
Reinforcement Learning for General LTL Objectives Is Intractable

Cambridge Yang1, Michael Littman2, Michael Carbin1

1 MIT CSAIL
2 Brown University

camyang@csail.mit.edu, mlittman@cs.brown.edu, mcarbin@csail.mit.edu

Abstract
In recent years, researchers have made significant progress
in devising reinforcement-learning algorithms for optimizing
linear temporal logic (LTL) objectives and LTL-like objec-
tives. Despite these advancements, there are fundamental lim-
itations to how well this problem can be solved that previous
studies have alluded to but, to our knowledge, have not ex-
amined in depth. In this paper, we address theoretically the
hardness of learning with general LTL objectives. We for-
malize the problem under the probably approximately correct
learning in Markov decision processes (PAC-MDP) frame-
work, a standard framework for measuring sample complex-
ity in reinforcement learning. In this formalization, we prove
that the optimal policy for any LTL formula is PAC-MDP-
learnable only if the formula is in the most limited class in
the LTL hierarchy, consisting of only finite-horizon-decidable
properties. Practically, our result implies that it is impossi-
ble for a reinforcement-learning algorithm to obtain a PAC-
MDP guarantee on the performance of its learned policy after
finitely many interactions with an unconstrained environment
for non-finite-horizon-decidable LTL objectives.

1 Introduction
In reinforcement learning, we situate an autonomous agent
in an unknown environment and specify an objective. We
want the agent to learn the optimal behavior for achieving
the specified objective by interacting with the environment.

Specifying an Objective. The objective for the agent is a
specification of the possible trajectories of the overall sys-
tem, consisting of the environment and the agent. Each tra-
jectory is an infinite sequence of the states of the system,
evolving through time. The objective specifies which trajec-
tories are desirable so that the agent can distinguish the op-
timal behaviors from non-optimal behaviors.

The Reward Objective. One form of an objective is a re-
ward function. A reward function specifies a scalar value,
a reward, for each state of the system. The desired trajec-
tories are those with higher cumulative discounted rewards.
The reward-function objective is well studied (Sutton and
Barto 1998). It has desirable properties that allow reinforce-
ment-learning algorithms to provide performance guaran-
tees on learned behavior (Strehl et al. 2006), meaning that

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms can guarantee learning a behavior that achieves
almost optimal cumulative discounted rewards with high
probability. Due to its success, researchers have adopted the
reward-function objective as the de facto standard of behav-
ior specification in reinforcement learning.

1.1 The Linear Temporal Logic Objective
However, reward engineering, the practice of encoding
desirable behaviors into a reward function, is a difficult
challenge in applied reinforcement learning (Dewey 2014;
Littman et al. 2017). To reduce the burden of reward en-
gineering, linear temporal logic (LTL) has attracted re-
searchers’ attention as an alternative objective. LTL is a for-
mal logic used initially to specify behaviors for system ver-
ification (Pnueli 1977).

An LTL formula is built from a set of propositions about
the state of the environment, logical connectives, and tempo-
ral operators such as 𝖦 (always) and 𝖥 (eventually). Many
reinforcement-learning tasks are naturally expressible with
LTL (Littman et al. 2017). For some classic control (Brock-
man et al. 2016) examples, we can express 1. Cart-Pole as
𝖦 𝑢𝑝 (i.e., the pole always stays up), 2. Mountain-Car as
𝖥 𝑔𝑜𝑎𝑙 (i.e., the car eventually reaches the goal), and 3. Pen-
dulum-Swing-Up as 𝖥𝖦 𝑢𝑝 (i.e., the pendulum eventually
always stays up). Researchers have thus used LTL as an al-
ternative objective specification for reinforcement-learning
agents (Fu and Topcu 2014; Sadigh et al. 2014; Li, Vasile,
and Belta 2017; Hahn et al. 2019; Hasanbeig et al. 2019;
Bozkurt et al. 2020).

Given an LTL objective specified by an LTL formula,
each trajectory of the system either satisfies or violates that
formula. The agent should learn the behavior that maxi-
mizes the probability of satisfying that formula. Research
has shown that using an LTL objective supports automated
reward shaping (Jothimurugan, Alur, and Bastani 2019; Ca-
macho et al. 2019; Jiang et al. 2020) and variance reduc-
tion (Gao et al. 2019).

1.2 A Trouble with Infinite Horizons
The general class of LTL objectives includes infinite-horizon
objectives: an objective that requires inspecting infinitely
many steps of a trajectory to determine if the trajectory sat-
isfies the objective. For example, consider the LTL formula

𝖥 𝑔𝑜𝑎𝑙 (eventually reach the goal). Given an infinite trajec-
tory, the objective requires inspecting all steps in the trajec-
tory in the worst case to determine that the trajectory does
not satisfy the formula.

Despite the above developments on reinforcement learn-
ing with LTL objectives, these objectives present challenges
that have been alluded to – but not formally elaborated –
in prior work. Henriques et al. (2012); Ashok, Křetı́nský,
and Weininger (2019); Jiang et al. (2020) noted slow learn-
ing times for mastering infinite-horizon properties. Littman
et al. (2017) provided a specific environment that illustrates
the hardness of learning for a specific infinite-horizon objec-
tive, arguing for the use of a discounted variant of LTL.

A similar trouble exists for the infinite-horizon, average-
reward objectives. In particular, it is understood that rein-
forcement-learning algorithms do not have guarantees on
the learned behavior for infinite-horizon, average-reward
problems without additional assumptions on the environ-
ment (Kearns and Singh 2002).

However, to our knowledge, no prior work has formally
stated and proved the learnability of LTL objectives1.

Our Results. This work proves that reinforcement-learn-
ing agents cannot identify a near-optimal behavior for infi-
nite-horizon LTL objectives with confidence. The intuition
for this hardness is: Any finite number of interactions with
an environment with unknown transition dynamics is insuf-
ficient to identify the environment dynamics perfectly. For
an infinite-horizon objective, a behavior’s satisfaction prob-
ability under the inaccurate environment dynamics can be
arbitrarily different from the behavior’s satisfaction proba-
bility under the true dynamics. Consequently, a learner can-
not guarantee with any confidence that it has identified near-
optimal behavior for an infinite-horizon objective.

1.3 Implication for Relevant and Future Work
By inspecting our core result, we identify several categories
of approaches that work around the unlearnability problem
of general LTL objectives. Moreover, we can interpret var-
ious previous approaches as instantiations of the identified
categories. We summarize the categories and the approaches
under each category below.

• Work with finite-horizon LTL objectives, the complement
of infinite-horizon objectives, to obtain guarantees on the
learned behavior (Henriques et al. 2012). These objectives
are decidable within a known finite number of steps. E.g.,
the objective 𝑎∧𝖷𝑎 (𝑎 is true for two steps) is finite-horizon.
• Seek a best-effort confidence interval (Ashok, Křetı́nský,
and Weininger 2019). Specifically, the interval can be trivial
in the worst case, denoting that learned behavior is a maxi-
mally poor approximation of the optimal behavior.

1Concurrent to this work, Alur et al. (2021) also examine the
hardness of LTL objectives. They state and prove a theorem that is a
weaker version of the core theorem of this work. Specifically, their
theorem identifies the hardness for one particular LTL objective,
while our theorem identifies the hardness for all infinite-horizon
LTL objectives. Their work was made public while this work was
under conference review. We discuss their work in Appendix J.

• Make additional assumptions about the environment to
obtain guarantees on the learned behavior (Fu and Topcu
2014; Brázdil et al. 2014).
• Change the problem by working with LTL-like objectives
such as: 1. relaxed LTL objectives that become exactly LTL
in the (unreachable) limit (Sadigh et al. 2014; Hahn et al.
2019; Hasanbeig et al. 2019; Bozkurt et al. 2020) and 2. ob-
jectives that use temporal operators but employs a different
semantics (Littman et al. 2017; Li, Vasile, and Belta 2017;
Giacomo et al. 2019; Camacho et al. 2019). The learnability
of these objectives is a potential future research direction.

1.4 Contributions
We make the following contributions:

• A formalization of reinforcement learning with LTL ob-
jectives under the PAC-MDP framework (Fiechter 1994;
Brafman and Tennenholtz 2002; Kearns and Singh 2002;
Kakade 2003; Strehl et al. 2006), a standard framework for
measuring sample complexity for reinforcement-learning al-
gorithms, and a formal definition of LTL-PAC-learnable, a
learnability criterion for LTL objectives.
• A statement and proof that: 1. Any infinite-horizon LTL
formula is not LTL-PAC-learnable. 2. Any finite-horizon
LTL formula is LTL-PAC-learnable. To that end, for any
infinite-horizon formula, we give a construction of two spe-
cial families of MDPs as counterexamples with which we
prove that the formula is not LTL-PAC-learnable.
• Experiments with current reinforcement-learning algo-
rithms for LTL objectives that further empirically support
our theoretical result.
• Identification of several categories of approaches that can
work around the unlearnability problem of general LTL for-
mulas and their connections to previous approaches.

2 Preliminaries: Reinforcement Learning
This section provides definitions for MDPs, planning, rein-
forcement learning, and PAC-MDP.

2.1 Markov Processes
We first review some basic notation for Markov processes.

A Markov decision process (MDP) is a tuple ℳ =
(𝑆,𝐴, 𝑃, 𝑠0), where 𝑆 and 𝐴 are finite sets of states and
actions, 𝑃 : (𝑆 × 𝐴) → Δ(𝑆) is a transition probability
function that maps a current state and an action to a distri-
bution over next states, and 𝑠0 ∈ 𝑆 is an initial state. The
MDP is sometimes referred to as the environment MDP to
distinguish it from any specific objective.

A (stochastic) stationary policy 𝜋 for an MDP is a func-
tion 𝜋 : 𝑆 → Δ(𝐴) that maps each state of the MDP to a
distribution over the actions.

A (stochastic) non-stationary policy 𝜋 for an MDP is a
function 𝜋 : ((𝑆 ×𝐴)

*×𝑆) → Δ(𝐴) that maps a history of
states and actions of the MDP to a distribution over actions.

An MDP and a policy on the MDP induce a discrete-time
Markov chain (DTMC). A DTMC is a tuple 𝒟 = (𝑆, 𝑃, 𝑠0),
where 𝑆 is a finite set of states, 𝑃 : 𝑆 → Δ(𝑆) is a
transition-probability function that maps a current state to a

distribution over next states, and 𝑠0 ∈ 𝑆 is an initial state. A
sample path of 𝒟 is an infinite sequence of states 𝑤 ∈ 𝑆ω.
The sample paths of a DTMC form a probability space.

2.2 Objective
An objective for an MDP ℳ = (𝑆,𝐴, 𝑃, 𝑠0) is a measur-
able function 𝜅 : 𝑆ω → R on the probability space of the
DTMC induced by ℳ and a policy. The value of the objec-
tive for the MDP ℳ and a policy 𝜋 is the expectation of the
objective under that probability space:

𝑉 𝜋
ℳ,𝜅 = 𝖤𝑤∼𝒟[𝜅(𝑤)] (𝒟 induced by ℳ and 𝜋).

For example, the cumulative discounted rewards objec-
tive (Puterman 1994) with discount 𝛾 and a reward function
𝑅 : 𝑆 → R is:

𝜅reward(𝑤) ≜
∑︀∞

𝑖=0 𝛾
𝑖 ·𝑅(𝑤[𝑖]).

An optimal policy maximizes the objective’s value: 𝜋* =
argmax𝜋 𝑉

𝜋
ℳ,𝜅. The optimal value 𝑉 𝜋*

ℳ,𝜅 is then the objec-
tive value of the optimal policy. A policy 𝜋 is 𝜖-optimal if its
value is 𝜖-close to the optimal value: 𝑉 𝜋

ℳ,𝜅 ≥ 𝑉 𝜋*

ℳ,𝜅 − 𝜖.

2.3 Planning with a Generative Model
A planning-with-generative-model algorithm (Kearns, Man-
sour, and Ng 1999; Grill, Valko, and Munos 2016) has access
to a generative model, a sampler, of an MDP’s transitions but
does not have direct access to the underlying probability val-
ues. It can take any state and action and sample a next state.
It learns a policy from those sampled transitions.

Formally, a planning-with-generative-model algorithm 𝒜
is a tuple (𝒜S,𝒜L), where 𝒜S is a sampling algorithm that
drives how the environment is sampled, and 𝒜L is a learning
algorithm that learns a policy from the samples obtained by
applying the sampling algorithm.

In particular, the sampling algorithm 𝒜S is a function
that maps from a history of sampled environment transitions
((𝑠0, 𝑎0, 𝑠

′
0) . . . (𝑠𝑘, 𝑎𝑘, 𝑠

′
𝑘)) to the next state and action to

sample (𝑠𝑘+1, 𝑎𝑘+1) , resulting in 𝗌′𝑘+1 ∼ 𝖯(· | 𝑠𝑘+1, 𝑎𝑘+1).
Iterative application of the sampling algorithm 𝒜S produces
a sequence of sampled environment transitions.

The learning algorithm is a function that maps that se-
quence of sampled environment transitions to a non-station-
ary policy of the environment MDP. Note that the sampling
algorithm can internally consider alternative policies as part
of its decision of what to sample. Also, note that we deliber-
ately consider non-stationary policies since the optimal pol-
icy for an LTL objective (defined later) is non-stationary in
general (unlike a cumulative discounted rewards objective).

2.4 Reinforcement Learning
In reinforcement learning, an agent is situated in an envi-
ronment MDP and can only sample from the current state
of the environment. We can therefore view a reinforce-
ment-learning algorithm as a special kind of planning-with-
generative-model algorithm. In particular, a reinforcement-
learning algorithm is a planning-with-generative-model al-
gorithm (𝒜S,𝒜L) such that the sampling algorithm always

follows the next state sampled from the environment and
only has the choice for the next action.

Note that an alternative definition is to treat a reinforce-
ment-learning algorithm as a non-stationary policy (Strehl
et al. 2006). This view is equivalent to our definition since
that non-stationary policy is how the next actions are chosen.

2.5 Probably Approximately Correct in MDPs
A successful planning-with-generative-model algorithm (or
reinforcement-learning algorithm) should learn from the
sampled environment transitions and produce an optimal
policy for the objective in the environment MDP. However,
since the environment transitions may be stochastic, we can-
not expect an algorithm to always produce the optimal pol-
icy. Instead, we seek an algorithm that, with high probabil-
ity, produces a nearly optimal policy. The probably approx-
imately correct in Markov decision processes (PAC-MDP)
framework (Fiechter 1994; Brafman and Tennenholtz 2002;
Kearns and Singh 2002; Kakade 2003; Strehl et al. 2006),
which takes inspiration from probably approximately cor-
rect (PAC) learning (Valiant 1984), formalizes this notion.
The PAC-MDP framework requires an algorithm to be effi-
cient in both sampling and algorithmic complexity. In this
work, we only consider sample efficiency and thus omit the
requirement on algorithmic complexity. Next, we generalize
the PAC-MDP framework from reinforcement-learning with
a reward objective to planning-with-generative-model with
a generic objective.

Definition 1. Given an objective 𝜅, a planning-with-genera-
tive-model algorithm (𝒜S,𝒜L) is 𝜅-PAC (probably approx-
imately correct for objective 𝜅) in an environment MDP ℳ
if, with the sequence of transitions 𝑇 of length 𝑁 sampled
using the sampling algorithm 𝒜S, the learning algorithm 𝒜L

outputs a non-stationary 𝜖-optimal policy with probability at
least 1− 𝛿 for any given 𝜖 > 0 and 0 < 𝛿 < 1. That is:

𝖯𝖳∼⟨ℳ,𝒜S⟩𝑁

(︁
𝑉

𝒜L(𝑇)
ℳ,𝜅 ≥ 𝑉 𝜋*

ℳ,𝜅 − 𝜖
)︁
≥ 1− 𝛿. (1)

We use 𝖳∼
⟨︀
ℳ,𝒜S⟩︀

𝑁
to denote that the probability space

is over the set of length-𝑁 transition sequences sampled
from the environment ℳ using the sampling algorithm 𝒜S.
For brevity, we will drop

⟨︀
ℳ,𝒜S

⟩︀
𝑁

when it is clear from
context and simply write 𝖯𝖳(.) to denote that the probability
space is over the sampled transitions.

Definition 2. Given an objective 𝜅, a 𝜅-PAC planning-with-
generative-model algorithm is sample efficiently 𝜅-PAC if
the number of sampled transitions𝑁 is asymptotically poly-
nomial in 1

𝜖 , 1
𝛿 , |𝑆|, |𝐴|.

Note that the definition allows the polynomial to have
constant coefficients that depends on 𝜅.

3 Linear Temporal Logic Objectives
This section describes LTL and its use as objectives.

3.1 Linear Temporal Logic
A linear temporal logic (LTL) formula is built from a finite
set of atomic propositions Π, logical connectives ¬,∧,∨,

Finitary
Guarantee

Safety
Obligation

Persistence

Recurrence
Reactivity

Restricted General

Figure 1: The hierarchy of LTL

temporal next 𝖷, and temporal operators 𝖦 (always), 𝖥
(eventually), and 𝖴 (until). Equation (2) gives the grammar
of an LTL formula 𝜑 over the set of atomic propositions Π:

𝜑 ··= 𝑎
⃒⃒
¬𝜑

⃒⃒
𝜑∧𝜑

⃒⃒
𝜑∨𝜑

⃒⃒
𝖷𝜑

⃒⃒
𝖦𝜑

⃒⃒
𝖥𝜑

⃒⃒
𝜑𝖴𝜑, 𝑎 ∈ Π. (2)

LTL is a logic over infinite-length words. Informally, these
temporal operators have the following meanings: 𝖷𝜑 asserts
that 𝜑 is true at the next time step; 𝖦𝜑 asserts that 𝜑 is always
true; 𝖥𝜑 asserts that 𝜑 is eventually true; 𝜓𝖴𝜑 asserts that 𝜓
needs to stay true until 𝜑 eventually becomes true. We give
the formal semantics of each operator in Appendix A.2. We
write 𝑤 ⊫ 𝜑 to denote that the infinite word 𝑤 satisfies 𝜑.

3.2 MDP with LTL Objectives
In this paper, we consider LTL objectives. An LTL objective
maximizes the probability of satisfying an LTL formula.

An LTL specification for an MDP is a tuple (ℒ, 𝜑), where
ℒ : 𝑆 → 2Π is a labeling function, and 𝜑 is an LTL formula
over atomic propositions Π. The labeling function is a clas-
sifier mapping each MDP state to a tuple of truth values of
the atomic propositions in 𝜑. For a sample path 𝑤, we use
ℒ (𝑤) to denote the element-wise application of ℒ on 𝑤.

The LTL objective 𝜉 specified by the LTL specification is
the satisfaction of the formula 𝜑 of a sample path mapped by
the labeling function ℒ, that is: 𝜅(𝑤) ≜ 1ℒ(𝑤)⊫𝜑. The value
of this objective is called the satisfaction probability of 𝜉:

𝑉 𝜋
ℳ,𝜉 = 𝖯𝑤∼𝒟(ℒ (𝑤) ⊫ 𝜑) (𝒟 induced by ℳ and 𝜋).

3.3 Infinite Horizons in LTL Objectives
An LTL formula describes either a finite-horizon or infi-
nite-horizon property. Manna and Pnueli (1987) classified
LTL formulas into seven classes, as shown in Figure 1. Each
class includes all the classes to the left of that class (e.g.,
𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 ⊂𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒, but 𝑆𝑎𝑓𝑒𝑡𝑦 ̸⊂𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒), with the
𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 class being the most restricted and the 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
class being the most general. Below we briefly describe the
key properties of the leftmost three classes relevant to the
core of this paper. We present a complete description of all
the classes in Appendix A.2.

• 𝜑∈𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 iff there exists a horizon 𝐻 such that infinite
length words sharing the same prefix of length 𝐻 are ei-
ther all accepted or all rejected by 𝜑. E.g., 𝑎 ∧ 𝖷𝑎 (i.e., 𝑎
is true for two steps) is in 𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 .

• 𝜑∈𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 iff there exists a language of finite words𝐿
(i.e., a Boolean function on finite length words) such that
𝑤 ⊫ 𝜑 if 𝐿 accepts a prefix of 𝑤. Informally, a formula
in 𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 asserts that something eventually happens.
E.g., 𝖥 𝑎 (i.e., eventually 𝑎 is true) is in 𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒.

• 𝜑∈𝑆𝑎𝑓𝑒𝑡𝑦 iff there exists a language of finite words 𝐿
such that𝑤 ⊫ 𝜑 if𝐿 accepts all prefixes of𝑤. Informally, a

𝑔

𝑞

𝑎1, 𝑝

𝑎2, 𝑝

𝑎1, 1− 𝑝

𝑎2, 1− 𝑝

𝑔

𝑞

𝑎2, 𝑝

𝑎1, 𝑝

𝑎1, 1− 𝑝

𝑎2, 1− 𝑝

Figure 2: Two MDPs parameterized by 𝑝 in range 0 < 𝑝 <
1. Action 𝑎1 in the MDP on the left and action 𝑎2 in the MDP
on the right have probability 𝑝 of transitioning to the state .
Conversely, action 𝑎2 in the MDP on the left and action 𝑎1
in the MDP on the right have probability 𝑝 of transitioning
to the state 𝑞. Both actions in both MDPs have probability
1− 𝑝 to loop around the state 𝑔.

formula in 𝑆𝑎𝑓𝑒𝑡𝑦 asserts that something always happens.
E.g., 𝖦 𝑎 (i.e., 𝑎 is always true) is in 𝑆𝑎𝑓𝑒𝑡𝑦 .

Moreover, 𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 is the intersection of 𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 and
𝑆𝑎𝑓𝑒𝑡𝑦 . Any 𝜑∈𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 , or equivalently 𝜑∈𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒∩
𝑆𝑎𝑓𝑒𝑡𝑦 , inherently describes finite-horizon properties. Any
𝜑 ̸∈𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 , or equivalently 𝜑∈𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒∁ ∪ 𝑆𝑎𝑓𝑒𝑡𝑦∁,
inherently describes infinite-horizon properties. As we will
show, reinforcement-learning algorithms cannot provide
PAC guarantees for LTL objectives specified by formulas
that describe infinite-horizon properties.

3.4 Intuition of the Problem
Suppose that we send an agent into one of the MDPs in Fig-
ure 2, and want its behavior to satisfy “eventually reach the
state ”, expressed as the LTL formula 𝖥. The optimal be-
havior is to always choose the action along the transition
𝑔 → for both MDPs (i.e., 𝑎1 for the MDP on the left and
𝑎2 for the MDP on the right). This optimal behavior satisfies
the objective with probability one. However, the agent does
not know which of the two MDPs it is in. The agent must fol-
low its sampling algorithm to explore the MDP’s dynamics
and use its learning algorithm to learn this optimal behavior.

If the agent observes neither transitions going out of 𝑔
(i.e., 𝑔 → or 𝑔 → 𝑞) during sampling, it will not be able
to distinguish between the two actions. The best it can do
is a 50% chance guess and cannot provide any non-trivial
guarantee on the probability of learning the optimal action.

On the other hand, if the agent observes one of the tran-
sitions going out of 𝑔, it will be able to determine which
action leads to state , thereby learning always to take that
action. However, the probability of observing any such tran-
sition with 𝑁 interactions is at most 1 − (1 − 𝑝)𝑁 . This is
problematic: with any finite 𝑁 , there always exists a value
of 𝑝 such that this probability is arbitrarily close to 0. In
other words, with any finite number of interactions, without
knowing the value of 𝑝, the agent cannot guarantee (a non-
zero lower bound on) its chance of learning a policy that
satisfies the LTL formula 𝖥.

Further, the problem is not limited to this formula. For
example, the objective “never reach the state 𝑞”, expressed
as the LTL formula 𝖦¬𝑞, has the same problem in these
two MDPs. More generally, for any LTL formula that de-
scribes an infinite-horizon property, we construct two coun-

𝑔0 . . . 𝑔𝑘 . . . 𝑔𝑙

𝑎1, 1− 𝑝

𝑎2, 1− 𝑝

0 . . . 𝑢 . . . 𝑣

𝑞0 . . . 𝑞𝑚 . . . 𝑞𝑛

𝑎2, 𝑝

𝑎1, 𝑝

𝑎1, 𝑝

𝑎2, 𝑝

ℳ1

ℳ2

ℳ1 & ℳ2

Figure 3: Counterexample MDPs ℳ1 and ℳ2, with transitions distinguished by arrow types (see legend). Both MDPs are
parameterized by the parameter 𝑝 that is in range 0 < 𝑝 < 1. Unlabeled edges are deterministic (actions 𝑎1 and 𝑎2 transition
with probability 1). Ellipsis indicates a deterministic chain of states.

terexample MDPs with the same nature as the ones in Fig-
ure 2, and prove that it is impossible to provide a guarantee
on the learning of the optimal behavior.

4 LTL Objectives Are Not Learnable
This section states and give a proof outline to the main result.

4.1 Theorem Statement
By specializing the 𝜅-PAC definitions for (Definitions 1
and 2) with the definition of LTL objectives in Section 3.2,
we obtain the following definitions of LTL-PAC.

Definition 3. Given an LTL objective 𝜉, a planning-with-
generative-model algorithm (𝒜S,𝒜L) is LTL-PAC (proba-
bly approximated correct for LTL objective 𝜉) in an envi-
ronment MDP ℳ for the LTL objective 𝜉 if, with the se-
quence of transitions 𝑇 of length 𝑁 sampled using the sam-
pling algorithm 𝒜S, the learning algorithm 𝒜L outputs a
non-stationary 𝜖-optimal policy with a probability of at least
1− 𝛿 for all 𝜖 > 0 and 0 < 𝛿 < 1. That is,

𝖯𝖳∼⟨ℳ,𝒜S⟩𝑁

(︁
𝑉

𝒜L(𝑇)
ℳ,𝜉 ≥ 𝑉 𝜋*

ℳ,𝜉 − 𝜖
)︁
≥ 1− 𝛿. (3)

We call the probability on the left of the inequality the
LTL-PAC probability of the algorithm (𝒜S,𝒜L).

Definition 4. Given an LTL objective 𝜉, an LTL-PAC plan-
ning-with-generative-model algorithm for 𝜉 is sample effi-
ciently LTL-PAC if the number of sampled transitions 𝑁 is
asymptotically polynomial to 1

𝜖 , 1
𝛿 , |𝑆|, |𝐴|.

With the above definitions, we are now ready to define
the PAC learnability of an LTL objective and state the main
theorem of the paper.

Definition 5. An LTL formula 𝜑 over atomic propositions Π
is LTL-PAC-learnable by planning-with-generative-model
(reinforcement-learning) if there exists a sample efficiently
LTL-PAC planning-with-generative-model (reinforcement-
learning) algorithm for all environment MDPs and all con-
sistent labeling functions ℒ (that is, ℒ maps from the MDP’s
states to 2Π) for the LTL objective specified by (ℒ, 𝜑).
Theorem 1. An LTL formula 𝜑 is LTL-PAC-learnable by
reinforcement-learning (planning-with-generative-model) if
(and only if) 𝜑 is 𝑓𝑖𝑛𝑖𝑡𝑎𝑟𝑦.

Between the two directions of Theorem 1, the forward di-
rection (“only if”) is the more important. The forward direc-
tion states that for any LTL formula not in 𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 (that

is, infinite-horizon properties), there does not exist a plan-
ning-with-generative-model algorithm—which by definition
also excludes any reinforcement-learning algorithm—that is
sample efficiently LTL-PAC for all environments. This result
is the core contribution of the paper—general LTL formulas
are not sample efficiently LTL-PAC-learnable.

On the other hand, the reverse direction of Theorem 1
states that, for any LTL formula in 𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦 (finite-
horizon properties), there exists a reinforcement-learning
algorithm—which by definition is also a planning-with-gen-
erative-model algorithm—that is sample efficiently LTL-
PAC for all environments.

4.2 Proof Outline
We give a proof outline to the forward direction of Theo-
rem 1 below and give a detailed proof in Appendix B. We
reserve the proof of the reverse direction for Appendix F.

• MDP Family. We construct a family of pairs MDPs, as
shown in Figure 3. The key design behind each pair in the
family is similar to Figure 2. In particular, the design is, as
we will show, that no planning-with-generative-model algo-
rithm can learn a policy that is simultaneously 𝜖-optimal on
both MDPs. In particular, we show that, for an algorithm to
learn such a policy, the algorithm must observe at least one
transition from the state 𝑔𝑙 to the state 0 or state 𝑞0. More-
over, the probability of an algorithm observing such transi-
tion at least once depends on the transition probability from
the state 𝑔𝑙 to the state 0 or state 𝑞0.
• Sample complexity of 𝖥0. For the singular case of the
LTL formula 𝖥0, we derive a sample complexity lower
bound for any planning-with-generative-model algorithm
applied to any pair of MDPs in our constructed family in
Figure 3. This lower bound depends on a specific transition
probability in the constructed MDPs. In particular, we show
that learning the 𝜖-optimal policy for 𝖥0 necessarily re-
quires observing a transition from the state 𝑔𝑙 to the state
0 or state 𝑞0 at least once. Further, the number of samples
needed to observe such a transition (with high probability)
has a lower bound of log(2𝛿)

log(1−𝑝) . Therefore, we show that the
sample complexity for any planning-with-generative-model
algorithm for our constructed MDPs has a lower bound of
log(2𝛿)
log(1−𝑝) . Importantly, this bound depends on the probability
of a transition of the constructed MDP.
• Sample complexity of Non-finitary formulas. We re-
duce the problem of learning the optimal satisfying pol-

icy for 𝖥0 to the problem of learning the optimal satis-
fying policy for any non-finitary LTL formula (those not
in 𝐹𝑖𝑛𝑖𝑡𝑎𝑟𝑦). The key observation is that, given any non-
finitary formula, from the structure of the formula, we can
identify a pair of MDPs in our family. For both MDPs in
this pair, finding an 𝜖-optimal policy for 𝖥0 is reducible to
finding an 𝜖-optimal policy for the given formula. By this re-
duction, the established sample complexity lower bound for
the case of 𝖥0 also applies to the case of any non-finitary
formula. Therefore, the sample complexity of learning an
𝜖-optimal policy for any non-finitary formula has a lower
bound of log(2𝛿)

log(1−𝑝) . Importantly, this bound depends on the
probability of a transition of the constructed MDP.

Altogether, our approach proves that learning the optimal
policy for any non-finitary LTL formula has a lower bound
that may depend on a transition probability in a provided
MDP. Because the definition of LTL-PAC requires an algo-
rithm’s sample complexity to be independent of the transi-
tion probabilities of the MDP, we conclude that non-finitary
LTL formulas are not LTL-PAC-learnable.

4.3 Empirical Justifications
We empirically demonstrate our main result in Appendix G.

4.4 Consequence of the Core Theorem
The implication of the forward direction of Theorem 1 is:
For objective specified by a non-finitary LTL formula, given
any arbitrarily large finite sample of transitions, the learned
policy need not perform near-optimally. This consequence
is unacceptable in applications that require strong guaran-
tees of the overall system’s behavior, such as traffic con-
trol, robotics, and autonomous vehicles (Temizer et al. 2010;
Kober, Bagnell, and Peters 2013; Schwarting, Alonso-Mora,
and Rus 2018).

5 Directions Forward
In this section, we discuss several categories of approaches
that use LTL or LTL-like specifications and work around the
inherent hardness of reinforcement learning with LTL ob-
jectives. For each category, we classify approaches in the
existing literature belonging to that category. We obtain the
first category by using the reverse direction of Theorem 1,
and each of the other categories by relaxing a specific re-
quirement that Theorem 1 places on the learning algorithm.

5.1 Use a Finitary Objective
By Theorem 1, one can obtain an LTL-PAC guarantee for
finitary LTL formulas. Finitary properties are decidable by
observing only a finite horizon of the input.

Researchers have introduced specification languages that
express finitary properties and have applied reinforcement
learning to objectives expressed in these languages (Hen-
riques et al. 2012; Jothimurugan, Alur, and Bastani 2019).
One value proposition of these approaches is that they pro-
vide succinct specifications because finitary properties writ-
ten in LTL directly are verbose. For example, consider the
finitary property “𝑎 holds for 100 steps”; the finitary LTL

formula for this property is a conjunction of 100 terms:
𝑎 ∧ 𝖷𝑎 ∧ · · · ∧ (𝖷 . . .𝖷⏟ ⏞

99 times

𝑎).

For these succinct specification languages, by the reduc-
tion of these languages to finitary properties and the reverse
direction of Theorem 1, there exist reinforcement-learning
algorithms that give LTL-PAC guarantees.

5.2 Best-effort Guarantee
The definition of an LTL-PAC reinforcement-learning algo-
rithm (Definition 3) requires the algorithm to produce a pol-
icy with satisfaction probability within 𝜖 of optimal, for all
𝜖 > 0. This quantification follows from the standard defi-
nition of PAC-learnability (Valiant 1984). It is desirable be-
cause the specification is for the algorithm to learn a policy
with a satisfaction probability that is arbitrarily close to the
optimal. However, it is possible to relax this quantification
over 𝜖 such that the algorithm only returns a policy with the
best-available 𝜖 it can find.

For example, Ashok, Křetı́nský, and Weininger (2019) in-
troduced a reinforcement-learning algorithm for objectives
in the 𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 class. Using a specified time budget, the
algorithm returns a policy and an 𝜖. Notably, it is possible
for the returned 𝜖 to be 1, denoting that the learned policy is
a maximally poor approximation of the optimal policy.

5.3 Know More About the Environment
The definition of an LTL-PAC reinforcement-learning algo-
rithm (Definition 3) requires the algorithm to provide a guar-
antee for all environments. Providing a guarantee for all en-
vironments is desirable because, as is standard in reinforce-
ment learning, the environment MDP’s transition probabil-
ities are unknown, and in practice an algorithm may be de-
ployed in any possible MDP. However, on occasion, one can
have prior information on the transition probabilities of the
MDP at hand. In this case, the algorithm need only to pro-
vide a guarantee for MDPs that are consistent with the prior
information.

For example, Fu and Topcu (2014) introduced a rein-
forcement-learning algorithm with a PAC-MDP guarantee
that depends on the time horizon until the MDP reaches a
steady state. Given an MDP, this time horizon is generally
unknown; however, if one has knowledge of this time hori-
zon a priori, it constrains the set of MDPs and yields an
LTL-PAC guarantee dependent on this time horizon.

As another example, Brázdil et al. (2014) introduced a
reinforcement-learning algorithm that provides an LTL-PAC
guarantee provided a declaration of the minimum transition
probability of the MDP. This constraint, again, bounds the
space of considered MDPs.

5.4 Use an LTL-like Objective
Theorem 1 only considers LTL objectives. However, one
opportunity for obtaining a PAC guarantee is to change
the problem—use a specification language that is LTL-like,
defining similar temporal operators, but also giving those
operators a different semantics.

LTL-in-the-limit Objectives One line of work (Sadigh
et al. 2014; Hahn et al. 2019; Hasanbeig et al. 2019; Bozkurt
et al. 2020) uses LTL formulas as the objective, but also in-
troduces one or more hyper-parameters 𝜆 to relax the for-
mula’s semantics. The reinforcement-learning algorithms in
these works learn a policy for the environment MDP given
fixed values of the hyper-parameters. Moreover, as hyper-
parameter values approach a limit point, the learned pol-
icy becomes optimal for the hyper-parameter-free LTL for-
mula.2 The relationship between these relaxed semantics
and the original LTL semantics is analogous to the rela-
tionship between discounted and average-reward infinite-
horizon MDPs. Specifically, the relaxed semantics (resp.
discounted MDPs) approaches the LTL semantics (resp. the
average-reward MDPs) in the limit of the hyper-parameter
values (resp. discount factors) as shown by Bozkurt et al.
(2020) (resp. Puterman (1994)). Since discounted MDPs
are PAC-MDP-learnable (Strehl et al. 2006), we conjecture
that these relaxed LTL specifications (at any fixed hyper-
parameter setting) are LTL-PAC-learnable.

General LTL-like Objectives Prior approaches (Littman
et al. 2017; Li, Vasile, and Belta 2017; Giacomo et al. 2019;
Camacho et al. 2019) also use general LTL-like specifica-
tions that do not or are not known to converge to LTL in a
limit. For example, Camacho et al. (2019) introduced the re-
ward machine objective. A reward machine is a finite state
automaton that specifies a reward function. As another ex-
ample, Littman et al. (2017) introduced geometric LTL. Ge-
ometric LTL attaches a geometrically distributed horizon to
each temporal operator. The learnability of these general
LTL-like objectives is a potential future research direction.

6 Conclusion
In this work, we formally proved that infinite-horizon LTL
objectives in reinforcement learning cannot be learned in un-
restricted environments. By inspecting the core result, we
have identified various possible directions forward for future
research. Our work resolves the apparent lack of a formal
treatment of this fundamental limitation of infinite-horizon
objectives, helps increase the community’s awareness of this
problem, and will help organize the community’s efforts in
reinforcement learning with LTL objectives.

2In general, Hahn et al. (2019); Bozkurt et al. (2020) showed
that there exists a critical setting of the parameters 𝜆* that produces
the optimal policy. However, 𝜆* depends on the transition proba-
bilities of the MDP and is therefore consistent with the findings we
presented here.

References
Alur, R.; Bansal, S.; Bastani, O.; and Jothimurugan, K. 2021.
A Framework for Transforming Specifications in Reinforce-
ment Learning. arXiv preprint arXiv:2111.00272.
Ashok, P.; Křetı́nský, J.; and Weininger, M. 2019. PAC Sta-
tistical Model Checking for Markov Decision Processes and
Stochastic Games. In Computer Aided Verification.
Bozkurt, A.; Wang, Y.; Zavlanos, M.; and Pajic, M. 2020.
Control Synthesis from Linear Temporal Logic Specifica-
tions using Model-Free Reinforcement Learning. In Inter-
national Conference on Robotics and Automation.
Brafman, R. I.; and Tennenholtz, M. 2002. R-MAX - A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. Journal of Machine Learning Re-
search, 3.
Brázdil, T.; Chatterjee, K.; Chmelı́k, M.; Forejt, V.;
Křetı́nský, J.; Kwiatkowska, M.; Parker, D.; and Ujma, M.
2014. Verification of Markov Decision Processes Using
Learning Algorithms. In Automated Technology for Veri-
fication and Analysis.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In International Joint Conference on Artificial In-
telligence.
Dewey, D. 2014. Reinforcement Learning and the Reward
Engineering Principle. In AAAI Spring Symposia.
Fiechter, C.-N. 1994. Efficient Reinforcement Learning. In
Conference on Computational Learning Theory.
Fu, J.; and Topcu, U. 2014. Probably Approximately Cor-
rect MDP Learning and Control With Temporal Logic Con-
straints. In Robotics: Science and Systems X.
Gao, Q.; Hajinezhad, D.; Zhang, Y.; Kantaros, Y.; and Za-
vlanos, M. M. 2019. Reduced Variance Deep Reinforcement
Learning with Temporal Logic Specifications. In Interna-
tional Conference on Cyber-Physical Systems.
Giacomo, G. D.; Iocchi, L.; Favorito, M.; and Patrizi,
F. 2019. Foundations for Restraining Bolts: Reinforce-
ment Learning with LTLf/LDLf Restraining Specifications.
In International Conference on Automated Planning and
Scheduling.
Grill, J.-B.; Valko, M.; and Munos, R. 2016. Blazing the
trails before beating the path: Sample-efficient Monte-Carlo
planning. In Neural Information Processing Systems.
Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2019. Omega-Regular Objectives in
Model-Free Reinforcement Learning. In Tools and Algo-
rithms for the Construction and Analysis of Systems.
Hasanbeig, M.; Kantaros, Y.; Abate, A.; Kroening, D.; Pap-
pas, G.; and Lee, I. 2019. Reinforcement Learning for Tem-
poral Logic Control Synthesis with Probabilistic Satisfac-
tion Guarantees. In Conference on Decision and Control.

Henriques, D.; Martins, J. G.; Zuliani, P.; Platzer, A.; and
Clarke, E. M. 2012. Statistical Model Checking for Markov
Decision Processes. In International Conference on Quan-
titative Evaluation of Systems.
Jiang, Y.; Bharadwaj, S.; Wu, B.; Shah, R.; Topcu, U.;
and Stone, P. 2020. Temporal-Logic-Based Reward
Shaping for Continuing Learning Tasks. arXiv preprint
arXiv:2007.01498.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A Com-
posable Specification Language for Reinforcement Learning
Tasks. In Neural Information Processing Systems.
Kakade, S. M. 2003. On the Sample Complexity of Rein-
forcement Learning. Ph.D. thesis, Gatsby Computational
Neuroscience Unit, University College London.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 1999. Approximate
Planning in Large POMDPs via Reusable Trajectories. In
Neural Information Processing Systems.
Kearns, M.; and Singh, S. 2002. Near-Optimal Reinforce-
ment Learning in Polynomial Time. Machine Learning,
49(2).
Kober, J.; Bagnell, J.; and Peters, J. 2013. Reinforcement
Learning in Robotics: A Survey. The International Journal
of Robotics Research, 32.
Li, X.; Vasile, C.; and Belta, C. 2017. Reinforcement learn-
ing with temporal logic rewards. International Conference
on Intelligent Robots and Systems.
Littman, M. L.; Topcu, U.; Fu, J.; Isbell, C.; Wen, M.; and
MacGlashan, J. 2017. Environment-Independent Task Spec-
ifications via GLTL. arXiv preprint arXiv:1704.04341.
Manna, Z.; and Pnueli, A. 1987. A Hierarchy of Tempo-
ral Properties. In Symposium on Principles of Distributed
Computing.
Pnueli, A. 1977. The Temporal Logic of Programs. In Sym-
posium on Foundations of Computer Science.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.
Sadigh, D.; Kim, E. S.; Coogan, S.; Sastry, S. S.; and Seshia,
S. A. 2014. A Learning Based Approach to Control Synthe-
sis of Markov Decision Processes for Linear Temporal Logic
Specifications. In Conference on Decision and Control.
Schwarting, W.; Alonso-Mora, J.; and Rus, D. 2018. Plan-
ning and Decision-Making for Autonomous Vehicles. An-
nual Review of Control, Robotics, and Autonomous Systems,
1.
Strehl, A.; Li, L.; Wiewiora, E.; Langford, J.; and Littman,
M. 2006. PAC Model-Free Reinforcement Learning. In In-
ternational Conference on Machine Learning.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. The MIT Press.
Temizer, S.; Kochenderfer, M.; Kaelbling, L.; Lozano-Perez,
T.; and Kuchar, J. 2010. Collision Avoidance for Unmanned
Aircraft using Markov Decision Processes. In AIAA Guid-
ance, Navigation, and Control Conference.
Valiant, L. G. 1984. A Theory of the Learnable. Communi-
cations of the ACM, 27(11).

