with the transfer eluder dimension and time61
horizon T , establishing the first formal connection between no-regret learning and language feed-62
back. Crucially, our analysis shows that in certain environments, LLF-UCB can be exponentially63
more efficient than learning from reward alone. We empirically validate the efficacy of LLF-UCB64
by implementing an approximate version that utilizes LLMs as verifiers. Our experiments on Wor-65
dle, Battleship and Minesweeper confirm that LLF-UCB and its variants consistently outperform66
in-context learning LLM baselines. Altogether, our work contributes a first principled framework67
for understanding and designing learning agents guided by language.68

2 Formulating Learning from Language Feedback69

In this section, we give a formal mathematical model to describe the LLF process (illustrated by70
Fig. 1) and introduce natural assumptions to frame the learning problem so that LLF can be rigor-71
ously studied. In what follows, we first define the interaction setup. Then we introduce the notion of72
text hypotheses for world modeling. Finally, we define the verifier to evaluate hypothesis-feedback73
consistency, which later gives a measure on the informativeness of feedback. These constructions74
provide a basis for studying LLF’s learnability and analyzing regret in the next section.75

2.1 Formal Setup of LLF76

Let T be a finite set of tokens. We denote the set of all finite token sequences by T + = ∪k≥1T k ∪77
{∅}, where T k denotes the set of length-K token sequences. There is a set O ⊂ T + of token78
sequences that we refer to as the feedback space. For an arbitrary set X , we use ∆(X) to denote the79
set of all probability distributions with support on X .80

We define the problem of Learning from Language Feedback (LLF)1 with a finite action set A. At81
time step t, the agent interacts with the environment by executing an action At ∈ A and observing82
feedback Ot ∈ O sampled from a feedback distribution f∗ : A → ∆(O); a reward Rt = r∗(At) is83
incurred, based on a reward function r∗ : A → [0, 1], though Rt is not revealed to the agent. Here84
we suppose the reward is generated by a deterministic function r∗; our results can be extended to85

1In the original formulation in (Cheng et al., 2023), a problem context is given before learning to provide background to
interpret feedback. We omit writing the problem context for simplicity but equivalently assume that the agent can interpret
the feedback through the verifier that we will introduce later.

2

Provably Learning from Language Feedback

Figure 1: The LLF setup. The environment has a hypothesis η∗ representable via text tokens un-
known to the agent. Reward as a function of η∗ is latent and used only to benchmark the agent via
regret to an optimal policy. Feedback as a function of η∗ is observed by the agent. Three ingredients
are sufficient for no-regret learning: feedback is unbiased (Assumption 3), agent can interpret feed-
back (Assumption 2), and agent considers hypothesesH including η∗ (precursor to Assumption 1).

stochastic rewards. A policy is a distribution on A. We denote Π = ∆(A) and the agent’s policy86
at time step t for sampling At as πt. We measure the performance of the agent in the LLF setup87
by regret, which is defined as Regret(T) =

∑T−1
t=0 R∗

max − Eπt
[Rt] , where T is the total number88

time steps, R∗
max = maxa∈A r

∗(a), and the expectation is taken over feedback randomness and the89
algorithm’s inner randomization.90

This setup is similar to a bandit problem in RL, and the goal of the agent is to find actions that91
maximize the reward. However, unlike RL, here the agent does not observe the rewards {Rt}, and92
must learn to maximize the reward solely using natural language feedback {Ot}.93

Remark 1. The setup above can be naturally extended to a contextual setting (an analogy of con-94
textual bandit problems; please see Appendix D.2 for details), where the agent receives a context in95
each time step before taking an action. While the feedback in the context-less setting here may be96
viewed similar to a context, the main difference is that the optimal actions in the context-less setting97
do not change between iterations; on the other hand, in the contextual setting, the optimal actions in98
each time step depend on the context presented to the agent at that point.99

2.2 Environment Model and Text Hypothesis100

The environment in the LLF setup is defined by a feedback function f∗ : A → ∆(O) and a reward101
function r∗ : A → [0, 1]. We suppose they are “parameterized” by some text description, which102
we call a hypothesis, belonging to a (possibly exponentially large) hypothesis space H ⊂ T +. One103
can think of a hypothesis as describing the learning problem and mechanism of generating feedback104
in texts such as natural language or codes. For example, in a recommendation environment, a105
hypothesis can be a text description of a user’s interests, or in a videogame environment, a hypothesis106
can describe the game’s code logic. A hypothesis can also represent a finite-sized numerical array107
(e.g., neural network weights) along with operations to decode it into reward and feedback. In short,108
a hypothesis is a sufficient text description of the learning problem such that the reward and the109
feedback functions can be fully determined.110

With the hypothesis spaceH, we model the feedback mechanism through a feedback mapping η 7→111
fη that maps each hypothesis η ∈ H to a feedback function fη : A → ∆(O). Similarly, we model112
a reward mapping η 7→ rη that maps a hypothesis η ∈ H to a reward function rη : A → [0, 1].113
We denote by η∗ ∈ H the true hypothesis of the environment, and use shorthand f∗ = fη∗ and114
r∗ = rη∗ . This construction is reminiscent of classical bandit settings where the reward function115
is parameterized, such as the linear case r∗(a) = ϕ(a)⊤θ∗ for some known feature map ϕ and116
unknown ground-truth parameter θ∗. We generalize this by using the reward mapping η 7→ rη as an117
analogue of the feature map and the hypothesis η∗ as the parameter. Following the convention in the118
literature, we assume that the parameterization, i.e., the reward mapping η 7→ rη , is known to the119
agent, but the parameter η∗ is unknown. See Fig. 1 for an overview.120

Assumption 1. We assume that the agent has access to the reward mapping rη : η 7→ rη .121

3

Under review for RLC 2025, to be published in RLJ 2025

In practice, the reward mapping can be implemented using an LLM to process a given hypothesis122
text, e.g., to tell whether an action is correct/incorrect (Zheng et al., 2023; Weng et al., 2023; Gu123
et al., 2024). We do not assume knowing the feedback mapping η 7→ fη , however, as precisely124
generating language feedback in practice is difficult.125

2.3 Measuring Information in Feedback126

Without any connection between feedback and reward, learning to minimize regret from feedback127
is impossible. Intuitively, for LLF to be feasible, language feedback must contain information that128
can infer the solution, like reward, action rankings, or whether an action is optimal. To study LLF129
learnability, we need a way to quantify this information. Since it is impossible to categorize and130
enumerate all possible language feedback in general (i.e., we cannot always embed language feed-131
back into a finite-dimensional vector), we adopt a weak, implicit definition of information based on132
a sensing function.133

We introduce the notion of a verifier to formalize information the agent can extract from feedback.134
The verifier represents a mechanism that assesses whether a hypothesis is consistent with observed135
feedback given to an action; for example, a verifier implemented by an LLM may rule out hypotheses136
that are semantically incompatible with feedback observations.137

Assumption 2 (Verifier). We assume that there is a verifier, which defines a loss ℓ : A×O×H →138
[0, 1], and the agent has access to the verifer through ℓ. For any action a ∈ A, feedback o ∈ O and139
hypothesis η ∈ H, the value ℓ(a, o, η) quantifies how well η aligns with the feedback on action a. If140
η is consistent with o on action a, then ℓ(a, o, η) = 0; otherwise, it returns a non-zero penalty.141

A concrete example may help ground this abstract assumption. Suppose the agent chooses an ac-142
tion a corresponding to a text summary of a story, and receives feedback o in the form of text143
critique, such as: “The summary is mostly accurate, but it misses an important detail about the main144
character’s motivation.” Suppose each hypothesis η ∈ H corresponds to a set of rubrics to judge145
summaries. A verifier must output a score ℓ(a, o, η). If a rubric η implies that summaries should146
capture the main character’s motivation, then ℓ(a, o, η) = 0, indicating consistency. Otherwise, the147
loss value is positive. Such a verifier can be implemented by prompting an LLM to assess whether148
the feedback o is consistent with applying rubric η to the summary a.149

The set of feedback-consistent hypotheses naturally captures information in the feedback. Ideally,150
feedback generated from fη(·) should be self-consistent, i.e., EO∼fη(a)[ℓ(a,O, η)] = 0 for all a ∈ A151
and η ∈ H. However, in practice, both the feedback and the verifier may be noisy or imperfect and152
there may be some a ∈ A such that EO∼f∗(a)[ℓ(a,O, η

∗)] > 0. To accommodate this potential153
noise while preserving learnability, we adopt a weaker assumption than self-consistency: although154
the feedback may be noisy, it is unbiased such that each hypothesis minimizes the expected verifier155
loss under its induced distribution.156

Assumption 3 (Unbiased Feedback). For all a ∈ A and η ∈ H, η ∈ minη′∈H EO∼fη(a)[ℓ(a,O, η
′)].157

The notion of verifier can be used to formalize semantic equivalence among hypotheses. In natu-158
ral language, many token sequences share the same underlying semantic meaning. For LLF, such159
distinctions are not meaningful and should not affect the learning outcome. This invariance can be160
captured by the verifier introduced above. We deem hypotheses as equivalent whenever they induce161
identical loss functions across all inputs. We use this to define the geometry of the hypothesis space.162

163

Definition 1 (Hypothesis Equivalence). We define the distance between two hypotheses η, η′ ∈ H as164
dH(η, η′) := supa∈A,o∈O |ℓ(a, o, η)− ℓ(a, o, η′)|. If dH(η, η′) = 0, we say η and η′ are equivalent.165

This definition provides a criteria to determine the equivalence of hypotheses, as two hypotheses166
with zero distance are indistinguishable from the agent’s perspective. In applications involving167
LLM-generated feedback, the loss function ℓ can be designed to reflect semantic similarity, e.g., by168
assigning similar values to outputs that are paraphrases of one another, based on token-level match-169

4

Provably Learning from Language Feedback

ing, embedding-based metrics, or LLM-prompted judgments (Wang & Yu, 2023; Chuang et al.,170
2022; Asai & Hajishirzi, 2020; Bubeck et al., 2023).171

Remark 2. Readers familiar with reinforcement learning from human feedback (RLHF) or AI feed-172
back (RLAIF) may wonder if such a loss structure is necessary. Indeed, one may alternatively define173
a scoring function g : A × O → [0, 1] that directly evaluates an action-feedback pair and impose174
some relationships between the scoring function and the underlying reward. This construction is a175
special case to our framework, which we discuss in detail in Section 3.3.176

3 Learnability and Provable Algorithm177

Compared to numerical reward signals, feedback can potentially carry more information. In LLF, to178
interpret this feedback and guide learning, the agent is equipped with: 1) The verifier loss function179
ℓ and 2) The reward mapping η 7→ rη . This structure reflects a central feature of LLF: the agent180
must reason over the hypothesis space H via the verifier to minimize regret defined by the hidden181
rewards.182

But can an agent learn to maximize reward despite not observing it? For instance, if feedback does183
not convey useful information for problem solving, it is unrealistic to expect any learning to happen.184
On the other hand, if feedback directly reveals the optimal action, then the problem can be solved in185
two steps. Naturally, one would expect the learnability and complexity of LLF problems to depend186
on the information that feedback conveys. The goal of this section is to give natural structures and187
assumptions to the LLF setup that characterizes the difficulty of the learning problem.188

3.1 Transfer Eluder Dimension189

To quantify information in the feedback, we utilize the verifier, introduced in Section 2.3, to propose190
a new complexity measure called transfer eluder dimension based on the eluder dimension (Russo &191
Van Roy, 2013). At a high level, transfer eluder dimension characterizes how effectively information192
in the feedback reduces uncertainty about the unknown reward function. When it is small, a single193
piece of feedback carries a lot of information about the reward, which enables LLF to be much more194
efficient than learning from reward.195

Definition 2. Define ℓminη (a) := minη′ EO∼fη(a)[ℓ(a,O, η
′)]. Given a verifier loss ℓ, an action196

a ∈ A is ϵ-transfer dependent on actions {a1, . . . , an} ⊂ A with respect to H if any pair of197

hypotheses η, η′ ∈ H satisfying
∑n
i=1

(
Eo∼fη′ (ai)[ℓ(ai, o, η)]− ℓmin

η′ (ai)
)
≤ ϵ2, also satisfies198

|rη(a) − rη′(a)| ≤ ϵ. Further, a is ϵ-transfer independent of {a1, . . . , an} with respect to H if199
a is not ϵ-transfer dependent on {a1, . . . , an}.200

Intuitively, this definition says that an action a is transfer independent of {a1, . . . , an} if two hy-201
potheses that give similar feedback according to the verifier at {a1, . . . , an} can differ significantly202
in their reward predictions at a. This differs from the original definition of eluder dimension (Defi-203
nition 4), which measures discrepancies in both the history and new observation using reward. Our204
goal is accurate reward prediction, not feedback recovery. This intuition motivates the definition of205
the transfer eluder dimension.206

Definition 3 (Transfer eluder dimension). The ϵ-transfer eluder dimension dimTE(H, ℓ, ϵ) of H207
with respect to the verifier loss ℓ is the length d of the longest sequence of elements in A such that,208
for some ϵ′ ≥ ϵ, every action element is ϵ′-transfer independent of its predecessors.209

Unlike the eluder dimension, transfer eluder dimension measures dependence based on two quanti-210
ties: the verifier loss and the reward function. This extension allows us to capture information in the211
feedback relevant to reward learning. Later in Section 3.4, we will present a provable algorithm that212
attains a sublinear regret rate in LLF in terms of the transfer eluder dimension.213

5

Under review for RLC 2025, to be published in RLJ 2025

3.2 Example Forms of Feedback214

We discuss several example forms of feedback and compute the corresponding transfer eluder di-215
mensions. The nature of feedback critically affects learning efficiency: uninformative feedback (e.g.,216
random text) leads to infinite transfer eluder dimension, while some feedback can provide more in-217
formation than reward and accelerate learning. For example, in a constraint satisfaction problem,218
feedback that reveals satisfied constraints can shrink the set of potentially true hypotheses. In the219
toy example below, reward-only learning requires exponential time (2L), whereas the transfer eluder220
dimension is 1, so LLF gives an exponential speed up.221

Example 1 (Bitwise feedback on 0-1 string). Consider an action set A = {0, 1}L. The space of222
hypotheses H contains all possible length-L 0-1 strings. Each hypothesis η contains a particular223
fixed target string s(η) and the corresponding text instruction to provide reward and feedback about224
the target. The reward function rη corresponding to a hypothesis η is such that r(a) = 1 if a = s(η)225
and r(a) = 0 otherwise. In other words, rewards are sparse and every suboptimal arm incurs a regret226
of 1. Feedback to an action a = (a1, . . . , aL) is bitwise, which tells in words the correctness of each227
bit in the 0-1 string (i.e. whether ai = si for s(η) = (s1, . . . , sL). Equivalently, we can abstract228
the feedback as fη(a) = (1{ai = si})Li=1 and define the loss function ℓ(a, o, η) = 1

L

∑L
i=1 1{oi ̸=229

1{ai = si}} to measure the discrepancy between the feedback and the correctness indicated by230
hypothesis η. For any ϵ < 1

L , the transfer eluder dimension dimTE(H, ℓ, ϵ) = 1, as for any action231
a′, the expected loss EO∼fη′ (a′)[ℓ(a

′, O, η)] < 1
L iff η = η′.232

We can also use feedback to reveal information e.g. about the optimality of selected actions, im-233
proving directions, or explanation of mistakes. Below we use an example to illustrate how different234
forms of feedback can drastically change the problem complexity.235

Example 2 (Reasoning steps). Consider a math reasoning problem where one tries to construct236
a hidden sequence of L-step reasoning a∗ = (s∗1, . . . , s

∗
L), where each si ∈ S ⊂ T + is a to-237

ken sequence that represents a correct reasoning at step i, and S is a finite set of token sequences238
that represent possible reasoning steps. The action set A = ∪Lk=1(T +)k consists of all possible239
reasoning of L steps. Each hypothesis represents a full solution to the problem and rubrics to cri-240
tique partial answers with. Reward is 1 if all steps are correct and 0 otherwise. Below we show241
the transfer eluder dimension with ϵ < 1

2L for different feedback (see Appendix B.4 for the exact242
forms of verifiers and proofs). We consider four feedback types, which corresponds to the reward,243
hindsight-negative, hindsight-positive, and future-positive feedback, respectively, in the LLF’s feed-244
back taxonomy proposed in (Cheng et al., 2023). Directly learning from rewards incurs exponential245
complexity, as the agent must enumerate all possible sequences. Feedback that identifies the first246
mistake enables stage-wise decomposition and yields exponential improvement in L, though each247
stage still requires brute-force search. If the feedback is more constructive, showing not only where248
the fist mistake is but also how to correct for it, the problem complexity does not depend on |S|.249
Finally, if the feedback tells the answer right away, the complexity becomes constant, as the agent250
can learn the solution immediately after one try.251

Feedback dimTE(H, ℓ, ϵ)
1. (reward) binary indicator of whether all steps are correct O(|S|L)

2. (explanation) index of the first incorrect step O(|S|L)
3. (suggestion) give correction for the first mistake O(L)

4. (demonstration) all the correct steps O(1)

252

3.3 Comparison to Learning from Reward253

We have shown examples where the transfer eluder dimension is bounded and decreases as the254
feedback provides more information than reward. Here we prove the generality of this observation.255
Below we show that if the feedback contains reward information, then the transfer eluder dimension256
of LLF is no larger than the traditional eluder dimension of RL in Definition 4.257

6

Provably Learning from Language Feedback

Algorithm 1 LLF via Upper Confidence Bound (LLF-UCB)

1: Input A, O, T , reward mapping η 7→ rη , verifier loss ℓ : A×O ×H → [0, 1]
2: Initialize t = 0, A0 ∼ Unif(A)
3: for t = 0, 1, . . . , T do
4: observe Ot

5: defineHt := {η ∈ H : 1
t

∑
i ℓ(Ai, Oi, η)−minη′∈H

1
t

∑
i ℓ(Ai, Oi, η

′) ≤ ϵt}
6: (πp, ηp)← argminπ∈Π maxη∈Ht [rη(πη)− rη(π)]
7: if rηp(πηp)− rηp(πp) = 0 then
8: At ∼ πp(·) // Stopping criterion
9: else

10: (πo, ηo)← argmaxπ∈Π maxη∈Ht rη(π) // UCB policy
11: At ∼ πo(·)
12: end if
13: end for

Definition 4 (Eluder Dimension). An action a ∈ A is ϵ-dependent on actions {a1, . . . , an} ⊂ A258
with respect to a reward class R if any r, r′ ∈ R satisfying

∑n
i=1 (r(ai)− r′(ai))

2 ≤ ϵ2, also259
satisfies |r(a) − r′(a)| ≤ ϵ. Further, a is ϵ-independent of {a1, . . . , an} if it is not ϵ-dependent on260
{a1, . . . , an}. The ϵ-eluder dimension dimE(R, ϵ) of R is the length d of the longest sequence of261
elements inA such that, for some ϵ′ ≥ ϵ, every action element is ϵ′-independent of its predecessors.262

First, by using the verifier, we define the statement “feedback to contain reward information”.263

Definition 5 (Feedback containing reward information). The feedback function fη is reward-264
informative of rη with respect to the verifier ℓ if there is CF > 0 such that ∀η′ ∈ H, a ∈ A,265
|rη(a) − rη′(a)|2 ≤ CFEo∼fη(a)[ℓ(a, o, η′) − ℓminη (a)]. We say an LLF problem is reward-266
informative if (f∗, r∗, ℓ) satisfies the above condition.267

This assumption states that the verifier can distinguish hypotheses based on feedback to the same268
extent as their reward differences. In other words, if two hypotheses differ in their corresponding269
rewards, then from the verifier can tell they are different. Therefore, standard RL problems are a270
special case of reward-informative LLF problems.271

An reward-informative example is when the unobserved reward is a function of the feedback. Con-272
cretely, suppose rη(a) = Eo∼fη(a)[g(a, o)] for some known g : A × O → [0, 1]. Note that the273
reward mapping η 7→ rη is known, but the reward function itself is still hidden from the agent (since274
η∗ is unknown). Consider ℓ(a, o, η) := (g(a, o)− rη(a))2 = (g(a, o)− Eo′∼fη(a)[g(a, o′)])2. Then275
one can verify that η ∈ argminη′∈H Eo∼fη(a)[ℓ(a, o, η′)] and show that this feedback-verifier pair276
is reward-informative. (see Appendix B.3). In addition to this example, one can check that the forms277
of feedback used in Section 3.2 are reward-informative too. Note that reward-informative feedback278
can also contain information other than reward as shown in Section 3.2.279

With this definition in place, we show that if feedback contains reward information, the transfer280
eluder dimension is no larger than the eluder dimension for the reward class induced byH.281

Proposition 1. For reward-informative LLF problems with CF as in Definition 5, it holds that282
dimTE(H, CF ℓ, ϵ) ≤ dimE(RH, ϵ), whereRH = {rη : η ∈ H} is the effective reward class ofH.283

Proposition 1 implies that reward-informative LLF problems are no harder than their reward-only284
counterparts, such as those solved by the standard UCB algorithm over the reward class RH using285
reward extracted from the language feedback by some LLM.286

3.4 LLF-UCB Algorithm287

To validate our characterization of learnability based on the transfer eluder dimension, we design a288
simple UCB-style algorithm, LLF-UCB, outlined in Algorithm 1. LLF-UCB uses feedback to guide289
exploration using the optimism principle (Auer et al., 2002). As a concrete instantiation of how our290

7

Under review for RLC 2025, to be published in RLJ 2025

conceptual framework can inform algorithmic design, LLF-UCB serves as a sanity check that LLF291
problems with finite transfer eluder dimensions can indeed be solved provably efficiently, with a292
regret guarantee that depends sublinearly on the transfer eluder dimension.293

Theorem 1. Under Assumption 1 and Assumption 2, for all T ∈ N, the regret of LLF-UCB satisfies294

Regret(T) ≤ Õ
(
T 3/4

(
logN(H, ϵHT , dH)

)1/4√
dimTE(H, ℓ, ϵHT)

)
,

where N(H, ϵHT , dH) denotes the ϵHt -covering number of H based on the pseudo-metric295
dH, dimTE(H, ℓ, ϵHT) denotes the ϵHT -transfer eluder dimension of H, and ϵHT =296
max

{
1
T 2 ,mina∈A inf{|rη(a)− r∗(a)| : η ∈ H, η ̸= η∗}

}
.297

While the order Õ(T 3/4) on the time horizon T may appear suboptimal compared to classical298
Õ(
√
T) optimal rates for bandit learning with direct reward feedback, this slower rate is in fact299

a principled consequence of our minimal assumptions. Specifically, our analysis makes no struc-300
tural assumptions on the verifier loss ℓ beyond boundedness. If we have more structural knowledge301
of ℓ, say, that it is α-strongly convex, then the bound can be tightened to match the optimal order302
Õ(
√
T). We defer a detailed treatment of these improvements to Appendix A.2, provide a sketch303

of the general argument in Theorem 1 in Appendix A.1, and include complete technical details in304
Appendix A.2.305

We now describe the main components of LLF-UCB. Given a hypothesis η ∈ H, let πη denote306
its optimal policy. At each step t, the algorithm maintains a confidence set Ht consisting of hy-307
potheses that remain approximately consistent with observed actions and feedback, as measured by308
cumulative verifier loss. The algorithm then identifies a hypothesis ηo that achieve maximal optimal309
reward, and follows an optimal policy πo under this hypothesis. An additional design in LLF-UCB310
compared to standard UCB is a stopping criterion. It checks for a consensus optimal action among311
all hypotheses in the confidence set. If the minimax regret minπ∈Π maxη∈H̄ rη(πη) − rη(π) = 0,312
then the minimizer policy only selects actions that are simultaneously optimal for all candidate hy-313
potheses (see Lemma 5).314

As discussed in Section 3.3, feedback in a trivial LLF problem can directly reveal the optimal action315
but nothing about the reward. If this is the case, the stopping criteria ensures that the algorithm316
will not over-explore when it is certain that some action is optimal. Directly querying LLM for an317
action by prompting with the interaction history (with the lowest temperature) would be similar to318
drawing actions from πη where η is randomly sampled from argminη′∈H

∑
i ℓ(Ai, Oi, η

′). In the319
classical RL setting, such a greedy algorithm does not explore and therefore does not always have320
low-regret. Since RL is a special case of reward-informative LLF, we conjecture that this greedy321
algorithm also does not have regret guarantees for general LLF. We will compare this baseline in all322
of our experiments and confirm that LLF-UCB reliably outperforms this baseline.323

4 Related Work324

While using LLMs for general problem solving has been studied for a long time (Xie et al., 2022;325
Guo et al., 2024; Akyürek et al., 2023b), relatively fewer prior works studied the use of LLMs for326
sequential decision-making. There are roughly two routes to improving the agent’s performance327
with language feedback. One is to directly deploy LLMs as agents in decision-making problems328
by incorporating feedback into subsequent prompts or an external memory buffer (Yao et al., 2023;329
Brooks et al., 2023; Shinn et al., 2023; Wang et al., 2024; Krishnamurthy et al., 2024; Nie et al.,330
2024; Xi et al., 2025). Another route is to process this feedback and use it to finetune a model’s331
weights (Chen et al., 2024; Scheurer et al., 2022; Raparthy et al., 2023; Lee et al., 2023; Qu et al.,332
2025). This approach requires a considerable amount of offline interaction data. More recent work333
has investigated more sophisticated methods to improve exploration with LLMs, such as directly334
learning exploration behavior through supervised fine-tuning (Nie et al., 2024), preference-based335
learning (Tajwar et al., 2025), or reinforcement learning (Schmied et al., 2025), or prompting LLMs336

8

Provably Learning from Language Feedback

Figure 2: LLF and its relationship to existing paradigms. LLF covers many existing paradigms:
(1) reinforcement learning (RL): agent learning from a scalar reward signal, (2) interaction-guided
learning (IGL) (Xie et al., 2021): agent observes a generic feedback vector that can decode a latent
reward signal, (3) reward-informative LLF: agent observes language feedback that can be translated
into a scalar reward signal (Xie et al., 2024), (4) multi-objective RL: extension of RL to prob-
lems with multiple objectives, combined via a utility function, (5) preference-based RL: feedback
provides a comparison between two actions, (6) imitation learning: feedback provides an expert
demonstration.

(a) Wordle (50 scenarios) (b) Battleship (20 scenarios) (c) Minesweeper (20 scenarios)

Figure 3: We show the cumulative reward that the agent is able to obtain during a fixed number of
interactions with the environment. Shaded area represents the standard error of cumulative reward
across different scenarios.

to mimic a perfect Bayesian learner (Arumugam & Griffiths, 2025). However, up to date, these337
results have been empirical.338

We aim to bridge this gap by introducing a formal framework and guarantees for learning from lan-339
guage feedback. Our framework is closely related to multi-armed bandits (Lai & Robbins, 1985)340
and contextual bandits (Langford & Zhang, 2007). The class of algorithms that achieve dimin-341
ishing long-term average reward are termed “no-regret algorithms” (Auer et al., 2002; Thompson,342
1933; Russo et al., 2018). One widely adopted strategy relies on the “optimism in the face of un-343
certainty” principle. Our algorithm design follows the same spirit as UCB (Auer et al., 2002). A344
key difference is that our algorithm does not observe rewards at all, but instead rely on decoding345
information in the feedback through a verifier loss to construct the confidence set. A recent line346
of work utilizes UCB-like heuristics for LLM agents, but they either consider hypotheses as code347
that specifies an MDP (Tang et al., 2024), and/or assume that the agent observes the ground-truth348
numerical reward (Tang et al., 2024; N et al., 2024; Nie et al., 2024).349

Beyond scalar rewards, many learning settings offer richer forms of feedback. Prior work has ex-350
plored bandits with side observations (Wang et al., 2003; Kocák et al., 2014), partial monitoring351
(Bartók et al., 2014), and preference-based feedback (Fürnkranz et al., 2012). To characterize sam-352
ple complexity in reward-aware RL, (Russo & Van Roy, 2013) introduces the eluder dimension. Our353
work extends this notion beyond reward learning (see Fig. 2), opening a new avenue to understand-354
ing agent learning in the era of generative AI.355

5 Discussion356

We develop a formal foundation for learning from language feedback (LLF), a setting where agents357
must learn from language feedback rather than scalar rewards. We introduce the transfer eluder358
dimension as a complexity measure that quantifies how feedback affects the efficiency of learning.359

9

Under review for RLC 2025, to be published in RLJ 2025

When feedback is informative, we show that LLF can achieve exponential efficiency gain compared360
to traditional reward-based learning. To demonstrate the practicality of this framework, we pro-361
pose LLF-UCB, a no-regret algorithm with performance guarantees in terms of the transfer eluder362
dimension.363

5.1 Empirical Studies364

In addition to theory, we also validate a practical approximation of Algorithm 1 in experiments using365
three LLF problems (Wordle, Battleship and Minesweeper) constructed from the benchmark Tajwar366
et al. (2025). Please see Appendix E for details. We consider the following LLF agents.367

Greedy is the ReAct (Yao et al., 2023) agent that generates a hypothesis and returns its action.368

UCB uses an LLM to generateN hypotheses (thoughts), the best actions under each hypothesis, and369
M additional exploratory actions. The agent evaluates all the generated actions on all the hypotheses370
using an LLM, forming an N × (N +M) matrix. The agent then select the hypothesis with the371
highest score and perform the corresponding best action. If there are ties, the first generated action372
among ties is chosen.373

LLF-UCB adds the stopping criterion in Algorithm 1 to the UCB agent. After computing the374
hypothesis-action score matrix, the agent first checks whether a consensus action a exists—i.e., an375
action that achieves the highest score across all hypotheses. If true, then that action is returned.376
Otherwise, the UCB procedure above is used, except with a different tie-breaking rule. If multiple377
hypotheses yield the same highest score, we normalize the score by subtracting the average score of378
exploratory actions. We have found tie-breaking to play a nontrivial role in LLMs, as LLMs favor379
certain hypotheses and actions, unlike traditional UCB where ties can be broken arbitrarily. After380
normalization, we select the hypothesis with the highest normalized score. If a tie still remains, we381
select the first generated action among ties.382

Results We plot the cumulative reward as a function of the number of environment interaction383
steps on WORDLE, BATTLESHIP, and MINESWEEPER in Figure 4. We see that for all three en-384
vironments, the base LLM, where we only greedily choose the first action, performs worse gener-385
ally. In environments where information-gathering is more necessary, such as in BATTLESHIP or386
in MINESWEEPER, agents designed to conduct strategic explorations tend to outperform the greedy387
base LLM by a large margin. Our LLF-UCB agents consistently outperform both the greedy baseline388
and barebone UCB agents. In particular, on BATTLESHIP and MINESWEEPER, LLF-UCB achieves389
a significant performance improvement over the baselines. We leave further analysis to Appendix E.390

5.2 Limitations and Open Questions391

One might wonder if the transfer eluder dimension forms a lower bound for LLF. The answer, how-392
ever, is negative, as some LLF problems are trivially solvable despite having infinite transfer eluder393
dimension. For example, suppose rewards are arbitrary but feedback always reveals an optimal394
action. The transfer eluder dimension is unbounded in this case, yet the learning problem is easy.395

The difference between this and the earlier demonstration case in Example 2 is that latter’s reward396
class are constrained to be binary and the optimal action is unique, which keeps the transfer eluder397
dimension finite. We highlight that this argument assumes worst-case verifier behavior, while LLMs398
in practice impose inductive biases on how feedback is interpreted. Empirically, we find that when399
explicitly presented with an optimal action, LLMs tend to trust and act on it, bypassing further400
learning to infer full rewards. LLF-UCB captures this using the early stopping criterion (line 8),401
whereas näive reward-driven UCB fails.402

This counterexample points to a gap in our current understanding: the true complexity of LLF may403
lie between worst-case reward identification and optimal behavior learning. A promising direction404
is to adapt DEC (Foster et al., 2024) to the LLF setting. However, the existing algorithm there is not405
directly implementable using LLMs. Closing this gap by developing a complexity measure that both406
lower-bounds regret and informs practical algorithm design remains an important open question.407

10

Provably Learning from Language Feedback

References408

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya,409
and Niket Tandon. Rl4f: Generating natural language feedback with reinforcement learning for410
repairing model outputs. arXiv preprint arXiv:2305.08844, 2023a.411

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning412
algorithm is in-context learning? investigations with linear models. In The Eleventh International413
Conference on Learning Representations (ICLR), 2023b.414

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,415
Andrew M. Dai, Anja Hauth, Katie Millican, and David Silver et al. Gemini: A family of highly416
capable multimodal models. arXiv preprint arXiv:2312.11805, 2024.417

Dilip Arumugam and Thomas L. Griffiths. Toward efficient exploration by large language model418
agents. arXiv preprint arXiv:2504.20997, 2025.419

Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for con-420
sistent question answering. In Proceedings of the 58th Annual Meeting of the Association for421
Computational Linguistics (ACL), 2020.422

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Auer, peter and cesa-bianchi, nicolò and fischer,423
paul. Machine Learning, 47:235–256, 2002.424

Gábor Bartók, Dean P. Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial mon-425
itoring—classification, regret bounds, and algorithms. Mathematics of Operations Research, 39426
(4):967–997, 2014.427

BIG-bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of428
language models. Transactions on Machine Learning Research, 2023.429

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,430
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, and Emma Brunskill et al. On the431
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.432

Ethan Brooks, Logan A Walls, Richard Lewis, and Satinder Singh. Large language models can im-433
plement policy iteration. In Thirty-seventh Conference on Neural Information Processing Systems434
(NeurIPS), 2023.435

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece436
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,437
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments438
with gpt-4. arXiv preprint arXiv:2303.12712, 2023.439

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.440
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Trans-441
actions on Machine Learning Research, 2024.442

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models443
to self-debug. arXiv preprint arXiv:2304.05128, 2023.444

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. Llf-bench:445
Benchmark for interactive learning from language feedback. arXiv preprint arXiv:2312.06853,446
2023.447

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the new autodiff — unlocking effi-448
cient optimization of computational workflows. ICML 2024 Automated Reinforcement Learning449
Workshop, 2024.450

11

Under review for RLC 2025, to be published in RLJ 2025

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin Soljacic,451
Shang-Wen Li, Scott Yih, Yoon Kim, and James Glass. DiffCSE: Difference-based contrastive452
learning for sentence embeddings. In Proceedings of the 2022 Conference of the North American453
Chapter of the Association for Computational Linguistics: Human Language Technologies, July454
2022.455

K.A. De Jong, W.M. Spears, and D.F. Gordon. Using genetic algorithms for concept learning.456
Machine Learning, pp. 161–188, 1993.457

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-458
tuality and reasoning in language models through multiagent debate. In Forty-first International459
Conference on Machine Learning, 2023.460

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of461
interactive decision making. arXiv, 2024.462

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,463
and Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines464
for large language model agents. arXiv preprint arXiv:2403.08978, 2024.465

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based466
reinforcement learning: a formal framework and a policy iteration algorithm. Mach. Learn., 89467
(1–2):123–156, October 2012.468

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-469
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint470
arXiv:2411.15594, 2024.471

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,472
Shirong Ma, Peiyi Wang, and Xiao Bi et al. Deepseek-r1: Incentivizing reasoning capability in473
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.474

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do475
transformers learn in-context beyond simple functions? a case study on learning with representa-476
tions. In The Twelfth International Conference on Learning Representations (ICLR), 2024.477

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-478
trow, Akila Welihinda, Alan Hayes, and Alec Radford et al. Gpt-4o system card. arXiv preprint479
arXiv:2410.21276, 2024.480

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec481
Helyar, Aleksander Madry, Alex Beutel, and Alex Carney et al. Openai o1 system card. arXiv482
preprint arXiv:2412.16720, 2024.483

Tomáš Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by implicit explo-484
ration in bandit problems with side observations. Advances in Neural Information Processing485
Systems, 27, 2014.486

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can487
large language models explore in-context? In ICML 2024 Workshop on In-Context Learning,488
2024.489

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math.,490
6(1):4–22, March 1985. ISSN 0196-8858.491

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side492
information. In Advances in Neural Information Processing Systems (NeurIPS), 2007.493

12

Provably Learning from Language Feedback

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma494
Brunskill. Supervised pretraining can learn in-context reinforcement learning. In Thirty-seventh495
Conference on Neural Information Processing Systems (NeurIPS), 2023.496

E.L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer Cham, 2022.497

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with498
feedback. In The Twelfth International Conference on Learning Representations (ICLR), 2024.499

Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An Cheng.500
Interactive robot learning from verbal correction. In 2nd Workshop on Language and Robot501
Learning: Language as Grounding, 2023.502

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective503
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.504

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and505
Edward Grefenstette. Improving intrinsic exploration with language abstractions. Advances in506
Neural Information Processing Systems, 35:33947–33960, 2022.507

Rithesh R N, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng,508
Zeyuan Chen, Akash Gokul, Devansh Arpit, Ran Xu, Phil L Mui, Huan Wang, Caiming Xiong,509
and Silvio Savarese. REX: Rapid exploration and exploitation for AI agents. In ICLR 2024510
Workshop on Large Language Model (LLM) Agents, 2024.511

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Importance of directional512
feedback for llm-based optimizers. In NeurIPS 2023 Foundation Models for Decision Making513
Workshop, 2023.514

Allen Nie, Yi Su, Bo Hsuan Chang, Jonathan N. Lee, Ed Huai hsin Chi, Quoc V. Le, and Minmin515
Chen. Evolve: Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238,516
2024.517

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan518
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-519
tuning. arXiv preprint arXiv:2503.07572, 2025.520

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gen-521
eralization to new sequential decision making tasks with in-context learning, 2023.522

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-523
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,524
2013.525

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic526
exploration. In Advances in Neural Information Processing Systems (NeurIPS), 2013.527

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on528
thompson sampling. Found. Trends Mach. Learn., 11(1):1–96, July 2018. ISSN 1935-8237.529

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and Ethan530
Perez. Training language models with language feedback. Workshop on Learning with Natural531
Language Supervision at ACL 2022, 2022.532

Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.533
Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. arXiv preprint534
arXiv:2504.16078, 2025.535

13

Under review for RLC 2025, to be published in RLJ 2025

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflex-536
ion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural537
Information Processing Systems, 2023.538

David Silver and Rich Sutton. Welcome to the era of experience. preprint, 2025.539

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,540
2018.541

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff542
Schneider, and Ruslan Salakhutdinov. Training a generally curious agent. arXiv preprint543
arXiv:2502.17543, 2025.544

Hao Tang, Darren Yan Key, and Kevin Ellis. Worldcoder, a model-based LLM agent: Building545
world models by writing code and interacting with the environment. In The Thirty-eighth Annual546
Conference on Neural Information Processing Systems (NeurIPS), 2024.547

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of548
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.549

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée550
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-551
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation552
language models. arXiv preprint arXiv:2302.13971, 2023.553

Chih-Chun Wang, S.R. Kulkarni, and H.V. Poor. Bandit problems with arbitrary side observations.554
In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475),555
volume 3, pp. 2948–2953 Vol.3, 2003.556

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,557
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.558
Transactions on Machine Learning Research, 2024.559

Hongwei Wang and Dong Yu. Going beyond sentence embeddings: A token-level matching algo-560
rithm for calculating semantic textual similarity. In The 61st Annual Meeting of the Association561
for Computational Linguistics Short Papers (ACL), July 2023.562

Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex563
Aiken. Improving parallel program performance through dsl-driven code generation with llm564
optimizers. arXiv preprint arXiv:2410.15625, 2024.565

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun566
Zhao. Large language models are better reasoners with self-verification. In The 2023 Conference567
on Empirical Methods in Natural Language Processing (EMNLP), 2023.568

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe569
Wang, Senjie Jin, and Enyu Zhou et al. The rise and potential of large language model based570
agents: a survey. Sci. China Inf. Sci, 68, 121101, 2025.571

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context572
learning as implicit bayesian inference. In International Conference on Learning Representations573
(ICLR), 2022.574

Tengyang Xie, John Langford, Paul Mineiro, and Ida Momennejad. Interaction-grounded learning.575
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on576
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11414–11423.577
PMLR, 18–24 Jul 2021.578

14

Provably Learning from Language Feedback

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and579
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.580
In International Conference on Learning Representations (ICLR), 2024 (07/05/2024-11/05/2024,581
Vienna, Austria), 2024.582

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,583
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree584
search. arXiv preprint arXiv:2504.08066, 2025.585

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.586
React: Synergizing reasoning and acting in language models. The International Conference on587
Learning Representations (ICLR), 2023.588

Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-589
objective black box optimization. In International conference on machine learning, pp. 11096–590
11105. PMLR, 2020.591

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,592
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.593
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on594
Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS), 2023.595

Victor Zhong, Dipendra Misra, Xingdi Yuan, and Marc-Alexandre Côté. Policy improvement using596
language feedback models. arXiv preprint arXiv:2402.07876, 2024.597

15

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials598

The following content was not necessarily subject to peer review.599
600

A Regret Analysis601

A.1 Proof Sketch602

We sketch the regret analysis in four main steps. The full proof is presented in Appendix A.2.603

Step 1: Define confidence sets For each hypothesis η ∈ H, we define Lt(η) =604 ∑t−1
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓmin

η∗ (Ai)
)

to be the cumulative population prediction error and605

Lt(η) =
∑t−1
i=0 ℓ(Ai, Oi, η) =

∑t−1
i=0 ℓi(η) to be the cumulative empirical verifier loss. We define606

confidence setsHt = {η ∈ H : Lt(η) ≤ minη′∈H Lt(η
′)+βt} where βt is a confidence parameter.607

Step 2: Regret decomposition We let the width of a subset V ⊆ H at an action a ∈ A be wV(a) =608
supη∈V |rη(a)− r∗(a)|. Then, we can decompose the regret in terms of version space widths:609

Regret(T, η∗) ≤
∑T−1
t=0 E [wVt

(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}] .610

Step 3: Bounding the sum of widths via transfer eluder dimension The key step is to show that611
if the width wHt

(At) > ϵ for some ϵ > 0, then At must be ϵ-dependent on only O(βt/ϵ
2) disjoint612

historical action sequences, where βt is the confidence parameter. By the definition of the transfer613
eluder dimension dTE = dimTE(H, ℓ, ϵ), in any sequence of N actions, there must be some action614
that is ϵ-dependent on at least Ω(N/d) previous ones. Combining these facts forces the number of615
large-width version spaces

∑T−1
t=0 1{wHt

(At) > ϵ} to be bounded by O(βT d/ϵ
2). Rearranging616

terms and choosing a suitable sequence of ϵ gives that with high probability,
∑T−1
t=0 wVt

(At) ≤617
O(dTE + 2

√
3dTEβTT). Note that when the stopping criteria is triggered, the per-step regret of618

all following steps become zero, and so the regret of LLF-UCB is always bounded above by that619
without the stopping criteria.620

Step 4: Prove high-probability confidence set concentration It remains to define suitable βt’s and621
show that η∗ ∈ Vt for all t ∈ N with high probability. Depending on what structural assumptions622
are known for the verifier loss ℓ, we determine the rate of decay of βt. If we only make the minimal623
assumption that ℓ is bounded, then βT = Õ(

√
T). Putting everything together proves Theorem 1.624

A.2 Full Analysis625

We first define the version spaces used in the algorithm. As shorthand notations, define

Lt(η) =
t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
to be the cumulative population prediction error and

Lt(η) =

t−1∑
i=0

ℓ(Ai, Oi, η) =

t−1∑
i=0

ℓi(η)

to be the cumulative empirical verifier loss. A small value of Lt(η) means η is close to consistent626
with observed feedback. Let Vt ⊆ H be the version space of all hypotheses still plausible after t627
rounds of interactions. Concretely,628

Vt = {η ∈ H : Lt(η) ≤ min
η′∈H

Lt(η
′) + βt}, (1)

where βt > 0 is an appropriately chosen confidence parameter so that we do not throw away the629
true hypothesis η∗ due to noise.630

16

Provably Learning from Language Feedback

A useful approach to bounding the regret is to decompose it in terms of version spaces. Define the
width of a subset V ⊆ H at an action a ∈ A by

wV(a) = sup
η∈V
|rη(a)− r∗(a)| .

631

Proposition 2 (Regret decomposition). Fix any sequence {Vt : t ∈ N}, where Vt ⊆ H is measur-
able with respect to σ(Ht). Then for any T ∈ N,

Regret(T, η∗) ≤
T−1∑
t=0

E [wVt(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}] .

Proof. Define the upper bound Ut(a) = sup{rη(a) : η ∈ Vt}. Let a∗ ∈ argmaxa∈A r
∗(a). When632

η∗ ∈ Vt, the bound r∗(a) ≤ Ut(a) hold for all actions. This implies633

r∗(η∗)− r∗(At) ≤ (Ut(a
∗)− r∗(At)) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}

≤ wVt(At) · 1{η∗ ∈ Vt}+ 1{η∗ /∈ Vt}+ [Ut(a
∗)− Ut(At)] · 1{η∗ ∈ Vt}

Since the algorithm selects an action At that maximizes Ut(a), the conclusion follows by taking the634
expectation and summing over all t = 0, . . . , T − 1.635

If the version spaces Vt are constructed to contain η∗ with high probability, this proposition reduces636
upper bounding the regret to bounding the expected sum of widths

∑T−1
t=0 E[wVt

(At)].637

We first introduce a class of Martingale exponential inequalities that will be useful throughout our638
analysis, including bounding the sum of widths and proving the high-confidence events η∗ ∈ Vt.639
Consider random variables (Xt|t ∈ N) adapted to the filtration (Ft|t ∈ N). Assume E[exp(λXt)] is640
finite for all λ and E[Xt|Ft−1] = 0. We assume that there is a uniform upper bound on the cumulant641
generating function (i.e., log moment generating function) for the conditional distribution of Xt.642

Lemma 1 (Cumulant generating function). If there is a sequence of convex functions {ψt : [0,∞)→
R}∞t=0 with ψt(0) = 0 such that, for all t ∈ N and all λ ∈ [0,∞),

logE
[
eλ|Xt||Ft−1

]
≤ ψt(λ),

then for all δ ∈ (0, 1) and T ∈ N, with probability 1− δ,∣∣∣∣∣
T−1∑
t=0

Xt

∣∣∣∣∣ ≤ inf
λ∈[0,∞)

{∑T−1
t=0 ψt(λ) + log(2/δ)

λ

}
.

Proof. Let ST =
∑T−1
t=0 Xt. By Markov’s inequality, for all u ∈ R and λ ∈ [0,∞),643

P (ST ≥ u) = P
(
eλST ≥ eλu

)
≤ E[eλST]

eλu
=

E[E[eλST |FT−1]]

eλu
=

E[eλ
∑T−2

t=0 XtE[eλXT−1 |FT−1]]

eλu

≤ E[eλ
∑T−2

t=0 Xt] exp(ψT−1(λ))

eλu
≤ · · · ≤

exp(
∑T−1
t=0 ψt(λ))

eλu
.

This gives

P (ST ≥ u) ≤ exp

(
−λu+

T−1∑
t=0

ψt(λ)

)
for all λ ∈ [0,∞). Applying the same argument to −Xt, we have

P (ST ≤ −u) = P (−ST ≥ u) ≤ exp

(
−λu+

T−1∑
t=0

ψt(λ)

)
.

17

Under review for RLC 2025, to be published in RLJ 2025

Solving for u to achieve a δ/2 probability for each side, and taking the infimum over λ ∈ [0,∞),
we have with probability at least 1− δ,

ST ≤ inf
λ∈[0,∞)

{∑T−1
t=0 ψt(λ) + log(2/δ)

λ

}
.

644

We now proceed to bounding the sum of widths
∑T−1
t=0 E[wVt

(At)] when the event η∗ ∈ Vt holds.
As a first step, we show that there cannot be many version spaces Vt with a large width. For all
t ∈ N and η, η′ ∈ H, we define the martingale difference

Zt(η, η
′) = EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η

′)|Gt−1]− (ℓ(At, Ot, η)− ℓ(At, Ot, η′)) .

Notice that Zt have expectation zero and constitutes a martingale difference sequence adapted to the645
filtration (Gt|t ∈ N) where Gt is the σ-algebra generated by all observations {(a0, o1), . . . , (at, ot)}646
up to time t.647

Proposition 3. If the conditions in Lemma 1 holds for (Zt|t ∈ N) adapted to (Gt|t ∈ N) with
cumulative generating function bound (ψt|t ∈ N), (βt ≥ 0|t ∈ N) in (1) is a nondecreasing

sequence such that for all t ∈ N, βt ≥ infλ∈[0,∞)

{∑t−1
i=0 ψi(λ)+log(10t2/3δ)

λ

}
, then for all δ ∈ (0, 1),

with probability at least 1− δ,

T−1∑
t=0

1{wVt(At) > ϵ} · 1{η∗ ∈ Vt} ≤
(
3βT
ϵ2

+ 1

)
dimTE(H, ℓ, ϵ)

for all T ∈ N and ϵ > 0.648

Proof. We first show that if wVt
(At) > ϵ and η∗ ∈ Vt then with high probability, At is ϵ-dependent

on fewer than O(βt/ϵ
2) disjoint subsequences of (A0, A1, . . . , At−1). To see this, note that if

wVt(At) > ϵ and η∗ ∈ Vt, there exists η ∈ Vt such that |rη(At)− rη∗(At)| > ϵ. By definition, if
At is ϵ-dependent on a subsequence (Ai1 , . . . , Aik) of (A0, . . . , At−1), then

k∑
j=1

(
EO∼fη∗ (Aij

)[ℓ(Aij , O, η)]− ℓmin
η∗ (Aij)

)
> ϵ2.

It follows that if At is ϵ-dependent on K disjoint subsequences of (A0, . . . , At−1) then

t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
> Kϵ2.

18

Provably Learning from Language Feedback

Then649

t−1∑
i=0

(
EO∼fη∗ (Ai)[ℓ(Ai, O, η)]− ℓ

min
η∗ (Ai)

)
=

t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

=

[
t−1∑
i=0

ℓ(Ai, Oi, η
∗)− min

η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

]
−

[
t−1∑
i=0

ℓ(Ai, Oi, η)− min
η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

]

+

[
t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

]

≤

∣∣∣∣∣
t−1∑
i=0

ℓ(Ai, Oi, η
∗)− min

η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

∣∣∣∣∣+
∣∣∣∣∣
t−1∑
i=0

ℓ(Ai, Oi, η)− min
η′∈H

t−1∑
i=0

ℓ(Ai, Oi, η
′)

∣∣∣∣∣
+

[
t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

]

≤ 2βt +

t−1∑
i=0

[ℓ(Ai, Oi, η)− ℓ(Ai, Oi, η∗)]−
t−1∑
i=0

EO∼fη∗ (Ai) [ℓ(Ai, O, η)− ℓ(Ai, O, η
∗)]

= 2βt −
t−1∑
i=0

Zi(η, η
∗).

Using Lemma 1,

P

(∣∣∣∣∣
t−1∑
i=0

Zi(η, η
∗)

∣∣∣∣∣ > inf
λ∈[0,∞)

{∑t−1
i=0 ψi(λ) + log(2/δ)

λ

})
≤ δ.

We choose a sequence {δt}t∈N>0
where δt = 3δ

5t2 , and so
∑∞
t=1 δt < δ. Using a union bound over

all t ∈ N>0, we have that with probability at least 1− δ, for all t ∈ N,∣∣∣∣∣
t−1∑
i=0

Zi(η, η
∗)

∣∣∣∣∣ ≤ inf
λ∈[0,∞)

{∑t−1
i=0 ψi(λ) + log(10t2/3δ)

λ

}
≤ βt.

Since {βt}t∈N is nondecreasing in t, we have that with probability at least 1 − δ, Kϵ2 ≤ 3βT . It650
follows that with probability at least 1− δ, K ≤ 3βT /ϵ

2.651

Next, we show that in any action sequence (a1, . . . , aτ), there is some element aj that is ϵ-dependent652
on at least τ/d − 1 disjoint subsequences of (a1, . . . , aj−1), where d = dimTE(H, ℓ, ϵ). To show653
this, for an integer K satisfying Kd+ 1 ≤ τ ≤ Kd+ d, we will construct K disjoint subsequences654
B1, . . . , BK . First let Bi = (ai) for i = 1, . . . ,K. If aK+1 is ϵ-dependent on each subsequence655
B1, . . . , BK , our claim is established. Otherwise, select one subsequence for which aK+1 is ϵ-656
independent to and append aK+1 to it. Repeat this process for elements with indices j > K + 1657
until aj is ϵ-dependent on each subsequence or j = τ . In the latter scenario

∑
|Bi| ≥ Kd, and658

since each element of a subsequence Bi is ϵ-independent of its predecessors, |Bi| = d. In this case,659
aτ must be ϵ-dependent on each subsequence, by the definition of dimTE(H, ℓ, ϵ).660

Now consider taking (A1, . . . , Aτ) to be the subsequence (At1 , . . . , Atτ) of (A1, . . . , AT) consist-661
ing of elements At for which wVt

(At) > ϵ. As we have established, each Atj is ϵ-dependent on662
fewer than 3βT /ϵ

2 disjoint subsequences of (A1, . . . , Aj−1) with probability at least 1 − δ. Com-663
bining this with the fact we have established that there is some aj that is ϵ-dependent on at least664
τ/d − 1 disjoint subsequences of (a1, . . . , aj−1), we have τ/d − 1 ≤ 3βT /ϵ

2. It follows that665
τ ≤

(
3βT /ϵ

2 + 1
)
d with probability at least 1− δ, as desired.666

19

Under review for RLC 2025, to be published in RLJ 2025

We are now ready to bound the sum of widths
∑T−1
t=0 E[wVt

(At)] when the event η∗ ∈ Vt holds.
Consider the ϵHT -transfer eluder dimension ofH, where

ϵHt = max

{
1

t2
,min
a∈A

inf{|rη(a)− r∗(a)| : η ∈ H, η ̸= η∗}
}
.

667

Lemma 2. If the conditions in Lemma 1 holds for (Zt|t ∈ N) adapted to (Gt|t ∈ N) with cumulative668
generating function bound (ψt|t ∈ N), (βt ≥ 0|t ∈ N) in (1) is a nondecreasing sequence such that669

for all t ∈ N, βt ≥ infλ∈[0,∞)

{∑t−1
i=0 ψi(λ)+log(10t2/3δ)

λ

}
, then for all δ ∈ (0, 1), with probability at670

least 1− δ,671
T−1∑
t=0

wVt(At) · 1{η∗ ∈ Vt} ≤
1

T
+min

{
dimTE(H, ℓ, ϵHT), T

}
+ 2
√

3 dimTE(H, ℓ, ϵHT)βTT

for all T ∈ N.672

Proof. Let dT = dimTE(H, ℓ, ϵHT) and wt = wVt
(At). Reorder the sequence (w1, . . . , wT) →673

(wi1 , . . . , wiT) where wi1 ≥ wi2 ≥ · · · ≥ wiT . We have674

T−1∑
t=0

wVt(At) · 1{η∗ ∈ Vt}

=

T−1∑
t=0

wit · 1{η∗ ∈ Vit}

=

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT }+
T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit ≤ ϵHT }

≤ 1

T
+

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT }.

The last inequality follows since either ϵHT = 1/T 2 and
∑T−1
t=0 ϵHT = 1/T or ϵHT is set below the675

smallest possible width and hence 1{wit ≤ ϵHT } never occurs. We have that wit ≤ 1. Also,676
wit > ϵ ⇐⇒

∑T−1
k=0 1{wVk

(ak) > ϵ} ≥ t. By Proposition 3, this can only occur if t <677 (
3βT /ϵ

2 + 1
)
dimTE(H, ℓ, ϵ) with probability at least 1− δ. For ϵ ≥ ϵHT , since dimTE(H, ℓ, ϵ′) is678

nonincreasing in ϵ′, dimTE(H, ℓ, ϵ) ≤ dimTE(H, ℓ, ϵHT) = dT . Therefore, when wit > ϵ ≥ ϵHT ,679

t ≤
(
3βT /ϵ

2 + 1
)
dT which implies ϵ ≤

√
3βT dT
t−dT . This shows that if wit > ϵHT , then wit ≤680

min{1,
√

3βT dT
t−dT }. Thus,681

T−1∑
t=0

wit · 1{η∗ ∈ Vit} · 1{wit > ϵHT } ≤ dT +

T−1∑
t=dT+1

√
3βT dT
t− dT

≤ dT +
√
3βT dT

∫ T−1

t=1

1√
t
dt

= dT + 2
√
3βT dTT .

Since the sum of widths is always bounded by T , this implies with probability 1− δ,682

T−1∑
t=0

wVt
(at) · 1{η∗ ∈ Vt}

≤ min

{
T,

1

T
+ dimTE(H, ℓ, ϵHT) + 2

√
3 dimTE(H, ℓ, ϵHT)βTT

}
≤ 1

T
+min

{
dimTE(H, ℓ, ϵHT), T

}
+ 2
√
3 dimTE(H, ℓ, ϵHT)βTT .

20

Provably Learning from Language Feedback

683

So far, we have only considered LLF-UCB without the stopping criteria. We remark that when the684
stopping criteria is triggered, the per-step regret of all following steps become zero, and so the regret685
of the full LLF-UCB is always bounded above by that without the stopping criteria. Combining this686
observation with Lemma 2 and Proposition 2, we arrive at the following abstract regret bound in687
terms of the version space confidence parameter βT .688

Theorem 2. If it holds that for some δ ∈ (0, 1), with probability at least 1 − δ, η∗ ∈ Vt for all t,689
then for all T ∈ N,690

Regret(T) ≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}+ 2

√
3 dimTE(H, ℓ, ϵHT)βTT .

The dominant term in the regret bound is

2
√
3 dimTE(H, ℓ, ϵHT)βTT .

For our main theorem, it remains to design suitable version spaces Vt and show that they contain691
the true hypothesis η∗ with high probability. Crucially, the rate at which the confidence parameters692
βt of these version spaces shrink depends on concentration properties of the verifier loss function ℓ.693
Note that for the general LLF framework, we have assumed only that ℓ is a bounded function taking694
values in [0, 1]. If we have more structural assumptions on the verifier loss ℓ, for example, that ℓ is695
α-strongly convex, then we may arrive at a tighter regret bound up to order

√
T by taking βT to be696

of constant order.697

A.3 Version Space Construction for General Bounded Loss698

Consider the most general case with minimal assumptions on the loss function, namely, that it is699
bounded between [0, 1] for all inputs. Then we prove the following high-probability event:700

Lemma 3 (High-probability event). For all δ > 0, η, η′ ∈ H,

P

(
LT (η′) ≥ LT (η) + LT (η

′)− LT (η)−

√
2T log

(
10T 2

3δ

)
, ∀T ∈ N

)
≥ 1− δ.

Proof. For each t = 1, . . . , T , define the Martingale difference sequence

Xt = EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η
′)]− (ℓ(At, Ot, η)− ℓ(At, Ot, η′)) .

701

LT (η′)− LT (η)− (LT (η
′)− LT (η))

=

T−1∑
t=0

(
EO∼fη∗ (At)[ℓ(At, O, η)]− EO∼fη∗ (At)[ℓ(At, O, η

′)]
)
−
T−1∑
t=0

(ℓ(At, Ot, η)− ℓ(At, Ot, η′))

=

T−1∑
t=0

EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η
′)]−

T−1∑
t=0

(ℓ(At, Ot, η)− ℓ(At, Ot, η′))

=

T−1∑
t=0

Xt.

Notice thatXt have expectation zero and constitutes a Martingale difference sequence adapted to the
filtration {Gt}t≥1 where Gt is the σ-algebra generated by all observations {(A0, O1), . . . , (At, Ot)}
up to time t. Since feedback losses ℓ(a, o, η) are uniformly bounded between [0, 1], we have that

21

Under review for RLC 2025, to be published in RLJ 2025

Xt ∈ [−2, 2] with probability 1. Using Lemma 1 with ψt(λ) = λ2/2 and taking the infimum over
λ, we get

P

(∣∣∣∣∣
T−1∑
t=0

Xt

∣∣∣∣∣ >√2T log(2/δ)

)
≤ δ.

We choose a sequence {δT }T∈N>0 where δT = 3δ
5T 2 such that

∑∞
T=1 δT < δ. Using a union bound

over all T ∈ N≥0, we have that with probability at least 1− δ,

|LT (η′)− LT (η)− (LT (η
′)− LT (η))| ≤

√
2T log

(
2

δT

)
=

√
2T log

(
10T 2

3δ

)
∀T ∈ N.

702

Since η∗ is the true hypothesis, by Assumption 3, it minimizes the population loss LT (η) for all
T ∈ N. That is, for all η ∈ H,

LT (η∗) ≤ LT (η) ∀T ∈ N.

Suppose m = |H| < ∞. By Lemma 3, for any η ∈ H, with probability at least 1 − δ/m, for all
T ∈ N,

LT (η
∗)− LT (η) ≤ LT (η∗)− LT (η) +

√
2T log

(
10T 2

3δ

)
≤

√
2T log

(
10mT 2

3δ

)
.

Using a union bound over H, with probability at least 1 − δ, the true hypothesis η∗ is contained in
the version space

VT =

{
η ∈ H : LT (η) ≤ min

η′∈H
LT (η

′) +

√
2T log

(
10|H|T 2

3δ

)}

for all T ∈ N. To extend this to a space of infinite hypotheses, we measure the set H by some
discretization scale α. Recall that we define distances in the hypothesis space in terms of the loss
function ℓ:

dH(η, η′) = sup
a∈A,o∈O

|ℓ(a, o, η)− ℓ(a, o, η′)|.

703

Lemma 4. dH(·, ·) is a pseudometric onH.704

Proof. We check the axioms for a pseudometric.705

• nonnegativity: dH(η, η) = 0 and dH(η, η′) ≥ 0 for all η, η′ ∈ H.706

• symmetry: dH(η, η′) = dH(η′, η).707

• triangle inequality: for each a ∈ A and o ∈ O, |ℓ(a, o, η)−ℓ(a, o, η′′)| ≤ |ℓ(a, o, η)−ℓ(a, o, η′)|+708
|ℓ(a, o, η′)− ℓ(a, o, η′′)|. Taking the supremum over A and O yields the desired property.709

710

Let N(H, α, dH) denote the α-covering number ofH in the pseudometric dH, and let711

β∗
t (H, δ, α) :=

√
2t log

(
10N(H, α, dH)t2

3δ

)
+ 2αt. (2)

712

22

Provably Learning from Language Feedback

Proposition 4. For δ > 0, α > 0, and T ∈ N, define

VT :=

{
η ∈ H : LT (η) ≤ min

η′∈H
LT (η

′) + β∗
T

}
Then it holds that

P

(
η∗ ∈

∞⋂
T=1

VT

)
≥ 1− δ.

Proof. Let Hα ⊆ H be an α-cover of H in the pseudometric dH, in the sense that for any η ∈ H,713
there is an ηα ∈ Hα such that dH(η, ηα) ≤ α. By a union bound over Hα, with probability at least714
1− δ,715

(LT (ηα)− LT (ηα))− (LT (η∗)− LT (η∗)) ≤

√
2T log

(
10|Hα|T 2

3δ

)

=⇒ (LT (η)− LT (η))− (LT (η∗)− LT (η∗)) ≤

√
2T log

(
10|Hα|T 2

3δ

)
+ (LT (η)− LT (η))− (LT (ηα)− LT (ηα))︸ ︷︷ ︸

discretization error

.

The discretization error can be expanded and bounded as716

T−1∑
t=0

[
EO∼fη∗ (At) [ℓ(At, O, η)− ℓ(At, O, η

α)]− ℓ(At, Ot, η) + ℓ(At, Ot, η
α)
]
≤ 2αT.

Since η∗ is a minimizer of LT (·), we have that with probability at least 1− δ,

LT (η
∗)− LT (η) ≤

√
2T log

(
10|Hα|T 2

3δ

)
+ 2αT.

Taking the infimum over the size of α covers implies

LT (η
∗)− LT (η) ≤

√
2T log

(
10N(H, α, dH)T 2

3δ

)
+ 2αT.

717

Taking δ = 1
T and plugging βT = β∗

T (H, δ, ϵHT) into the abstract regret bound in Theorem 2 proves718
the following main theorem.719

Theorem 1. For all T ∈ N,720

Regret(T) ≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT)T 3/2 + 6dimTE(H, ℓ, ϵHT).

23

Under review for RLC 2025, to be published in RLJ 2025

Proof.

Regret(T)

≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}+ 2

√
3 dimTE(H, ℓ, ϵHT)β∗

T (H, δ, ϵHT)T

= 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}+

+ 2

√√√√3 dimTE(H, ℓ, ϵHT)

(√
2T log

(
10N(H, ϵHT , dH)T 2

3δ

)
+ 2ϵHT T

)
T

= 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}+

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT)T 3/2 + 6ϵHT dimTE(H, ℓ, ϵHT)T 2

≤ 1 +
1

T
+min{dimTE(H, ℓ, ϵHT), T}+

+ 2

√
3
√
2 log

(
10N(H, α, dH)T 2

3δ

)1/2

dimTE(H, ℓ, ϵHT)T 3/2 + 6dimTE(H, ℓ, ϵHT),

where he last inequality follows since ϵHT ≤ 1/T 2 by definition.721

The leading term in the regret bound is of order

T 3/4
(
logN(H, ϵHT , dH)

)1/4√
dimTE(H, ℓ, ϵHT).

Remark 3. As noted earlier on, while the order Õ(T 3/4) on the time horizon T may appear subop-722
timal compared to classical Õ(

√
T) optimal rates for bandit learning with direct reward feedback,723

this slower rate is in fact a principled consequence of our minimal assumptions. Specifically, our724
analysis makes no structural assumptions on the verifier loss ℓ beyond boundedness. If we have725
more structural knowledge of ℓ, say, that it is α-strongly convex, then the bound can be tightened to726
match the optimal order Õ(

√
T). A notable instance is when ℓ is a squared loss. A refined analysis727

on the drift of conditional mean losses allows us to choose the confidence parameters βT for the728
version spaces to be of order Õ(log(1/δ)), which results in the tight Õ(

√
T) regret rate.729

B Proofs for Supporting Lemmas and Propositions730

B.1 Proof for Proposition 1731

Proof. Let ℓ̃ = CF ℓ. Let dTE = dimTE(H, ℓ̃, ϵ) be the shorthand for the ϵ-transfer eluder di-
mension of H with respect to ℓ̃. Then, there exists a length dTE sequence of elements in A such
that for some ϵ̃ ≥ ϵ, every action element is ϵ̃-transfer independent of its predecessors. We de-
note such a sequence as (a0, . . . , adTE−1). By definition of the transfer eluder dimension, for any
k ∈ {0, . . . , dTE − 2}, there exists a pair of hypotheses η, η′ ∈ H satisfying

k∑
i=0

(
Eo∼fη′ (ai)[ℓ̃(ai, o, η)]− ℓ̃min

η′ (ai)
)
≤ ϵ̃2

24

Provably Learning from Language Feedback

but |rη(ak+1)− rη′(ak+1)| > ϵ̃. Using the definition for reward-discriminative verifiers,732

k∑
i=0

(rη(ai)− rη′(ai))2 ≤ CF
k∑
i=0

(
Eo∼fη′ (ai)[ℓ(ai, o, η)]− ℓmin

η′ (ai)
)

=

k∑
i=0

(
Eo∼fη′ (ai)[ℓ̃(ai, o, η)]− ℓ̃min

η′ (ai)
)
≤ ϵ̃2.

By the definition of the (regular) eluder dimension, every action in the sequence (a0, . . . , adTE−1) is733
ϵ-independent of its predecessors. Therefore, dTE ≤ dimE(R, ϵ) since the latter is the length of the734
longest sequence of independent actions. We may conclude that dimE(R, ϵ) ≥ dimTE(H, CF ℓ, ϵ).735

736

B.2 Proof for Lemma 5737

Lemma 5. Consider some H̄. Suppose minπ∈Π maxη∈H̄ rη(πη)−rη(π) = 0. Let π̂ be a minimizer.738
Let A∗

η denote the set of optimal actions with respect to rη . Then supp(π̂) ⊆ A∗
η , for all η ∈ H̄.739

Proof. We prove by contradiction. Suppose π̂ takes some action a′ outside of A∗
η for some η ∈ H̄740

with probability p′. Let π′ = π̂ − p′1[a = a′] + p′Unif[a ∈ A∗
η]. Then it follows rη(π′) > rη(π̂),741

which is a contradiction. Therefore, supp(π̂) ⊆ A∗
η , for all η ∈ H.742

B.3 Proof of the Reward-Informative Feedback Example743

Suppose rη(a) = Eo∼fη(a)[g(a, o)] for some known g : A × O → [0, 1]. Note that the reward744
mapping η 7→ rη is known, but the reward function itself is still hidden from the agent (since η∗745
is unknown). We define ℓ(a, o, η) := (g(a, o) − rη(a))2 = (g(a, o) − Eo′∼fη(a)[g(a, o′)])2, which746
gives747

Eo∼fη(a)[ℓ(a, o, η
′)] = Eo∼fη(a)

[
(g(a, o)− Eo′∼fη′ (a)[g(a, o

′)])2
]
.

One can easily verify that η ∈ argminη′∈H Eo∼fη(a)[ℓ(a, o, η′)]. With this definition, we have that748

|rη(a)− rη′(a)|2 = (Eo∼fη(a)[g(a, o)]− Eo∼fη′ (a)[g(a, o)])
2

= (Eo∼fη(a)[g(a, o)− Eo′∼fη′ (a)[g(a, o
′)]])2

≤ Eo∼fη(a)[(g(a, o)− Eo′∼fη′ (a)[g(a, o
′)])2]

= Eo∼fη(a)[ℓ(a, o, η
′)]

This shows the feedback is reward-informative.749

B.4 Proof of Reasoning Example750

binary indicator of whether all steps are correct This problem is equivalent to a bandit problem751
with |S|L arms. Here fη(a) = r(a), so the transfer eluder dimension reduces to the standard eluder752
dimension, which is bounded by the size of the action space.753

index of the first incorrect step Here we prove for ϵ < 1/2L. Given the rubric of η∗, partition754
the action space into L sets, where Al = {(s1, . . . , sL)|s1, . . . , sl−1 are correct and sl is incorrect}755
for l = 1, . . . , L, where A0 denotes sequences where s1 is incorrect. By this definition, we have756
Ai
⋂
Aj = ∅, for i ̸= j, and A∗⋃(

⋃L
l=1Al) = A, where A∗ = {a∗}757

Suppose we have an independent action sequence (a1, . . . , aK) in the sense of Definition 3 where758
each action is ϵ-independent of their predecessors. We show it can have no more than |S| actions759

25

Under review for RLC 2025, to be published in RLJ 2025

from each Al for l ∈ [1, L]. By definition of the feedback, for a ∈ Al, f∗η (a) = l. Suppose we have760
more than |S| actions fromAl. It implies that a token must be used twice at the lth position. Say it’s761
sl and it’s shared by a1, a2 ∈ Al. Then we show a2 is ϵ-dependent on a1 when ϵ < 1/L. For η ∈ H,762
satisfying Eo∼f∗(a0)[|o−fη(a0)|2/L2] = |l−fη(a0)|2/L2 ≤ ϵ2, we have l−Lϵ ≤ fη(a0) ≤ l+Lϵ.763
Since ϵ < 1/2L and fη(a0) is an integer, this implies fη(a0) = l. That is, for such an η satisfying the764
constraint given by a0, sl is incorrect. This implies fη(a1) ≤ l. Therefore, rη(a0) = rη(a

1) = 0.765

Therefore, the length of independent action sequences is bounded by |S|L+ |A∗| = |S|L+ 1 .766

give correction for the first mistake In this case, the feedback not only returns the index of the767
first incorrect step l, but also reveals the correct reasoning action s∗l . Let a∗η = (s1(η), . . . , sL(η))768
denote the L reasoning steps based on the hypothesis η. The reward function of any action a and769
hypothesis η is rη(a) = I{a∗η = a}. For an action a = (s1, . . . , sL) and feedback o := (l, sl(η))770
generated based on fη(a), we have sj = sj(η) for all j < l and sl ̸= sl(η). Now, given any feedback771

o := (l, s∗l), we define the following loss ℓ(a, o, η) = 1
L

(∑l−1
j=1 I{sj(η) = sj}+ I{sl(η) = s∗l }

)
.772

This verifer loss evaluates whether η and η′ have the same first l reasoning steps.773

For ϵ < 1, suppose an action sequence (a1, . . . , aK) where each action is ϵ-independent of their774
predecessors. If action a is ϵ-independent, there exists η, η′ such that

∑K
i=1 Eoi∼fη′ (a)[l(ai, oi, η)] ≤775

ϵ and |rη(a) − rη′(a)| > ϵ. By definition of the feedback and loss, we know η,η′ have the same776
initial maxi li reasoning steps. However, we know that rη(a) ̸= rη′(a) indicating at least one index777
l > maxi li where sl ∈ {sl(η), sl(η′)} and sl(η) ̸= sl(η

′), resulting in feedback o = (l, sl(η
′)) for778

a. Thus, the sequence of indices in feedback o1, o2, . . . is monotonic. As we have L reasoning steps,779
for any pair η, η′, the sequence length is bounded by L.780

demonstration Here, the feedback directly demonstrates correct reasoning sequence a∗ =781
(s∗1, . . . , s

∗
L) and is independent of the agent’s action sequence. For action a = (s1, . . . , sL) and782

hypothesis η, we define the loss as ℓ(a, o, η) = I{o = a∗η}. Therefore, for any η, η′ and ϵ < 1, if a783
satisfies: Eo∼fη′ (a)ℓ(a, o, η) ≤ ϵ, we have a∗η = a∗η′ , implying rη(a) = rη′(a) for all a ∈ |S|L and784
a transfer Eluder dimension of 1.785

C LLF and its relationship to existing paradigms786

In this section, we describe the relation of LLF with existing paradigms of learning from feedback,787
as alluded to in Fig. 2 in more detail. In all discussed paradigms, we focus our comparison on788
how different forms of feedback are subsumed within LLF, while other environment parameters are789
loosely assumed to be included in the LLF agent’s hypothesis space. LLF covers the following790
learning paradigms commonly discussed in the literature:791

Reinforcement learning (RL) In RL, upon seeing an environment state xt ∈ X , the agent chooses792
an action at ∈ A and observes a scalar reward feedback rt ∈ R. The rewards and states observed793
by the agent at any decision step t, can depend on the past observed states and actions. In LLF,794
the agent’s hypothesis η ∈ H returns a reward function rη : A × X → [0, 1], while the feedback795
function is exactly the same: fη = rη . Hence, RL is trivially subsumed by LLF.796

Interaction-guided Learning (IGL) (Xie et al., 2021) In IGL, the environment generates a latent797
scalar reward r(x, a) ∈ [0, 1] but only reveals a rich feedback vector y ∈ Y . To enable learning,798
IGL framework assumes reward decodability, i.e., the existence of a decoder ψ ∈ Ψ, such that ψ :799
Y ×A → [0, 1], capable of extracting reward estimates for the agent. LLF naturally accommodates800
this by modeling both the latent reward rη and the feedback mapping fη (hence the feedback y),801
allowing the agent to reason about the consistency between the decoded rewards and the observed802
feedback vectors without needing to identify the true decoder ψ∗ or the true feedback function f∗.803

26

Provably Learning from Language Feedback

Reward-informative LLF Reward-informative LLF, defined formally in Definition 5, subsumes804
the special case where the latent reward function is itself a function of the observed feedback (Xie805
et al., 2024). This framework generalizes both RL and IGL, capturing scenarios where feedback is806
rich and structured (e.g., language) but ultimately reflects reward. As discussed in Section 3.3, this807
class of LLF problems can be no harder than the reward-only setting and may even improve sample808
efficiency by leveraging structure in the feedback to recover the reward signal more effectively.809

Multi-objective RL (MORL) MORL extends the standard RL framework to environments that810
return vector-valued rewards rather than a single scalar. The central challenge in MORL is balanc-811
ing trade-offs across multiple objectives, often handled via scalarization methods (see single-policy812
learning approaches in (Roijers et al., 2013; Zhang & Golovin, 2020)) or Pareto front exploration813
(Mossalam et al., 2016). In LLF, this is naturally captured by allowing the agent’s hypothesis to rep-814
resent vector-valued reward functions. Furthermore, the verifier loss ℓ : A×O×H can be extended815
accordingly. Since the reward vector may be under-determined with respect to the underlying utility816
function, we treat MORL as distinct from reward-informative LLF (Definition 5), which assumes817
informativeness of feedback with respect to scalar reward.818

Preference-based RL In PbRL, the environment does not reveal scalar reward feedback. Instead,819
the agent receives pairwise preferences over actions (or trajectories), e.g., that action a is preferred820
over action a′. These comparisons may be between actions selected by the agent or between one821
agent-chosen action and a reference provided by the environment. LLF captures this setting by822
modeling the feedback function fη as a binary comparator over pairs of actions such that fη(a, a′) ∈823
{0, 1} indicates the binary preference. The underlying reward model can be implicitly defined in the824
hypothesis η such that it induces such preferences. Thus, this preference based structure fits within825
LLF.826

Imitation learning (IL) In IL, the agent learns from demonstrations of expert behavior rather827
than explicit feedback or rewards. To make a closer comparison with LLF, we can consider the828
interactive imitation learning setting, where the agent observes expert actions (corrections) for the829
all environment observations. IL can be modeled within the LLF framework by considering expert830
actions as a form of feedback f∗η = a∗. Any hypothesis η ∈ H considered by the LLF agent831
can evaluate a verifier loss which corresponds to the discrepancy between the optimal action of the832
hypothesis a∗η and expert action a∗. IL is thus a special case of LLF where the feedback space is833
the action space itself, and consistency between the agent’s output and expert-labeled actions is the834
verifier loss.835

D Extensions836

D.1 Special Case of Reward-Agnostic Feedback837

Text feedback may contain information beyond what is relevant to the reward. In particular, one838
could imagine a special case, where feedback does not reveal much about the reward, but still pro-839
vides enough to identify an optimal action over time. One simple example is when the feedback840
directly reveals the optimal action, regardless of the action chosen. In this case, the transfer eluder841
dimension as defined could be arbitrarily large, but ideally an efficient LLF agent should choose the842
optimal action in the following steps instead of trying to identify the mean reward for each action.843

D.2 Extension to Contextual Bandits844

Our formulation can be modified slightly to accommodate learning with a context. In a con-845
textual problem, a Markov process Xt independently takes values in a set X that the agent846
views as contexts. We may define the full set of actions to be the set of context-action pairs847
A := {(x, a) : x ∈ X , a ∈ A(x)}, where A(x) is the set of available actions under the con-848
text x. Instead of having a fixed action space A across time, consider time-varying action sets849

27

Under review for RLC 2025, to be published in RLJ 2025

(a) Wordle (50 scenarios) (b) Battleship (20 scenarios) (c) Minesweeper (20 scenarios)

Figure 4: We show the cumulative reward that the agent is able to obtain during a fixed number of
interactions with the environment. Shaded area represents the standard error of cumulative reward
across different scenarios. The battleship result looks different here because we fixed a bug on how
we sample random actions to construct πref in the experiments with the main paper submission.

At := {(Xt, a) : a ∈ A(Xt)}. At each time t, an action at ∈ At will be selected. In accordance,850
the policy π = {πt|t ∈ N} is now a sequence of functions indexed by time, each mapping the his-851
tory Ht = (A0, A0, R0, . . . ,At−1, At−1, Rt−1,At) to a distribution over A with support At. Our852
analysis for the context-free setting directly carries over.853

E Experiment Details854

In this section, we present the details of the implementation of our proposed provable agent in three855
environments that require the LLM agent to learn from language feedback. In particular, we use the856
following three gym environments proposed in Tajwar et al. (2025).857

WORDLE In each scenario, the environment selects a secret 5-letter word from a predefined dictio-858
nary. The agent can attempt to guess the word, receiving feedback after each guess indicating correct859
letters and their positions. In our experiment, we used 50 scenarios to evaluate our algorithm. To860
better illustrate Example 2 in Sec 3.2, we modify the feedback from the original environment to only861
contain information about the first incorrect character. For example, if the target word is “totem”,862
and the agent’s guess is “apple”, the feedback is “The first letter ‘a’ is incorrect.” Considering that863
this feedback provides less information than the typical wordle feedback, we allow the agents to864
make 10 attempts before termination.865

BATTLESHIP Battleship is a 2D grid environment where three hidden ships must be located and866
sunk within 20 turns. The agent fires at one cell per turn, receiving hit/miss feedback and ship type867
(Carrier, Battleship, Destroyer). Success requires strategic exploration to find ships and exploitation868
to sink them efficiently. We use 20 scenarios (maps of ship layout) to evaluate our agent. For this869
game, we offer a per-step reward, such as “a ship was hit but not sunk” would correspond to 0.5870
points. This point system is only used for evaluation purposes to showcase the agent’s ability to871
explore. We do not communicate any numerical reward information to the agent.872

MINESWEEPER Minesweeper is a 2D grid puzzle with hidden mines. At each turn, the agent873
reveals one cell, aiming to uncover all safe cells within 20 turns without hitting a mine. Revealed874
cells show the number of adjacent mines, and a ‘0’ triggers automatic reveals of surrounding safe875
cells. Success depends on sequential reasoning and updating hypotheses based on observed clues.876
The agent receives a 0.2 reward for choosing a square that does not have a mine, and a 1.0 reward877
for fully solving the game. Invalid moves incur a -0.2 penalty.878

E.1 LLF-UCB with Parallel Thought Sampling879

First, we define three types of LLM calls used throughout our algorithm implementation: generat-880
ing hypotheses and candidate actions, constructing a reference policy, and evaluating actions under881
different hypotheses. Given observation o, and a number of actions to sample N ,882

28

Provably Learning from Language Feedback

1. propose(o, N): At each step, we invoke propose(o, N) to prompt the LLM to gen-883
erate N diverse hypotheses candidates {h1, . . . , hN} and their corresponding actions A =884
{a1, . . . , aN} given the current observation o. Specifically, we use chain-of-thought style prompt-885
ing to generate the action. We view the reasoning of that action as the hypothesis. The collection886
of hypotheses are used to approximate the constraint in Algorithm 1.887

2. πref(o): To define the reference policy πref, we prompt the LLM to produce M exploratory888
or unconventional actions A′ = {aN+1, . . . , aN+M} that are valid yet intentionally deviate from889
typical behavior. The prompt encourages the model to generate creative, non-obvious alternatives.890

3. evaluate(a, h): Given all actions and hypotheses, This function evaluates an action a under891
a given hypothesis h, returning a score in the range [0, 1] quantifying how well the action aligns892
with the proposed reasoning. Note, we do not use thoughts (“random thought”) that produced the893
exploration actions.894

Figure 5: Algorithm Diagram. Note that we do not use a ground-truth verifier during the self-cross-
check process. The agent proposes actions and uses different actions’ chain-of-thought to conduct
cross-check. Our proposed algorithm is an inference-time algorithm with a self-judge.

Figure 6: LLF-UCB Algorithm. We show that the LLF-UCB algorithm has three steps. The con-
sensus check is first performed to see each hypothesis’ highest scoring actions overlap. If such
overlap does not exist, a UCB-style hypothesis elimination process is then carried out – only hy-
potheses with the highest scoring actions are kept. Without πref, LLF-UCB will do tie-breaking.
However, if we introduce a uniform policy πref, then we can re-calculate the score of each action by
subtracting over the average – in this example, we were given A3 and A4 as random actions.

We consider the following agents for comparison. We also implement two variants of the LLF-UCB895
agents, with slightly different procedures on how the action is chosen.896

Greedy This agent generates one hypothesis and one action, and returns that action immediately.897
This the ReAct-style baseline.898

UCB We first ask an LLM to generate N candidate hypotheses and their corresponding actions, as899
well as M exploratory actions from the reference policy. Then the agent evaluates all of the actions900
under all of the hypotheses, forming a matrix of N × (N +M), where we evaluate each hypothesis901

29

Under review for RLC 2025, to be published in RLJ 2025

to all proposed actions and exploratory actions. The agent then select the hypothesis with the highest902
score and perform the corresponding best action. If there are ties, the first generated action among903
ties is chosen.904

LLF-UCB We first ask an LLM to generateN candidate hypotheses and their corresponding actions,905
as well as M exploratory actions from the reference policy. Like UCB agent, the agent evaluates906
all of the actions under all of the hypotheses, forming a matrix of N × (N +M). Then, to select907
an action, following Lemma 5, our agent first checks whether a consensus action a exists—i.e., an908
action that achieves the highest score across all hypotheses. Specifically, if for a given action a such909
that, ∀h,∀ai, we have evaluate(h, a) ≥ evaluate(h, ai), then a is identified as a consensus910
action and selected immediately. If no such consensus action exists, we first calculate the score for911
each hypothesis based on the best action, i.e. score(hi) = maxj score(hi, aj), and then only912
keep the hypotheses with the highest score. If multiple hypotheses yield the same highest score,913
different from the UCB agents which break ties randomly, here we apply a tie-breaking procedure by914
normalizing scores using the exploratory actions. To break the tie, we subtract the average score over915
the M exploratory actions from each score: score(hi, aj) ← score(hi, aj) − Ea∼πref [score(hi, a)].916
After normalization, we select the hypothesis with the highest normalized score. If a tie still remains,917
we randomly sample one of the top-scoring hypotheses. The final action is then selected as the918
highest-scoring action under the chosen hypothesis, with ties again resolved via random sampling.919

LLF-UCB (No πref) We run a variant of our LLF-UCB algorithm without πref, meaning that we do920
not perform the final subtraction step to compute score(hi, aj). This is direct an approximation of921
the theoretical algorithm in Algorithm 1, whereas LLB-UCB above adds a tie-breaking rule based922
on πref which Algorithm 1 does not cover.923

E.2 Empirical Results924

We plot the cumulative reward as a function of the number of environment interaction steps on WOR-925
DLE, BATTLESHIP, and MINESWEEPER in Figure 4. We see that for all three environments, the base926
LLM, where we only greedily choose the first action, performs worse generally. In environments927
where information-gathering is more necessary, such as in BATTLESHIP or in MINESWEEPER,928
agents designed to conduct strategic explorations tend to outperform the greedy base LLM by a929
large margin.930

As shown, our LLF-UCB agents consistently outperform both the greedy baseline and barebone931
UCB agents. In particular, on BATTLESHIP and MINESWEEPER, LLF-UCB achieves a significant932
performance improvement over the baselines. Although the theoretical version of our algorithm933
does not use πref, we found that across these three environments, performing an explicit score nor-934
malization is beneficial. This normalization computes the score for each action as the gap between935
the score for such action and averaged score of random actions. The gap encodes the implicit direc-936
tive of choosing actions that have the largest gain over random actions, using the LLM’s ability to937
self-verify.938

30

Provably Learning from Language Feedback

E.3 Prompt Templates939

Propose Action Prompt

Given the information above, please propose some hypotheses and act according to those
hypotheses.
You can propose at most {num_actions} hypotheses.
Please propose a reasonable number of hypotheses – each hypothesis represents what you
think.
Please provide your actions in the following format:
Action 1: <think>...</think> <answer>action 1</answer>
...
Action {num_actions}: <think>...</think> <answer>your {num_actions}th ac-
tion</answer>

940

Propose Exploration Action Prompt (πref)

Given the information above, please propose {num_actions} completely different and un-
expected actions. These should be valid in the environment but should explore unusual or
creative approaches.
Try to think outside the box and propose actions that might not be immediately obvious or
conventional.
Here are the actions you have already proposed:
{actions}
Please avoid proposing the same actions.
Please provide your actions in the following format:
Action 1: <think>...</think> <answer>your first random/exploratory action</answer>
...
Action {num_actions}: <think>...</think> <answer>your {num_actions}th ran-
dom/exploratory action</answer>

941

31

Under review for RLC 2025, to be published in RLJ 2025

Evaluate Hypothesis

{task description}
========================
Now you have a new task. You are a given a hypothesis (thought/instruction) and actions.
You need to evaluate how good or bad the action is given the hypothesis.

Hypothesis:
<think>
{hypothesis}
</think>

Rate all the actions indiviually based on whether the action is aligned with the hypothesis.

Action {action_idx}: <action>{action}</action>

Make sure the score you assign is between 0 and 1. Please provide your scores in the
following format:

Action 1 for the Hypothesis:
<think> ... </think>
<score>...</score>
...
Action {num_actions} for the Hypothesis:
<think> ... </think>
<score>...</score>

942

32

