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Abstract001

In recent years, Large Language Models002
(LLMs) have expanded their applications003
across various fields but faced security chal-004
lenges. Current alignment methods only ad-005
dress specific jailbreak attacks but fail to de-006
fend against counteracting diverse and adaptive007
attack strategies, leaving significant vulnerabil-008
ities against diverse and evolving attack strate-009
gies. To overcome the critical limitations of010
existing adversarial alignment methods with011
defense blind spots, which specific jailbreak at-012
tack techniques can easily breach, we propose013
TurboLoRA, the first comprehensive adversar-014
ial safety alignment method. TurboLoRA in-015
trinsically corrects harmful response to safety016
response by modifying the low-rank transfor-017
mation parameters, which effectively maps018
harmful hidden vectors to safety hidden vec-019
tors by correcting the short-range vector dispar-020
ities. TurboLoRA ensures robust and compre-021
hensive adversarial safety alignment without022
compromising downstream task performance.023
Extensive experiments against diverse jailbreak024
methods and target LLMs validate the effective-025
ness of TurboLoRA, establishing its potential026
as a robust and efficient solution to adversarial027
safety alignment.028

1 Introduction029

In recent years, the rapid development of Large030

Language Models (LLMs) has attracted widespread031

attention, and these models have been extensively032

applied across various fields (Wei et al., 2023a).033

Alongside the capabilities of these models, they034

also face an increasing number of security chal-035

lenges, including bias, discrimination, hallucina-036

tions, and prejudice. Despite extensive safety re-037

inforcement(Ouyang et al., 2022,He et al., 2022)038

during the training phase, LLMs remain vulnerable039

to "jailbreak" attacks, leading to the risk of harm-040

ful information spreading due to their widespread041

application.042

To tackle these challenges, researchers have em- 043

ployed various value safety alignment methods, 044

aiming to align LLMs more closely with human 045

values to mitigate potential risks(Ouyang et al., 046

2022, Dong et al., 2023, Lee et al., 2024). These 047

alignment techniques enable models to balance ad- 048

herence to both instruction-following objectives 049

and safety objectives. 050

Figure 1: Alignment methods primarily focus on de-
fending ’Competing Object’ attack, but bypassed by
’Mismatching Generalization’ Attack.

Despite these advancements, current alignment 051

methods only take effect against certain jailbreak 052

attacks but fail to defend against others as shown 053

in figure 1 Current jailbreak attacks primarily 054

exploit two mechanisms to undermine alignment: 055

Competing Objectives and Mismatched General- 056

ization(Wei et al., 2023b). Objective compe- 057

tition arises when the model’s pre-training and 058

instruction-following objectives conflict with its 059

safety objectives. Jailbreak attacks of this cate- 060

gory(Liu et al., 2023, Zou et al., 2023a) activate and 061

enhance the model’s instruction-following behav- 062

ior while suppressing the safety objectives, forcing 063

LLMs to generate harmful responses. Mismatched 064

generalization arises when the inputs fall outside 065

the distribution of safety-focused training data but 066

lie within the broader distribution of the pretraining 067

corpus. Attacks of this category exploit scenarios 068

and capabilities not covered by the LLM’s safety 069

capabilities, bypassing competition with safety ob- 070

jectives, and directly eliciting harmful responses. 071

Due to the broad capabilities and extensive cor- 072
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pus distribution of large models, and the sparsity073

and low-rank nature of safety-related knowledge in074

LLM(Wei et al., 2023b), there are blind spots in the075

distribution of corpus related to safety alignment,076

rendering LLMs particularly vulnerable when fac-077

ing such attacks.078

Although some adversarial alignment methods079

have begun addressing jailbreak attacks, they still080

exhibit blind spots. These methods, such as Adver-081

sarial Example Detection (AED)(Liu et al., 2024)082

and Safedecoding(Xu et al., 2024), primarily fo-083

cus on achieving dominance of safety objectives084

over instruction-following objectives during com-085

petitive scenarios. This still struggles to defend086

against mismatched generalization attacks, which087

bypass direct competition altogether and render the088

model vulnerable to attack.089

To address the limitations of safety alignment090

blind spots, we propose TurboLoRA, a compre-091

hensive adversarial intrinsic correction alignment092

method under adversarial conditions. Inspired by093

the notion that correcting errors to reach correct094

behavior is easier than directly generating correct095

behavior, we attempt to activate alignment after096

the generation of harmful hidden vectors. Thus097

harmful responses can be corrected into safe ones098

inside the model by shifting corresponding harm-099

ful hidden vectors to safety hidden vectors during100

inference.101

TurboLoRA intrinsically achieves this by lever-102

aging the universal, and short-range disparity be-103

tween the hidden vectors corresponding to harmful104

and safe responses, allowing correcting the harm-105

ful hidden vector through modifying the low-rank106

model parameters called transformation parame-107

ters. This ensures low computational overhead108

while maintaining high generalization against di-109

verse jailbreak attacks and preserves the LLM’s110

downstream task performance ability.111

Our contributions to this paper include:112

• 1) Discovering the universal low-rank vector113

disparity between the hidden vectors corre-114

sponding to harmful and safe responses to the115

same query in LLMs, which can be corrected116

through low-rank transformation parameter117

modifications.118

• 2) We are the first to propose a safety align-119

ment method that intrinsically corrects harm-120

ful response to safe response: TurboLoRA.121

By calculating the low-rank transformation122

parameters, achieving efficient, comprehen- 123

sive adversarial safety alignment with mini- 124

mal impact on downstream tasks. 125

• 3) We conducted extensive experiments across 126

five LLMs, employing various attack methods 127

spanning two attack paradigms, sufficiently 128

proving the effectiveness of TurboLoRA. In 129

particular, TurboLoRA decreases 12% ASR 130

under specific adversarial conditions. 131

2 Opportunities from Short-Distance 132

disparity in Hidden Vectors 133

This section delves into the pilot experiment 134

that serves as the cornerstone for our subsequent 135

methodologies. Specifically: In section 2.1, we 136

experimentally discovered that it is easier to shift 137

the hidden vectors of harmful responses into 138

those of safe responses within the model, com- 139

pared to directly generating safe responses. In Sec- 140

tion 2.2 we find that there is a low-rank vector 141

disparity between the hidden vectors of harm- 142

ful responses and safe responses. In Section 2.3, 143

we delve deeper into the phenomenon observed 144

in 2.2 and find that this vector disparity can be 145

modified with low-rank parameters which will 146

enhance comprehensive adversarial defense and 147

minimize impact on downstream tasks. 148

2.1 Correcting Errors to Correct Is Easier 149

than Generating Correct 150

In this section, we compared the disparity between 151

the hidden vectors corresponding to harmful re- 152

sponses, safe responses, and refusal responses, and 153

found that the vector disparity between harmful and 154

safe responses is characterized by a short range. 155

To validate the characteristic of short-range in 156

the vector disparity between safe and harmful re- 157

sponses, we designed comparisons between this 158

disparity and those between safe and refusal, as 159

well as safe and random responses. The safe and 160

random represents the typical range between a safe 161

response and any arbitrary response, while the re- 162

fusal response simulates the scenario of directly 163

generating a safe response after recognizing the 164

question as having harmful intent. 165

We used 1000 aggressive queries from the PKU- 166

RLHF dataset as our test dataset and conducted ex- 167

periments on the representative models LLAMA2- 168

7B. We employed the RAG and jailbreak attack 169

methods to elicit safe, refusal, and harmful re- 170

sponses to the same query. When implementing 171
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Figure 2: a) compare the three vector disparity. b) compare Safety-Random with Safety-Harmful. c) compare
Safety-Refusal vs Safety-Harmful. All figures show that vector disparity between safe and harmful responses is
significantly shorter than the other two

RAG to elicit safe responses, we searched the172

knowledge base for positive value descriptions re-173

lated to the query and examples of safe responses to174

include in the prompt. The positive value descrip-175

tions were sourced from Wikipedia, and the safe176

responses were derived from harmless response177

examples in PKU-RLHF.178

We collected the hidden vectors from the infer-179

ence processes in three scenarios and calculated the180

vector disparity. For the random responses, we ran-181

domly selected responses that were different from182

the original queries of the target safe responses. As183

shown in the figure 2, we can observe that the vec-184

tor disparity between safe and harmful responses is185

significantly shorter than the other two, indicating186

that the vector disparity between safe and harm-187

ful responses indeed has the universally existing188

characteristic of a short-range. This provides a189

foundation for shifting the hidden vectors of harm-190

ful responses to those of safe responses during the191

inference process.192

2.2 Key factor for shifting: low-rank193

characteristics194

Figure 3: The three figures are numbered from left to
right as a), b). a) show that the top few components
account for the majority of the variance b) shows the
first few variables have different roles in the principal
component

Verifying only the short-range characteristic195

of vector disparity between safe and harmful 196

responses still makes it challenging to achieve 197

prompt vector shifting during the inference pro- 198

cess. This section further analyzes the more pro- 199

found reasons behind the phenomena that emerged 200

in Section 2.1 and provides key guidance for cor- 201

rection. 202

We recorded and observed the output of each 203

hidden layer during the inference process with two 204

semantically identical attack queries that respec- 205

tively generated harmful and safety responses. Dis- 206

parity in the hidden vectors was quantified to form 207

a matrix, which was then analyzed using principal 208

component analysis (PCA). 209

For the observation of figure 3, figure a) shows 210

that the cumulative variance of the top ten exceeds 211

95%. Figure b) shows that the load of the first 212

several principal components has different con- 213

tributions on each variable, indicating that these 214

variables have different roles in the principal com- 215

ponents. This indicates that the initial principal 216

components capture the vast majority of the vari- 217

ance, effectively describing the primary changes in 218

the data. This implies that the variations matrix of 219

hidden vectors exhibited low-rank properties, and 220

there were few patterns of change in hidden vector 221

differences between the two attacks. 222

These results resemble those observed in output 223

distributions caused by modifications to a small 224

subset of low-rank parameters in linear layers (Bel- 225

let et al., 2013, Zeiler and Fergus, 2014). This 226

observation provides a key guidance for shifting 227

harmful hidden vectors in the inference process. 228

2.3 The low-rank Transformation Parameter 229

Can Shift 230

Based on the findings from Section 2.2, this section 231

further demonstrates that by adjusting only the low- 232
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Figure 4: Each grid represents the gradient of a parame-
ter. The lighter the color, the higher the gradient value.

rank parameters within the model, it is possible to233

shift the harmful hidden vector to safety.234

We utilized the hidden vector diversity men-235

tioned in Section 2.2, which differs in the same236

layer with the loss function, and performed back-237

propagation on that layer’s MLP layer. Then we238

analyzed the gradients of the linear layer parame-239

ters. Figure 4 shows that the parameters that are240

significant to the latent vector difference gradient241

account for less than 3%, where these sparse pa-242

rameters tend to be localized to several neurons,243

concentrated in a few rows of the matrix. Such244

an arrangement of sparse matrices exhibits low-245

rank characteristics. This result indicates that large246

gradient values are concentrated on a few param-247

eters, further suggesting that modification of the248

low-rank parameters in the model can universally249

shift harmful hidden vectors to safety ones and250

realize comprehensive adversarial alignment. We251

called the parameters for modification as transfor-252

mation parameters.253

Furthermore, modifications to low-rank parame-254

ters have been found to maintain downstream task255

ability while also allowing for rapid model param-256

eter updates. This provides key support for the257

proposal of TurboLoRA.258

3 TurboLoRA259

In this work, we introduce TurboLoRA, a compre-260

hensive intrinsic correction alignment method for261

adversarial conditions. TurboLoRA intrinsically262

and promptly corrects harmful responses to safe263

ones during the model inference process through264

fusing low-rank transformation parameters into the265

model’s original parameters, enabling comprehen-266

sive adverisal, efficient, and minimal alignment tax267

to align the LLMs.268

Table 1 introduces the notation and theoretical269

concepts used throughout the paper.270

The objective of TurboLoRA is to enhance the271

security of the model’s responses while preserv-272

ing its ability to generate harmless content. This273

Symbol Definition
Wl Parameters of the MLP layer at the l-th layer
Xl Iutput of the MLP layer at the l-th layer
Yl Output of the MLP layer at the l-th layer
T LLM response, where T = G(W, q)

G(·) Inference process of the LLM
Qjailbreak Harmful query dataset modified by the jailbreak

attack method to generate harmful response
QRAG Harmful query dataset modified by RAG to

guide LLM in generation safety response
qi The i-th query in the dataset Q

I(T ) Discrimination function evaluating the safety of
T. > 0 for safe, < 0 for unsafe

W ′ Updated model parameters, W ′ = W +∆W
∆W Equivalent value parameters added to ensure

alignment with human values
V Contains the right singular vectors of the matrix

Xl as its columns
Σ Diagonal matrix with non-negative real numbers

(singular values) on the diagonal
U∗ The left singular vectors of the matrix Xl

r Determine the rank of the pseudoinverse matrix

Table 1: Symbols and Definitions Used in the Paper

objective can be formally represented as follows: 274

Min
∆W

|Q|∑
i=1

CrossEntropy(T
′
i , Ti), I(Ti > 0) (1) 275

Max
∆W

|Q|∑
i=1

(I(T
′
i )− I(Ti)), I(Ti < 0) (2) 276

Ti = G(W, qi), T
′
i =G(W +∆W, qi), (3) 277

In the following sections of this chapter, we will 278

provide a detailed description of the TurboLoRA 279

process and its underlying rationale. 280

3.1 Methodology 281

In this section, we will detail the specific process 282

of TurboLoRA. The overall flow of TurboLoRA 283

is shown in figure 5. The implementation of 284

TurboLoRA is divided into three distinct phases: 285

Hidden Vectors Collection extracts the variables 286

needed for subsequent calculations, Low-Rank 287

Learning utilizes the variables to calculate the low- 288

rank transformation parameter, and Parameter Fu- 289

sion applies transformation parameters to update 290

the model. 291

3.1.1 Hidden Vectors Collection 292

In order to extract the difference between harm- 293

ful and safety responses in the inference process, 294

we conduct two sets of query that respectively em- 295

ploying Jailbreak attacks and RAG to guide the 296

model in generating harmful and safety responses. 297

The two sets are conducted based on the same at- 298

tack query set Q. The formal representation is as 299
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Figure 5: Low-rank alignment procedure. The labels correspond to the following steps:①:Hidden Vectors Collection;
② :Transformation Parameter Calculation; ③:Parameter Fusion;

follows:300

I(G(QJailbreak,W )) < 0, (4)301

I(G(QRAG),W )) > 0 (5)302

We collect the model layer parameters W and303

layer l’s MLP layer hidden vectors Xl through the304

inference processes of two datasets.305

3.1.2 Transformation Parameter Calculation306

At this stage, we calculate the parameters ∆W307

used to update the model, completing the low-rank308

learning.309

The low-rank transformation parameter is ob-310

tained by calculating the disparity between harmful311

hidden vector and safety hidden vector after pass-312

ing through the MLP layer. The formula for calcu-313

lating parameters utilizes the Moore-Penrose pseu-314

doinverse for efficient computation, as outlined be-315

low:316

X−1
l =VrΣ

−1
r UT

r (6)317

X =UΣV T (7)318

∆W =W∆X1(VrΣ
−1
r UT

r ) (8)319

Eq.3 represents the singular value decomposi-320

tion of X, and Eq.4 is obtained using the Penrose321

inverse algorithm(Penrose, 1955). The detailed322

computational procedure is described in section323

3.2. The Eq.5 calculates the value of ∆w, which is324

the optimal solution for Eq.1.325

By summing the the low-rank transformation326

parameter matrix to the original model parameter327

matrix, it is possible to transformation the harmful328

to safety hidden vector in LLM’s inference time.329

3.1.3 Parameter Fusion 330

In this phase, we fuse the transformation parameter 331

with the original model to intrinsically shift the 332

hramful to safety hidden vector. 333

The fusion of the transformation parameter cal- 334

culated by TurboLoRA with the original model can 335

be expressed as: 336

W
′
= (W +∆W ) (9) 337

By summing the the low-rank transformation 338

parameter matrix to the original model parameter 339

matrix, it is possible to intrinsically and promptly 340

shift the harmful to safety hidden vector in infer- 341

ence process, obtaining a safer response that is 342

aligned with the target human values. 343

3.2 Derivation and Proof 344

In this section, we describe and derive the formula 345

for calculating the transformation parameter and 346

prove the validity of the TurboLoRA. 347

For the original model, the computation in the 348

l-th MLP layer during the inference process for 349

queries Q and Q′ satisfies the following equation: 350

WX
′
l + bl = X

′
l+1, WXl + bl = Xl+1 (10) 351

When I(G(W, qi)) > 0, ∀qi ∈ Q is satisfied, the 352

alignment by the optimal ∆W , as determined by 353

the target EQ.1, should shift the hramful hidden 354

vector to safety hidden vector. Specifically, for 355

the jailbreak query Q, the hidden vectors calcu- 356

lated with updated parameters should match those 357

calculated in the original parameter for the RAG 358

query Q′ which guide the LLM in generating safety 359
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responses. This is formally represented as:360

W ′Xl + bl = Y
′
l+1, (11)361

(W +∆W )Xl + bl = X
′
l+1 (12)362

Based on this target EQ.10 and EQ.11, we com-363

pute the transformation parameters ∆W necessary364

for parameter updates. ∆W can be further formal-365

ized and represented as follows:366

∆Yl = Y
′
l − Yl, ∆Xl = X

′
l −X

′
l367

∆WXl =∆Yl = W∆Yl (13)368

=⇒ ∆W = W∆YlX
−1
l (14)369

However, in most cases, where the number of370

queries does not equal the dimensionality of the371

hidden vectors, therefore X is not a square matrix,372

and hence an inverse does not exist directly.373

For this purpose, we compute the pseudoinverse374

of X using the Penrose pseudoinverse as shown in375

Eq.5, which satisfies the requirement for calculat-376

ing ∆W .377

Once we have obtained the pseudoinverse matrix378

X−1
l , we can directly compute the transformation379

parameter ∆W , achieving the alignment of the380

model. Ultimately, ∆W can be derived using the381

formula presented below:382

∆W = W∆X1(VXΣ+
XU∗

X) (15)383

We then add the computed equivalent parameter384

∆W to the model’s original parameter W to imple-385

ment sustainability updates of the LLMs’ parame-386

ters.387

4 Experiment388

4.1 Experiment Setup389

4.1.1 Dataset390

We evaluate alignment methods using attack391

datasets and assess their impact on downstream392

tasks.393

Attack Datasets: AdvBench(Zou et al., 2023b)394

is a benchmark designed to evaluate LLM robust-395

ness against adversarial attacks through carefully396

crafted examples. PKU-SafeRLHF-10K(Ji et al.,397

2023) provides individual question-answer pairs398

labeled by utility and harmlessness, serving as a399

foundational attack dataset.400

Downstream Tasks Datasets: TruthfulQA(Lin401

et al., 2022) evaluates the truthfulness and reliabil-402

ity of generated responses. GSM8K(Cobbe et al.,403

2021) measures mathematical problem-solving404

skills at the grade school level. MMLU(Hendrycks 405

et al., 2021) tests performance across 57 topics, in- 406

cluding reasoning, comprehension, and knowledge 407

retrieval. 408

4.1.2 Baseline 409

- Perplexity (PPL)(Alon and Kamfonas, 2023): 410

Evaluates uncertainty in model outputs to detect 411

harmful or nonsensical responses. - Supervised 412

Fine-Tuning (SFT)(He et al., 2022): Aligns mod- 413

els to tasks or human preferences using labeled 414

data. - Reinforcement Learning from Human 415

Feedback (RLHF)(Zhang et al., 2024): Refines 416

models with human feedback guiding a reward 417

function. - SafeDecoding(Xu et al., 2024): Ap- 418

plies constraints during decoding to prevent harm- 419

ful outputs. - Self-Reminder(Xie et al., 2023): 420

Prompts models to self-check responses, enhanc- 421

ing safety alignment. - Retokenization(Jain et al., 422

2023): Adjusts tokenization to mitigate unsafe or 423

biased content generation. - Alignment-Enhanced 424

Decoding (AED)(Liu et al., 2024): Uses adaptive 425

decoding to improve robustness against jailbreak 426

issues. 427

Detailed configurations are provided in Ap- 428

pendix B. 429

4.1.3 Attack Method 430

- Gradient-based Controlled Generation (GCG): 431

Manipulates outputs using gradient-based tech- 432

niques to bypass safety measures. - AutoDAN(Liu 433

et al., 2023): Automates adversarial input gener- 434

ation to deceive content moderation. - CodeAt- 435

tack(Jha and Reddy, 2022): Targets vulnerabilities 436

in code-generation models. - PAIR(Chao et al., 437

2023): Crafts paired inputs to manipulate outputs 438

into harmful content. 439

4.1.4 Models 440

We employ widely-used models for value align- 441

ment and evaluation: 442

Target Models: Vicuna-13b(Anonymous, 443

2023), LLaMA2-7b(Touvron et al., 2023), 444

Mistral-7b(AI, 2023), and ChatGLM-6B(Zeng 445

et al., 2022). 446

Judgment Methods Response safety is as- 447

sessed through LlamaGuard(Team, 2024), GPT- 448

4(OpenAI, 2023), and human evaluation. Help- 449

fulness is also considered, with refusals or overly 450

cautious responses treated as alignment failures. 451

Responses are deemed positive if they are unani- 452

mously safe and meaningful. 453
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4.2 Experimental Result and Analysis454

4.2.1 TurboLoRA has comprehensive455

adversarial robustness456

Experiment and Results: We verify whether457

TurboLoRA provides adversarial robustness458

against various jailbreak attacks. We use the459

Adv-Bench dataset as the base test attack dataset.460

The experimental results in Table 2 show that we461

achieve strong defense against all types of jailbreak462

attacks, particularly with methods like CodeAttack463

that exploit generalization mismatches. Compared464

to existing alignment methods, we improved by465

12%.466

Analyse: Generalization mismatch-based attacks467

such as codeattack leverage capabilities not cov-468

ered by the alignment, such as code, bypassing the469

alignment defenses and causing baseline alignment470

methods to fail. By shifting the universal vector471

disparity between harmful and harmless responses,472

TurboLoRA can promptly correct errors after the473

attack takes effect, strike back after being attacked,474

and thus achieve comprehensive adversarial safety475

alignment.476

4.2.2 Low-rank Modifications Preserve the477

Downstream Tasks Capability478

Experiment and Results: This test encompasses479

the model’s factual memory, logical reasoning,480

mathematical abilities, language skills, and more,481

comprehensively validating its capabilities in down-482

stream tasks. Results in table 3 show that Tur-483

boLoRA achieves the highest accuracy in the three484

downstream tasks compared to other alignment485

Methods, with no significant changes compared486

to the original model. This indicates that Tur-487

boLoRA maintains the high generative capability488

of the model.489

Analyse: This can be attributed to TurboLoRA’s490

correction process, which shifted the low-rank vec-491

tor disparity between harmful and safe responses.492

This low-rank disparity is short-range and precise493

in its impact scope in hidden space, and the or-494

thogonality of the hidden vectors related to down-495

stream tasks is strong. As a result, the influence on496

downstream task performance after modification is497

minimal due to the low overlap between the vec-498

tor disparity and downstream task-related hidden499

vectors.500

Figure 6: TurboLoRA reduces parameter updating time
and no extra inference time was introduced

4.2.3 Low consumption in training and 501

inference 502

Experiment and Results: We recorded the time 503

consumed both for parameter updating and the 504

inference process for each method. Upon obser- 505

vation of Figure 6, TurboLoRA markedly outper- 506

formed SFT and RLHF in terms of training speed, 507

consuming approximately one-third of the time. 508

TurboLoRA also has the shortest inference time, 509

with the same inference process as the non-aligned 510

model. 511

Analyse: This is primarily attributed to the trans- 512

former’s primary computational operation, ’mat- 513

mul’, where the computational cost during back- 514

propagation is roughly twice that of forward propa- 515

gation. TurboLoRA eliminates the need for model 516

backpropagation, thus reducing the training time. 517

Compared to methods like RAG and AED, Tur- 518

boLoRA does not introduce additional computa- 519

tional overhead during inference, thus maintaining 520

the same inference speed as the original model. 521

5 Related Works 522

5.1 Alignment Methods 523

Fine-tuning(He et al., 2022) approaches enhance 524

LLMs’ alignment with human values by leverag- 525

ing extensive datasets. RLHF(Ouyang et al., 2022) 526

employs a reward model under the PPO framework 527

to learn human preferences. Self Aligner enables 528

models to self-regulate outputs, AED(Liu et al., 529

2024) detects and filters adversarial inputs, and 530

SafeDecoding(Xu et al., 2024) mitigates jailbreak 531

attacks by prioritizing safety tokens and suppress- 532

ing harmful sequences. However, jailbreak attacks 533

exploiting generalization mismatches can still by- 534

pass these defenses, causing alignment failures. 535
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Model Method No Attack↓ GCG↓ AutoDAN↓ codeattack↓ Pair↓ ArtPrompt↓

Llama2-7B-Chat-HF

No Defense 0.0% 37.68% 27.83% 57.59% 29.40% 43.33%
PPL 0.0%% 0.0% 10.50% 45.46% 18.90% 37.87%
SFT 2.57% 16.80% 75.60% 48.51% 26.36% 38.93%
RLHF 1.24% 15.09% 68.25% 46.53% 19.72% 36.47 %
Self-Reminder 0.0% 3.22% 12.61% 24.66% 17.49% 17.80 %
Retokenization 0.0% 6.59% 11.11% 50.13% 12.93% 36.19 %
AED 0.0% 0.4% 3.1% 22.61% 17.56% 16.01 %
Safedecoding 0.95% 2.38% 6.83% 18.05% 3.47% 14.82 %
RAG 0.0% 0.0% 1.71% 11.28% 4.62% 8.85 %
TurboLoRA(ours) 0.0% 1.62% 4.83% 5.13% 3.49% 4.10%

Vicuna-7B

No Defense 0.0% 93.97% 80.15% 58.32% 92.40% 40.99%
PPL 8.06% 0.0% 84.00% 50.41% 81.90% 42.13%
SFT 10.17% 84.85% 75.12% 48.40% 32.98% 39.52%
RLHF 7.03% 86.18% 68.25% 46.53% 35.44% 33.95%
Self-Reminder 0.0% 41.53% 21.31% 40.10% 46.03% 29.09%
Retokenization 40.85% 67.51% 31.97% 50.13% 77.14% 36.38%
AED 0.0% 11.88% 21.48% 31.57% 35.22% 13.44%
Safedecoding 0.0% 9.03% 27.98% 36.52% 10.26% 28.25%
RAG 0.0% 15.55% 10.82% 11.28% 16.08% 8.58%
TurboLoRA(ours) 0.0% 4.10% 13.24% 13.60% 10.81% 10.07%

Llama3-8B-Instruct

No Defense 0.0% 33.91% 25.05% 51.83% 28.46%% 40.72%
PPL 0.0%% 0.0% 9.45% 40.91% 17.01% 29.44%
SFT 2.31% 15.12% 68.04% 43.66% 24.72% 32.35%
RLHF 1.12% 13.58% 61.42% 41.88% 17.75% 31.46%
Self-Reminder 0.0% 2.90% 11.35% 39.07% 15.74% 29.84%
Retokenization 0.0% 5.93% 10.00% 45.12% 11.64% 36.54%
AED 0.0% 0.0% 10.28% 19.55% 15.80% 16.95%
Safedecoding 0.86% 2.14% 16.15% 16.7% 3.42% 15.17%
RAG 0.0% 0.0% 1.54% 10.15% 4.16% 7.95%
TurboLoRA(ours) 0.0% 1.46% 4.35% 4.12% 3.42% 2.91%

Mistral-7B

No Defense 0.0% 100.00% 96.18% 68.80% 62.83% 64.02%
PPL 0.0% 0.0% 18.17% 29.55% 13.47% 45.99%
SFT 2.33% 16.79% 79.50% 49.75% 27.57% 36.65%
RLHF 1.12% 9.61% 66.79% 47.59% 21.09% 38.65%
Self-Reminder 0.0% 5.35% 18.70% 22.21% 35.65% 17.14%
Retokenization 5.79% 13.72% 21.78% 40.50% 35.57% 38.22%
AED 0.0% 11.72% 16.70% 27.14% 30.12% 24.71%
Safedecoding 0.84% 9.76% 28.53% 28.77% 31.56% 22.87%
RAG 0.0% 0.0% 5.01% 6.35% 10.43% 15.65%
TurboLoRA(ours) 0.0% 1.64% 3.48% 5.12% 2.74% 10.25%

ChatGLM-7B

No Defense 0.0% 45.22% 33.40% 69.11% 35.28% 49.56%
PPL 0.0%% 0.0% 12.60% 54.55% 22.68% 41.97%
SFT 2.81% 20.16% 90.72% 58.21% 31.63% 41.03%
RLHF 1.12% 18.11% 81.90% 55.84% 23.66% 46.20%
Self-Reminder 0.0% 3.89% 15.13% 32.14% 20.99% 23.66%
Retokenization 0.0% 7.91% 13.33% 60.15% 15.52% 47.68%
AED 0.0% 0.0% 4.37% 12.73% 21.07% 19.47%
Safedecoding 1.04% 2.86% 8.20% 14.40% 4.16% 16.13%
RAG 0.0% 0.0% 2.05% 13.54% 10.51% 38.93%
TurboLoRA(ours) 0.0% 1.95% 5.80% 6.15% 4.16% 4.46%

Table 2: The alignment performance(ASR) of applying alignment methods with various jailbreak methods. We bold
the best performing. s

Model Name TruthfulQA↓ GSM8K↓ MMLU↓
Llama2-chat 46.3 38.4 45.3
SFT 42.2 29.1 43.2
RLHF 37.6 33.6 40.1
PPLM 28.0 18.7 22.8
Self-Reminder 41.8 32.7 42.5
Retokenization 35.7 22.5 38.9
AED 30.2 21.6 41.0
Safedecoding 39.9 23.5 37.7
RAG 41.6 31.3 40.6
TurboLoRA 44.5 34.8 42.8

Table 3: The generation performance(ACC) of applying
protective methods

5.2 Jailbreak Methods536

AutoDAN(Liu et al., 2023) uses hierarchical ge-537

netic algorithms to generate semantically mean-538

ingful jailbreak prompts, while Prompt Automatic539

Iterative Refinement (PAIR)(Chao et al., 2023) it-540

eratively refines prompts using pre-trained LLMs541

to elicit unintended behaviors with only black-box542

access. Greedy Coordinate Gradient (GCG)(Zou543

et al., 2023a) employs gradient-based searches544

to craft token sequences that bypass safety mea-545

sures. ArtPrompt(Jiang et al., 2024) uses ASCII 546

art to obscure malicious prompts, exploiting weak- 547

nesses in non-semantic representation recognition. 548

CodeAttack(Jha and Reddy, 2022) targets adversar- 549

ial vulnerabilities in LLM code generation, expos- 550

ing alignment gaps. 551

6 Conclusion 552

By identifying the universal low-rank vector dispar- 553

ity between harmful and safe responses to the same 554

question, we introduce TurboLoRA, the first inher- 555

ently corrective alignment method that transforms 556

harmful responses into safe ones. TurboLoRA com- 557

putes low-rank transformation parameters to shift 558

the harmful hidden vectors to safety ones, which 559

realizes a comprehensive adversarial LLMs align- 560

ment. This approach enables efficient, comprehen- 561

sive adversarially robust safety alignment without 562

affecting downstream tasks. 563
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7 Limitation564

We introduced an incremental alignment Method565

for large language models based on low-rank learn-566

ing and provided mathematical evidence for its567

efficacy. This technique facilitates the efficient568

alignment of model values.569

Our approach, without introducing additional570

computation, greatly reduces the resource con-571

sumption of the training process by utilizing param-572

eter fusion with equivalent incremental knowledge.573

This approach effectively compensates for the lim-574

itations of today’s alignment methods that do not575

accommodate incremental values knowledge. This576

approach enables efficient and highly guarded large577

model alignment to meet the need for efficient and578

guarded updating of large language model values.579

We chose representative methods for use as base-580

lines in fine-tuning and plug-in methods, respec-581

tively. Our methodology has been thoroughly val-582

idated, including validity, cross-linguistic compe-583

tence, transferability, and efficiency, and the effects584

of some hyper-reference settings on the method are585

fully discussed. Compared to the existing baseline,586

our defense improvement rate exhibits an average587

improvement of over 25%.588

This work aligns large language models through589

the application of incremental value embedding.590

We have conducted experiments across various591

themes of harmful topics on multiple large lan-592

guage models to verify the effectiveness of our593

model. However, due to limitations in our ex-594

perimental setup, we have not aligned models595

larger than 100 billion parameters using incremen-596

tal alignment, nor have we explored the process597

of generating harmful and benign texts in models598

of such scale. Consequently, it is unclear whether599

larger-scale language models exhibit low-rank dif-600

ferences in hidden parameters when generating601

harmful versus benign content, and the efficacy of602

incremental alignment in models exceeding 100 bil-603

lion parameters remains unconfirmed. Our findings604

of similar low-rank changes and the applicability605

of incremental alignment methods in models sized606

at 100 million, 1 billion, and 10 billion parameters607

lead us to speculate that larger models may share608

these characteristics and suitability for incremental609

alignment.610

In our work, incremental alignment is achieved611

by embedding equivalent incremental value param-612

eters with low-rank properties into large language613

models. These low-rank parameters minimize the614

impact on the original generative capabilities of 615

the language models while addressing harmfulness. 616

However, after multiple alignments, the param- 617

eters may lose their low-rank nature, leading to 618

more substantial modifications to the model and 619

potentially impairing the generative capabilities for 620

other tasks. Future work will explore maintaining 621

low-rank properties of parameters after continuous 622

alignments to preserve the model’s original genera- 623

tive abilities effectively and safely. 624

Our focus in this work is primarily on generat- 625

ing content that aligns with human values and is 626

safe, based on large language models. The align- 627

ment with human values and incremental knowl- 628

edge could encompass a broader range, including 629

but not limited to news events, updates to existing 630

knowledge, role-setting scenarios, and conversa- 631

tional memory content. Compared to safety-related 632

human values, these requirements lean more to- 633

wards enabling the model to learn more factual 634

knowledge. Although our experiments indicate 635

that such issues share similar generative processes 636

and parameter variability with harmful issues in 637

the safety domain, our work has not yet addressed 638

these aspects. We will pay more attention to the 639

effectiveness of aligning additional factual knowl- 640

edge in subsequent work. 641
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A observational793

Our observational experiment shows that integrat-794

ing positive value knowledge, which is in the form795

of ethical principles and value-based examples,796

within prompts can steer models toward generating797

content that is safer and aligned with values. Before798

and after this guidance, the inference process gen-799

erates positive and negative responses respectively.800

The difference in the hidden vectors between twice801

inference processes has a low-rank characteristic.802

We used the opt2.7b (Zhang et al., 2022) model803

as the target model and PKU-SafeRLHF-10K (Ji804

et al., 2023) as the attack dataset for the observa-805

tional experiment. We added positive answers as806

positive value knowledge to the context and ob-807

served the impact on LLM’s generation before and808

after introducing the positive value knowledge.809

The result shows that positive value knowledge810

effectively reduced the toxicity of model-generated811

text, aligning it more closely with human values.812

The experimental results are presented as follows813

in Figure 4814

B Baseline Setup815

Here’s the translation of your description into En-816

glish, suitable for an academic setting within a817

research paper on LLMl alignment:818

Experimental Setup Supervised Fine-Tuning819

(SFT) For SFT, we randomly sampled 20% of the820

dataset for training purposes. The model was fine-821

tuned using the Supervised Fine-Tuning method822

with the following configuration:823

Precision: fp16 Trainer configuration: Number 824

of nodes: 1 Number of devices: 2 Micro batch size: 825

1 Global batch size: 32 Maximum sequence length: 826

1024 Learning rate: 1e-5 Reinforcement Learning 827

from Human Feedback (RLHF) We randomly se- 828

lected 20% of the dataset for training. Initially, 829

20% of the training set was used for SFT with iden- 830

tical settings as mentioned above. Post SFT, we 831

applied Proximal Policy Optimization (PPO) for 832

reinforcement learning on the RLHF dataset, which 833

consists of concatenated forms of original prompts 834

with positive and negative examples, formatted as: 835

text: prompt||response The reward model was 836

trained using the same foundational model as the 837

original model. During PPO execution, we ref- 838

erenced Nvidia’s PPO hyperparameter settings to 839

ensure stability. The parameters set for the rein- 840

forcement learning phase were: 841

Optimizer learning rate: 5e-6 Global batch size: 842

16 PPO entropy bonus: 0.0 PPO ratio epsilon: 0.2 843

Plug and Play Language Model (PPLM) In PPLM, 844

we utilized a multilayer perceptron as the classifier 845

model with the following settings: 846

Length: 100 Gamma: 1.0 Step size: 0.05 Win- 847

dow size: 5 KL scale: 0.01 Self-reminder In 848

the self-reminder approach, we adopted OpenAI’s 849

safety assessment to determine whether each round 850

of generation was safe or a successful attack. We 851

iterated up to a maximum of five rounds for each 852

attack. The process of feedback and generation 853

was terminated when the model-generated text was 854

deemed safe or upon reaching the maximum num- 855

ber of iterations. 856

Contrastive Prefixes During the prefix selection 857

process, we adopted a supervised prefix selection 858

method. Following OpenAI’s classification stan- 859

dards, scenarios were divided into 13 harmful cate- 860

gories plus one harmless category. For each cate- 861

gory, safe reminder prefixes were pre-prepared to 862

initialize each class prefix. Prefix lengths were set 863

between 30 to 50 characters. For training losses 864

w1 and w2, we set the weights as 0.6 and 0.4, re- 865

spectively, to emphasize the defensive nature of the 866

prefixes against specific types of attacks. 867

C Selection of Training Data Range 868

In this section, we explored the dataset content 869

used for training the equivalent value knowledge 870

parameters. The data scope of the dataset includes: 871

the entire attack query dataset; a part of the at- 872

tack query dataset containing only queries leading 873

11

https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://openreview.net/pdf?id=oss9uaPFfB
https://openreview.net/pdf?id=oss9uaPFfB
https://openreview.net/pdf?id=oss9uaPFfB
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043


trained breach times

Protection enhancement rateperplexit

100/10/0.2

200/20/0.4

300/30/0.6
toxic-only
all-dataset
external-safety

Figure 7: Low-rank alignment procedure.

to malicious responses; and a normal task dataset874

with additional benign questions added to the attack875

query dataset. We use these three types of data sets876

as training sets to calculate equivalent value knowl-877

edge parameters and compare the performance of878

models fusing with these three parameters. The879

results are presented in the Figure 7.880

Result: From our observations, using only the881

malicious responses as the training set led to the882

highest defense enhancement, but the difference883

is not significant. In terms of text generation per-884

plexity, including the entire dataset and the extra885

benign prompt dataset led to significantly lower886

perplexities compared to using just the malicious887

responses. This indicates that the model’s text gen-888

eration capability was significantly enhanced by889

including benign prompts, without much compro-890

mise in defensive capabilities. Furthermore, as891

more benign prompts were added, the model’s gen-892

eration capabilities gradually improved, although893

with a slight decrease in defensive capabilities.894

This is because the expansion of the benign ques-895

tion set aids in maintaining parameters unchanged896

hidden vectors during the generation of non-toxic897

text. This strongly supports that incorporating be-898

nign responses into the training set contributes to899

TurboLoRA’s performance in alignment. At the900

same time, we need to control the proportion of901

harmful queries and normal task queries in the902

training set to prevent excessive hindrance to the903

original generation ability of the model.904

D Influence of Rank r905

To assess the impact of rank r, the model was pro-906

tected using TurboLoRA with different rank selec-907

tions (from 1 to 10). The results are illustrated in908

the Figure 8.909
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Figure 8: Influence of Rank r

Result: By analyzing the results, it’s evident 910

that even with a rank setting of 1, the model retains 911

over 79% of the defensive capabilities enhance- 912

ment. As the rank r increases, PER gradually in- 913

creases. This is because most of the energy is still 914

encapsulated within low-rank parameters. When 915

comparing models of rank 5 and 10 rank, no sig- 916

nificant change in defensive capability is observed. 917

The model’s protection capacity is gradually level- 918

ing off. It further substantiates that our low-rank 919

alignment method exhibits commendable efficacy 920

even in lower-rank settings. However the rank con- 921

tinues to increase, TurboLoRA’s protective capabil- 922

ities will decline rapidly after exceeding a certain 923

value. Therefore, TurboLoRA is not suitable for 924

selecting excessively large ranks. 925

E Realation with LORA 926

According to our derivation in the text and Lora’s 927

formula we can get the base formula: 928

∆W = W∆XlX
−1
l

∆W = BA
(16) 929

For comparison, the formula corresponding to 930

LORA is: 931

∆W = (VXΣX+UX
∗)∆X1(UWΣW

′
V T
W ) (17) 932

We push it further until we can get: 933

B = (VXΣX + UX
∗)∆XjUW 934

A = ΣW
′
VW

T 935

Next, we reconsider the definition in LORA: 936

∆W = BA. 937
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Calculated by the above formula, we can regard938

the low-rank correspondence with Lora:939

B = (VXΣX + U∗)∆XjUW940

A = ΣW
∗VW

T941

Here, r(B) < r(UW ) = d(Σ) and r(A) < d(Σ),942

and for K < d(W ) this satisfies our assumption943

r(∆W ) ≪ d(W ).In summary, through the deriva-944

tion of the above process, we can confirm that un-945

der the condition that the modified parameters of946

LORA have low rank, the equivalent positive value947

parameters of TurboLoRA can also have the same948

low rank. This correlates the low-rank parameter949

modifications in LORA with the low-rank hidden950

layer differences in TurboLoRA, jointly demon-951

strating the effectiveness of low-rank parameters952

for model alignment.953

F Judgement Method954

In our investigation, we have incorporated three dis-955

tinct evaluative models, namely openai-moderation,956

google-perspective, and Toxigen, to meticulously957

assess the potential harmfulness inherent in the out-958

put text.959

This enables developers to identify and take deci-960

sive actions against content that contravenes our us-961

age policies, such as implementing filtering mecha-962

nisms.963

Moderation plays a pivotal role in assessing the964

harmful potential of various content types, span-965

ning across a multitude of categories. Each cate-966

gory is meticulously evaluated, resulting in a harm967

score that quantitatively represents the potential968

negative impact of the content.969

With utilizing openai-moderation as the basic970

judgment method, in our assessment protocol, a971

text is classified as non-harmful if it is unanimously972

deemed safe by all three classifiers and meaningful.973

Conversely, if any of the classifiers flag the text as974

potentially harmful, it is categorized as toxic.975

G Layer Selection976

In this work, we employ model probing to deter-977

mine the optimal hidden layer for TurboLoRA im-978

plementation. Model probing is a technique for979

analyzing and interpreting the internal workings980

of machine learning models, especially deep learn-981

ing models. This approach aims to uncover how982

models process and represent data, particularly to983

understand what models learn while handling tasks984

in natural language processing (NLP), computer 985

vision, or other domains. 986

We utilized model probing to identify the layers 987

that are most decisive in determining the harm- 988

fulness of the model-generated content. We em- 989

ployed a linear classifier to predict the harmfulness 990

of generated content based on the hidden vectors 991

processed through various layers of the model. 992

For each model, we selected the layer where 993

the probe classifier showed the highest accuracy. 994

Because we believe that the parameters of this layer 995

have the greatest impact on the harmfulness of the 996

generated content. At this layer, we implement 997

TurboLoRA to align human values. 998

At the same time, we found that in the attention 999

layer of the model, the accuracy of probe predic- 1000

tion may even surpass the MLP layer. We propose 1001

a hypothesis that the significant influence of low- 1002

rank hidden vectors on the content generated by the 1003

model is due to these low-rank parameters affect- 1004

ing the model’s choice of learned knowledge dur- 1005

ing the generation process, that is, from activating 1006

knowledge from different sources in the training 1007

set. This mechanism of choice acts as a switch, al- 1008

lowing even a small number of parameters to have 1009

a substantial impact on the model’s generation, a 1010

phenomenon that is similarly observed in the au- 1011

thenticity of the model-generated content. In our 1012

follow-up work, we will further explore how to 1013

find the best model parameter locations suitable for 1014

low-rank alignment based on this phenomenon and 1015

conduct a more in-depth study of the mechanism 1016

behind this phenomenon. 1017

H generalizability 1018

H.0.1 Transferability: Cross-lingual and 1019

Cross-dataset 1020

We further examined TurboLoRA’s generalizabil- 1021

ity. We validated its transferability across dif- 1022

ferent attack query datasets, as well as its cross- 1023

lingual transferability across different languages. 1024

We used PKU-SafeRLHF-10K as the basic dataset, 1025

and Ethos and THU-coai as the migration dataset. 1026

Result: Through the observation of Table 4, 1027

in terms of generalizability across different harm- 1028

ful queries, our observations of the experimen- 1029

tal results show that TurboLoRA maintained its 1030

protective capacity across various datasets. Com- 1031

pared to other baseline methods, TurboLoRA’s 1032

ASR achieves the lowest score. Our analysis sug- 1033

gests that TurboLoRA’s high transferability is at- 1034
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Cross-Lingual Cross-dataset

EtoC CtoE D1toD2 D1toD2

SFT 0.172 0.101 0.077 0.060
RLHF 0.159 0.095 0.071 0.102
PPLM 0.323 0.255 0.146 0.163
Self-Reminder 0.116 0.076 0.068 0.082
CP 0.205 0.210 0.138 0.166
TurboLoRA 0.122 0.081 0.068 0.058

Table 4: Performance of protection capabilities(PAST)
in migration scenarios. EtoC: English to Chinese. CtoE:
Chinese to English. PtoE: PKU-SafeRLHF-10K to
Ethos. EtoP: Ethos to PKU-SafeRLHF-10K.

tributed to similar harmful queries sharing similar1035

hidden vector features, guided by the same positive1036

value knowledge. Furthermore, problems within1037

the same category are collectively guided by multi-1038

ple positive value knowledge inputs from the train-1039

ing set, resulting in harmless content generation.1040

However, fine-tuning methods rely excessively on1041

the representation of input text in small-sample1042

training processes, thus limiting its transferability1043

capability. PPLM is entirely dependent on the clas-1044

sifier’s transferability. SR only requires the LLM1045

to have the cross-linguistic ability to achieve good1046

results.1047

Regarding cross-lingual performance, observa-1048

tions of the experimental results in Table 4 indicate1049

that TurboLoRA achieved the best outcomes in1050

both Chinese-to-English and English-to-Chinese1051

translations, preventing more than 93% of attack1052

queries. We speculate that semantically similar1053

texts in Chinese and English may share common1054

hidden feature representations, allowing epositive1055

value knowledge parameters to guide the genera-1056

tion of harmless content across languages. Fine-1057

tuning methods, which adjust the entire model’s pa-1058

rameters, are more sensitive to cross-lingual textual1059

differences. Due to the classifier’s lack of cross-1060

lingual capabilities, PPLM’s effectiveness signifi-1061

cantly decreases. SR does not involve cross-dataset1062

effects. In summary, TurboLoRA demonstrated1063

strong cross-dataset and cross-lingual transferabil-1064

ity.1065
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