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Abstract

Curating data for instruction tuning is crucial
for enhancing the performance of large language
models (LLMs). This work aims to select training
data for instruction tuning to improve the LLM
performance on specific tasks. Existing methods
often rely on next-token prediction (NTP) loss as
a proxy for target task performance due to the non-
differentiable nature of performance evaluation
metrics. They select training data points that are
most helpful in reducing validation loss. However,
there is a discrepancy between minimizing NTP
loss and maximizing performance (e.g., code pass
rate in code generation). To remedy this, we intro-
duce a novel Non-differentiable evaluation metric-
based InfluenCe Estimation (NICE), which lever-
ages the policy gradient to select the training data
that improves the performance. Moreover, NICE
can perform data selection in the absence of labels
(ground-truth responses) when the evaluation met-
rics do not require labels (e.g., a reward model can
output reward scores without supervision from
labels). Experimental results show that our ap-
proach outperforms existing data selection base-
lines that use NTP loss in diverse and realistic sce-
narios. Notably, subsets selected by NICE often
produce models that outperform those trained on
the full dataset. Our code is available at https:
//github.com/JTWang2000/NICE.

1. Introduction
Instruction tuning (Bai et al., 2022; Ouyang et al., 2022) is
a fine-tuning paradigm that enables large language models
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(LLMs) to follow specific human instructions, improving
their performances on target downstream tasks. The effec-
tiveness of instruction tuning heavily relies on the quality
of the instruction dataset (Chen et al., 2023; Li et al., 2024a;
Zhou et al., 2024). However, the instruction dataset is usu-
ally collected from mixed sources, and some data points
may not be directly relevant to the target tasks (Wang et al.,
2023; Xia et al., 2024). In addition, the data points often
vary in quality and may contain noisy labels (Carlini et al.,
2024; Frénay & Verleysen, 2013; Wang et al., 2024a). These
challenges underline the importance of data selection meth-
ods, which enhance instruction tuning by systematically
choosing relevant, high-quality data to cultivate specific tar-
get capabilities in LLMs. In practice, LLMs fine-tuned on
selected subsets of data can outperform those trained on the
full dataset (Wang et al., 2023; Xia et al., 2024).

Loss-based influence estimation methods (Kwon et al.,
2024; Xia et al., 2024; Yeh et al., 2022) have been demon-
strated to be effective in data selection. It estimates the effect
of each training data on the validation loss (e.g., Next-Token
Prediction (NTP) loss) via the gradient of the validation loss,
then selects the subset of data with the most positive influ-
ence. However, many instruction-following tasks require
generating long-form responses, which are evaluated using
non-differentiable metrics (instead of the differentiable val-
idation loss). These evaluation metrics, such as the code
pass rate (Chen et al., 2021), LLM-judge (Dubois et al.,
2023; Zheng et al., 2023) and reward model (Ouyang et al.,
2022), cannot directly provide useful gradient information
to estimate the influences due to their non-differentiable
nature. Moreover, minimizing NTP loss may poorly align
with maximizing the evaluation metrics due to overfitting to
surface-level patterns (e.g., n-grams) and ignoring alterna-
tive correct generations (Brown et al., 2020; Gloeckle et al.,
2024; Tay et al., 2021; Zhou et al., 2024). For instance, in
code generation (Chen et al., 2021), there are multiple ways
of writing ‘correct’ code for a problem, but NTP loss is only
measured w.r.t one such way. This mismatch between the
NTP loss and the true evaluation metric poses a significant
challenge to data selection for instruction tuning. Therefore,
existing approaches that rely on the influence of NTP loss
may fail to select the dataset that improves the metrics used
in specific tasks.
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To tackle this challenge, we introduce a novel Non-
differentiable evaluation metric-based InfluenCe
Estimation (NICE) method. NICE selects data that
directly optimizes commonly used yet non-differentiable
evaluation metrics of long-form generation tasks. Inspired
by reinforcement learning (RL) (Williams, 1992; Wu
et al., 2018; Sutton & Barto, 2018), NICE treats the
evaluation metric as the reward function and the LLM
as policy. This formulation allows us to overcome the
non-differentiability by computing the policy gradient of
the metric w.r.t. the model parameters. In particular, the
policy gradient is calculated based on the gradients of the
likelihood of the model-generated responses, weighted
by their corresponding rewards. By using the policy
gradients, NICE directly quantifies the influence of training
data on validation performance measured by the metric.
Therefore, NICE-selected data can better align with the
evaluation metrics than the data selected by loss-based
influence estimation. Moreover, NICE has two additional
advantages: First, NICE supports data selection with
unlabeled validation data when the reward function only
requires the input and the model-generated response (e.g.,
the reward model in Bai et al. (2022)), rendering wider
applicability and lower annotation costs compared to
loss-based influence estimation. Second, NICE is able
to use responses generated from better-performing LLMs
on the target tasks to further improve the data selection
performance as NICE can make use of these high-quality
generated responses (instead of only the label used in
loss-based influence estimation).

We perform comprehensive analyses to demonstrate the
advantages of NICE. First, we empirically show the effec-
tiveness of NICE across diverse and realistic scenarios for
instruction tuning. This includes (1) selection from a task-
agnostic training data pool that is mixed-source instruction
tuning datasets and (2) selection from a task-aware training
data pool whose datasets are closely aligned with down-
stream tasks. Our experiments show that models trained on
data subsets selected by our approach generally outperform
those trained using either data subsets selected by other
baselines or the full dataset. Second, we demonstrate the
generality of NICE by applying it to multiple loss-based
influence estimation frameworks and empirically verifying
their resulting improved performance.

2. Preliminaries
Denote an LLM parameterized by θ as f(·; θ). Let x, y be
the random variables (RVs) for the input (prompt) and the
output (response) of the LLM, respectively. Let y′ be the RV
for a single-token output. Let DN := {zi = (xi, yi)}ni=1

denote the training set where zi consists of the prompt xi (a
sequence of words or tokens) and the label response yi (the

ground truth sequence of words or tokens). Similar notations
apply to the validation set DV := {zv = (xv, yv)}n+mv=n+1.
DV can contain different subtasks: D1

V , ..., D
q
V

1. The LLM
generates a sequence of words, denoted as ŷi = [ŷpi ]

P
p=1.

Here, ŷpi is the p-th word (or token) in the generated re-
sponse, and the autoregressive generation process can be
described recursively as: ŷpi ∼ f(y′|xi, ŷ1i , . . . , ŷ

p−1
i ; θ).

The NTP loss for the training data point is defined as

L(zi; θ) = −P−1
∑P
p=1 log f(y

p
i |xi, y1i , . . . , y

p−1
i ; θ) .

The NTP loss for the validation data point is defined like-
wise. In the rest of the section, we first restate two rep-
resentative loss-based influence estimation frameworks:
TracIn (Pruthi et al., 2020) and Influence Function (Koh
& Liang, 2017). Then we review how to use these influence
scores to select training data points.

2.1. TracIn and Influence Function

TracIn quantifies the influence of a training data point zi on
the loss of a validation data point zv during training. Denote
ηt as the learning rate used in the parameter update. At each
step t, the influence is expressed as

L(zv; θ
t+1)−L(zv; θt) ≈ −ηt⟨∇θL(zv; θ

t),∇θL(zi; θ
t)⟩ ,

which is the gradient similarity between zv and zi derived
in App. E.1. To measure the influence of zi over the en-
tire training run, TracIn aggregates the influence at every
training step that uses zi. As zi is used once per epoch, it is
natural to express this as a summation over epochs:

InfTracIn(zi, zv) =
∑E
e=1 η̄e⟨∇θL(zv; θ

e),∇θL(zi; θ
e)⟩

where η̄e denotes the average learning rate applied in the
e-th epoch, E is total number of training epochs, and θe

represents the model parameters after the e-th epoch.

Influence Function (IF) measures the influence of down-
weighting zi on the loss of the validation data point zv:

InfIF(zi, zv) = ∇θL(zv; θ
E)⊤H−1

θE
∇θL(zi; θ

E)

where θE is the model parameters after the last epoch (total
E epochs) and HθE = 1

n

∑n
i=1 ∇2

θL(zi; θ
E) is the Hessian

matrix of the average training loss over the training set. The
derivation can be found in App. E.2.

2.2. Targeted Data Selection

The objective of data selection is to identify an optimal sub-
set DS ⊂ DN such that training a model f on DS achieves
comparable or superior performance on downstream tasks

1In this paper, we examine several datasets, including AlpacaE-
val, which exhibit this characteristic. Additionally, we investigate
datasets that lack explicit subtasks where q = 1.

2



Data Selection with NICE

compared to training on the full dataset. It is achieved by se-
lecting training data that maximizes the performance of the
target task’s validation set DV , thereby enhancing model
performance on target tasks.

Loss-based influence estimation methods quantify the influ-
ence of the individual training data point on validation loss.
The influence scores are typically higher for training data
which reduces the validation loss more. When loss serves
as a proxy for the validation performance, higher scores
indicate greater helpfulness for the target task when they are
included in the training. To apply influence estimation for
data selection, it is necessary to aggregate the scores across
the validation set, which may consist of multiple subtasks.
Specifically, the influence score of a training data point zi
on each subtask is first computed by averaging the influence
scores across the validation data within that subtask. The
overall influence for the validation set DV is then calculated
as the maximum influence score across all subtasks:

Inf(zi,DV ) = maxj |D(j)
V |

−1∑
zv∈D(j)

V

Inf(zi, zv)

where Inf(zi, zv) denotes an influence estimation (such as
InfTracIn or InfIF) that aims to assign higher scores to more
helpful training data points. The use of the max function
ensures that training data improving performance on at least
one validation subtask are prioritized (Xia et al., 2024).
Based on these scores, the top-ranked training data points
are selected to construct the training subset DS . This subset
is then used to fine-tune the target model.

3. Methodology
3.1. Non-differentiable evaluation metric-based

InfluenCe Estimation (NICE)

Loss-based influence estimation methods quantify the effect
of a training data point on the validation loss (e.g., NTP
loss), which is a differentiable proxy for the validation per-
formance. However, there are two major drawbacks of loss-
based influence estimation: (a) There is a discrepancy be-
tween the NTP loss and the evaluation metrics of instruction-
following tasks, especially those that require long-form gen-
erations (e.g., LLM-judge (Dubois et al., 2023) and code
generation benchmarks (Chen et al., 2021)). In other words,
selecting training data that minimizes NTP loss on valida-
tion data does not necessarily improve the performance for
these tasks (as shown in Fig. 1). (b) While obtaining the
prompt of a validation data point xv is relatively easy, the
high-quality label yv may not always be available.

We propose to directly compute the influence of each train-
ing data point on the evaluation metric instead of the loss.
Specifically, denote the reward function as r (defined by an
evaluation metric), which calculates the model performance

as follows:

r(zv, ŷv) :=


r
(
xv, yv, ŷv

)
when yv is required, e.g.,
LLM judge in (Dubois et al., 2024) ;

r
(
xv, ŷv

)
when yv is not required, e.g.,
reward model in (Bai et al., 2022) .

Note that the ground truth response yv is not always required
by the reward function, depending on the evaluation metric
used here. We will use the terms “reward function” and
“evaluation metric” interchangeably in the rest of our paper.

To calculate the influence of a training data point on a non-
differentiable r, we cannot directly apply the same formula
as the loss-based influence estimation such as TracIn or
IF, because they require the gradient of r(zv, ŷv) w.r.t. the
model parameters, which is not available. To address this,
we propose to use the policy gradient from RL (Wu et al.,
2018; Sutton & Barto, 2018). Specifically, we adopt the RL
objective function for a validation data point:2

Lr(zv; θ) = Eŷv∼f(y|xv;θ)[−r(zv, ŷv)]

where f(·; θ) denotes the policy defined by the LLM with pa-
rameter θ, which is used to generate response ŷv for xv . Sub-
sequently, the policy gradient of Lr w.r.t. the model param-
eters can be derived using the log derivative trick (Williams,
1992; Meyer, 2023):

∇θLr(zv; θ) = Eŷv∼f(y|xv;θ)[−∇θ log(f(ŷv|xv; θ))r(zv, ŷv)] .

This can be estimated using Monte-Carlo sampling on the
responses generated by f(xv; θ), a technique also known as
the Monte-Carlo (MC) policy gradient. Intuitively, policy
gradient optimizes the model by increasing the probability
of generating responses with high and positive rewards. By
using the policy gradient, the influence of a training data
point zi on the model performance on a validation data
point zv measured by the reward function r at time step t is
calculated as

Lr(zv; θ
t+1)−Lr(zv; θt) ≈ −ηt⟨∇θL(zi; θ

t),∇θLr(zv; θ
t)⟩ .

The approximation above is derived using a similar logic as
Eq. 1 in App. E that uses the first-order Taylor approxima-
tion. Then, we can measure the non-differentiable evalua-
tion metric-based influence of zi on zv’s performance over
the entire training run as

InfNICE(zi, zv) =
∑E
e=1 η̄e

〈
∇θL(zi; θ

e),

Eŷv∼f(y|xv ;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]〉
.

2We use a negative sign in front of r to make the notations in
the influence estimation in the rest of our paper consistent with
loss-based influence estimation, i.e., the lower the Lr(zv; θ), the
better the model (consistent with validation loss).
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To interpret, NICE assigns a higher influence score to a
training data point zi if its gradient (of the training loss)
is more similar to the policy gradients of the validation
performance evaluated by the reward function r. The higher
the influence score, the larger the performance measured
by the evaluation metric improves when including training
data point zi. To apply NICE for data selection, the same
aggregation of the influence scores in Sec. 2.2 is applied.
We then select the data subset DS by including the training
data points with top-ranked aggregated influence scores.

To summarize, NICE enables data selection to directly opti-
mize the non-differentiable evaluation metrics via influence
estimation using policy gradient. It also enables data selec-
tion with unlabeled validation data when the metric does
not require the label as input.

Although there are various alternatives to compute the gra-
dient of Lr from policy optimization research (Schulman
et al., 2017; Rafailov et al., 2023), we use the MC policy
gradient as it is easy to implement and has been shown
effective in many applications. We further demonstrate in
App. I.1 that gradients computed by other policy optimiza-
tion approaches can also be used in NICE to achieve better
performance than loss-based influence estimation.
Remark 3.1 (Equivalence to TracIn). When the label re-
sponse consists of a single token and the evaluation metric
is accuracy, NICE is equivalent to TracIn. Thus, for tasks
that do not require generating long responses, vanilla loss-
based influence estimation performs similarly to NICE.
Remark 3.2 (Empirical consideration). To improve the per-
formance of NICE, we integrate the two improvements
proposed by LESS (Xia et al., 2024), which adapts TracIn
for influence estimation on LLM. Specifically, we use the
Adam gradient for training data instead of the SGD gradient
and replace the inner product with cosine similarity (i.e.,
equivalent to normalizing the gradient before the inner prod-
uct) in the definition of influence to mitigate the bias toward
short sequences. The explicit form of NICE used in our
implementation is elaborated in App. F.

3.2. Generalization to Other Loss-based Influence
Estimation Methods

We have discussed the use of policy gradient on a specific
loss-based influence estimation method – TracIn – to esti-
mate the influence of data points on the non-differentiable
evaluation metrics. However, our approach is not limited to
TracIn alone. The policy gradient can be applied to other
methods, such as the influence function:

InfNICEIF(zi, zv) = ∇θLr(zv; θ
E)⊤H−1

θE
∇θL(zi; θ

E)

where E is the number of epochs and ∇θLr(zv; θ
E) =

Eŷv∼f(y|xv ;θE)[−∇θ log(f(ŷv|xv; θE))r(zv, ŷv)]. The
derivation follows from a similar logic as Eq. 2 in App. E

by first quantifying the influence of the training data on
the parameter, then using the chain rule to calculate the
impact of this influence on Lr at the validation data. A
higher InfNICEIF means a larger increase in Lr and hence a
larger decrease in performance measured by r when down-
weighting the training data (i.e., removing the data point
makes the model perform worse), indicating a higher quality
of that training data point. The same aggregation method
described in Sec. 2.2 is used for aggregating InfNICEIF.

Our implementation uses a similar approach as DataInf to
improve the efficiency of NICEIF by using the first-order
derivatives to estimate the Hessian inverse, which is required
in the calculation of the IF (Kwon et al., 2024).

3.3. Assisted Monte-Carlo Sampling

We use MC sampling to estimate the policy gradient used
in NICE. Recall that NICE uses the MC policy gradient.
Specifically, for a prompt xv of a validation data point, we
sample multiple responses from the LLM and use the sample
mean to estimate the policy gradient. There are two major
advantages of using this MC policy gradient compared to
the gradient used in loss-based influence estimation: 1) Pol-
icy gradient estimated using MC utilizes multiple different
responses, offering diverse guidance compared to the label
response; 2) The generated response can be better than the
label response (as demonstrated in Tab. 1 where the label
response is incorrect and less detailed) and hence result in
better data selection performance.

Despite these advantages, the MC policy gradient has its
practical limitations. Specifically, when the model (policy)
is too weak for the task, the MC samples may not contain
high-quality responses with high rewards. As a result, the
corresponding estimated policy gradient will not contain
signals for improving the policy’s performance. To ensure
the quality of the generated responses, we propose an alter-
native approach named assisted Monte-Carlo (AMC) sam-
pling, which uses a model g(·;ψ) parameterized by ψ that
is better at the target task to assist the response generation:

InfNICEAMC(zi, zv) =
∑E
e=1 η̄e

〈
∇θL(zi; θ

e),

Eŷ∗v∼g(y|xv;ψ)

[
−∇θ log(f(ŷ

∗
v |xv; θe)) r(zv, ŷ∗v)

]〉
.

The generated responses ŷ∗v ∼ g(xv;ψ) with the assistance
from better-performing LLMs have better quality assurance
than vanilla MC sampling (Tab. 1). With AMC sampling,
NICEAMC is more likely to select a data subset that guides
the model to generate better responses, improving the per-
formance.

4. Experiments
We experimentally analyze model performance under two
different procedures for forming the initial training data
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Table 1. Generated responses from different models for a validation data point in AlpacaEval task. Llama2-7B or Mistral-7 is the model f
used in NICE. GPT4 is the ‘better-performing‘ LLM used in NICEAMC. As the model improves, its generated response becomes more
detailed and can be better than the label response (the label response is incorrect while Mistral-7B and GPT’s responses are correct).

Question: If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the segment?
Label Response : The length of the line segment is 12 units.
Llama2-7B Generated Response : The length of the segment is 10 - (-2) = 12 units.
Mistral-7B Generated Response : The length is the distance between the endpoints. To find this distance, use the following
formula: (final x− init x)2 + (final y − init y)2 = distance2

In this case, the values are (10, 4) and (2,−2). The length is sqrt(82 + 62) = sqrt(100) = 10.
GPT4 Generated Response: To find the length of a line segment given its endpoints, you can use the distance formula. The
distance formula between two points (x1, y1) and (x2, y2) in the coordinate plane is: d =

√
(x2 − x1)2 + (y2 − y1)2. For the

points given, (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Plugging these into the formula: d =
√

(10− 2)2 + (4− (−2))2 d =√
82 + 62 d =

√
64 + 36 d =

√
100 d = 10. Therefore, the length of the line segment is 10 units.

pool: task-agnostic and task-aware. We evaluate our method
on tasks that require long-form generation and use evalua-
tion metrics that are commonly used to evaluate the corre-
sponding tasks. In this section, we describe the evaluation
tasks (i.e., the task that we wish to improve on via instruc-
tion tuning) in Sec. 4.1, experimental settings in Sec. 4.2,
experimental details in Sec. 4.3, main results in Sec. 4.4,
and additional analysis in Sec. 4.5.

4.1. Evaluation Tasks

We use four evaluation tasks, including AlpacaEval (Dubois
et al., 2024), TLDR (Stiennon et al., 2020), RLHF (Bai
et al., 2022), and HumanEval (Chen et al., 2021).

Table 2. Detailed information about the evaluation datasets.
Dataset |DV | |Dtest| Evaluation metrics

AlpacaEval 10 795 length-controlled win rate
TLDR 322 6553 reward model
RLHF 2192 2354 reward model

HumanEval 10 154 pass@k

AlpacaEval is a compilation of prompt-response pairs
aimed at assessing language models’ instruction following
capability. We use the length-controlled win rate to ensure a
fair evaluation (Dubois et al., 2024). HumanEval evaluates
code generation from natural language instructions using
the pass@k metric, which is the probability of having at
least one correct solution (pass a specified unit test) when
sampling k responses from the model. Pass@k with k > 1
is practical in real-world scenarios when expected behaviors
are known and test cases are readily available. It evaluates
the test-time scaling capability of the model by allowing
multiple candidate solutions (k) to be generated and val-
idated to effectively identify the correct code. We adopt
pass@100 because it achieves substantially higher accuracy
than smaller k (Chen et al., 2021), making it more practical
for real-world scenarios. For completeness, we also provide
detailed results for different k in App. H.1. TLDR con-

tains polished text summaries. The evaluation metric is the
reward model (OpenAssistant, 2023) trained on human feed-
back, measuring the the quality of summaries and alignment
with human preference. RLHF consists of prompt-response
pairs where each includes a “chosen” response that aligns
better with human preferences (we use only the “chosen”
columns). We use a trained reward model (Ray2333, 2024)
as the evaluation metric to evaluate the helpfulness of the
responses. For the dataset splits, we randomly select 10
examples from both AlpacaEval and HumanEval as the val-
idation set, with the remainder as the test set. For RLHF,
we sample 5% from the training dataset as the validation set
since the original dataset only contains train and test splits.
For TLDR, we use 5% of the original validation set, given
that the original validation set is too large. We study the
robustness of our method to different validation splits in
App. H.2. We provide a summary of these evaluation tasks
in Tab. 2 and additional details on these tasks in App. B.1.
Unless specified, the results reported are evaluated on the
test set.

4.2. Experimental Settings

Our problem setup focuses on targeted data selection, as-
suming access to validation data during data selection. We
further consider two distinct settings where we perform
selection from “a task-agnostic training data pool” and “a
task-aware training data pool”, distinguished by whether
the knowledge of the downstream task is available when
forming the initial training data pool before data selection.
Specifically:

Selection from a task-agnostic training data pool. In this
setting, a large, diverse, mixed-source pool of instruction
tuning training set is collected without the knowledge of the
downstream task before data selection. We use Tulu (Wang
et al., 2023) as the training dataset, which consists of
Chain of Thought (COT) (Wei et al., 2022), Databricks
Dolly (DOLLY) (Conover et al., 2023), Open Assistant 1
(OASST) (Köpf et al., 2023), and FLAN V2 (Longpre et al.,
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2023). Intuitively, this mixed-source pool of data may con-
tain irrelevant data (e.g., assistant-style conversations) w.r.t.
the targeted task (e.g., coding task). Additional details for
the training set are in App. A.1.

Selection from a task-aware training data pool. In this
setting, the training set is collected specifically for the down-
stream evaluation task, hence being task-aware. We consider
two evaluation tasks here: RLHF and HumanEval, with
the evaluation datasets the same as in Sec. 4.1. For RLHF,
the training data is 95% of the original training set used for
the helpfulness assistant, as provided in Bai et al. (2022).
For HumanEval, we adopt the CodeAlpaca 20k (Chaudhary,
2023) dataset as the training set, which is a crowd-sourced
collection of code-related instruction-response pairs, de-
signed to fine-tune language models for better performance
in code generation and understanding. Additional training
set details are in App. A.1.

4.3. Experimental Details

Efficient Data Selection for LLM. To improve the effi-
ciency of data selection, we train models with LoRA (Low-
Rank Adaptation). We adopt the warmup training which
trains the LLM on a randomly selected subset of training
data for influence estimation and the number of warmup
epochs is the E. Additionally, random projections are ap-
plied to the LoRA gradients, preserving the essential inner
products while reducing the dimensionality of the gradient
to reduce the memory requirement (Johnson, 1984).

Models and Hyperparameters. Our primary evaluation of
NICE focuses on two LLMs: Llama2-7B (Touvron et al.,
2023), and Mistral-7B (Jiang et al., 2023), with performance
averaged over three seeds. Larger and state-of-the-art mod-
els, including Llama2-13B and Llama3-8B, were also tested
on the RLHF task, presented in App. H.3. We perform
warmup training for 4 epochs on 5% of the training set for
the task-agnostic training data pool, and 20% for the task-
aware training data pool due to its smaller training set size.
We project the LoRA gradient into an 8192-dimensional
vector. The influence estimates for data points are obtained
by the respective data selection approaches, with the top 5%
data points (ranked by influence) to be the selected data sub-
set DS for the task-agnostic setting (20% for the task-aware
setting). Multinomial sampling (Chatterjee & Cancedda,
2010) is used to generate the MC samples for NICE. We
generate 20 MC samples for all evaluation tasks, except
for HumanEval where we generate 500 samples due to the
difficulty of the task (i.e., responses having low code pass
rates). For NICEAMC, we use GPT-4 as g(·, ψ). Note that
when the reward function does not require labels, the ground
truth label is not used by our approach, detailed in App. C.

Baselines. We evaluate NICE against a variety of baselines.
The most straightforward baseline is Random where data

points are randomly sampled from the training set for in-
struction tuning. We also employ BM25 (Robertson et al.,
2009), which ranks training data based on relevance to the
validation data, and then selects the top-ranked data points
to form DS . Another baseline, DSIR (Xie et al., 2023), se-
lects DS based on n-gram lexical feature matching between
training and validation distributions. Representation-based
Data Selection (RDS) (Zhang et al., 2018) ranks the train-
ing instances using the cosine similarity of the features
between the training and the validation data, and we adopt
SentenceBERT (Reimers, 2019) embedding as the features.
LESS (Xia et al., 2024) uses loss-based influence estima-
tion to select the training data with top influence scores.
TSDS (Liu et al., 2024b) also leverages loss-based gradient
features, and further optimizes for distribution alignment
and diversity via optimal transport and kernel density esti-
mation, respectively. Note that all baselines, except random,
are calculated using complete data points (i.e., the con-
catenation of prompt and response). More implementation
details about the baselines are in App. D.

4.4. Results

The results of NICE and NICEAMC against baselines are
presented in Tab. 3. We summarize the findings below.

NICE Outperforms Loss-based Influence Estimation.
Our results show that NICE consistently outperforms LESS,
which uses loss-based influence estimation for data selec-
tion, across various models, settings, and datasets. This
result verifies that using the estimated influence on the eval-
uation metric is more helpful for data selection than that on
the loss.

No Labels? No Problem! NICE Outperforms Base-
lines that Utilize the Label Response. For tasks like
TLDR, RLHF, and HumanEval, NICE or NICEAMC uses
only unlabeled validation data (i.e., only prompts). Surpris-
ingly, they outperform baselines that use labeled data (both
prompts and label responses).

Less Is More: Subset Outperforms the Full Dataset.
We find that the subset selected by NICE or NICEAMC
can outperform the full dataset, demonstrating the value of
carefully curated data over larger, less refined datasets.

Assisted Monte-Carlo Sampling Can Boost Data Selec-
tion. Adopting AMC sampling in policy gradient has the
potential to further improve the performance of NICE, es-
pecially when the initial pool of training data is large. Re-
sponses generated from better-performing models can effec-
tively guide data selection, enabling models trained on the
selected subset to achieve better performance.

However, NICEAMC does not always have improved per-
formance compared to NICE, particularly under a smaller
selection pool of training data (e.g., a task-aware training
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Table 3. Comparison of NICE and NICEAMC in both task-agnostic and task-aware settings for Llama2-7B and Mistral-7B. Bold numbers
indicate the top-performing selected subset. A purple cell suggests that NICE outperforms LESS which uses loss-based influence
estimation. Underlined numbers show that the subset selected by our approach exceeds the performance of the full dataset. Subscript
numbers represent standard deviations.

Model & Dataset Full Random RDS BM25 DSIR TSDS LESS NICE NICEAMC

Task-agnostic training data pool.

Llama2-7B

AlpacaEval 22.59 16.13±1.18 14.70 19.60 20.27 17.40±2.44 26.94±2.37 27.61±2.13 30.45±2.40

TLDR 2.40 1.80±0.08 2.08 2.15 1.53 2.19±0.29 3.37±0.29 3.61±0.78 3.55±0.40

RLHF 2.31 2.05±0.11 1.87 2.83 2.57 1.01±0.12 1.44±0.07 2.82±0.10 3.03±0.02

HumanEval 47.44 44.30±2.36 45.29 46.19 42.22 43.68±1.82 47.50±1.57 48.59±2.08 45.10±2.84

Mistral-7B

AlpacaEval 33.77 24.99±4.28 21.70 28.47 29.31 35.84±0.53 41.09±1.56 41.43±3.00 47.40±2.94

TLDR 2.79 3.06±0.24 2.90 2.41 3.48 3.28±0.41 4.40±0.12 4.80±0.12 4.59±0.20

RLHF 2.56 2.13±0.04 1.78 2.88 2.94 1.83±0.15 1.70±0.09 3.10±0.06 3.42±0.05

HumanEval 83.63 85.56±1.27 84.15 84.09 79.17 82.78±1.25 85.24±0.45 85.59±1.41 85.67±0.34

Task-aware training data pool.

Llama2-7B RLHF 1.01 1.04±0.04 0.66 1.29 1.43 0.97±0.02 1.62±0.05 1.69±0.05 1.32±0.05

HumanEval 51.27 51.91±1.61 54.74 52.23 53.10 49.85±3.17 52.67±0.71 55.09±1.66 50.67±1.24

Mistral-7B RLHF 0.99 1.05±0.04 0.56 1.31 1.31 1.15±0.06 1.29±0.13 1.71±0.01 1.35±0.07

HumanEval 84.27 83.34±2.54 86.75 84.81 79.91 85.51±1.28 85.26±1.13 87.35±1.03 84.18±1.63

data pool is often smaller). When the training set is small,
there may not be enough training data points with gradi-
ents close to the policy gradient of NICEAMC. We per-
form a simple experiment to verify this intuition: restricting
NICEAMC to compute score from the RLHF training set
yields a performance of 1.26, but expanding the selection
pool to the combination of RLHF set and a large instruction
tuning set (COT, DOLLY, OASST, Flan V2) increases the
performance to 3.35. Note that the additional controlled ex-
periment only expanded the selection pool without altering
the initial warmup process. In contrast, the performance of
NICE improves from 1.68 to 2.44 with a larger pool. This
comparison shows a clear advantage of NICEAMC when the
training data to select from is large in size. Consequently,
when the size of training data is large (e.g., a task-agnostic
training data pool), we can prioritize using NICEAMC.

4.5. Additional Analysis

Unless specified, the experiments in the section below are
conducted on the Llama2-7B model.

Time Complexity Analysis. We provide a comparative
analysis of the computational costs between NICE and
LESS, an approach that adopts loss-based influence estima-
tion, showing that NICE remains within a practical com-
putational range. Tab. 4 lists the asymptotic complexity
and wall-clock runtime (the time for warmup training with
LoRA is measured in single H100 GPU hours, others are
measured in single L40 GPU hours) for each stage in the
data selection procedure. Tab. 5 highlights the validation
gradient computation where NICE differs from LESS. Let
E denote the number of epochs (saved checkpoints), d the

Table 4. Comparison of asymptotic time complexity and wall-clock
time (in GPU hours) for each stage in data selection. The time for
Warmup training with LoRA is measured on H100, and the others
are measured on L40.

Remark Asymptotic Compute

Warmup Training NICE = LESS O(|DW |E) 3h
Training Grad NICE = LESS O(|DN |E) 48h

Validation Grad NICE > LESS
LESS: O(|DV |E);

NICE: O(|DV |EM)
LESS: 0.11h on avg;
NICE: 14.67h on avg

Data Selection NICE = LESS O(|DN ||DV |d) <0.02h

Table 5. Validation gradient computation time across tasks for
NICE and LESS in single L40 GPU hours.

Task M
NICE

(MC Sampling)
NICE

(Val Grad)
LESS

(Val Grad)

AlpacaEval (|DV | = 10) 20 0.17h 0.05h <0.02h
TLDR (|DV | = 322) 20 8h 1.47h 0.08h
RLHF (|DV | = 2192) 20 32h 10h 0.33h
HumanEval (|DV | = 10) 500 5h 2h <0.02h

dimension of the projected gradients, and M the number
of Monte Carlo (MC) samples. Let |DW |, |DN |, and |DV |
denote the warmup, training, and validation set sizes, re-
spectively. When |DV | and M are small, NICE adds only
marginal overhead to LESS (e.g., AlpacaEval).

While NICE utilizing Monte Carlo sampling can indeed
increase the computational cost, this trade-off is justified
by our approach not needing validation labels—a key mo-
tivation of our work. NICE fills a gap left by existing
loss-based baselines by supporting data selection with unla-
beled validation data in cases where the evaluation metrics
are label-independent. Furthermore, we can observe the
performance improvement over other methods in Tab. 3.
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Generalizing NICE to the Influence Function (IF). We
demonstrate the effectiveness of the main idea of NICE be-
yond the TracIn framework by extending it to IF. We adopt
DataInf as an efficient implementation for IF. We compute
the DataInf on the last checkpoint of the warmup model and
adopt random projection to reduce the dimensionality of gra-
dients and store the projected gradients, eliminating the need
for computing the gradients again after the computation of
the Hessian. More details on the implementation of DataInf
are provided in the App. E.3. We compared the performance
of selecting data with the vanilla (loss-based) DataInf and
the DataInf enhanced by the policy gradient: NICEIF when
the training data pool is task-agnostic (Sec. 4.2). As shown
in Tab. 6, NICEIF consistently outperforms DataInf, demon-
strating the effectiveness of our approach and showing that
the concept of NICE of applying policy gradient for influ-
ence estimation can be readily applied to other loss-based
influence estimation methods to improve the performance.

Table 6. Comparison between Influence Function (DataInf) and
NICEIF on Llama2-7B when the training data pool is task-
agnostic. NICEIF consistently outperforms the DataInf.

Method AlpacaEval TLDR RLHF HumanEval

IF (DataInf) 11.11 2.01 0.83 37.40
NICEIF 20.44 3.97 1.89 39.68

The Discrepancy Between NTP Loss and Evaluation
Metrics. Previous works have discussed the discrepancy
between validation loss and downstream performance in in-
struction tuning for LLMs (Tay et al., 2021; Xia et al., 2024).
In these scenarios, minimizing validation loss does not nec-
essarily correspond to improving validation performance,
especially when the task requires long-form generations.
Empirical observations described in Fig. 1 and further re-
sults in App. H.4 verify this discrepancy: The minimized
validation loss is achieved at step around 250. However,
that checkpoint is the worst-performing checkpoint (lowest
validation reward). The reward can be further increased in
later steps, even if the loss increases.

We additionally plot the validation performance, measured
by the reward of the last few checkpoints, for models trained
on NICE-selected subsets and LESS-selected subsets in
Fig. 2 for the RLHF task. NICE-selected data optimizes in
the direction of increasing validation performance, whereas
LESS-selected data prioritizes loss reduction, which may
not necessarily lead to improved validation performance.

The Effect of the Number of Monte-Carlo Samples. We
perform additional experiments to study the effect of the
number of Monte-Carlo (MC) samples used in approxi-
mating policy gradient on the data selection performance
(measured by reward for the RLHF task). The results in
Fig. 3 indicate a positive correlation between performance

Figure 1. Discrepancy between NTP loss and performance (i.e.,
measured by the reward model here) of the validation set for RLHF
task in the last few training steps. The checkpoint with the mini-
mized loss (highest negative loss) corresponds to the checkpoint
with a relatively worse performance (having the lowest reward
among the five checkpoints). The performance may continue to
increase even if the loss increases (negative loss decreases).

and the number of MC samples, which shows the potential
to further improve NICE by using more MC samples. How-
ever, generating additional MC samples is computationally
expensive. We use 20 MC samples for the majority of tasks
since it is relatively less computationally expensive, while
sufficient to achieve better performance than other baselines.
The number of MC samples can also affect the stability of
our approach, as elaborated in App. H.5.

Data Addition. In Fig. 4, we plot the performance (mea-
sured by reward) against the percent of data points selected
by NICE and Random for RLHF task. The performance of
the model trained on a randomly selected subset increases
gradually as more data is used. In contrast, for the NICE-
selected subset in the task-aware setting (right of Fig. 4),
performance rises slightly from 5% to 25% but drops sharply
beyond 25%. The task-aware training data pool is more rele-
vant to the downstream task, so a small percentage can miss
useful data, while a large percentage can include irrelevant
or harmful data, harming performance. When the training
data pool is task-agnostic, performance declines as the se-
lection percentage increases, likely because only a small
fraction (no more than 5%) is relevant. This experiment also
demonstrates the importance of data selection to exclude
data points that are not useful to model performance.

5. Related Works
Various approaches are proposed to estimate the influence
of training data in fine-tuning LLMs. LESS (Xia et al.,
2024) adapts the TracIn framework to estimate the influence
of data points in instruction tuning. Kwon et al. (2024)
and Choe et al. (2024) scale up the IF by speeding up the
computation of the Hessian inverse. Lin et al. (2024) stud-
ies the token-level influence function for LLMs. These
approaches above are all loss-based influence estimation
methods that aim to approximate the influence of data on
the validation loss. Consequently, they fall short for genera-
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Figure 2. Validation performance, measured by the reward model of the last few checkpoints, for models trained on subsets selected by
NICE and LESS for the RLHF task. NICE-selected data optimizes for improved validation performance, whereas LESS-selected data
focuses on loss reduction, which may not always enhance validation performance.

Figure 3. Performance of LLMs trained on data selected by NICE
for RHLF task when different numbers of MC samples are used.
There is a positive correlation between performance and generated
MC samples. Using the sampling size of 20 provides good per-
formance while increasing the sampling size has the potential to
improve the performance.

tions tasks whose evaluation metrics align poorly with NTP
loss, as elaborated in Sec. 4.5. On the other hand, the works
of Kwon et al. (2024); Choe et al. (2024); Lin et al. (2024)
focus on data attribution and hence do not optimize for data
selection. In addition, Park et al. (2023) approximates the
data model to estimate the influence; Wang et al. (2024a)
scales up the Shapley value to estimate the influence; and
Qiao et al. (2025) uses the influence function to reweight
the training samples. However, these methods only focus
on classification tasks. In contrast, our work focuses on the
influence estimation for tasks that require extensive genera-
tions. More related works on data curation for instruction
tuning are discussed in App. G.

6. Conclusion
We propose NICE, a novel influence estimation ap-
proach that selects training data to directly optimize non-
differentiable evaluation metrics via policy gradient, rather

Figure 4. Performance versus percent of data points selected by
NICE or Random for the RLHF task. As the percentage selected
by NICE increases, performance may drop due to the inclusion
of low-score, irrelevant, or harmful points. When using data se-
lection, the trained model consistently outperforms those trained
on randomly selected data, even outperforming the full dataset,
underscoring the importance of data selection.

than relying on NTP loss. When using a reward function
that does not require label response, NICE can perform
data selection without relying on costly annotated labels.
Experimental results show that our approach outperforms
existing data selection methods across diverse scenarios. Of
note, despite the superior performance achieved by NICE
and NICEAMC, the computational cost of these approaches
is not negligible even with the acceleration (e.g., the use
of LoRA and random projection). Further explorations can
be done to study other computationally efficient ways of
computing the gradients.
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Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S., Tam,
Z. R., Stevens, K., Barhoum, A., Nguyen, D., Stanley, O.,
Nagyfi, R., ES, S., Suri, S., Glushkov, D., Dantuluri, A.,
Maguire, A., Schuhmann, C., Nguyen, H., and Mattick,
A. Openassistant conversations - democratizing large
language model alignment. In Advances in Neural In-
formation Processing Systems, pp. 47669–47681. Curran
Associates, Inc., 2023.

Kwon, Y., Wu, E., Wu, K., and Zou, J. DataInf: Efficiently
estimating data influence in lora-tuned LLMs and diffu-
sion models. In Proc. ICLR, 2024.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N.,
Wang, J., Zhou, T., and Xiao, J. From quantity to quality:

Boosting LLM performance with self-guided data selec-
tion for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), June 2024a.

Li, Y., Hui, B., Xia, X., Yang, J., Yang, M., Zhang, L., Si,
S., Chen, L.-H., Liu, J., Liu, T., Huang, F., and Li, Y.
One-shot learning as instruction data prospector for large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 4586–4601, Bangkok,
Thailand, August 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.252.

Lin, H., Long, J., Xu, Z., and Zhao, W. Token-wise influ-
ential training data retrieval for large language models.
arXiv preprint arXiv:2405.11724, 2024.

Liu, W., Zeng, W., He, K., Jiang, Y., and He, J. What makes
good data for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations,
2024a.

Liu, Z., Karbasi, A., and Rekatsinas, T. TSDS: Data se-
lection for task-specific model finetuning. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024b.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. In International Conference on
Machine Learning, pp. 22631–22648. PMLR, 2023.

Lu, K., Yuan, H., Yuan, Z., Lin, R., Lin, J., Tan, C., Zhou,
C., and Zhou, J. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Martens, J. et al. Deep learning via hessian-free optimiza-
tion. In Icml, volume 27, pp. 735–742, 2010.

Meyer, D. Notes on policy gradients and the log derivative
trick for reinforcement learning, 2023. Lecture Notes.

OpenAssistant. Reward model deberta
v3 large v2, 2023. URL https://
huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2.
Accessed: 2025-01-06.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. In Proc. NeurIPS, pp. 27730–
27744, 2022.

11

https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2


Data Selection with NICE

Park, S. M., Georgiev, K., Ilyas, A., Leclerc, G., and Madry,
A. TRAK: Attributing model behavior at scale. In Proc.
ICML, 2023.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.
In Advances in Neural Information Processing Systems,
volume 33, pp. 19920–19930. Curran Associates, Inc.,
2020.

Qiao, R., Wu, Z., Wang, J., Koh, P. W., and Low, B. K. H.
Group-robust sample reweighting for subpopulation shifts
via influence functions. arXiv preprint arXiv:2503.07315,
2025.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Ray2333. Gpt-2 large harmless reward model.
https://huggingface.co/Ray2333/
gpt2-large-harmless-reward_model, 2024.
Accessed: 2024-06-18.

Reimers, N. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084,
2019.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333–389, 2009.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems, pp.
3008–3021. Curran Associates, Inc., 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S.,
Chung, H. W., Narang, S., Yogatama, D., Vaswani, A.,
and Metzler, D. Scale efficiently: Insights from pre-
training and fine-tuning transformers. arXiv preprint
arXiv:2109.10686, 2021.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, J., Lin, X., Rui, Q., Chuan-Sheng, F., and Bryan
Kian Hsiang, L. Helpful or harmful data? fine-tuning-
free shapley attribution for explaining language model
predictions. In Proc. ICML, 2024a.

Wang, P., Shen, Y., Guo, Z., Stallone, M., Kim, Y., Golland,
P., and Panda, R. Diversity measurement and subset
selection for instruction tuning datasets. arXiv preprint
arXiv:2402.02318, 2024b.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., et al. How far can camels go? exploring the state of
instruction tuning on open resources. Advances in Neural
Information Processing Systems, 36:74764–74786, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b.,
Xia, F., Chi, E., Le, Q. V., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 24824–24837.
Curran Associates, Inc., 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Wu, L., Tian, F., Qin, T., Lai, J., and Liu, T.-Y. A study of
reinforcement learning for neural machine translation. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium,
October-November 2018. Association for Computational
Linguistics.

Xia, M., Malladi, S., Gururangan, S., Arora, S., and Chen,
D. Less: Selecting influential data for targeted instruction
tuning. In Proceedings of the Forty-first International
Conference on Machine Learning, 2024.

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. S. Data
selection for language models via importance resampling.
Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yeh, C.-K., Taly, A., Sundararajan, M., Liu, F., and Raviku-
mar, P. First is better than last for language data influence.
Advances in Neural Information Processing Systems, 35:
32285–32298, 2022.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 586–595,
2018.

12

https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model
https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model


Data Selection with NICE

Zhao, Y., Yu, B., Hui, B., Yu, H., Li, M., Huang, F.,
Zhang, N. L., and Li, Y. Tree-instruct: A preliminary
study of the intrinsic relationship between complexity
and alignment. In Proceedings of the 2024 Joint Inter-
national Conference on Computational Linguistics, Lan-
guage Resources and Evaluation (LREC-COLING 2024),
pp. 16776–16789, Torino, Italia, May 2024. ELRA and
ICCL.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. In Proc.
NeurIPS, volume 36, 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

13



Data Selection with NICE

A. Training
A.1. Training Dataset

For the task-agnostic setting, the four processed training datasets that are utilized are described in Wang et al. (2023). These
datasets, annotated or authored by humans, are detailed in Tab. 7. FLAN V2 and COT are based on existing NLP datasets,
while DOLLY and OASST feature open-ended responses from humans, demonstrating diverse formats, lengths, and tasks.

For the task-aware setting, we use 95% of the RLHF task’s training data as our training set, while the remaining 5% serves
as the validation set. The RLHF dataset is constructed from conversations between humans and AI assistants. Specifically,
given an existing (potentially multi-turn) conversation between an LLM and a human, the LLM provides two responses,
which are then evaluated by human annotators. Each data point contains a pair of responses, with one marked as ‘chosen’
by human annotators for being more helpful than the other. Since only the last responses from the assistant are compared
during human labeling, the helpfulness is evaluated only for the last-turn response of each conversation. Consequently, we
use only the last-turn response as labels. We only use these “chosen” responses for training, validation, and test. For the
HumanEval task’s training data, we adopt the CodeAlpaca 20k (Chaudhary, 2023) dataset with the addition of the original
instruction format for each data point.

For fine-tuning Llama2, we adopt the ‘Tulu’ format following from the study by Wang et al. (2023).

Tulu Instruction Format

<user>
What can you help me with?

<assistant>
I’d like to show off how chat templating works!

For fine-tuning the Mistral and Llama3 models, we utilize the respective instruction formats predefined by each model, as
detailed below:

Mistral Instruction Format

[INST] What can you help me with? [/INST] I’d like to show off how chat templating works!

Llama3 Instruction Format

<|start header id|>user<|end header id|>

What can you help me with?<|eot id|> <|start header id|>assistant <|end header id|>

I’d like to show off how chat templating works!

A.2. Training Details

All experiments utilized the parameter-efficient LoRA (Hu et al., 2021) approach. A linear warm-up with 0.03
warmup ratio was employed, peaking at a learning rate of 2 × 10−5. We trained for 4 epochs on each dataset with
a batch size of 128. The LoRA module had a rank of 128, an α of 512, a dropout rate of 0.1, and learned matri-
ces for all attention layers. Specifically, the Llama2-7b model used is meta-llama/Llama-2-7b-hf, Llama2-
13b used is meta-llama/Llama-2-13b-hf, Mistral-7B is mistralai/Mistral-7B-v0.1, Llama3-8B is
meta-llama/Meta-Llama-3-8B.

Each main experiment was repeated three times with random seeds 0, 1, and 2. Under random selection methods, three
different random subsets from the training set were chosen for each seed. For LESS, TSDS, NICE, and NICEAMC, we first
performed warmup training on subsets chosen by each seed, then selected distinct subsets from the resulting warmup model
for each trial. We used the same optimization seeds as those used for the warmup model. For experiments without reported
standard deviation, we used seed 0. Full training was conducted on seed 0 only, due to heavy computation.
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Table 7. Detailed information about the training set. The task-agnostic training data pool is the same as in Xia et al. (2024) and Wang et al.
(2023).

Task-agnostic
Dataset Size Sourced from # Turns Prompt Len. Response Len.

FLAN V2 100,000 Based on Existing NLP
Datasets

1 355.7 31.2

COT 100,000 Based on Existing NLP
Datasets

1 266.0 53.2

DOLLY 15,011 Human-written from
scratch

1 118.1 91.3

OASST 55,668 Human-written from
scratch

1.6 34.8 212.5

Task-aware
RLHF 41,643 Human feedback data 2.46 145.0 517.3

Code Alpaca 20,022 Code-related human-
written instructions

1 294.8 197.0

B. Evaluation
B.1. Evaluation Dataset

AlpacaEval sources its data from self-instruct, OASST, Anthropic’s helpful dataset, Vicuna, and Koala, widely used for
understanding model behavior in structured, instruction-driven settings. The evaluation metric is a length-controlled win
rate, adjusting for biases in response length using a regression model to ensure fair and accurate assessments (Dubois
et al., 2024). Each response is compared to a baseline model, text davinci 003, using weighted alpaca eval gpt4 turbo as
the annotator. We use text davinci 003 as a baseline because its relatively lower baseline performance can more clearly
highlight the performance difference between selected subsets. By contrast, using a stronger baseline (e.g., gpt4 turbo)
could mask the differences among the model trained on the subset selected by different selection strategies. For annotation,
we employ weighted alpaca eval gpt4 turbo (https://github.com/tatsu-lab/alpaca_eval), chosen for its
high agreement with human annotations, large context capacity, and cost-effectiveness.

HumanEval uses a set of programming challenges to evaluate code correctness and functionality, measured by the pass@k
metric which is how many correct solutions appear within a specified number of attempts k (e.g., we use 100 in the main
experiment). This metric assesses the ability of models to generate correct solutions within a limited number of attempts,
reflecting the model’s efficiency in code generation. We additionally use the unbiased estimator of pass@k to avoid the high
variance of vanilla pass@k (Chen et al., 2021).

TLDR uses cleaned data from Stiennon et al. (2020), focusing on well-structured input-output pairs for summarization
tasks. It is evaluated against a reward model (OpenAssistant, 2023) that is trained based on human feedback to ensure the
generation of high-quality summaries.

RLHF is designed for training and evaluating language models using human feedback to optimize response generation. It
consists of prompt-response pairs and we only use the “chosen” response whose last-turn response aligns best with human
preferences, according to specific criteria such as relevance and safety. The evaluation metric is reward model (Ray2333,
2024) which can measure the helpfulness of model responses.

B.2. Evaluation Details

For AlpacaEval and HumanEval, we set the number of tasks to be q = 5 and q = 10, while for TLDR and RLHF have q = 1.
The reason is: for AlpacaEval, two samples are drawn from each of the five subtasks (Self-Instruct, OASST, Anthropic’s
helpful dataset, Vicuna, Koala), resulting in a total of ten samples in the validation set. For HumanEval, since pass@k
aims to check if there is at least one functional code within the k generations of each test data point, we select training data
points that enhance performance across all validation data. Each validation data point is treated as an individual task. Hence,
AlpacaEval and HumanEval are multi-subtask scenarios with q = 5 and q = 10, while TLDR and RLHF are single-subtask
scenarios with q = 1. The aggregation of each training data point’s influence score w.r.t the validation set follows from
Sec. 2.2.

For TLDR and RLHF, the reward function r used during the computation of the policy gradient is the reward model, and the
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evaluation metric for the validation set is the average reward for each validation point. For AlpacaEval, the reward function
r for each generated response is the annotator’s decision for that response, and the evaluation metric for the validation
set is not simply an average but an average of a debiased version of each annotator’s decision (Dubois et al., 2024). For
HumanEval, the reward function r for each generated response (code) is the boolean result of all unit tests for that code,
while the evaluation metric for the validation set is pass@k. This metric measures functional correctness by generating
k codes for each test problem and considering the problem solved if any code passes all unit tests of that problem. The
pass@1 score can be viewed as the average of each boolean result, whereas pass@10 and pass@100 are computed via a
problem-level “OR” across the k generated codes, followed by an average across all problems. Additionally, to address
numerical instability and reduce variance, we use the unbiased estimator version of pass@k following Chen et al. (2021).

We evaluate the model on the validation set DV (the same set used for data selection) after each epoch, and assess the
best-performing checkpoint on the test set.

C. NICE and NICEAMC Details
NICE and NICEAMC rely solely on the probability of generated responses and the score from a reward function, as enabled
by the policy gradient mechanism. For AlpacaEval, labels are provided to all approaches because the reward function
requires ground-truth labels. For the other three tasks, including TLDR, RLHF, and HumanEval, the ground-truth labels of
the validation dataset are not used by our method, although they are available to the other baselines (such as LESS). This is
because in these three tasks, the reward function does not require ground-truth labels. Specifically:

• For RLHF and TLDR, the reward function is a learned reward model that outputs scores based on the prompt and generated
response.

• For HumanEval, the reward is defined by whether the generated code passes unit tests, not requiring reference solutions.

C.1. NICE Details

We generate 20 MC samples for all evaluation datasets, except for HumanEval where we generate 500 samples due to the
task’s difficulty (i.e., a lower code pass rate). Generally, we set the sampling temperature to 1.2 to promote diversity, except
for AlpacaEval where we use 1.0. The generated responses of the validation set under temperature of 1.0 yield a higher win
rate on the final checkpoint compared to 1.2. We employ multinomial sampling with top k = 50 and top p = 0.95.

C.2. NICEAMC Details

For NICEAMC, we use gpt-4-turbo-2024-04-09. Regarding the GPT API hyperparameters, we set the fre-
quency penalty to 0, presence penalty to 0, and temperature to 0.8 for all tasks.

For TLDR tasks, we add a prompt A brief summary of my post is (TL;DR): after the prompt of the data
point, before generating the response, to enhance generation quality.

For HumanEval, we prepend a prompt:

Complete the following python function to return only the function body (completion).
Do not include the function header or docstring.

before the coding question. This ensures the model outputs only the necessary code, avoiding chain-of-thought content that
could fail unit tests.

D. Baseline Details
For LESS and TSDS, the hyperparameter settings are the same as in their official repos. For BM25, DSIR, and RDS, these
methods are warmup model-agnostic, meaning the selection process does not rely on the warmup models’ randomness.
Hence, we only run them on seed 0. To avoid the instruction format’s effect on the representation or retrieval, we use the
format of:

Question:[Question]\n\nAnswer:[Answer]
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for the majority of the training data and validation data. We use TULU format for RLHF training and validation data, as
RLHF contains many turns.

For BM25, we use the rank bm25 package (https://github.com/dorianbrown/rank_bm25). We
treat each validation data point as a query to retrieve the BM25 scores of each training data point. For
RDS, we adopt the sentence-transformers/all-MiniLM-L6-v2 model (https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2). We compute the cosine similarity of embeddings between
each validation data point and each training data point. Overall, for each validation point, BM25 and RDS will have a
score vector of dimension n (the size of the training dataset is n). We then follow the same aggregation steps as in Sec. 2.2
to aggregate the scores. For DSIR, we use the official Github repo and match the distribution between training data and
validation data (https://github.com/p-lambda/dsir).

E. Preliminary
E.1. Derivation of The Change in the Validation Loss

The detailed derivation of the change in the validation loss is explained here: When a training data point zi is included in
the training step t, the model parameters are updated accordingly, leading to a change in the validation loss. Assuming a
small learning rate ηt is used in the parameter updates with the Stochastic Gradient Descent (SGD) optimizer, this one-step
change at step t can be approximated using a first-order Taylor expansion (Pruthi et al., 2020):

L(zv; θ
t+1)− L(zv; θ

t)

= ∇θL(zv; θ
t) · (θt+1 − θt) +O(∥θt+1 − θt∥2)

≈ ∇θL(zv; θ
t) · (θt+1 − θt)

= ∇θL(zv; θ
t) · (−ηt∇θL(zi; θ

t))

= −ηt⟨∇θL(zv; θ
t),∇θL(zi; θ

t)⟩ .

(1)

E.2. Derivation of Influence Function

Influence Function (IF) (Koh & Liang, 2017) measures the influence of down-weighting the training data point zi by some
small ϵ, on the new parameter θEϵ,zi := argminθ∈Θ

1
n

∑n
i=1 L(zi; θ) + ϵL(zi; θ). The parameter change is given by:

Idown,params(zi) =
∂θEϵ,zi
∂ϵ

∣∣∣∣
ϵ=0

= H−1
θE

∇θL(zi; θ
E)

where HθE = 1
n

∑n
i=1 ∇2

θL(zi; θ
E) is the Hessian matrix of the average loss over the training set and is positive definite

by assumption. Then, by applying the chain rule, IF can measure the influence of down-weighting zi on the loss of the
validation data point zv:

InfIF(zi, zv) =
∂L(zv; θ

E
ϵ,zi)

∂ϵ

∣∣∣∣
ϵ=0

= ∇θL(zv; θ
E)⊤

∂θEϵ,zi
∂ϵ

∣∣∣∣
ϵ=0

= ∇θL(zv; θ
E)⊤H−1

θE
∇θL(zi; θ

E) .

(2)

E.3. Efficient Influence Function

DataInf makes use of Bartlett’s second identity (Bartlett, 1953) to approximate the Hessian. That is, the Hessian can
be replaced with the second moment of the first-order gradients: G(θE) = 1

n

∑n
i=1 ∇θL(zi; θ

E)∇θL(zi; θ
E)⊤, which

simplifies the computation of the Hessian matrix. The θE here is the last checkpoint of the warmup model. In the later
section, the computation of DataInf is all w.r.t. to the last checkpoint of the warmup model. We denote the gradient of the
loss of training data point zi w.r.t. ϕ (ϕ can be a single layer’s parameter) by ∇ϕLi := ∇ϕL(zi; θ

E), while the gradient of
the loss of validation data point zv w.r.t. ϕ (ϕ can be a single layer’s parameter) by ∇ϕLv := ∇ϕL(zvθ

E).

To further address the potential large dimension of θ and computational challenges, DataInf adopts another two techniques:
1. Damping: A small positive constant, λ, is added to the diagonal elements of G(θE), enhancing its positive definiteness
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and invertibility (Martens et al., 2010). 2. Block Diagonal Matrix Representation: G(θE) is further approximated using its
block diagonal matrix where each block is a layer of the deep neural network (Grosse et al., 2023). The influence function
then becomes

L∑
l=1

∇θlL
⊤
v

 1

n

n∑
j=1

∇θlLj∇θlL
⊤
j + λIdl

−1

∇θlLi

where θl ∈ Rdl is the model parameter in l-the layer, Idl ∈ Rdl×dl is identify matrix of size dl, and L is the total number of
layers.

Following these transformations, DataInf tweaks the order of matrix inversion and the average calculations, and then
leverages the Sherman-Morrison formula: 1

n

n∑
j=1

∇θlLj∇θlL
⊤
j + λIdl

−1

≈ 1

n

n∑
j=1

(
∇θlLj∇θlL

⊤
j + λIdl

)−1

=
1

nλ

n∑
j=1

(
Idl −

∇θlLj∇θlL
⊤
j

λ+∇θlL
⊤
j ∇θlLj

)
.

The computation of the Hessian and the later computation of the influence function can require retrieving the training
gradient ∇ϕLi twice. To additionally optimize the time, we apply random projections to each gradient vector ∇ϕLi and
store them. Later, we can retrieve the stored projected gradients and compute Hessian and the influence function score.

Besides DataInf, other methods have been proposed for efficiently computing the influence function for large language
models. Grosse et al. (2023) improved the computation of the block-diagonal Hessian using the Kronecker product of
uncentered forward and backward covariances of each layer (EK-FAC). TRAK projects gradients into a low-dimensional
space and calculates influence scores within the subspace (Park et al., 2023). LORGA further improves the projection step
with an efficient gradient projection strategy that leverages the gradient structure in backpropagation (Choe et al., 2024).
However, neither EK-FAC nor LORGA discussed their applicability to LoRA fine-tuned models, leading us to exclude them
for experiment. Additionally, TRAK’s approach of treating the multi-class classification problem as a single binary logistic
regression may result in information loss. Therefore, we also did not apply it, as our task is purely generative and each
token’s prediction is a multi-class classification prediction whose prediction space is vocabulary size. For the hyperparameter
in terms of Datainf, the projected gradient is 2048 dimension. The smaller dimension is due to the fact that we need to
project gradients for each layer. The λ is 0.0001.

F. Explicit form of NICE During Implementation
As discussed in Sec. 3.1, Xia et al. (2024) replaces the SGD with Adam gradient and replaces the inner product with the
cosine similarity of the original TracIn for performance consideration. We integrate these two enhancements on NICE as
well, leading to:

InfNICE(zi, zv) =

E∑
e=1

η̄e

〈
Eŷv∼f(y|xv ;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]
,Γθ(zi; θ

e)
〉

∥∥∥Eŷv∼f(y|xv;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]∥∥∥∥∥∥Γθ(zi; θe)∥∥∥
Γθ(zi; θ

e) ≜
me+1

√
ve+1 + ϵ

me+1 =
β1m

e + (1− β1)∇θL(zi; θ
e)

1− βe1

ve+1 =
β2v

e + (1− β2) (∇θL(zi; θ
e))

2

1− βe2

where every operation is applied elementwise. Here, β1 and β2 represent the hyperparameters for the first and second
moments, respectively, with ϵ serving as a small constant.
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G. Related Work: Data curation for instruction tuning
Curating high-quality, diverse, and complex instruction tuning data has been shown to improve the instruction-following
ability of LLMs. Researchers have proposed different strategies to measure and improve different aspects of instruction-
following ability: Cao et al. (2023) utilize natural language indicators to evaluate quality; Zhao et al. (2024) employ
GPT-transformed instructions to measure complexity; and Chen et al. (2023) adopt LLM-annotated scores to assess both
quality and complexity. Bukharin & Zhao (2023); Du et al. (2023); Lu et al. (2024); Wang et al. (2024b) optimize instruction
data by emphasizing diversity in tandem with quality or complexity. Liu et al. (2024a) offers a comprehensive comparison
of existing methods regarding these three properties. They further train a model to predict complexity and quality and
iteratively filter out the most diverse points using embeddings. These approaches typically select data without a validation
set. Our work extends this line of research to targeted data selection with guidance from validation set, selecting data that
aligns the most with downstream tasks to enhance specific model capabilities. Our setting is more similar to Xia et al. (2024),
Liu et al. (2024b) and Li et al. (2024b). However, Xia et al. (2024) selects data based on the influence on validation loss,
which can lead to discrepancies between minimizing loss and maximizing performance, while we select data based on their
influence on validation performance. Liu et al. (2024b) uses loss-based gradients to measure data distance when optimizing
for distribution alignment and diversity, which can also suffer from the aforementioned discrepancy to some extent. Li et al.
(2024b) utilizes a perplexity-based scoring system to select the most advantageous data for a defined anchor set, but their
methodology is limited to single-turn training data. Another line of work, exemplified by Bhatt et al. (2024), frames curation
as active learning by selecting the most informative prompts for predicting the label (i.e., generate responses) through
uncertainty or diversity maximization. This active learning paradigm differs from our setting. A more comprehensive review
of data curation methods is provided by Albalak et al. (2024).

H. Additional Analysis
Unless otherwise specified, the experiments in the section below are conducted on the Llama2-7B model.

H.1. Additional Results of Pass@k on HumanEval

We provide additional evaluation metrics for HumanEval dataset, specifically pass@1 and pass@10, in Tab. 8. Overall,
they align with our main findings: NICE and NICEAMC generally outperform loss-based influence estimation (LESS)
and baselines, and the subsets selected by NICE and NICEAMC have the potential to outperform the full dataset. Note
that BM25 performs well in terms of pass@1 and pass@10 on the Mistral-7B model and even outperforms other baselines
under a task-agnostic training data pool. Empirically, we observe that BM25 is more likely to select data points that contain
codes. This is likely because BM25 is based on TF-IDF, which assigns higher scores to training data that is more relevant in
terms of word frequency, and certain words appear more frequently than others in the codes. Consequently, BM25 performs
well, especially when the training data contains data from multiple different domains that are not coding-related. However,
this good result does not transfer to either the Llama2-7B model or under a task-aware training data pool due to two main
reasons: 1) BM25 does not use the information from the models, meaning that the same data subset will be selected for
different models. Intuitively, different models require different data to achieve better performance. Therefore, selecting
data using BM25 is sub-optimal; 2) Selection based on the word frequency is not enough for the task-aware setting. In
a task-aware data pool, training data points are more relevant to the task, possibly resulting in comparable BM25 scores
for all data points. Consequently, a more careful selection based on other criteria (i.e., not just word frequency) is needed.
Additionally, while BM25 achieves a 31.81 pass@1 for Mistral-7B, pass@1 is not the sole evaluation criterion in practice,
because there are situations where multiple responses can be generated from the LLM and checked by a verifier (e.g., test
cases). Therefore, for HumanEval, focusing on pass@k with larger k (and higher accuracy) is more desirable.

Additionally, we argue that NICE can improve pass@1 performance with lower temperature while sacrificing the perfor-
mance of pass@10 and pass@100. We analyze the performance on the HumanEval task for models trained on NICE-selected
subsets when using different temperatures to generate MC samples. As shown in Tab. 9, the pass@1 performance on
downstream tasks is improved by using a lower temperature, while at the cost of reduced performance on pass@10 and
pass@100 metrics. A lower temperature reduces uncertainty during generation. If the model is good at certain problems, it
increases the probability of answering these problems correctly. However, this reduction in uncertainty comes at the expense
of diversity, as the generated responses tend to be very similar to one another. Consequently, for difficult questions, if all
generated responses are incorrect, pass@k (for larger k) suffers. This trade-off implies that using a lower temperature to
generate responses improves pass@1 performance. When these responses generated under a lower temperature are used to
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Table 8. Additional Results of Pass@k on HumanEval for both task-agnostic and task-aware settings on Llama2-7B and Mistral-7B.
Bold numbers indicate the top-performing selected subset. A purple cell suggests that NICE outperforms LESS which uses loss-based
influence estimation. Underlined numbers show that the subset selected by our approach exceeds the performance of the full dataset.
Numbers in small font represent standard deviations.

Task-agnostic training data pool.
Llama2-7B Mistral-7B

Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100

Full 7.61 25.52 47.44 29.47 59.68 83.63
Random 8.34±0.34 23.85±0.40 44.30±2.36 29.99±1.37 62.04±1.57 85.56±1.27

RDS 10.00 25.55 45.29 30.31 62.00 84.15
BM25 8.27 24.51 46.19 31.81 62.43 84.09
DSIR 9.53 24.02 42.22 27.71 56.81 79.17
TSDS 10.30±1.58 25.47±1.27 43.68±1.82 27.50±1.47 59.78±1.86 82.78±1.25

LESS 9.24±0.77 26.12±0.17 47.50±1.57 26.85±0.58 60.66±0.39 85.24±0.45

NICE 10.35±1.72 27.37±1.56 48.59±2.08 29.48±0.93 62.05±2.23 85.59±1.41

NICEAMC 9.04±2.35 25.11±1.72 45.10±2.84 29.96±1.95 62.10±1.82 85.67±0.34

Task-aware training data pool.
Llama2-7B Mistral-7B

Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100

Full 13.27 30.30 51.27 33.14 64.09 84.27
Random 11.99±0.22 29.86±0.42 51.91±1.61 33.15±0.76 63.62±1.92 83.34±2.54

RDS 12.40 31.34 54.74 33.32 63.23 86.75
BM25 13.66 31.22 52.23 33.58 64.35 84.81
DSIR 11.98 30.43 53.10 32.30 59.07 79.91
TSDS 12.85±0.50 28.15±0.91 49.85±3.17 31.74±1.63 63.04±1.06 85.51±1.28

LESS 13.55±0.28 30.53±0.57 52.67±0.71 34.05±1.28 64.12±0.37 85.26±1.13

NICE 13.43±0.33 31.70±0.66 55.09±1.66 33.61±1.29 65.56±1.32 87.35±1.03

NICEAMC 12.87±0.53 30.39±0.26 50.67±1.24 34.13±0.88 63.91±0.84 84.18±1.63

Table 9. Performance on the HumanEval task under a task-aware training data pool for models trained on NICE-selected subsets with
different temperatures for generating MC samples. We can decrease the temperature to improve pass@1 metric, while at the cost of
decreased performance on pass@10 and pass@100.

Model Temperature 1.0 Temperature 1.2
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

Llama2-7B 14.13 31.21 49.95 13.12 31.41 53.96
Mistral-7B 35.70 63.60 81.04 35.23 63.85 85.69

compute policy gradients for data selection, the resulting selected subset also favors the pass@1 metric, while at a cost of
decreased performance on pass@k (for larger k).

H.2. Robustness across Validation Splits

We demonstrate the robustness of NICE across different validation splits and address concerns about potential overfitting to
a specific validation set. When the training data pool is task-agnostic, we randomly selected an alternative validation set D′

V

as a reference and re-selected a subset D′
S . The performance of models retrained on DS (selected based on the original

validation split DV ) and D′
S (selected based on the new validation split D′

V ) are shown in Fig. 5. Importantly, models
trained on the selected subsets, whether DS or D′

S , consistently outperform models trained on randomly selected subsets.
This verifies the robustness of our approach and confirms that its effectiveness does not depend on a specific validation split.
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Figure 5. Performance of models trained on different NICE-selected subsets using different validation sets as references. Models trained
on NICE-selected subsets consistently outperform those trained on randomly selected subsets, regardless of the validation set used.

Table 10. Additional Results on the RLHF task for Llama2-13B and Llama3-8B. Bold numbers indicate the top-performing selected
subset. A purple cell suggests that NICE outperforms LESS which uses loss-based influence estimation.

RLHF Llama2-13B Llama3-8B
Task-agnostic Task-aware Task-agnostic Task-aware

Random 2.06±0.04 1.20±0.07 1.97±0.07 1.12±0.06

RDS 1.77 0.70 1.75 0.81
BM25 2.72 1.34 2.84 1.43
LESS 1.52±0.09 1.65±0.04 1.64±0.14 1.65±0.08

NICE 2.87±0.04 1.76±0.04 3.22±0.02 1.99±0.06

H.3. Additional results on Llama3-8B and Llama2-13B

We evaluate NICE against various data selection baselines using the state-of-the-art model, Llama3-8B (Dubey et al., 2024),
and a larger model, Llama2-13B, on the RLHF task (see Tab. 10). The superiority of NICE underscores our method’s
generalizability across different model sizes and state-of-the-art models.

H.4. Discrepancy between NTP Loss and Evaluation Metrics

We additionally include the NTP loss and performance (i.e., measured by each task’s evaluation metric here) of the validation
set for the remaining three tasks in several training checkpoints. The results in Fig. 6 are similar to those in Fig. 1:
checkpoints with minimal loss (highest negative losses) do not correspond to checkpoints with the best performance; the
performance can continue to increase even if the loss increases (negative loss decreases).

Figure 6. Discrepancy observed between the NTP loss and performance (as measured by each task’s evaluation metric) on the checkpoints.
The checkpoint with the lowest loss (i.e., most negative) can exhibit relatively poorer performance. Notably, performance can continue to
improve even as the loss worsens (i.e., the negative loss becomes higher).
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Figure 7. Standard deviation of different runs w.r.t the number of MC samples. Increasing the number of MC samples generally lowers
the standard deviation across runs, indicating better stability.

H.5. Stability of MC Sampling

We provide an ablation study (Fig. 7), varying MC samples from 5 to 20 on the RLHF task under the task-agnostic training
data pool, for a more in-depth discussion on stability. Results show that increasing the number of MC samples generally
lowers the standard deviation across runs with different seeds, indicating better stability. The benefit of reduced standard
deviation diminishes as it increases. This validates that our chosen MC (MC=20 for RLHF task) provides a good trade-off,
offering sufficient stability without excessive computation.

H.6. On the Additional Cost of NICEAMC

Note that NICEAMC is an optional enhancement—NICE itself does not require GPT-4. We list the projected GPT-4 cost
for NICEAMC in Tab. 11. The costs are low for the majority of the tasks, except for RLHF, due to its large validation set
(which can be addressed by using alternative models as discussed in the next paragraph).

Table 11. Projected GPT-4 cost for NICEAMC across different tasks. The cost for RLHF is high due to a large validation set.

Task AlpacaEval TLDR RLHF HumanEval Avg

GPT Cost ($) 1.70 14.26 291.17 6.34 78.37

Use of Open-Source/Smaller LLMs. To reduce cost, we can use high-performing open-source models. On the RLHF task
in the task-agnostic setting, we use Qwen 2.5-3B/7B-Instruct (Yang et al., 2024) for AMC. Both outperform NICE. Notably,
even a small model like Qwen 2.5-3B-Instruct performs better due to its better alignment training, despite its smaller size.
These models offer comparable performance to GPT-4 without incurring the additional API cost.

Table 12. Performance on the RLHF task using different models for NICEAMC. Qwen models offer competitive performance without the
API cost of GPT-4.

Model NICE NICE AMC (GPT-4) NICE AMC (Qwen2.5 7B) NICE AMC (Qwen2.5 3B)

RLHF 2.82±0.10 3.03±0.02 3.00±0.03 2.97±0.03

I. Ablation Studies
Unless otherwise specified, the ablation studies in the section below are conducted on the Llama2-7B model.
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I.1. Using an Alternative Way to Compute Policy Gradient

Table 13. Performance comparison between loss-based influence estimation (LESS) and NICE which uses different approaches to
compute policy gradient when selecting from a task-aware training data pool. PG refers to using the MC policy gradient as described in
Sec. 3.1, while PPO denotes using Proximal Policy Optimization. Employing policy gradient computed from either policy optimization
approach during data selection results in a generally better-selected subset compared to loss-based influence estimation.

dataset RLHF HumanEval
metrics reward pass@1 pass@10 pass@100
LESS 1.62±0.05 13.55±0.28 30.53±0.57 52.67±0.71

PG 1.69±0.05 13.43±0.33 31.70±0.66 55.09±1.66

PPO 1.73±0.02 13.58±0.95 30.84±1.52 52.08±1.31

Besides the vanilla Monte-Carlo policy gradient, we conducted an ablation study of using another policy optimization
methodology to compute the policy gradient used in NICE. We tried computing the policy gradient using Proximal Policy
Optimization (PPO) (Schulman et al., 2017), with results presented in Tab. 13 for the task-aware setting. These results
demonstrate that compared to the loss-based influence estimation (LESS), which selects training data by optimizing in the
direction of decreasing validation loss, integrating either the MC policy gradient or PPO gradient to select training data by
optimizing in the direction of improving downstream task performance leads to a better-selected subset. A “better-selected
subset” refers to a subset of training data that, when used for model training, results in improved performance on downstream
tasks.

I.2. Introducing Additional knowledge on Loss-based Influence Estimation

Tab. 14 shows the performance of LESS using GPT-generated labels (LESS+GPT), which is generally worse than our
approaches and can even be worse than LESS + true labels (LESS). Hence, simply using GPT-generated labels with
loss-based approaches cannot always address the unavailability of labels for validation data.

Table 14. Performance of LESS using GPT-generated labels (2nd row) in the task-agnostic setting, which is generally worse than our
approaches and can even be worse than LESS + true labels (1st row).

Table D Alpaca TLDR RLHF HumanEval
LESS 26.94±2.37 3.37±0.78 1.44±0.07 47.50±1.57

LESS+GPT 27.35±1.86 3.41±0.26 3.03±0.01 43.04±1.39

NICE 27.61±2.12 3.61±0.78 2.82±0.10 48.59±2.08

NICEAMC 30.45±2.39 3.55±0.40 3.03±0.02 45.10±2.84

I.3. Effect of reward score

We conduct a simple ablation study to evaluate the effectiveness of the reward score within the context of the policy gradient
methodology. For the RLHF task under a task-agnostic training data pool, we compare the performance between the
continuous reward score (our current methodology) and a discrete reward score where the reward is set to 1 if positive and
0 if non-positive. This discrete reward setup can also be interpreted as a form of rejection sampling. The subset selected
using the continuous reward yields a model with a performance score of 2.82±0.10, whereas the subset selected using the
discrete reward yields a performance of 2.25±0.12. Although less effective than the original policy gradient method, the
policy gradient with a discrete reward still demonstrates some effectiveness, outperforming both LESS (1.44±0.07) and
random (2.05±0.11) selection strategies. This ablation study highlights that subsets selected with the guidance of reward
scores can produce models with better performance than those trained on subsets selected by LESS or random sampling.

J. Qualitative analysis
J.1. Generated Responses

We present three generated responses from GPT-4 on an AlpacaEval validation data point in Tab. 15 and Tab. 16, demonstrat-
ing that by using a better-performing model, we can gather responses of comparable or even higher quality than the original
label. This supports the use of the better-performing model during data selection to guide further performance improvements.
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By comparing the original labels with the GPT-4 responses, particularly in Tab. 15, we observe that the generated responses
exhibit higher quality and more accurate results. By observing Tab. 16, we find that the generated responses are not only
better in quality, provide richer detail, and more vivid imagery for monologues, but they also offer diverse responses. These
monologues differ in style and narrative focus, ranging from a grand epic tone to reflective introspection. The first explores
ancient ruins and lost civilizations, the second emphasizes nature and mysticism, and the last tells mythic tales.

J.2. Highest/Lowest Scoring Training Data for RLHF Task under a Task-agnostic Training Data Pool

In a task-agnostic setting, we present the highest- and lowest-scoring training data points in Tab. 17. The highest-scoring
training data points complete the task effectively and offer additional knowledge, while the lowest-scoring ones tend to be
vague, minimal, or fail to address the task meaningfully. Considering the RLHF task targets helpfulness, the high-scoring
data points can potentially boost the model’s helpfulness. These qualitative examples show that NICE can effectively
identify more relevant training data by assigning them higher scores.

J.3. Highest/Lowest Scoring Training Data for RLHF Task under a Task-aware Training Data Pool

In a task-aware setting, we present the highest- and lowest-scoring training data points in Tab. 18. The lowest-scoring training
data points whose last-turn responses are either unhelpful or fail to provide additional meaningful information, potentially
degrading model performance (we only use the last-turn response during training, as explained in App. A.1). Conversely,
the top-scoring examples offer useful responses and can enrich the model’s knowledge. Overall, NICE effectively filters out
noisy data while favoring high-quality training examples.
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Table 15. We compare three GPT-4-generated responses with the original labels of an AlpacaEval validation data point, observing that
GPT-4 consistently produces higher-quality and more accurate outputs.

Question: ”If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the segment?”
Baseline Response: The length of the line segment is 12 units (generated by text davinci 003).
Generated Response 1: To find the length of a line segment given its endpoints, you can use the distance formula. The distance
formula between two points (x1, y1) and (x2, y2) in the coordinate plane is:

d =
√
(x2 − x1)2 + (y2 − y1)2

For the points given, (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Plugging these into the formula:

d =
√
(10− 2)2 + (4− (−2))2

d =
√
82 + 62

d =
√
64 + 36

d =
√
100

d = 10

Therefore, the length of the line segment is 10 units.
Generated Response 2: To find the length of the line segment with endpoints (2, -2) and (10, 4), we use the distance formula.
The distance d between two points (x1, y1) and (x2, y2) is given by:

d =
√
(x2 − x1)2 + (y2 − y1)2

In this case, the coordinates of the endpoints are (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Substitute these values into the
formula:

x2 − x1 = 10− 2 = 8

y2 − y1 = 4− (−2) = 4 + 2 = 6

Now substitute these differences into the distance formula:

d =
√

82 + 62 =
√
64 + 36 =

√
100

So, the length of the segment is:
d = 10

Therefore, the length of the line segment is 10 units.
Generated Response 3: To find the length of a line segment with endpoints (x1, y1) and (x2, y2), we can use the distance formula,
which is derived from the Pythagorean theorem. The formula is:

d =
√
(x2 − x1)2 + (y2 − y1)2

Given the endpoints of the line segment are (2,−2) and (10, 4), we substitute these coordinates into the formula:

x1 = 2, y − 1 = −2, x2 = 10, y2 = 4

. Now, plug these values into the formula:

d =
√
(10− 2)2 + (4− (−2))2

d =
√
82 + 62

d =
√
64 + 36

d =
√
100

d = 10

Thus, the length of the segment is 10 units.
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Table 16. We present three diverse and vividly detailed generated monologues that answer an AlpacaEval validation question, demonstrat-
ing how GPT-4 can vary tone, style, and narrative focus in generated responses.

Question: ”Write a monologue. Do not offer any explanation or out of character notes. The setting is in the Elder Scrolls
universe.”
Baseline Response: ”Ah, what a glorious day! I can feel the energy of the land, the power of the gods, and the strength
of the people of Tamriel. I can sense the passion of the Nords, the determination of the Dunmer, the inventiveness of the
Argonians, and the wisdom of the Altmer. The air is filled with the sounds of battle, adventure, and hope. I am so proud to
be part of this world, to be a part of the Elder Scrolls. I have seen many things in my travels, but nothing compares to the
freedom and beauty of this land. I am so blessed to be able to share in its secrets and experience its wonders. I can only
hope that I can do something to help protect it and ensure its future.”
Generated Response 1: ”Ah, listen, traveler, to the whispers of this old, timeworn place. What stories the stones of the
Ayleid ruins might tell, if only they could speak! You see, each crumbling arch and broken pathway, each shadow that
dances upon these ancient walls, carries the weight of ages long past, the echoes of a once-mighty civilization now lost to
time and tide.
I have walked these lands, from the high, snowy peaks of Skyrim to the lush, vibrant shores of Summerset Isle, and
everywhere in between. But it is here, amidst the haunting beauty of these ruins, that I feel the pulse of the eternal, the
ceaseless march of history that cares not for the names of kings or the wars of men and mer.
Once, these halls rang with the laughter of the Ayleid, the Heartland High Elves, masters of starlight and stone, whose
magic was said to weave through the very air like threads of gold. They built their cities as high as their ambitions, soaring
and majestic. But pride, ah, pride—it festers, and it corrupts. It led them to cruel dominion over humans, their slaves, who
toiled under an unyielding yoke. The Ayleids’ light dimmed with their mercy, and so their empire fell, as all tyrannies must,
to rebellion and the relentless tides of change.
Generated Response 2: ”Ah, you find me at a peculiar time, friend, beneath the boughs of Eldergleam, where dreams
and reality merge like the river waters at the birthplace of the world. I am but a humble servant of Kynareth, tending to
the whispers and the weeping of the wind through these ancient branches. You seek wisdom, or perhaps power? Both are
dangerous, more so than the sharpest blade or the darkest incantation.
There was a time, not long ago in the eyes of the gods but perhaps many lifetimes in the minds of men, when I wandered
these lands in search of the same. From the chilled breath of Skyrim to the sun-kissed shores of Hammerfell, I walked. I
have slept under the stars that wheel unchanging over the Imperial City, and I’ve faced the dragons’ fury, their breath the
fire of a thousand forges.
But listen well, for here is the heart of what I have learned: Tamriel is a land of relentless change, of cycles that turn
as surely as the moons dance around Nirn. Empires rise and fall, the swords of kings grow dull with rust, and even the
mightiest spells fade into echoes. Yet, the trees, the stones, and the rivers—they remember. They hold the long memory of
the earth, a memory that outlasts the fleeting reigns of mortals.
Do you feel the roots of the Eldergleam? Do you hear their slow, ceaseless whisper? They speak of the Green Pact and
the oaths sworn by the first Bosmer, of the Red Mountain where fire married sky, of the Snow Elves driven deep into the
earth’s dark embrace. They speak of the rise of heroes and the fall of villains, all threads in the grand tapestry woven by the
Aedra and Daedra, each a story bound in the fabric of this world.
Generated Response 3: ”Ah, traveler! Welcome to the warmth of my hearth. Rest your bones by the fire and let the chill
of the Skyrim winds be but a distant memory. You must have many tales of your own, but spare an old Mer a moment to
regale you with a story of the ancient days, a tale passed down through generations to keep alive the spirit of our people.
We begin in the days when the world was young, when the Aedra walked the land and the Daedra toyed with the threads of
fate from their dark realms. In the heart of what you now know as the Rift, there stood an impenetrable forest older than the
snows atop the Throat of the World. And within this forest, hidden by the veils of time and enchantment, was the city of
Falinesti, the wandering city, a marvel of the Elder Scrolls, moving as if alive through the wilds of Tamriel.
Imagine, oh weary traveler, a city on the limbs of the great Elden Tree, roots deep in the earth, branches scraping the
heavens. It was there, in that moving city, that the tale of Aelarion was born. Aelarion, son of no one, a child of the shadows
who could speak with the birds and run as swiftly as the West Wind.
Now, Aelarion was a creature of curiosity and mischief. He would watch the traders come and go, telling tales of distant
lands, of the deserts of Hammerfell and the snows of Skyrim, where you hail from. He became enamored with the tales of
the Dragon Priests, those mighty and fearsome rulers of old. Enthralled by the power they wielded through their masks,
relics gifted by dragons, he dreamt of nothing but to behold such a mask himself.
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Table 17. We list the training data points with the highest or lowest NICE score for the RLHF task under a task-agnostic training data
pool, illustrating that highest-scoring responses are helpful and can convey additional knowledge. By identifying and promoting these
high-scoring samples, NICE-selected subset have the potential to enhance the model’s overall helpfulness.

Dataset Dialogue
Training data points with the highest NICE score

Flan V2 User: Detailed Instructions: In this task, you’re given an ambiguous question (which can be answered in
more than one way). Your task is to provide one question which clarifies the input question and it has one
unique answer, and also provide an answer to the generated question. Generated question and answer should
be separated with a new line. Problem: When was free health care introduced in Canada? Solution:
Assistant: When was nationalized public health care introduced in Canada?
1947

Flan V2 User: Q: In this task, you’re given an ambiguous question (which can be answered in more than one way).
Your task is to provide one question which clarifies the input question and it has one unique answer, and also
provide an answer to the generated question. Generated question and answer should be separated with a new
line.
Who got the biggest NBA contract right now?
Assistant: Who has the biggest NBA contract salary in the 2016-2017 season?
LeBron James

DOLLY User: Task: What team did Bobby Orr play for in his 5th season?
Input: Robert Gordon Orr OC (born March 20, 1948) is a Canadian former professional ice hockey player,
widely acknowledged as one of the greatest of all time. Orr used his ice skating speed, scoring, and play-
making abilities to revolutionize the position of defenceman. He played in the National Hockey League
(NHL) for 12 seasons, the first 10 with the Boston Bruins, followed by two with the Chicago Black Hawks.
Orr remains the only defenceman to have won the league scoring title with two Art Ross Trophies. He holds
the record for most points and assists in a single season by a defenceman. Orr won a record eight consecutive
Norris Trophies as the NHL’s best defenceman and three consecutive Hart Trophies as the league’s most
valuable player (MVP). Orr was inducted into the Hockey Hall of Fame in 1979 at age 31, the youngest to be
inducted at that time. In 2017, Orr was named by the National Hockey League as one of the ”100 Greatest
NHL Players” in history.
Output:
Assistant: Bobby Orr played for the Boston Bruins in his 5th season in the National Hockey League (NHL).
He played in the NHL for 12 seasons, the first 10 with the Boston Bruins, followed by two with the Chicago
Black Hawks.

Training data points with the lowest NICE score
Flan V2 User: Translate ” .” to Finnish?

Assistant: .
DOLLY User: Is tap water safe to drink in Japan?

Assistant: Yes, tap water is safe to drink in Japan.
OASST User: I have trouble staying on track when I need to do schoolwork. What are some ways that I can keep

myself on track?
Assistant: Getting rid of anything that distracts you could be helpful.
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Table 18. We show the training data points with the highest or lowest NICE score for the RLHF task under a task-aware training data pool,
demonstrating that top-scoring samples enrich model knowledge while low-scoring ones can be noizy. This filtering capability helps
NICE retain data likely to improve downstream task performance.

Training data points with the highest NICE score
User: Mustard seems pretty common these days, in most people’s refrigerators. When did people start using
mustard as a condiment on foods, I’m curious about its history.
Assistant: I don’t really know about mustard, so I found an article that you might like, in which the author writes,
“Mustard is known to have originated in India but was long ago used as a condiment in ancient China and Egypt.”
Here’s a quote from that article that sounds relevant: “It appears that mustard was used as an ingredient in cooking
in several ancient civilizations, including those of India, China, and Egypt. In fact, the oldest known picture of
mustard is a carving of a jar on the wall of a tomb in ancient Egypt. This artifact, which dates to the 15th century
B.C., shows the Egyptians enjoying a dish that may well have included mustard as a condiment.” I’d be happy to
read that article for you if you want.
User: What are some good stretches I should do before going to the gym?
Assistant: Stretches are an important part of a workout regimen. They get the blood flowing through the body and
help you limber up for movement, which is essential for doing yoga. What types of stretching are you looking to do?
User: I was hoping you could tell me.
Assistant: Well, before every workout you should do some dynamic stretches, which will bring circulation to the
muscles, and some static stretches, which will make the muscles more flexible and less susceptible to injury.
User: Ok, which stretches specifically?
Assistant: Ok, what about calf raises?
User: Can you teach me how to make candles?
Assistant: Sure, just follow these directions and it should be easy!

Training data points with the lowest NICE score
User: How fast can trains go?
Assistant: That depends on the kind of train, the length of the train, the density of the track, the grade, and the
direction of the train.
User: What about coal trains?
Assistant: I’m not sure what you mean by “coal trains.”
User: What’s the best brand of TV?
Assistant: I’m not sure what you mean by “best brand.”
User: How can I make my clothes whiter?
Assistant: You can use vinegar to “bleach” the clothes.
User: Vinegar can bleach clothes?
Assistant: Yes.
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