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ABSTRACT

Event cameras, with a high dynamic range exceeding 120dB, significantly outper-
form traditional cameras, robustly recording detailed changing information under
various lighting conditions, including both low- and high-light situations. However,
recent research on utilizing event data has primarily focused on low-light image
enhancement, neglecting image enhancement and brightness adjustment across a
broader range of lighting conditions, such as normal or high illumination. Based
on this, we propose a novel research question: how to employ events to enhance
and adjust the brightness of images captured under broader lighting conditions. To
investigate this question, we first collected a new dataset, SEE-600K, consisting of
610,126 images and corresponding events across 202 scenarios, each featuring an
average of four lighting conditions with over a 1000-fold variation in illumination.
Subsequently, we propose a framework that effectively utilizes events to smoothly
adjust image brightness through the use of prompts. Our framework captures
color through sensor patterns, uses cross-attention to model events as a brightness
dictionary, and adjusts the image’s dynamic range to form a broader light-range
representation (BLR), which is then decoded at the pixel level based on the bright-
ness prompt. Experimental results demonstrate that our method not only performs
well on the low-light enhancement dataset but also shows robust performance on
broader light-range image enhancement using the SEE-600K dataset. Additionally,
our approach enables pixel-level brightness adjustment, providing flexibility for
post-processing and inspiring more imaging applications.

1 INTRODUCTION

Every day, from daylight to nighttime, the illuminance varies from about 100,000 lux (bright sunlight)
to approximately 0.1 lux (starlight) (Koshel, 2012). Maintaining stable imaging under diverse natural
lighting conditions is a significant challenge. To achieve this, a series of influential works have
emerged, including automatic exposure (Bernacki, 2020), exposures correction (Yuan & Sun, 2012),
low-light enhancement (Li et al., 2021) and high dynamic range (HDR) imaging (McCann & Rizzi,
2011). However, traditional cameras are limited by their imaging principle of synchronously capturing
intensity values across the entire sensor, with a dynamic range of only 60 to 80 dB Hasinoff et al.
(2016); Rebecq et al. (2019). Consequently, these traditional methods find it difficult to capture imaging
information under a wide range of lighting conditions at the input (Gehrig & Scaramuzza, 2024; Gallego
et al., 2020). If the exposure is inaccurate - over and under exposures - traditional cameras lose the
potential to restore images under complex lighting conditions due to limited bits-width and noise.
Unlike traditional cameras, event cameras Gallego et al. (2020) asynchronously record pixel-level
changes in illumination, outputting the direction of intensity change (positive or negative) at each
pixel with extremely high dynamic range (120 dB), which far exceeds the capability of traditional
cameras in capturing various lighting intensity.

Research leveraging the events for image brightness enhancement can be divided into three categories.
(1) event-based image reconstruction, which aim to reconstruct images only from events. However,
these methods (Rebecq et al., 2019; Stoffregen et al., 2020; Wang et al., 2024) rely solely on events, facing
uncertainties during reconstruction, and the events usually contain heavy noise, which leads to color
distortion and limited capabilities of generalization. (2) event-guided HDR imaging (Cui et al., 2024;
Yang et al., 2023; Messikommer et al., 2022) , which aims to employ events to extend the dynamic range
of images or video to match human vision. However, synthesizing HDR images as ground truth
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Figure 1: (a) and (b): Brightness distributions of the SDE dataset (0∼0.45, low to normal light) and our
SEE-600K dataset (0∼1, a broader light range). (c): Previous methods (Liang et al., 2024; 2023) directly map
low-light images to normal-light images. (d): Our SEENet accepts inputs across a broader brightness range and
adjusts output brightness through prompts. fb refers to the function that calculates the brightness of an image.

is difficult. (Cui et al., 2024) introduced the first real-world dataset containing paired color events,
low dynamic range, and HDR images, with only includes 1,000 HDR images. (Messikommer et al.,
2022) used nine images with different exposures to synthesize an HDR image as the ground truth and
utilized multi-exposure frames and events as inputs to generate an HDR image. While HDR imaging
aims to expand dynamic range, collecting HDR datasets is difficult, and these methods have not been
evaluated for tasks like low-light enhancement or high-light restoration (Tursun et al., 2015; Jayasuriya
et al., 2023). (3) event-guided low-light enhancement (Liang et al., 2024; 2023; Liu et al., 2023; Jiang
et al., 2023), which is designed to adjust low-light images to normal-light conditions through brightness
adjustment and noise reduction. Liang et al. (2024) represents the latest research and proposed the
first event-based low-light image enhancement dataset, SDE (see Fig. 1 (a)). Prior to this, Liang et al.
(2023); Liu et al. (2023); Jiang et al. (2023) explored using motion information from events and employed
varying neural networks to improve the mapping from low-light images to normal-light ones, as
shown in Fig. 1 (c). However, these strategies only focus on the improvement of mapping ability
for low-light inputs, limiting their capacity to adjust brightness across a broader range of lighting
conditions, e.g., normal or high-light images. Furthermore, due to the uncertainty in the standard
for normal-light image collection—as the normal-light images are relative to low-light images (as
shown in Fig.1 (a))—these methods introduce ambiguity during the training process because they
can only map low-light images to normal-light ones based on a single set of low- and normal-light
data pairs captured per scene. Overall, current research focuses on low-light enhancement, neglecting
image enhancement and processing under a wider range of lighting conditions. Therefore, how to
use events to enhance and adjust the brightness of images across a broader range of lighting
conditions becomes a more worthwhile research question.

To address this novel research question, we first formulate the imaging model for brightness adjust-
ment (Sec.3) and define the learning task. We aim to perceive lighting information from events,
utilizing brightness prompts to convert this lighting information into images with a specific brightness.
In doing so, other image quality aspects (like sensor patterns, noise, color bias, and so on) are taken
into consideration.

To realize our proposed task, we first collecte a new dataset by emulating each scene in different
lighting conditions, covering a broader luminance range (Sec.4), as shown in Fig.1 (b) and (d). By
capturing multiple lighting conditions per scene, we enable mappings across diverse illumination
scenarios, providing rich data for model training. To tackle the challenges of spatio-temporal
alignment of video and event streams under various lighting conditions, we design a temporal
alignment strategy relying on programmable robotic arms and inertial measurement unit (IMU)
sensors. As a result, we obtain a temporal registration error up to one millisecond and a spatial
error at the sub-pixel level (∼ 0.3 pixel). Finally, we build a large-scale and well-aligned dataset
containing 202 scenes, each with 4 different lighting conditions, summing up to 610,126 images
and the corresponding event data. We term this dataset as SEE-600K, which supports learning the
mappings among multiple lighting conditions.
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Building on the SEE-600K dataset, we propose a compact and efficient framework, SEE-Net, for the
proposed new tasks (Sec. 5). An event-aware cross-attention is used to enhance image brightness,
and the brightness-related prompt is introduced for controlling the overall brightness. This approach
effectively captures and adjusts lighting across a broader range of illumination conditions, providing
flexibility and precise control during inference. Despite of the advantage of performance, SEE-Net
still remains effective, compact, and lightweight with only 1.9 M parameters.

Our method has been evaluated on two real-world datasets, SDE (Liang et al., 2024) and SEE-600K.
Quantitative results demonstrate that our framework fits well to a broader range of lighting conditions
(Sec. 6). Furthermore, our framework allows for smooth brightness adjustment, providing precise
exposure control. Therefore, this flexibility significantly improves post-processing capabilities and
enables potential applications in advanced imaging and processing tasks.

2 RELATED WORKS

Frame-based: These brightness enhancement methods aim to improve image quality under chal-
lenging illumination conditions. Retinexformer (Cai et al., 2023) and other Retinex-based frame-
works (Zhang et al., 2021; Wu et al., 2022; Fu et al., 2023) decompose reflectance and illumination
with complex training pipelines. Other approaches, e.g., structure-aware models (Xu et al., 2023b;
Wang et al., 2023c), utilize edge detection or semantic-aware guidance to achieve sharper and more
realistic results. Exposure correction strategies (Afifi et al., 2021; Panetta et al., 2022; Ma et al., 2020)
target both overexposed and underexposed areas, leveraging multi-scale networks or perceptual
image enhancement frameworks to synthesize correctly exposed images. However, the reliance on
RGB frames with limited bit depth, limits the adaptability to dynamic lighting conditions, making
it difficult to handle a broader range of lighting scenarios. Event-based: These methods focus
on reconstructing images or videos exclusively from event data. For instance, Duwek et al. (2021)
introduced a two-phase neural network combining CNNs and SNNs, while Pan et al. (2019) proposed
the event-based double integral model to generate videos. Stoffregen et al. (2020) enhanced event-based
video reconstruction by introducing the new dataset. Additionally, Liu & Dragotti (2023); Wang et al.
(2024) developed a model-based deep network to improve reconstructed video quality. However, these
event-based approaches face challenges due to event data noise, often leading to color distortion and
limited generalization. Event-guided: These works are centered on enhancing images captured in
low-light conditions. E.g., Zhang et al. (2020) and Liu et al. (2024) recovered lost details in low-light
environments by reconstructing grayscale images. Similarly, Liang et al. (2023) and Liu et al. (2023)
improved low-light video enhancement by leveraging motion information from events to enhance
multi-frame videos and integrating spatiotemporal coherence. Furthermore, Jin et al. (2023) and Jiang
et al. (2023) utilized events to recover structural details and reconstruct clear images under near-dark
situations. Most notably, Liang et al. (2024) introduced the first large-scale event-guided low-light
enhancement dataset, which is significant for the development of this field. While these methods
use events for brightness changes and structural recovery in low-light conditions, they are limited to
enhance low-light images with single mapping and cannot handle brightness adjustments across a
broader range of lighting conditions, including normal- and high-light.

3 PRELIMINARIES AND NEW TASK DEFINITION

In this section, we formalize the physical model underlying our approach to enhance and adjust image
brightness across a broader range of lighting conditions using events. Imaging is fundamentally the
process of capturing the radiance of a scene, represented as a radiance field L(t) varying over a preset
slot t. The illuminates of light in daily life span a vast range, from 0.1 lux (starlight) to 1e6 lux (direct
sunlight). The goal of brightness adjustment is to recover or estimate L(t) and tone-map it into an
image that is visually suitable for human perception.

Traditional cameras record light signals through exposure (Mendis et al., 1997). This voltage is
influenced by the Gaussian noise N = N (µ, σ2) (µ is the mean and σ2 is the variance), and the
photon shot noise P = P(k), where k ∝ L(t) is the number of photons, proportional to light
intensity. In low-light conditions, Gaussian noise dominates, while in high-light conditions, photon
shot noise becomes more significant. These noises influence the final value in the RAW image, simply
represented as Iraw ≈ Q(L(t) + P + N), where Q is the quantization function that converts the
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Figure 2: (a) data collection setup: Universal Robots UR5e arm replicates precise trajectories with an error
margin of 0.03mm. (b) IMU data registration: b (1) shows unregistered IMU data, while b (2) displays
registered data after timestamp alignment. (c) EVS outputs with different filters: f1 to f4 demonstrate the
different ND filters, depicting various lighting levels.

continuous voltage into discrete digital signals, typically ranging from 8 to 12 bits. The shape of the
image Iraw is H ×W × 1, where H and W are the image resolution. The RAW image is then further
processed through image signal processing (ISP) fisp, which includes multiple steps e.g., denoising,
linear and non-linear transformations, resulting in a RGB image as Irgb = fisp(Iraw), with the shape
of H ×W × 3. An accurate image exposure procedure recovers Irgb corresponding to L(t), up to a
high degree meeting the following three characteristics: (1) accurate exposure: The mean value of
Irgb falls within the range [0.4, 0.7] (Mertens et al., 2009). (2) noise-free: The influence of N and P is
suppressed to a visual-acceptable level. (3) color neutrality: The gray levels calculated from the
RGB channels should be consistent (Buchsbaum, 1980). However, traditional cameras sometimes fail
to capture sufficient details in extreme-lighting scenes. Under such low-light conditions, images may
lack visible details and be contaminated by noise, while in high-light conditions, images may suffer
from oversaturation, losing texture and edge information.

Event cameras asynchronously detect illumination changes at each pixel, making them ideal for
capturing scenes with extreme or rapidly changing lighting conditions (Gallego et al., 2020). The
event stream’s outputs are formatted as 4 components: (x, y) (pixel coordinates), t (timestamp), and
p ∈ {+1,−1} (polarity, indicating light intensity increase or decrease). Events are triggered when the
change in illumination exceeds a threshold C (∆L = log(L(t))− log(L(t−∆t)) where |∆L| > C).
We jointly leverage the complementary information from an image Irgb and its corresponding events
E to recover a high-quality well-illuminated image ˆIrgb that accurately represents the scene radiance
L(t), while also allowing for adjustable brightness. To achieve this, we introduce a brightness prompt
B that controls the overall brightness of the output image. This allows us to map the L(t) into an
image that is optimally exposed for human observation. Our task setting can thus be formulated as
Eq. 1, where fsee is our proposed model, as shown in Fig. 1.

fsee(Irgb, E,B) → ˆIrgb. (1)
This formulation has two advantages: (1) robust training: By inserting the brightness prompt B
during training, we can decouple the model from biases in the training data with specific brightness
level, enabling the model to generalize better over illuminates domain. (2) flexible inference: During
inference, the prompt B can be set to a default value (e.g., B = 0.5) to produce images with general
brightness, or be adjusted to achieve different brightness levels, providing flexibility for applications
requiring specific exposure adjustments or artistic effects. Due to space limitations, please refer to
the supplementary material for more details of this section.

4 DATASET COLLECTION

In this section, we introduce the SEE-600K dataset, designed to contain (1) multiple lighting condi-
tions, (2) complex motion trajectories and (3) spatio-temporal alignment. Unlike the state-of-the-art
SDE dataset (Liang et al., 2024), we capture data across multiple lighting conditions. Most impor-
tantly, SEE-600K is nearly 20 times larger than the SDE dataset, providing a stronger foundation for
training models with better generalization.
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Figure 3: (a) registration process: Illustration of the multi-level registration process, showing how trajectories,
S and T , at various levels are iteratively aligned. (b) two trajectories: Example of two aligned images captured
along two trajectories. (c) pixel distance change: Temporal distance of pixel between two registered videos,
showing a mean alignment error of 0.2957 pixels over time.

(1) multiple lighting conditions: Our approach is based on the principle that lighting transitions
continuously from low to high intensity. Unlike previous datasets (Liang et al., 2024; Wang et al., 2021),
which captured only a single pair of low-light and normal-light conditions, we focus on multiple
samples. To cover a broader lighting range, we record an average of four videos per scene, using
neutral density (ND) filters at three levels (1/8, 1/64, 1/1000) and one without a filter. We also
adjust the aperture and exposure settings to capture each scene under diverse lighting conditions. (2)
complex motion trajectories: We employ the Universal Robots UR5e robotic arm, which can provid
high stability and repeat the same non-linear trajectory with an error margin of 0.03 mm (Liang et al.,
2024; Brey et al., 2024), allowing us to capture multiple videos with spatial consistency, as exhibited
in Fig. 3 (a). (3) spatio-temporal alignment: While the robotic arm guaranteed spatial alignment,
asynchronous control over the camera’s start and stop times inevitably introduced timing deviations.
To resolve this, we propose an IMU-based temporal alignment algorithm, as shown in Fig. 3 (b).
IMU streams synchronized to events and video with microsecond timestamps in the DVS346 camera.
Additionally, the IMU stream depends only on motion trajectory and enjoys a temporal resolution of
1000 Hz. Based on this, our algorithm achieves precise temporal alignment, ensuring synchronization
across the entire dataset, as displayed in Fig. 3 (c).

Temporal IMU Registration Algorithm: We propose an IMU data registration algorithm that aligns
the source sequence S and target sequence T by finding the optimal bias b and matching length l
to minimize the L1 distance between them. Given the high resolution of IMU data at 1000Hz, an
exhaustive search for the optimal bias is computationally infeasible. To address this, we introduce
a multi-level iterative strategy. First, we denoise the IMU data using a Kalman filter (Mirzaei &
Roumeliotis, 2008). Then, the average pooling is utilized to reduce the sequences to two additional
levels, Level-1 (S1, T1) and Level-2 (S2, T2), as shown in Fig. 3 (a)- 1⃝ 2⃝. This reduces computational
complexity while preserving essential alignment features. The window size is chosen based on our
video durations, which ranges from 10 to 120 seconds. We perform a coarse search for the optimal
bias b and matching length l at the lowest resolution (Level-2). The results from this level serve as
center points for finer searches at higher resolutions. Specifically, the bias and length identified at
each level guide local searches at the next level up, as displayed in Fig. 3 (a)- 3⃝ 4⃝ 5⃝. At Level-1
and the original data level (Level-0), we only need to search locally around these center points.
This hierarchical approach efficiently achieves high matching accuracy with significantly reduced
computational effort.

Spatial-Temporal Alignment Evaluation: To evaluate the accuracy of our IMU registration algo-
rithm, we capture the same scene twice under identical lighting conditions, as illustrated in Fig. 3 (b).
We assess the alignment metric between the two image sequences by calculating the pixel-level dis-
tance at the corresponding timestamp. Alignment Metric: For each image pair, we extract keypoints
using SIFT (Lowe, 2004) and then employ the FLANN matcher (Muja & Lowe, 2009) to find matching
keypoints between the two images. Based on these matched keypoints, we compute the affine
transformation matrix using RANSAC (Fischler & Bolles, 1981). This transformation is subsequently
applied to each pixel, allowing us to calculate the displacement distance for every pixel. Finally, the
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Figure 4: Overview of our proposed framework, called SEE-Net, which is composed of four stages: (a) Inputs
and Preprocessing, (b) Encoding, (c) Decoding, and (d) Loss Function. This framework takes as input an
image captured under a wide range of lighting conditions, along with its corresponding events. The output is a
brightness-controllable image, where the brightness is guided by the brightness prompt B, enabling flexible
pixel-level adjustment during inference.

average pixel distance is employed as the metric for alignment. Alignment Results: In the alignment
evaluation, we select scenes with well-defined textures, as illustrated in Fig. 3 (b). After calculating
the pixel distances, we observe that the average pixel error between the paired images is 0.2967
pixels. Throughout the entire time sequence, the pixel-level distance remains below 0.8 pixels, with
the majority of errors being under 0.5 pixels, as exhibited in Fig. 3 (c). These results demonstrate
that the registration accuracy of our dataset reaches sub-pixel precision. For further details, please
refer to the appendix.

5 METHODS

Overview: As shown in Fig. 4, our framework, SEE-Net, consists of four implementation parts:
(a) Inputs and Preprocessing, (b) Encoding, (c) Decoding, and (d) Loss Function. The input is an
image Ii and its corresponding events E. The output is a brightness-adjustable image Io, where
the brightness is controlled by the prompt B ∈ (0, 1). During training, the brightness prompt B is
calculated according to the target image. On the other hand, during testing, B can be freely set, with a
default value of 0.5, which follows the exposure control constraint (Mertens et al., 2009; 2007). Overall,
the SEE-Net fsee can be described by the Eq. 2 to match our learning task in Sec. 3.

Io = fsee(Ii, E,B). (2)
Below, we elaborate the insights and implementation details of each part.

Inputs and Processing: This part aims to transform initial inputs into features that retain original
information for the encoding stage. The inputs consist of the image Ii and the events E, where Ii has
a dimension of H ×W × 3 (with H and W representing the height and width, and 3 representing the
color channel number). The event stream E is represented as a voxel grid (Tulyakov et al., 2022) with a
dimension of H ×W ×M , where M represents the number of time slices of events. The events
include color information Scheerlinck et al. (2019), which was overlooked in previous works, e.g.,
(Liang et al., 2024; 2023). Specifically, this DVS346 sensor records events with Bayer Pattern (Lukac
et al., 2005). To effectively embed both the color and positional information during framework training,
we design the position and bayer pattern embeddings, as shown in Fig. 4 (a). The position and Bayer
Pattern are denoted as a vector (x, y, bp), where x, y is the pixel position, and bp denotes the Bayer
Pattern index, which takes a value from 0 to 3. We embed this vector into a higher-dimensional
feature, termed as P , and concatenate it with the inputs. Two layers 1× 1 convolutions, denote fe
and fi, are then applied to obtain the initial event features Fe and image features Fi. This process is
described by the Eq. 3, where fcat denotes the concatenation function.

Fe = fe(fcat(E,P )), Fi = fi(fcat(Ii, P )). (3)
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Encoding: In this stage, we aim to obtain the BLR by employing the event feature Fe to enhance the
image feature Fi, facilitating noise reduction and the acquisition of broader light range information.
Since Fe contains rich information about the lighting changes across different intensity levels, we
use it as the source for representing the broader light range. However, event data only records
changes in illumination, which differ fundamentally from the static RGB frame modality. This makes
directly utilizing event data for broader light representation challenging. To address this, we employ
a cross-attention (Liang et al., 2021) for feature fusion, producing the initial fused broad-spectrum
feature F1, expressed as F1 = fc0(Fe, Fi), where fc0 is a cross-attention block. Then, inspired by
previous works (Wang et al., 2020), we utilize sparse learning to generate residuals for F1 from the
event features Fe. These residuals are progressively generated from the loop that executes L times.
Multiple iterations are used because they allow the model to iteratively refine the residuals, capturing
finer details and enhancing the feature representations by progressively integrating information from
the events. A single loop of this process can be expressed as, Fj+1 = fl(Fe, F1, Fj), where fl is a
loop function that contains two cross-attention blocks as shown in Fig. 4 (b), where Fj and Fj+1

are the input and output of one loop. After L iterations, the final feature FL represents the BLR, as
described by Eq. 4.

FL = fse(Fe, F1) = fl(Fe, F1, fl(Fe, F1, ...fl(Fe, F1, F1))). (4)

Decoding: The objective of this part is to decode the BLR into a brightness-adjustable image Io. In
designing this decoder, we focus on two key insights: (1) The decoding process should be pixel-wise
and efficient, allowing for greater flexibility during model deployment; (2) The embedding of the
brightness information should be thorough and fully integrated. With these insights, we design
the decoder with only a 5-layer MLP as shown in Fig 4 (c). Our decoder begins by encoding the
brightness prompt B ∈ (0, 1) into an embedding vector. To effectively encode the high-frequency
brightness prompt into features that are easier for the network to learn (Vaswani, 2017), we introduce
a learnable embedding, denoted as B = fpe(B) = fmlp(fcat(fmlp(B), B)), which consists of two
MLP layers. Through this embedding, the brightness prompt B is transformed into a vector B,
matching the dimensions of the BLR channels. We then integrate this embedding B into the decoder.
To ensure the brightness prompt is fully incorporated and prevent information loss through multiple
MLP layers, we employ a multi-step embedding approach, as displayed in Eq. 5, which guarantees
that the brightness is progressively embedded throughout the decoding process. During the training
phase, the prompt B is derived from the reference image by applying fb to calculate the global
average brightness. In contrast, during the testing phase, B can be set freely, with a typical example
being a value of 0.5.

Io = fd(FL,B) = fmlp(B + fmlp(B + ...fmlp(B + FL))). (5)

Loss Function: The purpose of our loss function is to supervise the prediction Io using the ground
truth It, with the corresponding brightness B = fb(It). The loss function consists of two main
components: image reconstruction loss Li and gradient loss Lg. The image reconstruction loss is
Charbonnier loss (Lai et al., 2018), which effectively handles both small and large errors. Additionally,
we employ gradient loss to improve the structural consistency of the output image. This is achieved
by enforcing L1 constraints on the gradients of both the output and ground truth images. Therefore,
the overall loss function is formulated as a weighted sum of the image loss and gradient loss, as
exhibited in Eq. 6. Here, ∇ denotes the gradient operator, and λ1 and λ2 are the weights that balance
the contributions of two loss terms.

L(Io, It) = λ1Li + λ2Lg = λ1

√
(Io − It)2 + ϵ2 + λ2∥∇Io −∇It∥. (6)

6 EXPERIMENTS

Experimental Setting: Implementation Details: Our experiments use the Adam optimizer with an
initial learning rate of 2e− 4 for all the experiments. We train our model for 40 epochs on the SDE
dataset (Liang et al., 2024). On the SEE-600K dataset, we train for only 20 epochs, as SEE-600K is
extremely large. All of our training is conducted on an HPC cluster, with a batch size of 2. To enhance
data diversity, we apply random cropping to the images and perform random flips and rotations.
Evaluation Metrics: We maintain consistency with previous methods (Liang et al., 2024; 2023) by
using PSNR and SSIM (Wang et al., 2004). However, since our proposed new problem is highly
challenging and most current approaches perform poorly on our SEE-600K dataset, we additionally
introduce the L1 distance as a reference.
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Table 1: Comparison of different methods on the SDE dataset. The best performances is highlighted in bold. †
refers to the original model for the HDR task, which is fine-tuned and trained on SDE

Method FLOPs Params Events indoor outdoor average
PSNR SSIM PSNR SSIM PSNR SSIM

DCE (Guo et al., 2020) 0.66 0.01 % 13.91 0.2659 13.38 0.1842 13.64 0.2250
SNR (Xu et al., 2022) 26.35 4.01 % 20.05 0.6302 22.18 0.6611 21.12 0.6457
Uformer (Wang et al., 2022) 12.00 5.29 % 21.09 0.7524 22.32 0.7469 21.71 0.7497
LLFlow (Wu et al., 2023) 409.50 39.91 % 20.92 0.6610 21.68 0.6467 21.30 0.6539
Retinexformer (Cai et al., 2023) 15.57 1.61 % 21.30 0.6920 22.92 0.6834 22.11 0.6877
E2VID+ (Stoffregen et al., 2020) 27.99 10.71 ! 15.19 0.5891 15.01 0.5765 15.10 0.5828
ELIE (Jiang et al., 2023) 440.32 33.36 ! 19.98 0.6168 20.69 0.6533 20.34 0.6350
HDRevYang et al. (2023) † 118.65 13.42 ! 21.13 0.6239 21.82 0.6824 21.47 0.6531
Wang et al. (2023a) 170.32 7.38 ! 21.29 0.6786 22.08 0.7052 21.68 0.6919
eSL-Net (Wang et al., 2020) 560.94 0.56 ! 21.25 0.7277 22.42 0.7187 21.84 0.7232
Liu et al. (2023) 44.71 47.06 ! 21.79 0.7051 23.35 0.6895 22.57 0.6973
EvLowlight (Liang et al., 2023) 524.95 15.49 ! 20.57 0.6217 20.04 0.6485 20.31 0.6351
EvLight (Liang et al., 2024) 180.90 22.73 ! 22.44 0.7697 23.21 0.7505 22.83 0.7601
SEENet (Ours) 405.72 1.90 ! 22.54 0.7756 24.60 0.7692 23.57 0.7724

(a) Events (b) Inputs Image (c) Gamma Brightening (d) Normal-light Image (e) SEE Net (Ours) 23.46/0.9108

(f) DCE 15.26 /0.5761 (g) Liu et. al. 18.24/0.8685 (h) eSL Net 17.77/0.8621 (i) EvLowLight 16.75/0.8391 (j) EvLight 17.94/0.8957

Figure 5: Visualization results on the SDE dataset.

Dataset: We conduct experiments on two real-world datasets: (1) SDE (Liang et al., 2024) comprises
91 scenes, with 76 for training and 15 for testing. Each scene includes a pair of low-light and
normal-light images along with their corresponding events. (2) SEE-600K consists of 202 scenes,
with each scene containing an average of four sets of videos under different lighting conditions,
ranging from low light to bright light. During each training session, we randomly select one set of
normal-light images as the reference and use the remaining sets as inputs. For example, for one scene
with one low-light, two normal-light, and one high-light set, we generate six pairs of training data.

Comparative Methods: We categorize the approaches we compare into four groups. Firstly,
DCE (Guo et al., 2020) is a classical approach that can adjust the image brightness curve to achieve
normal lighting. Secondly, there are strategies that only use images as input, including SNR (Xu
et al., 2022), UFormer (Wang et al., 2022), LLFlow (Wu et al., 2023), and RetinexFormer (Cai et al., 2023).
Thirdly, we consider methods that rely solely on events, e.g., E2VID+ (Stoffregen et al., 2020). Tertiary,
we examine event-guided low-light enhancement frameworks. This group includes single-frame input
methods, e.g., eSL-Net (Wang et al., 2020), Liu et al. (2023), Wang et al. (2023a) and EvLight (Liang et al.,
2024), as well as multi-frame input strategies like EvLowLight (Liang et al., 2023). Furthermore, we also
compared the HDR reconstruction method HDRevYang et al. (2023). We retrain all methods, following
the open-source code when available; for approaches without open-source code, we replicate them
based on their respective papers.

Comparative on SDE Dataset: The results from our comparative experiments, shown in Tab. 1,
reveal several key insights: (1) performance limitations of single-modal methods: Methods utilizing
only one modality exhibit limited performance, as shown in Tab. 1. This trend underscores the
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Table 2: Evaluation on the SEE-600K dataset, with methods trained on both the SDE and SEE-600k. EvLowLight
† refers to this method trained after downsampling the dataset by 10 times.

Training
Dataset Methods low light high light normal light

PSNR SSIM L1 PSNR SSIM L1 PSNR SSIM L1

SDE

DCE (Guo et al., 2020) 9.10 0.0968 0.3572 6.26 0.3419 0.4649 10.79 0.3992 0.2524
eSL Net (Wang et al., 2020) 11.92 0.3275 0.2703 6.66 0.1672 0.4001 7.65 0.2685 0.3481
Liu et al. (2023) 12.41 0.4001 0.2487 5.53 0.1950 0.4534 6.58 0.2805 0.4129
EvLowLight (Liang et al., 2023) 12.68 0.4341 0.2338 4.11 0.3071 0.6062 7.01 0.3950 0.4520
EvLight (Liang et al., 2024) 13.07 0.4651 0.2337 5.12 0.1005 0.4842 6.29 0.2805 0.4336
SEENet 14.84 0.5693 0.1779 3.84 0.2119 0.6123 5.36 0.2980 0.5056

SEE

eSL Net (Wang et al., 2020) 11.95 0.3845 0.2421 12.84 0.4660 0.2076 13.45 0.5682 0.1957
EvLowLight † (Liang et al., 2023) 12.83 0.4511 0.2151 12.79 0.4696 0.2084 13.04 0.5531 0.2144
Liu et al. (2023) 13.48 0.5068 0.1946 12.30 0.4766 0.2221 13.70 0.5474 0.2151
EvLight (Liang et al., 2024) 13.70 0.5150 0.1960 13.45 0.4918 0.1990 13.63 0.5924 0.2004
SEENet 18.77 0.6303 0.0971 19.21 0.6675 0.0806 20.92 0.8002 0.0606

(a) Events (b) Inputs Image (Low-light) (c) Normal-light Image (d) SEE Net (Ours) 27.17/0.7761

(e) Liu et. al. 15.98/0.6205 (f) eSL Net 14.32/0.5304 (g) EvLight 26.65/0.7145 (h) SEE Net (Ours) Prompt 0.5

(i) Events (j) Inputs Image (Low-light) (k) Normal-light Image (l) SEE Net (Ours) 26.85/0.8937

(m) Liu et. al. 18.90/0.6032 (n) eSL Net 17.30/0.5386 (o) EvLight 16.63/0.4684 (p) SEE Net (Ours) Prompt 0.5

Figure 6: Visual examples of low-light enhancement and high-light recovery on the SEE-600K dataset.

necessity of integrating both modalities for enhanced results, as shown in Fig. 5 (f). (2) effectiveness
of event-guided methods: In contrast, event-guided image methods demonstrate significantly better
performance. These approaches leverage the complementary strengths of both events and traditional
images, leading to better outcomes in low-light conditions, as shown in Fig. 5 (g-j). (3) impact of
indoor and outdoor conditions: Notably, performance in low-light indoor scenarios is inferior to
that in outdoor settings, as shown in Fig. 5 (e). This discrepancy may be attributed to the issues of
flickering light sources commonly found indoors (Xu et al., 2023a). Our SEE-Net consistently achieves
the best results across both scenarios, with a model size of just 1.9M—10% parameter count of other
SOTA methods—demonstrating its efficiency and compactness in low-light image enhancement.

Comparative on SEE-600K Dataset: The results presented in Tab. 2 illustrate the performance
of various methods across different lighting conditions on the SEE-600K dataset. (1) trained on
SDE: Models trained on the SDE dataset maintain a reasonable level of performance when tested
on the SEE-600K dataset, particularly in low-light conditions. Notably, the DCE Guo et al. (2020)
achieves the best results in high-light scenarios, underscoring its excellent generalization capabilities
for its self-supervised approach. (2) trained on SEE-600K: Models trained on the SEE-600K dataset
exhibit improved performance in both low-light and high-light conditions. Our proposed SEE-Net
method stands out as the best performer, as shown in Tab.2 and Fig. 6. This achievement is due
to our innovative use of prompt adjustments, which effectively resolve the ambiguity often seen in
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Table 3: Ablation studies. fc indicates cross-attention. fpe stands for learning-based embedding.

Case Bayer
Pattern Encoding Loop Prompt

Embedding Cascade Prompt
Merge PSNR SSIM

1 fpe fca 20 fpe ! + 23.57 0.7724
2 - fca 20 fpe ! + 22.94 0.7686
3 fpe add+ conv 20 fpe ! + 22.40 0.7224
4 fpe cat+ conv 20 fpe ! + 22.84 0.7298
5 fpe fca 10 fpe ! + 22.18 0.6812
6 fpe fca 20 sin ! + 23.08 0.7692
7 fpe fca 20 fpe % + 22.26 0.7713
8 fpe fca 20 fpe ! × 22.94 0.7893

(a) Input Events & Image (b) Prediction with Brightness Prompt 𝐵 from 0.3 to 0.7 (c) Normal-light
0.3 0.7

Figure 7: Visualization of brightness adjustment using varying brightness prompts B from 0.3 to 0.7, showing
smooth brightness transitions in SEE-600K dataset.For more visualizations, see the Appendix.

enhancement processes. Overall, these results highlight the effectiveness of our approach across
diverse lighting conditions, further validating its robustness. (3) advantages of prompt adjustments:
Unlike previous methods, Fig. 6, that are limited to one-way mapping, our approach with prompt
adjustments demonstrates significant advantages, as shown in Fig. 6 (h,p). Prompt adjustments
allow us to produce image quality that surpasses the ground truth, Fig. 6 (d,i), regardless of whether
low-light or high-light conditions are used as input. When the prompt is set to 0.5, the output achieves
optimal brightness and sharp textures. For additional visualization, please refer to the appendix.

Ablation and Analytical Studies: In this ablation study (Tab.3), we analyze the impact of various
components using Case #1 as the baseline. (1) bayer pattern embedding: Removing the bayer-
pattern embedding (Case #2) leads to a performance drop, indicating it enhances accuracy but is not the
most critical factor. (2) encoding: Replacing the cross-attention module fc with a convolutional layer
in both Case #3 (add) and Case #4 (concat) leads to significant performance degradation, underscoring
the critical role of cross-attention. (3) loop iterations: Reducing loop iterations from 20 to 10
(Case #4) causes a performance decline, indicating sufficient iterations are necessary for refinement.
(4) prompt embedding: Switching the prompt embedding from fpe to a sine function (Vaswani, 2017)
(Case #5) yields similar performance but doesn’t surpass the learned embedding. (5) prompt merge:
Disabling prompt merge (Case #6) results in a slight performance drop, indicating its importance
for optimal results. (6) multi-prompt adjustment: Fig.7 shows the output under multiple prompts.
The input consists of a low-light image and events. When using gamma correction to brighten
the low-light image, significant noise is introduced (Fig.7 (a)). However, our outputs with varying
prompts effectively control brightness while reducing noise (Fig.7 (b)), demonstrating the flexibility
and robustness of our method in post-processing. Due to space limitations, please refer to the
appendix for more information.

7 CONCLUSION

In this paper, we proposed a new research problem: how to use events to adjust the brightness of
images across a wide range of lighting conditions, from low light to high light. To address this
challenge, we made the following contributions. (1), we developed a physical model and formally
defined the problem of brightness adjustment using events, providing a solid theoretical foundation.
(2), we introduced a new spatiotemporal registration algorithm based on a robotic arm and collected
a large-scale dataset, SEE-600K, to overcome alignment issues and support our research. (3), we
presented SEE-Net, a novel and compact framework capable of accepting input images with a wide
range of illumination and producing output images with adjustable brightness. (4), we conducted
extensive experiments to demonstrate the effectiveness of our method.
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Table 4: DVS346 Event Output Specifications (iniVation AG, 2021)
Parameter Value
Spatial resolution 346× 260 pixels
Temporal resolution 1, µs
Maximum throughput 12 million events per second (MEPS)
Typical latency < 1,ms
Dynamic range Approx. 120, dB
Contrast sensitivity 14.3% (ON events), 22.5% (OFF events)

Appendix
To address the reviewers’ feedback, we have added the following three sections to the supplementary
material:

(1) More Details About the DVS346 Sensor: We provide additional information on the sensor’s
specifications, particularly regarding noise and image quality, to contextualize the limitations of the
APS frames in our dataset.

(2) Differences Between Brightness Adjustment and HDR Reconstruction: We clarify the
differences between our brightness adjustment task and HDR reconstruction, focusing on objectives,
challenges, and data construction methods, supported by mathematical formulations.

(3) Output Visualizations of Different Prompts: We include visual examples showing how our
network processes inputs under extreme low-light and high-light conditions using various brightness
prompts, directly addressing how the brightness prompt B influences the outputs from different input
images.

In the final paper, we will organize the Appendix accordingly. For now, we have placed these sections
at the beginning of the supplementary material for the reviewers’ convenience.

A MORE DETAILS ABOUT THE DVS346 SENSOR

In our experiments, we employed the DVS346 event camera, a sensor capable of simultaneously
outputting asynchronous events and synchronous image frames (APS frames). Despite its widespread
use in the academic community, the DVS346 has inherent limitations that affect the quality of the
captured images, particularly due to various noise factors. Understanding these parameters is crucial
for contextualizing the performance of our proposed methods.

The specifications of the DVS346 sensor are detailed in Tables 4 and 5. Below, we explain the
significance of each parameter, emphasizing those related to noise, to illustrate the image quality
from this sensor.

Events: Spatial resolution: refers to the number of pixels in the sensor array, which in this case
is 346 × 260 pixels. Temporal resolution: of 1, µs indicates the sensor’s ability to detect rapid
changes in brightness, allowing for precise temporal event detection. This high temporal resolution
is advantageous for capturing fast-moving scenes. Maximum throughput: of 12 MEPS means the
sensor can handle up to 12 million events per second, which is essential for recording scenes with a lot
of motion without losing data. Typical latency: of less than 1,ms ensures minimal delay between the
occurrence of an event and its registration by the sensor, which is important for real-time applications.
Dynamic range: of approximately 120, dB allows the event sensor to operate effectively under a
wide range of lighting conditions, from very dark to very bright environments. This high dynamic
range is a key advantage of event-based cameras. Contrast sensitivity: represents the minimum
percentage change in brightness required to generate an event. The sensor has a contrast sensitivity
of 14.3% for ON events and 22.5% for OFF events. While higher contrast sensitivity reduces noise
by preventing the sensor from triggering on minor fluctuations, it may also cause it to miss subtle
changes in brightness.

Frame: Spatial resolution: for the APS frames is the same as the event output, limiting the detail in
the captured images. Frame rate: of 40,FPS indicates that the sensor captures 40 frames per second.
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Table 5: DVS346 Frame Output Specifications (iniVation AG, 2021)
Parameter Value
Spatial resolution 346× 260 pixels
Frame rate 40,FPS
Dynamic range 55, dB
Fixed Pattern Noise (FPN) 4.2%
Dark signal 18,000, e−/s
Readout noise 55, e−

Image saturation 
deviation

Color noise on trees Overexposure of sky Underexposure of 
buildings

Low-light noise

Figure 8: Examples of other datasets from the event-based vision community (Scheerlinck et al., 2019; Cui
et al., 2024; Wang et al., 2023b; Liang et al., 2024). Although the DVS 346 camera suffers from insufficient
dynamic range and noise, it is still the data acquisition device that can best support the training of various event
vision tasks at this stage.

Dynamic range: of 55, dB is significantly lower than that of the event output. This limited dynamic
range means the APS frames struggle with scenes that have both very bright and very dark areas,
leading to overexposure or underexposure in parts of the image. Fixed Pattern Noise (FPN): of
4.2% refers to the non-uniformity in pixel responses, where each pixel may have a slightly different
baseline level of response due to manufacturing inconsistencies. High FPN manifests as a static
noise pattern over the image, degrading the visual quality. Dark signal: of 18,000, e−/s represents
the amount of charge accumulated by a pixel in the absence of light. A high dark signal increases
the baseline noise level, especially noticeable in low-light conditions, resulting in grainy images.
Readout noise: of 55, e− is the noise introduced during the process of reading the pixel values from
the sensor. This electronic noise adds uncertainty to the pixel values, further reducing image clarity
and detail, particularly in darker regions where the signal level is low.

Impact on Image Quality: The combination of these parameters adversely affects the image quality
of the APS frames produced by the DVS346 sensor: (1) A dynamic range of 55 dB is insufficient for
high-contrast scenes, causing loss of detail in shadows (underexposure) or highlights (overexposure).
This limitation means that the APS frames cannot effectively capture scenes with both bright and dark
regions simultaneously. (2) High levels of Fixed Pattern Noise introduce consistent noise patterns
across the image, which are difficult to remove and can be distracting in the final output. (3) The
significant dark signal contributes to increased noise, especially in low-light conditions where the
actual signal from the scene is weak. This results in a lower signal-to-noise ratio (SNR), making
the images appear grainy or speckled. (4) Elevated readout noise further degrades image quality by
adding random variations to the pixel values during the readout process, obscuring fine details and
reducing overall sharpness.

These noise-related issues collectively lead to suboptimal image quality in the APS frames, with
noticeable artifacts such as blurriness, graininess, and loss of detail. Understanding the limitations
of the DVS346 sensor is essential for interpreting the results of our research. While the sensor’s
APS frames have quality constraints due to noise and limited dynamic range, the event output excels
in capturing high temporal resolution and wide dynamic range changes. Our work leverages the
strengths of the event data to adjust image brightness across various lighting conditions, mitigating
some of the APS frame limitations.

Despite the challenges posed by the sensor’s noise characteristics, the DVS346 remains a valuable
tool in event-based vision research (Scheerlinck et al., 2019; Cui et al., 2024; Wang et al., 2023b; Liang
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et al., 2024) due to its accessibility and the richness of the event data it provides, as shown in Fig. 8.
As technology advances, we anticipate that future sensors will offer improved image quality with
reduced noise levels, enhancing the potential for high-quality event-based imaging. In the meantime,
acknowledging and addressing these limitations allows us to develop algorithms that compensate for
the sensor’s shortcomings, contributing to the advancement of event-based vision applications.

B DIFFERENCES BETWEEN BRIGHTNESS ADJUSTMENT AND HDR
RECONSTRUCTION

In this section, we discuss the fundamental differences between our proposed brightness adjustment
task using event cameras and the traditional High Dynamic Range (HDR) reconstruction task. We
highlight the distinctions in objectives, challenges, and data construction methodologies, supported
by mathematical formulations for clarity.

Different Objectives:

The primary goal of HDR reconstruction is to expand the dynamic range of an image, capturing
details in both dark and bright regions that exceed the capability of standard Low Dynamic Range
(LDR) sensors. Mathematically, HDR imaging seeks to recover a radiance map R(x) that represents
the true scene radiance over a wide dynamic range:

R(x) = f−1(ILDR(x)), (7)

where ILDR(x) is the observed LDR image, and f−1 is the inverse of the camera response function.

In contrast, our brightness adjustment task focuses on modifying the exposure level of an image to
enhance visibility and recover lost details due to underexposure or overexposure, without necessarily
expanding the dynamic range. The objective is to obtain an adjusted image ˆIrgb from an input image
Irgb and event data E(x, t):

ˆIrgb = fsee(Irgb, E;B), (8)

where fsee is our proposed adjustment function, E represents the event stream, and B is the brightness
prompt controlling the desired exposure level.

Different Challenges:

HDR reconstruction faces the challenge of accurately merging multiple images captured at different
exposure levels to create a single image with an expanded dynamic range. This often requires precise
alignment and handling of motion between exposures to avoid ghosting artifacts. The mathematical
formulation involves combining N images {Ii(x)}Ni=1 with corresponding exposure times {ti}Ni=1:

R(x) =

∑N
i=1 w(Ii(x)) · f−1(Ii(x))∑N

i=1 w(Ii(x))
, (9)

where w(Ii(x)) is a weighting function that emphasizes well-exposed pixels.

Our brightness adjustment task, on the other hand, deals with the challenge of adjusting images
captured under various lighting conditions using the high temporal resolution and dynamic range of
event data. Unlike HDR reconstruction, we do not require multiple images at different exposures.
Instead, we leverage events to infer illumination changes and guide the brightness adjustment of
a single input image. The adjustment function fsee must effectively fuse spatial image data and
temporal event information:

Iadj(x) = fd (fse(Irgb, E), B) , (10)

where fse is an encoder that extracts features from the input image and events, and fd is a decoder
that generates the adjusted image based on the brightness prompt B.
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Input Outputs, Prompt from 0.2 to 0.8

Figure 9: Under the same scene, with low-light and high-light images as inputs, we compare the outputs
generated using a series of prompts. The inputs are the original image, events, and the visualization of the
original image after gamma correction. Almost all the contours and details in the original image are lost.
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Different Data Construction Methods:

Constructing datasets for HDR reconstruction typically involves capturing multiple images of the
same scene at different exposure levels, requiring static scenes or sophisticated alignment techniques
to handle motion. The ground truth HDR image is often synthesized by merging these exposures.

Mathematically, for each scene, we collect N images:

{Ii(x)}Ni=1, with exposure times t1 < t2 < · · · < tN , (11)

and compute the ground truth radiance R(x) as shown earlier.

For our brightness adjustment task, data construction is more straightforward and scalable. We
capture pairs of images and corresponding event data under varying lighting conditions using Neutral
Density (ND) filters to simulate different exposures. Each scene provides synchronized data without
the need for multiple exposure times or complex alignment:

(Irgb, E, ˆIrgb), (12)

where ˆIrgb is the ground truth image at the desired exposure. The use of events allows us to handle
dynamic scenes effectively, as the high temporal resolution of events captures rapid changes in
illumination.

In essence, while HDR reconstruction aims to create images with an expanded dynamic range by
combining multiple exposures, our brightness adjustment task seeks to adjust the exposure of images
using event data to recover lost details without extending the dynamic range. Our approach is
more practical for real-world applications where capturing multiple exposures is impractical or
impossible.

By formulating the problem differently and leveraging the unique properties of event cameras, we
address challenges specific to brightness adjustment under diverse lighting conditions. This includes
handling dynamic scenes and providing fine-grained control over image brightness through prompts.

Our dataset construction method is also more scalable, enabling us to create a large dataset without
the complexities involved in HDR dataset creation. This allows for training more robust models
suited to real-world scenarios.

C OUTPUT VISUALIZATIONS OF DIFFERENT PROMPTS

The Fig. 9 demonstrates the effectiveness of our network in reconstructing images across a broad
range of lighting conditions using events. We input both extremely low-light and overexposed
images—where the original contours and details are significantly degraded or lost—into our network
to observe how it handles varying input brightness levels when the same brightness prompt is applied.

Our network leverages the high dynamic range and temporal resolution of events to recover lost
details in both underexposed and overexposed scenarios. By integrating events, which captures
pixel-level changes in brightness over time, the network compensates for the deficiencies of the input
images regardless of their initial exposure levels.

We present the results corresponding to brightness prompts ranging from 0.2 to 0.8, allowing for
fine-grained control over the brightness of the output images. Each prompt value is applied to both
the extremely low-light and overexposed input images. Despite the drastic differences in the original
brightness of the inputs, the outputs generated with the same brightness prompt are remarkably
consistent in terms of exposure and detail.

This observation directly answers the reviewer’s question: when reconstructing a bright image (e.g.,
setting B = 0.8) from two different input images—one dark and one bright—the network produces
output images that are both well-exposed and visually similar. Although the low light input image
produced some artifacts. This demonstrates that the output is primarily determined by the brightness
prompt B, rather than the original brightness of the input images. The network effectively adjusts
the input images to the desired brightness level specified by the prompt, utilizing the event data to
recover or suppress details as needed.
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The output of Fig. 9 includes nine groups of results, each corresponding to a different brightness
prompt. Overall, the figure underscores the robustness and flexibility of our network. It highlights the
capability to use event data effectively for restoring details lost in extreme lighting conditions while
providing precise brightness control through prompts. This adaptability makes our approach highly
suitable for applications requiring image enhancement across diverse lighting environments, ensuring
consistent output quality regardless of the initial exposure of the input images.
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D MORE DETAILS FOR RESEARCH PROBLEM DEFINITION

Imaging is the process of capturing light from a scene, which can be represented as a radiance field
L(t) that varies over time t. The intensity of ambient light in real-world environments spans a wide
range, from approximately 0.1 lux in low-light conditions to over 1e6 lux under bright sunlight. The
goal of our learning task is to accurately recover L(t) and transform it into a visual representation
that is suitable for human perception.

Sensor Signal Acquisition and Noise Modeling:

Cameras equipped with active pixel sensors record light signals through an exposure process. During
the exposure time te, the sensor integrates incoming photons to produce a voltage V . The number of
photons k detected is a random variable following a Poisson distribution due to the quantum nature
of light:

k ∼ P(λ), λ = η

∫
te

L(t)dt, (13)

where:

• λ is the expected number of photons,

• η is the quantum efficiency of the sensor,

• L is the light intensity,

• te is the exposure time.

The voltage V generated by the sensor is proportional to the number of detected photons and is given
by:

V = Gk +Nd, (14)

where:

• G is the sensor gain, usually a circuit amplifier,

• Nd ∼ N (µd, σ
2
d) represents the dark current noise, typically modeled as Gaussian noise

with mean µd and variance σ2
d.

The RAW image intensity Iraw is obtained by quantize the voltage V :

Iraw = Q(V ) = Q(Gk +Nd), (15)

where Q is the quantization function converting continuous voltage signals into discrete digital values,
typically ranging from 8 bits to 14 bits.

Image Signal Processing (ISP)

The RAW image Iraw undergoes an image signal processing pipeline fisp that includes steps such
as denoising (Buades et al., 2005), demosaicing (Li et al., 2008), color correction (Gasparini & Schettini,
2003), and tone mapping (Debevec & Gibson, 2002) to produce the final RGB image:

Irgb = fisp(Iraw). (16)

Characteristics of Accurate Exposure

An accurate exposure process aims to produce Irgb with the following characteristics:

1. Accurate Exposure: The mean pixel intensity of Irgb falls within a desirable range for
human observation, typically normalized between 0.4 and 0.7 (Mertens et al., 2009):

0.4 ≤ 1

N

N∑
i=1

I
(i)
rgb ≤ 0.7, (17)

where N is the total number of pixels.
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2. Noise-Free: The influences of dark current noise Nd and photon shot noise Ns are mini-
mized or eliminated:

Var(Irgb) ≈ Var(Gη

∫
te

L(t)dt), (18)

implying that the variance due to noise is negligible.
3. Color Neutrality: The image has no color cast; the grayscale values computed from each

RGB channel are approximately equal (Buchsbaum, 1980):

fgray(Ir) ≈ fgray(Ig) ≈ fgray(Ib), (19)

where Ir, Ig, and Ib are the red, green, and blue channels of Irgb, and fgray is a function
mapping RGB values to grayscale.

Limitations of Traditional Cameras

Traditional cameras have a limited dynamic range of approximately 80dB, which often results in
loss of detail in scenes with high contrast. Under extreme lighting conditions, images may exhibit
overexposed highlights or underexposed shadows, leading to insufficient edge and texture information.

Advantages of Event Cameras

Event cameras overcome these limitations by offering:

• High Dynamic Range: Greater than 120 dB, allowing them to handle extreme lighting
variations.

• High Temporal Resolution: Less than 1ms, enabling them to capture fast-changing scenes.

Event cameras operate asynchronously by detecting changes in illumination at each pixel. The output
is a stream of events, each represented as:

(x, y, t, p), (20)

where:

• (x, y) are the pixel coordinates,
• t is the timestamp,
• p ∈ {+1,−1} indicates the polarity (increase or decrease in light intensity).

Event Generation Mechanism

An event is generated at a pixel (x, y) when the change in the logarithm of the light intensity exceeds
a predefined threshold C:

∆L(x, y, t) = log(L(x, y, t))− log(L(x, y, tk)) = pC, (21)

where:

• L(x, y, t) is the light intensity at time t,
• tk is the timestamp of the last event at pixel (x, y),
• p is the polarity,
• C is the contrast sensitivity threshold.

This condition can also be expressed in terms of relative intensity change:

L(x, y, t)

L(x, y, tk)
= epC . (22)

Proposed Model for Illumination Recovery

Given the high dynamic range and temporal resolution of event cameras, we aim to utilize an images
Irgb and corresponding events E to recover the scene’s illumination L(t) and present it in a human-
friendly format. However, due to the extensive theoretical range of L(t), we introduce a brightness
control prompt B to adjust the output image’s mean brightness.
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Figure 10: The IMU sensor is calibrated by leaving the sensor alone for about one hour to obtain the deviations
of the IMU in various directions.

Our model is defined as:
ˆIrgb = fsee(Irgb, E,B), (23)

where:

• fsee is a function designed to enhance the input image Irgb using the events E and adjust the
brightness according to B,

• Îrgb is the output image with improved exposure,

• B is a user-defined parameter representing the desired mean brightness of Îrgb:

B =
1

N

N∑
i=1

ˆ
I
(i)
rgb (24)

Benefits of the Proposed Approach

1. Robust Training: By presetting the parameter B during the training phase, the model can
mitigate biases present in the training dataset, leading to more generalized performance.

2. Flexibility in Usage: During inference, setting B = 0.5 (assuming pixel values are nor-
malized between 0 and 1) aligns with common exposure levels, but users can adjust B for
creative control over the image’s brightness and exposure, enabling image adjustments and
editing capabilities.

E TEMPORAL IMU REGISTRATION ALGORITHM

In this section, we provide a more detailed description of our IMU data registration algorithm, which
aligns a source sequence S and a target sequence T by finding the optimal temporal bias b and
matching length l that minimize the distance between them. Due to the high sampling rate of IMU
data (1000 Hz), an exhaustive search over all possible biases is computationally prohibitive. Therefore,
we introduce a multi-level iterative strategy that efficiently approximates the optimal alignment.

IMU Data Calibration and Stability

Fig. 10 illustrates the calibration results of our IMU sensor over a one-hour period during which the
sensor remained stationary. From this figure, we observe that the IMU’s measurement errors are stable
over long durations and do not increase over time. The deviations in the accelerometer’s three axes and
the gyroscope’s three axes are consistent, indicating reliable sensor performance. Through calibration,
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Table 6: Calibration results showing biases, variances, and standard deviations for each axis of the
accelerometer and gyroscope.

Sensor Axis Bias Variance Standard Deviation

Accelerometer X −0.009256 5.836× 10−6 0.002416
Accelerometer Y 0.993344 6.196× 10−6 0.002489
Accelerometer Z −0.048622 1.348× 10−5 0.003672
Gyroscope X 1.081781 0.010550 0.102711
Gyroscope Y −1.791223 0.011102 0.105365
Gyroscope Z −0.697237 0.011360 0.106582

we corrected these biases during preprocessing to enhance measurement accuracy. Specifically, for the
camera used in our dataset collection, the calibrated IMU errors are quantified shown in Tab. 6. These
low variance values indicate that the IMU’s measurement noise is within an acceptable and small
range, affirming that our calibration process effectively corrects sensor deviations. Consequently, we
can achieve accurate results in our data registration by leveraging the stability of the IMU sensor. The
specific implementation steps of our calibration process are detailed below.

IMU Data Preprocessing with Kalman Filter

We first denoise the raw IMU data using a Kalman filter Mirzaei & Roumeliotis (2008). For each
IMU sequence (source and target), we model the system as:

xk = Fxk−1 +wk−1, (25)
zk = Hxk + vk, (26)

where xk ∈ R6 is the state vector at time k, consisting of accelerometer and gyroscope measurements:

xk =


accx
accy
accz
gyrx
gyry
gyrz


k

,

F ∈ R6×6 is the state transition matrix (identity matrix in our case), wk−1 is the process noise with
covariance Q, zk ∈ R6 is the measurement vector, H is the observation matrix (also identity), and
vk is the measurement noise with covariance R.

The Kalman filter recursively estimates the state xk by:

Prediction Step: x̂k|k−1 = Fx̂k−1|k−1, (27)

Pk|k−1 = FPk−1|k−1F
⊤ +Q, (28)

Update Step: Kk = Pk|k−1H
⊤(HPk|k−1H

⊤ +R)−1, (29)

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1), (30)

Pk|k = (I−KkH)Pk|k−1, (31)

where x̂k|k is the estimated state at time k, Pk|k is the estimated covariance, and Kk is the Kalman
gain.

The initial state x̂0|0 is set to the first measurement, and the initial covariance P0|0 is set to the
identity matrix.

Multi-Level Downsampling

To reduce computational complexity, we create two additional levels of downsampled sequences
using average pooling:
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• Level-1: Downsampled by a factor of s1.
• Level-2: Downsampled by a factor of s1 × s2.

The downsampling is performed by averaging over non-overlapping windows of size si, for i = 1, 2.
For example, for Level-1, the downsampled sequence S1 is obtained as:

S1[n] =
1

s1

ns1∑
k=(n−1)s1+1

S[k], n = 1, 2, . . . ,

⌊
LS

s1

⌋
, (32)

where LS is the length of the original sequence S.

Hierarchical Bias Search

At each level, we perform a search for the optimal temporal bias b and matching length l that minimize
the distance between the source and target sequences.

Distance Metric

We define the distance between two sequences S and T over a matching window of length l as the
mean Euclidean distance between their accelerometer and gyroscope data:

dacc(S, T ; b, l) =
1

l

l∑
k=1

∥aS [k + b]− aT [k]∥2 , (33)

dgyr(S, T ; b, l) =
1

l

l∑
k=1

∥gS [k + b]− gT [k]∥2 , (34)

where aS [k] and gS [k] are the accelerometer and gyroscope measurements of sequence S at time k,
respectively.

Coarse Search at Level-2

At the lowest resolution (Level-2), we perform a coarse search over a large range of biases b:

b ∈ [bmin, bmax], (35)

where bmin and bmax are chosen based on the expected maximum temporal misalignment.

For each candidate bias b, we compute the distances dacc and dgyr and record the bias that minimizes
these distances:

b(2)acc = argmin
b

dacc(S2, T2; b, lb), (36)

b(2)gyr = argmin
b

dgyr(S2, T2; b, lb), (37)

where lb is the matching length at bias b, determined by the overlapping length of the sequences after
applying the bias.

Refined Search at Level-1 and Level-0

Using the biases obtained at Level-2 as center points, we perform refined searches at higher resolutions
(Level-1 and Level-0). The search ranges at each higher level are narrowed down around the biases
found at the previous level:

b
(i)
min = b(i+1) − δ(i), (38)

b(i)max = b(i+1) + δ(i), i = 1, 0, (39)
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where δ(i) is a small range that depends on the downsampling factor.

At each level, we update the biases:

b(i)acc = arg min
b∈[b

(i)
min ,b

(i)
max]

dacc(Si, Ti; b, lb), (40)

b(i)gyr = arg min
b∈[b

(i)
min ,b

(i)
max]

dgyr(Si, Ti; b, lb), (41)

for i = 1, 0.

Optimal Bias and Alignment

After performing the refined searches, we obtain the optimal biases b(0)acc and b
(0)
gyr at the original data

level (Level-0). We choose the final bias b∗ and matching length l∗ based on the minimum distances:

b∗ = median(b(0)acc , b
(0)
gyr ), (42)

l∗ = min(LS − b∗, LT ), (43)

where LS and LT are the lengths of the source and target sequences, respectively.

The source and target sequences are then aligned by shifting the source sequence by b∗ and taking
the first l∗ samples:

Saligned[k] = S[k + b∗], k = 1, 2, . . . , l∗; (44)
Taligned[k] = T [k], k = 1, 2, . . . , l∗. (45)

Algorithm Summary

The overall algorithm can be summarized as follows:

1. Apply Kalman filter to denoise the source and target IMU sequences.

2. Downsample the sequences to create Level-1 and Level-2 versions.

3. At Level-2, perform a coarse search over a wide range of biases to find initial estimates b(2)acc

and b
(2)
gyr .

4. At Level-1, perform a refined search around b(2) to obtain b(1).

5. At Level-0, perform a final refined search around b(1) to obtain the optimal biases b(0)acc and
b
(0)
gyr .

6. Compute the final bias b∗ and matching length l∗.

7. Align the source and target sequences using b∗ and l∗.

Implementation Details

In our implementation, we set the downsampling factors to s1 = 10 and s2 = 10, resulting in Level-1
and Level-2 sequences downsampled by factors of 10 and 100, respectively.

The search ranges at each level are defined as:

Level-2: b ∈ [−bmax, bmax], bmax = 100, (46)

Level-1: b ∈ [b(2) − 10s1, b
(2) + 10s1], (47)

Level-0: b ∈ [b(1) − 10s0, b
(1) + 10s0], (48)
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where s0 = 1 is the downsampling factor at Level-0 (original data).

Computational Efficiency

By employing the multi-level hierarchical search, we significantly reduce the computational complex-
ity compared to an exhaustive search at the original sampling rate. At Level-2, the coarse search over
a wide range of biases is feasible due to the reduced sequence length. The refined searches at higher
resolutions are limited to small ranges around the biases found at lower levels, ensuring that the total
computational cost remains manageable.

Visualization of the Alignment Results

Fig. 11, Fig. 12 and Fig. 11 showcase the IMU registration results for two trajectories. The high
degree of overlap between the two IMU streams after alignment demonstrates the effectiveness of our
proposed method.

F MORE VISUALIZATION RESULTS

More Examples on Our SEE-600K Dataset

The additional visualizations provided in Fig. 14 and Fig. 15 demonstrate the diversity of the
SEE-600K dataset. The dataset captures a wide variety of scenes, both indoors and outdoors,
including objects like plants, buildings, and everyday items. This diversity reflects common real-
world scenarios, ensuring comprehensive coverage of typical environments. The images span different
lighting conditions, showcasing the dataset’s ability to handle various illumination levels, from low
to high light.

More Visualization on SEE-600K Dataset

Fig.16,17,18,19,20,21 showcase additional visual results on the SEE-600K dataset. These examples
further demonstrate the robustness and consistency of our proposed SEE-Net method. Notably, when
using a brightness prompt of 0.5, SEE-Net is capable of generating more stable and higher-quality
images. In some cases, the output even surpasses the quality of the ground truth normal-light image
(GT), showing the strength of our approach in various lighting conditions.

Additionally, it’s important to highlight certain challenging cases, as shown in Fig. 20. For instance, in
regions with highly detailed textures or areas requiring high-resolution recovery, all current methods,
including ours, struggle to achieve optimal results. Despite this, SEE-Net continues to show relatively
better performance compared to existing methods, particularly in maintaining image quality and
stability. These results illustrate the potential of our method to handle complex scenarios, but they
also indicate areas where further improvements could be made in future research.

By highlighting both the strengths and limitations of our approach, these visualizations provide
valuable insights into the practical capabilities of SEE-Net across a wide range of real-world lighting
conditions and complex scenes.

More Visualization on SDE Dataset

Fig. 23 and 24 present additional visualizations from the SDE dataset, specifically focusing on
challenging low-light outdoor scenes. These low-light environments often come with significant
noise, which poses a substantial challenge for current low-light enhancement methods. Our method
demonstrates stable performance in addressing these noisy scenes, effectively enhancing the image
quality while mitigating the noise, thereby highlighting the robustness of our approach in handling
complex low-light conditions.
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(a) IMU Data w/o Registration

(b) IMU Data w Registration

Figure 11: Original IMU data and registered IMU data.
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(a) IMU Data w/o Registration

(b) IMU Data w Registration

Figure 12: Original IMU data and registered IMU data.
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(a) IMU Data w/o Registration

(b) IMU Data w Registration

Figure 13: Original IMU data and registered IMU data.
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(a) Events (b)  Low or High Light Image (c)  Normal light Image

Figure 14: More examples on our SEE-600K dataset.
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(a) Events (b)  Low or High Light Image (c)  Normal light Image

Figure 15: More examples on our SEE-600K dataset.
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Figure 16: More visualization results on SEE-600k dataset.
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Figure 17: More visualization results on SEE-600k dataset.
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Figure 18: More visualization results on SEE-600k dataset.
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Figure 19: More visualization results on SEE-600k dataset.
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Figure 20: More visualization results on SEE-600k dataset.
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Figure 21: More visualization results on SEE-600k dataset.
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Figure 22: More visualization results on SEE-600k dataset.
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Figure 23: More visualization results on SDE dataset.
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Figure 24: More visualization results on SDE dataset.
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