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Abstract

In recent years, Large Language Models
(LLMs) have expanded their applications
across various fields but faced security chal-
lenges. Current alignment methods only ad-
dress specific jailbreak attacks but fail to de-
fend against counteracting diverse and adaptive
attack strategies, leaving significant vulnerabil-
ities against diverse and evolving attack strate-
gies. To overcome the critical limitations of
existing adversarial alignment methods with
defense blind spots, which specific jailbreak at-
tack techniques can easily breach, we propose
TurboLoRA, the first comprehensive adversar-
ial safety alignment method. TurboLoRA in-
trinsically corrects harmful response to safety
response by modifying the low-rank transfor-
mation parameters, which effectively maps
harmful hidden vectors to safety hidden vec-
tors by correcting the short-range vector dispar-
ities. TurboLoRA ensures robust and compre-
hensive adversarial safety alignment without
compromising downstream task performance.
Extensive experiments against diverse jailbreak
methods and target LLMs validate the effective-
ness of TurboLoRA, establishing its potential
as a robust and efficient solution to adversarial
safety alignment.

1 Introduction

In recent years, the rapid development of Large
Language Models (LLMs) has attracted widespread
attention, and these models have been extensively
applied across various fields (Wei et al., 2023a).
Alongside the capabilities of these models, they
also face an increasing number of security chal-
lenges, including bias, discrimination, hallucina-
tions, and prejudice. Despite extensive safety re-
inforcement(Ouyang et al., 2022,He et al., 2022)
during the training phase, LLMs remain vulnerable
to "jailbreak" attacks, leading to the risk of harm-
ful information spreading due to their widespread
application.

To tackle these challenges, researchers have em-
ployed various value safety alignment methods,
aiming to align LL.Ms more closely with human
values to mitigate potential risks(Ouyang et al.,
2022, Dong et al., 2023, Lee et al., 2024). These
alignment techniques enable models to balance ad-
herence to both instruction-following objectives
and safety objectives.
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Figure 1: Alignment methods primarily focus on de-
fending *Competing Object’ attack, but bypassed by
’Mismatching Generalization” Attack.

Despite these advancements, current alignment
methods only take effect against certain jailbreak
attacks but fail to defend against others as shown
in figure 1 Current jailbreak attacks primarily
exploit two mechanisms to undermine alignment:
Competing Objectives and Mismatched General-
ization(Wei et al., 2023b). Objective compe-
tition arises when the model’s pre-training and
instruction-following objectives conflict with its
safety objectives. Jailbreak attacks of this cate-
gory(Liu et al., 2023, Zou et al., 2023a) activate and
enhance the model’s instruction-following behav-
ior while suppressing the safety objectives, forcing
LLMs to generate harmful responses. Mismatched
generalization arises when the inputs fall outside
the distribution of safety-focused training data but
lie within the broader distribution of the pretraining
corpus. Attacks of this category exploit scenarios
and capabilities not covered by the LLM’s safety
capabilities, bypassing competition with safety ob-
jectives, and directly eliciting harmful responses.
Due to the broad capabilities and extensive cor-



pus distribution of large models, and the sparsity
and low-rank nature of safety-related knowledge in
LLM(Wei et al., 2023b), there are blind spots in the
distribution of corpus related to safety alignment,
rendering LLMs particularly vulnerable when fac-
ing such attacks.

Although some adversarial alignment methods
have begun addressing jailbreak attacks, they still
exhibit blind spots. These methods, such as Adver-
sarial Example Detection (AED)(Liu et al., 2024)
and Safedecoding(Xu et al., 2024), primarily fo-
cus on achieving dominance of safety objectives
over instruction-following objectives during com-
petitive scenarios. This still struggles to defend
against mismatched generalization attacks, which
bypass direct competition altogether and render the
model vulnerable to attack.

To address the limitations of safety alignment
blind spots, we propose TurboLoRA, a compre-
hensive adversarial intrinsic correction alignment
method under adversarial conditions. Inspired by
the notion that correcting errors to reach correct
behavior is easier than directly generating correct
behavior, we attempt to activate alignment after
the generation of harmful hidden vectors. Thus
harmful responses can be corrected into safe ones
inside the model by shifting corresponding harm-
ful hidden vectors to safety hidden vectors during
inference.

TurboLoRA intrinsically achieves this by lever-
aging the universal, and short-range disparity be-
tween the hidden vectors corresponding to harmful
and safe responses, allowing correcting the harm-
ful hidden vector through modifying the low-rank
model parameters called transformation parame-
ters. This ensures low computational overhead
while maintaining high generalization against di-
verse jailbreak attacks and preserves the LLM’s
downstream task performance ability.

Our contributions to this paper include:

¢ 1) Discovering the universal low-rank vector
disparity between the hidden vectors corre-
sponding to harmful and safe responses to the
same query in LLMs, which can be corrected
through low-rank transformation parameter
modifications.

* 2) We are the first to propose a safety align-
ment method that intrinsically corrects harm-
ful response to safe response: TurboLoRA.
By calculating the low-rank transformation

parameters, achieving efficient, comprehen-
sive adversarial safety alignment with mini-
mal impact on downstream tasks.

* 3) We conducted extensive experiments across
five LLMs, employing various attack methods
spanning two attack paradigms, sufficiently
proving the effectiveness of TurboLoRA. In
particular, TurboLLoRA decreases 12% ASR
under specific adversarial conditions.

2 Opportunities from Short-Distance
disparity in Hidden Vectors

This section delves into the pilot experiment
that serves as the cornerstone for our subsequent
methodologies. Specifically: In section 2.1, we
experimentally discovered that it is easier to shift
the hidden vectors of harmful responses into
those of safe responses within the model, com-
pared to directly generating safe responses. In Sec-
tion 2.2 we find that there is a low-rank vector
disparity between the hidden vectors of harm-
ful responses and safe responses. In Section 2.3,
we delve deeper into the phenomenon observed
in 2.2 and find that this vector disparity can be
modified with low-rank parameters which will
enhance comprehensive adversarial defense and
minimize impact on downstream tasks.

2.1 Correcting Errors to Correct Is Easier
than Generating Correct

In this section, we compared the disparity between
the hidden vectors corresponding to harmful re-
sponses, safe responses, and refusal responses, and
found that the vector disparity between harmful and
safe responses is characterized by a short range.

To validate the characteristic of short-range in
the vector disparity between safe and harmful re-
sponses, we designed comparisons between this
disparity and those between safe and refusal, as
well as safe and random responses. The safe and
random represents the typical range between a safe
response and any arbitrary response, while the re-
fusal response simulates the scenario of directly
generating a safe response after recognizing the
question as having harmful intent.

We used 1000 aggressive queries from the PKU-
RLHEF dataset as our test dataset and conducted ex-
periments on the representative models LLAMAZ2-
7B. We employed the RAG and jailbreak attack
methods to elicit safe, refusal, and harmful re-
sponses to the same query. When implementing
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Figure 2: a) compare the three vector disparity. b) compare Safety-Random with Safety-Harmful. ¢) compare
Safety-Refusal vs Safety-Harmful. All figures show that vector disparity between safe and harmful responses is

significantly shorter than the other two

RAG to elicit safe responses, we searched the
knowledge base for positive value descriptions re-
lated to the query and examples of safe responses to
include in the prompt. The positive value descrip-
tions were sourced from Wikipedia, and the safe
responses were derived from harmless response
examples in PKU-RLHF.

We collected the hidden vectors from the infer-
ence processes in three scenarios and calculated the
vector disparity. For the random responses, we ran-
domly selected responses that were different from
the original queries of the target safe responses. As
shown in the figure 2, we can observe that the vec-
tor disparity between safe and harmful responses is
significantly shorter than the other two, indicating
that the vector disparity between safe and harm-
ful responses indeed has the universally existing
characteristic of a short-range. This provides a
foundation for shifting the hidden vectors of harm-
ful responses to those of safe responses during the
inference process.

2.2 Key factor for shifting: low-rank
characteristics
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Figure 3: The three figures are numbered from left to
right as a), b). a) show that the top few components
account for the majority of the variance b) shows the
first few variables have different roles in the principal
component

Verifying only the short-range characteristic

of vector disparity between safe and harmful
responses still makes it challenging to achieve
prompt vector shifting during the inference pro-
cess. This section further analyzes the more pro-
found reasons behind the phenomena that emerged
in Section 2.1 and provides key guidance for cor-
rection.

We recorded and observed the output of each
hidden layer during the inference process with two
semantically identical attack queries that respec-
tively generated harmful and safety responses. Dis-
parity in the hidden vectors was quantified to form
a matrix, which was then analyzed using principal
component analysis (PCA).

For the observation of figure 3, figure a) shows
that the cumulative variance of the top ten exceeds
95%. Figure b) shows that the load of the first
several principal components has different con-
tributions on each variable, indicating that these
variables have different roles in the principal com-
ponents. This indicates that the initial principal
components capture the vast majority of the vari-
ance, effectively describing the primary changes in
the data. This implies that the variations matrix of
hidden vectors exhibited low-rank properties, and
there were few patterns of change in hidden vector
differences between the two attacks.

These results resemble those observed in output
distributions caused by modifications to a small
subset of low-rank parameters in linear layers (Bel-
let et al., 2013, Zeiler and Fergus, 2014). This
observation provides a key guidance for shifting
harmful hidden vectors in the inference process.

2.3 The low-rank Transformation Parameter
Can Shift

Based on the findings from Section 2.2, this section
further demonstrates that by adjusting only the low-
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Figure 4: Each grid represents the gradient of a parame-
ter. The lighter the color, the higher the gradient value.
rank parameters within the model, it is possible to
shift the harmful hidden vector to safety.

We utilized the hidden vector diversity men-
tioned in Section 2.2, which differs in the same
layer with the loss function, and performed back-
propagation on that layer’s MLP layer. Then we
analyzed the gradients of the linear layer parame-
ters. Figure 4 shows that the parameters that are
significant to the latent vector difference gradient
account for less than 3%, where these sparse pa-
rameters tend to be localized to several neurons,
concentrated in a few rows of the matrix. Such
an arrangement of sparse matrices exhibits low-
rank characteristics. This result indicates that large
gradient values are concentrated on a few param-
eters, further suggesting that modification of the
low-rank parameters in the model can universally
shift harmful hidden vectors to safety ones and
realize comprehensive adversarial alignment. We
called the parameters for modification as transfor-
mation parameters.

Furthermore, modifications to low-rank parame-
ters have been found to maintain downstream task
ability while also allowing for rapid model param-
eter updates. This provides key support for the
proposal of TurboLoRA.

3 TurboLoRA

In this work, we introduce TurboLLoRA, a compre-
hensive intrinsic correction alignment method for
adversarial conditions. TurboLoRA intrinsically
and promptly corrects harmful responses to safe
ones during the model inference process through
fusing low-rank transformation parameters into the
model’s original parameters, enabling comprehen-
sive adverisal, efficient, and minimal alignment tax
to align the LL.Ms.

Table 1 introduces the notation and theoretical
concepts used throughout the paper.

The objective of TurboLLoRA is to enhance the
security of the model’s responses while preserv-
ing its ability to generate harmless content. This

Symbol Definition
Wi Parameters of the MLP layer at the [-th layer
X Tutput of the MLP layer at the [-th layer
Y, Output of the MLP layer at the [-th layer
T LLM response, where T' = G(W, q)
G() Inference process of the LLM
Qjaitbrear | Harmful query dataset modified by the jailbreak
attack method to generate harmful response
Qrac Harmful query dataset modified by RAG to

guide LLM in generation safety response
qi The i-th query in the dataset Q

I(T) Discrimination function evaluating the safety of

T. > 0 for safe, < O for unsafe

w’ Updated model parameters, W’ = W + AW

AW Equivalent value parameters added to ensure
alignment with human values
1% Contains the right singular vectors of the matrix
X as its columns
DX Diagonal matrix with non-negative real numbers
(singular values) on the diagonal
U The left singular vectors of the matrix X;
r Determine the rank of the pseudoinverse matrix

Table 1: Symbols and Definitions Used in the Paper

objective can be formally represented as follows:

Ql
IXII%I} Z;CrossEntropy(ﬂ-,Ti),I(ﬂ >0) (1)
1=

Q]
Max ;(I(n>—1(ﬂ>),f(n<0) @)
T, =GW,q), T, =G(W +AW,q), (3)

In the following sections of this chapter, we will
provide a detailed description of the TurboLoRA
process and its underlying rationale.

3.1 Methodology

In this section, we will detail the specific process
of TurboLoRA. The overall flow of TurboLoRA
is shown in figure 5. The implementation of
TurboLLoRA is divided into three distinct phases:
Hidden Vectors Collection extracts the variables
needed for subsequent calculations, Low-Rank
Learning utilizes the variables to calculate the low-
rank transformation parameter, and Parameter Fu-
sion applies transformation parameters to update
the model.

3.1.1 Hidden Vectors Collection

In order to extract the difference between harm-
ful and safety responses in the inference process,
we conduct two sets of query that respectively em-
ploying Jailbreak attacks and RAG to guide the
model in generating harmful and safety responses.
The two sets are conducted based on the same at-
tack query set Q. The formal representation is as
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Figure 5: Low-rank alignment procedure. The labels correspond to the following steps:®:Hidden Vectors Collection;
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follows:

I(G(Qnaitbreak, W)) < 0, 4)
I(G(Qrac),W)) >0 (5)

We collect the model layer parameters W and
layer I’s MLP layer hidden vectors X; through the
inference processes of two datasets.

3.1.2 Transformation Parameter Calculation

At this stage, we calculate the parameters AW
used to update the model, completing the low-rank
learning.

The low-rank transformation parameter is ob-
tained by calculating the disparity between harmful
hidden vector and safety hidden vector after pass-
ing through the MLP layer. The formula for calcu-
lating parameters utilizes the Moore-Penrose pseu-
doinverse for efficient computation, as outlined be-
low:

Xt =2 tur (6)
X =Uxv? (7
AW =WAX,(V, 5, 1UT) 8)

Eq.3 represents the singular value decomposi-
tion of X, and Eq.4 is obtained using the Penrose
inverse algorithm(Penrose, 1955). The detailed
computational procedure is described in section
3.2. The Eq.5 calculates the value of Aw, which is
the optimal solution for Eq.1.

By summing the the low-rank transformation
parameter matrix to the original model parameter
matrix, it is possible to transformation the harmful
to safety hidden vector in LLM’s inference time.

3.1.3 Parameter Fusion

In this phase, we fuse the transformation parameter
with the original model to intrinsically shift the
hramful to safety hidden vector.

The fusion of the transformation parameter cal-
culated by TurboLoRA with the original model can
be expressed as:

W' = (W +AW) ©9)

By summing the the low-rank transformation

parameter matrix to the original model parameter

matrix, it is possible to intrinsically and promptly

shift the harmful to safety hidden vector in infer-

ence process, obtaining a safer response that is
aligned with the target human values.

3.2 Derivation and Proof

In this section, we describe and derive the formula
for calculating the transformation parameter and
prove the validity of the TurboLoRA.

For the original model, the computation in the
I-th MLP layer during the inference process for
queries @ and Q' satisfies the following equation:

WX, +b =X, WX, +b=X4 (10)

When I(G(W,q;)) > 0,Vg; € @ is satisfied, the
alignment by the optimal AW, as determined by
the target EQ.1, should shift the hramful hidden
vector to safety hidden vector. Specifically, for
the jailbreak query (), the hidden vectors calcu-
lated with updated parameters should match those
calculated in the original parameter for the RAG
query Q" which guide the LLM in generating safety



responses. This is formally represented as:

WX, +b =Yy,
(W +AW)X; + b = X

1D
(12)

Based on this target EQ.10 and EQ.11, we com-
pute the transformation parameters AW necessary

for parameter updates. AW can be further formal-
ized and represented as follows:

AY, =Y, -V, AX;=X, - X
AW X; =AY, = WAY,
= AW =WAYX; !

13)
(14)

However, in most cases, where the number of
queries does not equal the dimensionality of the
hidden vectors, therefore X is not a square matrix,
and hence an inverse does not exist directly.

For this purpose, we compute the pseudoinverse
of X using the Penrose pseudoinverse as shown in
Eq.5, which satisfies the requirement for calculat-
ing AW.

Once we have obtained the pseudoinverse matrix
X 1—1, we can directly compute the transformation
parameter AW, achieving the alignment of the
model. Ultimately, AW can be derived using the
formula presented below:

AW = WAX; (VxELU%) (15)

We then add the computed equivalent parameter
AW to the model’s original parameter W to imple-
ment sustainability updates of the LLMs’ parame-
ters.

4 Experiment

4.1 Experiment Setup
4.1.1 Dataset

We evaluate alignment methods using attack
datasets and assess their impact on downstream
tasks.

Attack Datasets: AdvBench(Zou et al., 2023b)
is a benchmark designed to evaluate LLM robust-
ness against adversarial attacks through carefully
crafted examples. PKU-SafeRLHF-10K(Ji et al.,
2023) provides individual question-answer pairs
labeled by utility and harmlessness, serving as a
foundational attack dataset.

Downstream Tasks Datasets: Truthful QA (Lin
et al., 2022) evaluates the truthfulness and reliabil-
ity of generated responses. GSM8K(Cobbe et al.,
2021) measures mathematical problem-solving

skills at the grade school level. MMLU(Hendrycks
et al., 2021) tests performance across 57 topics, in-
cluding reasoning, comprehension, and knowledge
retrieval.

4.1.2 Baseline

- Perplexity (PPL)(Alon and Kamfonas, 2023):
Evaluates uncertainty in model outputs to detect
harmful or nonsensical responses. - Supervised
Fine-Tuning (SFT)(He et al., 2022): Aligns mod-
els to tasks or human preferences using labeled
data. - Reinforcement Learning from Human
Feedback (RLHF)(Zhang et al., 2024): Refines
models with human feedback guiding a reward
function. - SafeDecoding(Xu et al., 2024): Ap-
plies constraints during decoding to prevent harm-
ful outputs. - Self-Reminder(Xie et al., 2023):
Prompts models to self-check responses, enhanc-
ing safety alignment. - Retokenization(Jain et al.,
2023): Adjusts tokenization to mitigate unsafe or
biased content generation. - Alignment-Enhanced
Decoding (AED)(Liu et al., 2024): Uses adaptive
decoding to improve robustness against jailbreak
issues.

Detailed configurations are provided in Ap-
pendix B.

4.1.3 Attack Method

- Gradient-based Controlled Generation (GCG):
Manipulates outputs using gradient-based tech-
niques to bypass safety measures. - AutoDAN(Liu
et al., 2023): Automates adversarial input gener-
ation to deceive content moderation. - CodeAt-
tack(Jha and Reddy, 2022): Targets vulnerabilities
in code-generation models. - PAIR(Chao et al.,
2023): Crafts paired inputs to manipulate outputs
into harmful content.

4.1.4 Models

We employ widely-used models for value align-
ment and evaluation:

Target Models: Vicuna-13b(Anonymous,
2023), LLaMAZ2-7b(Touvron et al., 2023),
Mistral-7b(Al, 2023), and ChatGLM-6B(Zeng
et al., 2022).

Judgment Methods Response safety is as-
sessed through LlamaGuard(Team, 2024), GPT-
4(OpenAl, 2023), and human evaluation. Help-
fulness is also considered, with refusals or overly
cautious responses treated as alignment failures.
Responses are deemed positive if they are unani-
mously safe and meaningful.



4.2 Experimental Result and Analysis

4.2.1 TurboLoRA has comprehensive
adversarial robustness

Experiment and Results: We verify whether
TurboLoRA provides adversarial robustness
against various jailbreak attacks. We use the
Adv-Bench dataset as the base test attack dataset.
The experimental results in Table 2 show that we
achieve strong defense against all types of jailbreak
attacks, particularly with methods like CodeAttack
that exploit generalization mismatches. Compared
to existing alignment methods, we improved by
12%.

Analyse: Generalization mismatch-based attacks
such as codeattack leverage capabilities not cov-
ered by the alignment, such as code, bypassing the
alignment defenses and causing baseline alignment
methods to fail. By shifting the universal vector
disparity between harmful and harmless responses,
TurboLoRA can promptly correct errors after the
attack takes effect, strike back after being attacked,
and thus achieve comprehensive adversarial safety
alignment.

4.2.2 Low-rank Modifications Preserve the
Downstream Tasks Capability

Experiment and Results: This test encompasses
the model’s factual memory, logical reasoning,
mathematical abilities, language skills, and more,
comprehensively validating its capabilities in down-
stream tasks. Results in table 3 show that Tur-
boLoRA achieves the highest accuracy in the three
downstream tasks compared to other alignment
Methods, with no significant changes compared
to the original model. This indicates that Tur-
boLoRA maintains the high generative capability
of the model.

Analyse: This can be attributed to TurboLoRA’s
correction process, which shifted the low-rank vec-
tor disparity between harmful and safe responses.
This low-rank disparity is short-range and precise
in its impact scope in hidden space, and the or-
thogonality of the hidden vectors related to down-
stream tasks is strong. As a result, the influence on
downstream task performance after modification is
minimal due to the low overlap between the vec-
tor disparity and downstream task-related hidden
vectors.
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Figure 6: TurboLoRA reduces parameter updating time
and no extra inference time was introduced

4.2.3 Low consumption in training and
inference

Experiment and Results: We recorded the time
consumed both for parameter updating and the
inference process for each method. Upon obser-
vation of Figure 6, TurboLoRA markedly outper-
formed SFT and RLHF in terms of training speed,
consuming approximately one-third of the time.
TurboLoRA also has the shortest inference time,
with the same inference process as the non-aligned
model.

Analyse: This is primarily attributed to the trans-
former’s primary computational operation, *mat-
mul’, where the computational cost during back-
propagation is roughly twice that of forward propa-
gation. TurboLoRA eliminates the need for model
backpropagation, thus reducing the training time.
Compared to methods like RAG and AED, Tur-
boLoRA does not introduce additional computa-
tional overhead during inference, thus maintaining
the same inference speed as the original model.

5 Related Works

5.1 Alignment Methods

Fine-tuning(He et al., 2022) approaches enhance
LLMs’ alignment with human values by leverag-
ing extensive datasets. RLHF(Ouyang et al., 2022)
employs a reward model under the PPO framework
to learn human preferences. Self Aligner enables
models to self-regulate outputs, AED(Liu et al.,
2024) detects and filters adversarial inputs, and
SafeDecoding(Xu et al., 2024) mitigates jailbreak
attacks by prioritizing safety tokens and suppress-
ing harmful sequences. However, jailbreak attacks
exploiting generalization mismatches can still by-
pass these defenses, causing alignment failures.



Model Method No Attack] | GCG] | AutoDAN] | codeattack] Pair] ArtPrompt]
No Defense 0.0% 37.68% 27.83% 57.59% 29.40% 43.33%
PPL 0.0% % 0.0% 10.50% 45.46% 18.90% 37.87%
SFT 2.57% 16.80% 75.60% 48.51% 26.36% 38.93%
RLHF 1.24% 15.09% 68.25% 46.53% 19.72% 36.47 %
Llama2-7B-Chat-HE Self-Reminder 0.0% 3.22% 12.61% 24.66% 17.49% 17.80 %
Retokenization 0.0% 6.59% 11.11% 50.13% 12.93% 36.19 %
AED 0.0% 0.4% 3.1% 22.61% 17.56% 16.01 %
Safedecoding 0.95% 2.38% 6.83% 18.05% 3.47% 14.82 %
RAG 0.0% 0.0% 1.71% 11.28% 4.62% 8.85 %
TurboLoRA (ours) 0.0% 1.62% 4.83 % 5.13% 3.49% 4.10%
No Defense 0.0% 93.97% 80.15% 58.32% 92.40% 40.99%
PPL 8.06% 0.0% 84.00% 50.41% 81.90% 42.13%
SFT 10.17% 84.85% 75.12% 48.40% 32.98% 39.52%
RLHF 7.03% 86.18% 68.25% 46.53% 35.44% 33.95%
Vicuna-7B Self-Reminder 0.0% 41.53% 21.31% 40.10% 46.03% 29.09%
Retokenization 40.85% 67.51% 31.97% 50.13% 77.14% 36.38%
AED 0.0% 11.88% 21.48% 31.57% 35.22% 13.44%
Safedecoding 0.0% 9.03% 27.98% 36.52% 10.26% 28.25%
RAG 0.0% 15.55% 10.82% 11.28% 16.08% 8.58%
TurboLoRA (ours) 0.0% 4.10% 13.24% 13.60% 10.81% 10.07%
No Defense 0.0% 33.91% 25.05% 51.83% 28.46%% 40.72%
PPL 0.0% % 0.0% 9.45% 40.91% 17.01% 29.44%
SFT 2.31% 15.12% 68.04% 43.66% 24.72% 32.35%
RLHF 1.12% 13.58% 61.42% 41.88% 17.75% 31.46%
Llama3-8B-Instruct Self-Reminder 0.0% 2.90% 11.35% 39.07% 15.74% 29.84%
Retokenization 0.0% 5.93% 10.00% 45.12% 11.64% 36.54%
AED 0.0% 0.0% 10.28% 19.55% 15.80% 16.95%
Safedecoding 0.86% 2.14% 16.15% 16.7% 3.42% 15.17%
RAG 0.0% 0.0% 1.54% 10.15% 4.16% 7.95%
TurboLoRA (ours) 0.0% 1.46% 4.35% 4.12% 3.42% 2.91%
No Defense 0.0% 100.00% 96.18% 68.80% 62.83% 64.02%
PPL 0.0% 0.0% 18.17% 29.55% 13.47% 45.99%
SFT 2.33% 16.79% 79.50% 49.75% 27.57% 36.65%
RLHF 1.12% 9.61% 66.79% 47.59% 21.09% 38.65%
Mistral-7B Self-Reminder 0.0% 5.35% 18.70% 22.21% 35.65% 17.14%
) Retokenization 5.79% 13.72% 21.78% 40.50% 35.57% 38.22%
AED 0.0% 11.72% 16.70% 27.14% 30.12% 24.71%
Safedecoding 0.84% 9.76% 28.53% 28.77% 31.56% 22.87%
RAG 0.0% 0.0% 5.01% 6.35% 10.43% 15.65%
TurboLoRA (ours) 0.0% 1.64% 3.48% 5.12% 2.74% 10.25%
No Defense 0.0% 45.22% 33.40% 69.11% 35.28% 49.56%
PPL 0.0% % 0.0% 12.60% 54.55% 22.68% 41.97%
SFT 2.81% 20.16% 90.72% 58.21% 31.63% 41.03%
RLHF 1.12% 18.11% 81.90% 55.84% 23.66% 46.20%
ChatGLM-7B Self-Reminder 0.0% 3.89% 15.13% 32.14% 20.99% 23.66%
Retokenization 0.0% 7.91% 13.33% 60.15% 15.52% 47.68%
AED 0.0% 0.0% 4.37% 12.73% 21.07% 19.47%
Safedecoding 1.04% 2.86% 8.20% 14.40% 4.16% 16.13%
RAG 0.0% 0.0% 2.05% 13.54% 10.51% 38.93%
TurboLoRA (ours) 0.0% 1.95% 5.80% 6.15% 4.16% 4.46%

Table 2: The alignment performance(ASR) of applying alignment methods with various jailbreak methods. We bold

the best performing.
Model Name TruthfulQA] | GSM8KJ) | MMLUJ|
Llama2-chat 46.3 384 45.3
SFT 422 29.1 43.2
RLHF 37.6 33.6 40.1
PPLM 28.0 18.7 22.8
Self-Reminder 41.8 32.7 42.5
Retokenization 35.7 22.5 389
AED 30.2 21.6 41.0
Safedecoding 39.9 235 37.7
RAG 41.6 31.3 40.6
TurboLoRA 44.5 34.8 42.8

Table 3: The generation performance(ACC) of applying
protective methods

5.2 Jailbreak Methods

AutoDAN(Liu et al., 2023) uses hierarchical ge-
netic algorithms to generate semantically mean-
ingful jailbreak prompts, while Prompt Automatic
Iterative Refinement (PAIR)(Chao et al., 2023) it-
eratively refines prompts using pre-trained LLMs
to elicit unintended behaviors with only black-box
access. Greedy Coordinate Gradient (GCG)(Zou
et al., 2023a) employs gradient-based searches
to craft token sequences that bypass safety mea-

sures. ArtPrompt(Jiang et al., 2024) uses ASCIIL
art to obscure malicious prompts, exploiting weak-
nesses in non-semantic representation recognition.
CodeAttack(Jha and Reddy, 2022) targets adversar-
ial vulnerabilities in LLM code generation, expos-
ing alignment gaps.

6 Conclusion

By identifying the universal low-rank vector dispar-
ity between harmful and safe responses to the same
question, we introduce TurboLoRA, the first inher-
ently corrective alignment method that transforms
harmful responses into safe ones. TurboLoRA com-
putes low-rank transformation parameters to shift
the harmful hidden vectors to safety ones, which
realizes a comprehensive adversarial LLMs align-
ment. This approach enables efficient, comprehen-
sive adversarially robust safety alignment without
affecting downstream tasks.



7 Limitation

We introduced an incremental alignment Method
for large language models based on low-rank learn-
ing and provided mathematical evidence for its
efficacy. This technique facilitates the efficient
alignment of model values.

Our approach, without introducing additional
computation, greatly reduces the resource con-
sumption of the training process by utilizing param-
eter fusion with equivalent incremental knowledge.
This approach effectively compensates for the lim-
itations of today’s alignment methods that do not
accommodate incremental values knowledge. This
approach enables efficient and highly guarded large
model alignment to meet the need for efficient and
guarded updating of large language model values.

We chose representative methods for use as base-
lines in fine-tuning and plug-in methods, respec-
tively. Our methodology has been thoroughly val-
idated, including validity, cross-linguistic compe-
tence, transferability, and efficiency, and the effects
of some hyper-reference settings on the method are
fully discussed. Compared to the existing baseline,
our defense improvement rate exhibits an average
improvement of over 25%.

This work aligns large language models through
the application of incremental value embedding.
We have conducted experiments across various
themes of harmful topics on multiple large lan-
guage models to verify the effectiveness of our
model. However, due to limitations in our ex-
perimental setup, we have not aligned models
larger than 100 billion parameters using incremen-
tal alignment, nor have we explored the process
of generating harmful and benign texts in models
of such scale. Consequently, it is unclear whether
larger-scale language models exhibit low-rank dif-
ferences in hidden parameters when generating
harmful versus benign content, and the efficacy of
incremental alignment in models exceeding 100 bil-
lion parameters remains unconfirmed. Our findings
of similar low-rank changes and the applicability
of incremental alignment methods in models sized
at 100 million, 1 billion, and 10 billion parameters
lead us to speculate that larger models may share
these characteristics and suitability for incremental
alignment.

In our work, incremental alignment is achieved
by embedding equivalent incremental value param-
eters with low-rank properties into large language
models. These low-rank parameters minimize the

impact on the original generative capabilities of
the language models while addressing harmfulness.
However, after multiple alignments, the param-
eters may lose their low-rank nature, leading to
more substantial modifications to the model and
potentially impairing the generative capabilities for
other tasks. Future work will explore maintaining
low-rank properties of parameters after continuous
alignments to preserve the model’s original genera-
tive abilities effectively and safely.

Our focus in this work is primarily on generat-
ing content that aligns with human values and is
safe, based on large language models. The align-
ment with human values and incremental knowl-
edge could encompass a broader range, including
but not limited to news events, updates to existing
knowledge, role-setting scenarios, and conversa-
tional memory content. Compared to safety-related
human values, these requirements lean more to-
wards enabling the model to learn more factual
knowledge. Although our experiments indicate
that such issues share similar generative processes
and parameter variability with harmful issues in
the safety domain, our work has not yet addressed
these aspects. We will pay more attention to the
effectiveness of aligning additional factual knowl-
edge in subsequent work.
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A observational

Our observational experiment shows that integrat-
ing positive value knowledge, which is in the form
of ethical principles and value-based examples,
within prompts can steer models toward generating
content that is safer and aligned with values. Before
and after this guidance, the inference process gen-
erates positive and negative responses respectively.
The difference in the hidden vectors between twice
inference processes has a low-rank characteristic.
We used the opt2.7b (Zhang et al., 2022) model
as the target model and PKU-SafeRLHF-10K (Ji
et al., 2023) as the attack dataset for the observa-
tional experiment. We added positive answers as
positive value knowledge to the context and ob-
served the impact on LLM’s generation before and
after introducing the positive value knowledge.

The result shows that positive value knowledge
effectively reduced the toxicity of model-generated
text, aligning it more closely with human values.
The experimental results are presented as follows
in Figure 4

B Baseline Setup

Here’s the translation of your description into En-
glish, suitable for an academic setting within a
research paper on LLMI alignment:

Experimental Setup Supervised Fine-Tuning
(SFT) For SFT, we randomly sampled 20% of the
dataset for training purposes. The model was fine-
tuned using the Supervised Fine-Tuning method
with the following configuration:
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Precision: fp16 Trainer configuration: Number
of nodes: 1 Number of devices: 2 Micro batch size:
1 Global batch size: 32 Maximum sequence length:
1024 Learning rate: le-5 Reinforcement Learning
from Human Feedback (RLHF) We randomly se-
lected 20% of the dataset for training. Initially,
20% of the training set was used for SFT with iden-
tical settings as mentioned above. Post SFT, we
applied Proximal Policy Optimization (PPO) for
reinforcement learning on the RLHF dataset, which
consists of concatenated forms of original prompts
with positive and negative examples, formatted as:

text: promptllresponse The reward model was
trained using the same foundational model as the
original model. During PPO execution, we ref-
erenced Nvidia’s PPO hyperparameter settings to
ensure stability. The parameters set for the rein-
forcement learning phase were:

Optimizer learning rate: 5e-6 Global batch size:
16 PPO entropy bonus: 0.0 PPO ratio epsilon: 0.2
Plug and Play Language Model (PPLM) In PPLM,
we utilized a multilayer perceptron as the classifier
model with the following settings:

Length: 100 Gamma: 1.0 Step size: 0.05 Win-
dow size: 5 KL scale: 0.01 Self-reminder In
the self-reminder approach, we adopted OpenAl’s
safety assessment to determine whether each round
of generation was safe or a successful attack. We
iterated up to a maximum of five rounds for each
attack. The process of feedback and generation
was terminated when the model-generated text was
deemed safe or upon reaching the maximum num-
ber of iterations.

Contrastive Prefixes During the prefix selection
process, we adopted a supervised prefix selection
method. Following OpenAl’s classification stan-
dards, scenarios were divided into 13 harmful cate-
gories plus one harmless category. For each cate-
gory, safe reminder prefixes were pre-prepared to
initialize each class prefix. Prefix lengths were set
between 30 to 50 characters. For training losses
w1 and w2, we set the weights as 0.6 and 0.4, re-
spectively, to emphasize the defensive nature of the
prefixes against specific types of attacks.

C Selection of Training Data Range

In this section, we explored the dataset content
used for training the equivalent value knowledge
parameters. The data scope of the dataset includes:
the entire attack query dataset; a part of the at-
tack query dataset containing only queries leading
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Figure 7: Low-rank alignment procedure.

to malicious responses; and a normal task dataset
with additional benign questions added to the attack
query dataset. We use these three types of data sets
as training sets to calculate equivalent value knowl-
edge parameters and compare the performance of
models fusing with these three parameters. The
results are presented in the Figure 7.

Result: From our observations, using only the
malicious responses as the training set led to the
highest defense enhancement, but the difference
is not significant. In terms of text generation per-
plexity, including the entire dataset and the extra
benign prompt dataset led to significantly lower
perplexities compared to using just the malicious
responses. This indicates that the model’s text gen-
eration capability was significantly enhanced by
including benign prompts, without much compro-
mise in defensive capabilities. Furthermore, as
more benign prompts were added, the model’s gen-
eration capabilities gradually improved, although
with a slight decrease in defensive capabilities.
This is because the expansion of the benign ques-
tion set aids in maintaining parameters unchanged
hidden vectors during the generation of non-toxic
text. This strongly supports that incorporating be-
nign responses into the training set contributes to
TurboLoRA’s performance in alignment. At the
same time, we need to control the proportion of
harmful queries and normal task queries in the
training set to prevent excessive hindrance to the
original generation ability of the model.

D Influence of Rank r

To assess the impact of rank r, the model was pro-
tected using TurboL.oRA with different rank selec-
tions (from 1 to 10). The results are illustrated in
the Figure 8.

Rank r Selection
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Figure 8: Influence of Rank r

Result: By analyzing the results, it’s evident
that even with a rank setting of 1, the model retains
over 79% of the defensive capabilities enhance-
ment. As the rank r increases, PER gradually in-
creases. This is because most of the energy is still
encapsulated within low-rank parameters. When
comparing models of rank 5 and 10 rank, no sig-
nificant change in defensive capability is observed.
The model’s protection capacity is gradually level-
ing off. It further substantiates that our low-rank
alignment method exhibits commendable efficacy
even in lower-rank settings. However the rank con-
tinues to increase, TurboLoRA’s protective capabil-
ities will decline rapidly after exceeding a certain
value. Therefore, TurboLLoRA is not suitable for
selecting excessively large ranks.

E Realation with LORA

According to our derivation in the text and Lora’s
formula we can get the base formula:

AW = WAX, X!
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AW = BA (16)

For comparison, the formula corresponding to
LORA is:
AW = (VxSx +Ux")AX (UwSw Vib) (17)
We push it further until we can get:

B = (VXZX + UX*)AXjUW
A=y VT

Next, we reconsider the definition in LORA:
AW = BA.



Calculated by the above formula, we can regard
the low-rank correspondence with Lora:

B = (VXEX + U*)AX]'UW
A =Sy V"

Here, r(B) < r(Uw) = d(X) and r(A) < d(X%),
and for K < d(W) this satisfies our assumption
r(AW) < d(W).In summary, through the deriva-
tion of the above process, we can confirm that un-
der the condition that the modified parameters of
LORA have low rank, the equivalent positive value
parameters of TurboLoRA can also have the same
low rank. This correlates the low-rank parameter
modifications in LORA with the low-rank hidden
layer differences in TurboLoRA, jointly demon-
strating the effectiveness of low-rank parameters
for model alignment.

F Judgement Method

In our investigation, we have incorporated three dis-
tinct evaluative models, namely openai-moderation,
google-perspective, and Toxigen, to meticulously
assess the potential harmfulness inherent in the out-
put text.

This enables developers to identify and take deci-
sive actions against content that contravenes our us-
age policies, such as implementing filtering mecha-
nisms.

Moderation plays a pivotal role in assessing the
harmful potential of various content types, span-
ning across a multitude of categories. Each cate-
gory is meticulously evaluated, resulting in a harm
score that quantitatively represents the potential
negative impact of the content.

With utilizing openai-moderation as the basic
judgment method, in our assessment protocol, a
text is classified as non-harmful if it is unanimously
deemed safe by all three classifiers and meaningful.
Conversely, if any of the classifiers flag the text as
potentially harmful, it is categorized as toxic.

G Layer Selection

In this work, we employ model probing to deter-
mine the optimal hidden layer for TurboLoRA im-
plementation. Model probing is a technique for
analyzing and interpreting the internal workings
of machine learning models, especially deep learn-
ing models. This approach aims to uncover how
models process and represent data, particularly to
understand what models learn while handling tasks
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in natural language processing (NLP), computer
vision, or other domains.

We utilized model probing to identify the layers
that are most decisive in determining the harm-
fulness of the model-generated content. We em-
ployed a linear classifier to predict the harmfulness
of generated content based on the hidden vectors
processed through various layers of the model.

For each model, we selected the layer where
the probe classifier showed the highest accuracy.
Because we believe that the parameters of this layer
have the greatest impact on the harmfulness of the
generated content. At this layer, we implement
TurboLoRA to align human values.

At the same time, we found that in the attention
layer of the model, the accuracy of probe predic-
tion may even surpass the MLP layer. We propose
a hypothesis that the significant influence of low-
rank hidden vectors on the content generated by the
model is due to these low-rank parameters affect-
ing the model’s choice of learned knowledge dur-
ing the generation process, that is, from activating
knowledge from different sources in the training
set. This mechanism of choice acts as a switch, al-
lowing even a small number of parameters to have
a substantial impact on the model’s generation, a
phenomenon that is similarly observed in the au-
thenticity of the model-generated content. In our
follow-up work, we will further explore how to
find the best model parameter locations suitable for
low-rank alignment based on this phenomenon and
conduct a more in-depth study of the mechanism
behind this phenomenon.

H generalizability

H.0.1 Transferability: Cross-lingual and
Cross-dataset

We further examined TurboLoRA’s generalizabil-
ity. We validated its transferability across dif-
ferent attack query datasets, as well as its cross-
lingual transferability across different languages.
We used PKU-SafeRLHF-10K as the basic dataset,
and Ethos and THU-coai as the migration dataset.

Result: Through the observation of Table 4,
in terms of generalizability across different harm-
ful queries, our observations of the experimen-
tal results show that TurboLoRA maintained its
protective capacity across various datasets. Com-
pared to other baseline methods, TurboLoRA’s
ASR achieves the lowest score. Our analysis sug-
gests that TurboLoRA’s high transferability is at-



Cross-Lingual Cross-dataset

EtoC CtoE Dl1toD2 | DItoD2
SFT 0.172 | 0.101 | 0.077 | 0.060
RLHF 0.159 | 0.095 | 0.071 0.102
PPLM 0.323 | 0.255 | 0.146 | 0.163
Self-Reminder | 0.116 | 0.076 | 0.068 | 0.082
CP 0.205 | 0.210 | 0.138 | 0.166
TurboLoRA 0.122 | 0.081 | 0.068 | 0.058

Table 4: Performance of protection capabilities(PAST)
in migration scenarios. EtoC: English to Chinese. CtoE:
Chinese to English. PtoE: PKU-SafeRLHF-10K to
Ethos. EtoP: Ethos to PKU-SafeRLHF-10K.

tributed to similar harmful queries sharing similar
hidden vector features, guided by the same positive
value knowledge. Furthermore, problems within
the same category are collectively guided by multi-
ple positive value knowledge inputs from the train-
ing set, resulting in harmless content generation.
However, fine-tuning methods rely excessively on
the representation of input text in small-sample
training processes, thus limiting its transferability
capability. PPLM is entirely dependent on the clas-
sifier’s transferability. SR only requires the LLM
to have the cross-linguistic ability to achieve good
results.

Regarding cross-lingual performance, observa-
tions of the experimental results in Table 4 indicate
that TurboLoRA achieved the best outcomes in
both Chinese-to-English and English-to-Chinese
translations, preventing more than 93% of attack
queries. We speculate that semantically similar
texts in Chinese and English may share common
hidden feature representations, allowing epositive
value knowledge parameters to guide the genera-
tion of harmless content across languages. Fine-
tuning methods, which adjust the entire model’s pa-
rameters, are more sensitive to cross-lingual textual
differences. Due to the classifier’s lack of cross-
lingual capabilities, PPLM’s effectiveness signifi-
cantly decreases. SR does not involve cross-dataset
effects. In summary, TurboLoRA demonstrated
strong cross-dataset and cross-lingual transferabil-

ity.
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