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ABSTRACT

Bacteria underpin key processes in health, ecology, and biotechnology, yet machine
learning in bacterial genomics lacks systematic, large-scale evaluation resources.
Current resources are typically limited to single-species datasets, where the small
number of available genomes leaves species-specific models underpowered, un-
derscoring the need for approaches that can generalize across the bacterial tree of
life. To address this gap, we present BacBench, the first comprehensive benchmark
for bacterial genomics. BacBench consists of 11 datasets across 6 tasks, includ-
ing a newly generated dataset for operon identification derived from long-read
RNA sequencing. BacBench covers gene-, system-, and genome-scale prediction
tasks, spanning 67k genomes, 17.6k species and 255M proteins. We analyze the
performance of state-of-the-art DNA LMs, protein LMs and bacterial LMs and
find that while each approach excels at different scales—the existing models fail
to accurately predict the bacterial phenotype at a whole-genome level, hamper-
ing the translation to high-impact applications such as antibiotic-resistance and
bioproduction. Therefore, highlighting the need to develop methods that reason
over the context of the entire genomes, exploiting genomic synteny and transfer
across species. We outline the key requirements for such models and release a
standardized library for preprocessing, embedding, and evaluation, fostering the
development of methods that accurately represent bacterial genomes, and enabling
reproducible comparison of diverse approaches under a unified framework. By
providing the first comprehensive benchmark dedicated to bacterial genomics,
BacBench lays the ground-work for developing machine learning models that truly
exploit shared evolutionary patterns and generalize across the bacterial tree of life.

1 INTRODUCTION

Bacteria drive indispensable processes in medicine, ecology, and biotechnology (de Steenhui-
jsen Piters et al.l |2015; [Luo et al.l|2024). They produce industrial enzymes and antibiotics (Ariaeene4
jad et al.l 2024; Santos-Junior et al., [2024)), recycle nutrients, and are being engineered for carbon
capture and waste remediation (Xu & Jiang, |2024). Unlocking this potential hinges on interpreting
bacterial genomes at scale. A machine learning (ML) system that can embed and reason over entire
bacterial genomes could predict clinically relevant traits, surface novel enzymes for biomanufacturing,
and reveal how genetic variation translates into functional capabilities across species.

Traditionally, ML approaches in bacterial genomics have been species-specific. For example, genome-
wide association studies (GWAS) have been successful in identifying genotype—phenotype associa-
tions within species, such as antimicrobial resistance or virulence traits (Lees et al., 2016; Power et al.,
2017;|San et al |2020). However, species-specific datasets typically include only a few genomes,
leaving models statistically underpowered and prone to overfitting given the vast mutation space of
bacterial genomes.

Meaningful progress therefore requires models that can share information across species. Such
transfer is biologically plausible: every bacterium carries a small core of universal single-copy
proteins, and many additional gene families are conserved far beyond the species level (Wang et al.,
2022; Lang et al., 2013; |Coleman et al., |2021). Leveraging these shared signals allows models
to capture the full extent of bacterial diversity, leading to predictions that are both robust and
generalizable. Training on genomes from many species, laboratories, and environmental contexts
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Figure 1: BacBench overview. We collected a diverse set of tasks at gene-, system- and genome-scales, spanning
17.6k bacterial species. BacBench-1library provides support to preprocess and embed the datasets with
various models. Finally, we performed systematic benchmarking for each task using diverse genomic LMs.

further guards against dataset-specific artifacts, making the resulting models less prone to sampling
bias and more reliable when deployed on previously unseen strains or sequencing pipelines.

Recent breakthroughs in genomic sequence modeling show that the resulting representations can

generalize across species and capture evolutionary signals (Nguyen et al., 2024}, [Dalla-Torre et al
[2024}; [Zhou et al.| 2023}, [Lin et al, 2022} [Elnaggar et al.| 2021} [Lin et al.,2023; Hayes et al., 2025).

However, within the bacterial domain specifically, evaluation has been fragmented—either on narrow,
single-task applications like antimicrobial resistance prediction (Wiatrak et al., 2024) or as part of
cross-kingdom evaluations that fail to address bacteria-specific challenges (Nguyen et al. [2024).
Consequently, the field lacks a dedicated, multi-scale benchmark for bacterial genomics, where
genomic and metabolic mechanisms differ substantially from eukaryotes. Thus, leading to the
development of models which can accurately model whole bacterial genomes.

Here, we introduce BacBench, the first multi-scale, multi-task and multi-species benchmark designed
to evaluate ML for bacterial genomics (Fig. [T). BacBench has been collated from a diverse set of 11
datasets organized into 6 tasks spanning multiple biological scales: gene ", system E3 and genome %&.
We consider essential gene prediction task at the gene-level, operon and protein—protein interaction
prediction tasks at the system-level; and strain clustering, antibiotic resistance, and phenotypic traits
prediction tasks at the genome-level. Collected from a diverse set of public resources and newly
generated data, these datasets encompass 67k genomes spanning more than 17.6k bacterial species
and 255M proteins. Using BacBench, we conduct comprehensive evaluation of distinct approaches
to modeling bacterial genomes including DNA LMs, protein LMs (pLMs) and bacterial LMs (bLMs).
We find that different modeling approaches excel at different tasks and scales, yet all models achieve
low performance on phenotype prediction at a whole-genome level. Our results demonstrate (i) the
need to develop ML approaches which can accurately model entire bacterial genomes, (ii) the benefits
of pretraining on bacteria-specific corpora, rather than cross-kingdom ones, thus learning genomic
mechanims that are unique to bacteria, and (iii) the importance of selecting the right model for the
task at hand.
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BacBench datasets and an accompanying toolkit for preprocessing and evaluation ensure straight-
forward reuse and extensiorﬂ By generating and integrating these datasets, we introduce the first
benchmark suite for bacterial genomics, aiming to catalyze the development of ML methods that can
transfer knowledge across species, unlocking new discoveries in bacterial genomics.

2 RELATED WORK

Overall, existing resources for evaluating ML in bacterial genomics are limited in several key ways:
they often lack functional labels, restrict evaluation to single species, or evaluate only one biological
scale. BacBench addresses these limitations by providing a multi-scale and multi-task benchmark
across the bacterial tree of life. It is specifically designed to reflect the core challenges in the field,
including data sparsity within individual species, the need for cross-species generalization, and the
importance of assessing model performance from the level of individual genes to entire genomes.

Bacterial genomics datasets. Large-scale sequence repositories such as MGnify (Mitchell et al.,
2023), IMG/M (Markowitz et al., 2012, and AllTheBacteria (Blackwell et al., 2024} catalogue
millions of bacterial assemblies. These resources are indispensable for comparative genomics, yet
they provide limited metadata labels, making them ill-suited for training or benchmarking ML models.
Simultaneously, task-specific collections provide information on essential genes and phenotypic
traits (Zhang et al.|[2004; Madin et al.| 2020; Brbic et al.l 2016; [Weimann et al., 2016; (Consortium)
2022)—supply richer annotations but usually cover only a handful of species and a single prediction
setting. Diverse Genomic Embedding Benchmark (DGEB) (West-Roberts et al.,2024)) offers tasks
drawn from all domains of life, yet its bacterial coverage is mostly limited to single-species gene or
short-segment datasets and lacks genome-scale evaluations such as broad phenotypic traits inference
or strain-level clustering, leaving it unable to assess whether models generalize across thousands of
species at multiple scales. BacBench complements these efforts by integrating six heterogeneous
tasks, ranging from gene essentiality to genome-wide phenotype prediction - into a unified framework
that explicitly tests generalization across 17.6k bacterial species and three biological scales (Fig. [T).

Single-species bacterial genomics models. Despite the existence of large-scale bacterial genomics
datasets, the ML applications in bacterial genomics have been mostly confined to single-species and
single-task problems. For instance, genome-wide association studies (GWAS) have been successful
in identifying genotype—phenotype associations within species, such as antimicrobial resistance or
virulence traits (Lees et al., |2016; [Power et al., 2017;|San et al.l 2020). More recent approaches such
as unitig-based and deep learning models improved genotype—phenotype mapping by spanning the
full pangenome (Lees et al., 2018} |2020) and predicting the effect of mutation based on the genomic
context (Wiatrak et al.| 2024). While the single-species models often perform well in their domains,
they do not extend to other taxa and new genomic variants, and the huge genomic feature space
relative to the number of labelled isolates leaves them prone to overfitting.

Genomic LMs. DNA LMs learn DNA sequence representations and have been shown to accurately
represent long sequences (Zhou et al.,[2023; Dalla-Torre et al.,|2024; Jiang et al., 2023 Mourad, 2025
Nguyen et al.,[2024;2023)), but are usually evaluated on human regulatory tasks, where transcriptional
mechanisms and epigenomic regulation differ substantially from bacteria (Casadesus & Lowl 2006).
Moreover, even the DNA LMs with very large context window cannot span entire medium-sized
bacterial genomes (Brixi et al.;|2025)). Protein LMs (pLMs) learn representations that correlate with
structure, stability, and function (Elnaggar et al.| 2021} [Lin et al.| 2022} [2023; Hayes et al., [2025). As
bacterial genomes consist largely of coding sequence and possess simpler regulatory architectures
than eukaryotes, pLMs can capture a substantial fraction of relevant biology. pLMs model proteins in
isolation, however, characterizing bacterial genomes requires modeling the contextual interactions
between the proteins present in the genome. Finally, we differentiate a third group of genomic LMs
- Bacterial LMs (bLMs) which are recently proposed genomic LMs that are purposefully built to
model bacterial genomes. These include gLM?2 (Cornman et al.|[2024), a mixed-modality genomic
LM that represents coding regions as amino acids and intergenic regions as nucleotides to model
contiguous genome context, and Bacformer, a genome-level contextual protein LM that treats each
bacterial genome as an ordered sequence of proteins, refining each protein vector in the presence of
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Table 1: Summary of benchmarked models. “Max ctx.” = maximum context length supported at inference; “dim”
= dimensionality of the output of the last hidden layer. DNA LMs, pLMs and bLMs are separated by a horizontal
line.

Model Input Objective Tokenisation Params  dim  Training corpus  Max ctx.
Mistral-DNA (Mourad. 2025} DNA Autoregressive  Byte-pair 138M 768 Bacteria 512
DNABERT-2 (Zhou et al. 12023} DNA Masked Byte-pair 117M 768 Multi-kingdom 512
Nucleotide Transformer (Dalla-Torre et al.12024]  DNA Masked k-mer 250M 768 Multi-kingdom 2,048
ProkBERT (Ligeti et al. 2024] DNA Masked k-mer 27M 384 Bacteria 4,096
Evo (Nguyen et al. £2024] DNA Autoregressive  Single nucleotide 6.5B 4,096  Multi-kingdom 8,192
ESM-2 (Lin et al. 12022} Single protein seq. Masked Single amino acid 35M 480 Multi-kingdom 1,024
ESM-C (ESM Team)2024) Single protein seq. Masked Single amino acid 300M 960 Multi-kingdom 1,024
ProtBERT (Elnaggar et al. ;2021 Single protein seq. Masked Single amino acid 420M 1,024 Multi-kingdom 1,024
gLM2 (Cornman et al. 2024] Mixed modality (DNA & protein seq.) ~ Masked Single nucleotide/amino acid 650M 1,280  Bacteria 4,096
Bacformer (Wiatrak et al.£2025] Multiple protein seq. Masked Single protein 27M 480 Bacteria 6,000

all other proteins from the same genome, thus, encoding organism-level context. Both methods model
the DNA or protein in the context of a bacterial genome and are pretrained on extensive bacterial
corpora.

3 BACTERIAL GENOME REPRESENTATIONS & BASELINES

We selected a diverse set of five DNA LMs, three pLMs and two bLMs to represent bacterial genomes
and evaluate their performance across distinct tasks and scales. These genomic LMs take as input
DNA, proteins, or both (gLM?2) and can therefore generalize across the bacterial tree of life. Moreover,
the suite spans modalities (DNA-only, single-protein, mixed DNA—protein, genome-level protein),
objectives (masked vs. autoregressive), and training corpora (bacteria-specific vs. cross-kingdom),
enabling a controlled comparison of how context length, modality, and pretraining data shape genome
embeddings (Table|T).

Bacterial genomes representations. For the gene- and system-level tasks with DNA LMs we
embed the coding sequence plus upstream promoter of the gene; we split sequences longer than
the model limit L into overlapping windows of length L and average their embeddings across all
windows. For genome-level tasks, we tile each genome into chunks with overlap, embed each chunk,
and average the results to extract a genome embedding (Appendix B). For the pLMs we embed
each protein present in the bacterial genome independently and average its residue embeddings. To
generate genome-scale representations, we calculate the mean of all protein vectors (Appendix B).
Finally, for bLMs we use contiguous, genome-aware inputs: for gLM2, we feed mixed-modality
genomic segments that encode coding regions as amino acids and intergenic regions as nucleotides,
preserving local genome context across adjacent genes; for Bacformer, we represent each genome as
an ordered sequence of proteins by obtaining per-protein tokens from its base pLM (ESM-2 35M),
and pass these through a transformer to learn contextualized, genome-level protein embeddings.

4  PREDICTION TASKS AND EVALUATION RESULTS

In BacBench, we consider six tasks across three scales: (i) gene +, (ii) system E3, and (iii) genome
. At gene-level, we consider the task of gene essentiality. At system-level, we assess operon
identification and protein-protein interaction prediction tasks. Finally, at genome-level we evaluate
methods on strain clustering, antibiotic resistance and phenotypic traits prediction tasks. We briefly
describe each task and include further experimental details in the Appendices A & B.

4.1 GENE ESSENTIALITY PREDICTION

Identifying essential genes is crucial for (i) defining the minimal set of cellular functions, and (ii)
prioritizing drug targets. To distinguish essential from non-essential genes, the methods need to
generalize to phylogenetically diverse bacteria beyond the species in the training set. For each model
we report the performance by (i) fitting a linear classifier on top of the frozen gene embeddings, (ii)
finetuning the model to predict a binary label (i.e. essentiality of input gene; Appendix B).

Data. We compile the dataset from the Database of Essential Genes (DEG) (Zhang et al., [2004]),
a hand-curated resource which aggregates studies published for a broad range of bacteria. After
quality-control filtering, the corpus comprises 51 distinct genomes spanning 37 species (Appendix



Under review as a conference paper at ICLR 2026

A). This amounts to 22, 486 essential and 146, 922 non-essential genes. To prevent train-test leakage,
we split by genus—placing all genomes from a genus in one split—and evaluate on held-out genera,
enforcing generalization to phylogenetically distant strains.

Metrics. Gene essentiality prediction is a bi-

nary classification task. We evaluate perfor-
mance using AUROC and AUPRC and report 09
macro-average metrics across test genomes.

0.8

Results. pLMs and bLMs substantially out-
perform DNA-based models in terms of both
AUROC (Fig. [2) and AUPRC using both lin-
ear probing and finetuning (Appendix C), sug-
gesting that essential genes share conserved 06
protein motifs that the protein-based embed-
dings capture. bLMs perform the best, with 05l ©
gL.M2 achieving the best results overall, and
Bacformer significantly outperforming its back-
bone ESM-2 model, showing the benefits of & 5 38
incorporating genome context. When consid-  Figure 2: AUROC across genomes on essential gene
ering DNA LMs only, Evo achieves the best  prediction task using a linear model. The box spans the
performance, demonstrating the benefits of scal- interquartile range with a line marking the median value.
ing model and context size.
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4.2 OPERON IDENTIFICATION

Operons are multi-gene transcriptional units
that underpin coordinated gene expression. Ac-
curate operon maps are pivotal for (i) construct-

ing gene regulatory networks (Fortino et al.,
2014) and (ii) refining genome-scale metabolic

models for strain engineering 2010).
In this task, the methods must predict whether
the two neighbouring genes belong to the same
operon, effectively predicting operon bound-
aries. Because available annotations are scarce 065
we evaluate the task in a zero-shot setting.

0.60

Data. Due to the lack of experimentally val-
idated operon annotations, we generated the
operon labels by performing long-read RNA se-
quencing on a set of 5 diverse strains, amount- Figure 3: Zero-shot AUROC on operon identification

ing to 3, 310 unique operons (Appendix A). task, the error bars represent standard error across
strains.

Metrics. In BacBench, operon identification is

a zero-shot binary classification task. We use

the cosine similarity value between the two genes combined with the information on the genes’
strand as a score indicating whether the genes belong to the same operon (Appendix A). We leverage
AUROC and AUPRC for measuring performance. Finally, we report results across distinct strains.

Results. All methods except Bacformer attain similar performance (Fig. [3) in terms of both AUROC
and AUPRC (Appendix C). We attribute the high performance of the Bacformer due to the (i)
whole-genomic context of the model and (ii) extensive bacterial training corpus. ProkBERT performs
2nd best, showing that (i) scaling the model does not necessarily lead to improved results, (ii) the
importance of a relevant pretraining corpus (ProkBERT was pretrained only on prokaryotes). Notably,
both DNA and pLMs perform similarly on the task, indicating that the choice of modality is less
important than incorporating genome-level context and domain-matched pretraining. Finally, the
low overall performance across models highlights the need for task-specific methods and generating
datasets which would allow for finetuning.
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4.3 PROTEIN-PROTEIN INTERACTION PREDICTION

Mapping protein—protein interactions (PPI) is

central to (i) reconstructing gene networks g

(Snider et al.l 2015) and (ii) prioritizing drug- =1 ProtBert 2
target combinations (Wilson et al,[2022)). Com- 0% mmm ESM-C

pared to the operon identification task where B33 Bacformer

interacting genes lie next to each other, in the ;%"

PPI task proteins can be separated by millions @ 3 o o
of base pairs. In this task each input is a pair 2 °°] ° °

of proteins, and the goal is to predict whether 8 8 8 o
two proteins interact. Because interaction data %31

are available at the protein-level, we restrict ©

the benchmark to models which only require 041

protein sequence data, specifically, pLMs and : .
Bacformer. We evaluate two regimes: (i) zero- Zero-shot Finetuned

Figure 4: AUROC across genomes on PPI task in the
zero-shot and finetuned setting. The box spans the in-
terquartile range with a line marking the median value.

shot: the cosine similarity between the frozen
embeddings of the two proteins serves as the
interaction score, (ii) finetuned: the averaged
embeddings of the two proteins are passed through a linear classifier trained to output a binary class.

Data. We downloaded and processed all 10, 533 bacterial strains available in STRING DB (Szk-
larczyk et al., 2023) together with associated PPI scores. For every strain we extract the combined
interaction score for each protein pair; the median strain contains almost 640, 000 scored pairs. We
binarize the labels, resulting in roughly 10% of all interactions being positive (Appendix A).

Metrics. PPI is a binary classification task. We report performance with AUROC and AUPRC,
macro-averaged over test genomes. Both the positive and negative labels are provided by STRING.

Results. In both zero-shot and finetuned setups, Bacformer achieves substantially higher scores
than other methods. We attribute this to the rotary positional embeddings (Su et al., [2024)), which
increase the cosine similarity score between neighbouring genes. This is in line with experimental
data, which shows that the neighbouring genes in the bacterial genomes tend to interact with each
other (Dandekar et al.,|1998)). We also notice how the difference in performance between the methods
decreases following finetuning, demonstrating how the models can adapt to the task during training.
Finally, the performance of ESM-2 compared to ESM-C and ProtBERT shows that scaling up the
training data and model size does not benefit PPI prediction in bacteria.

4.4 STRAIN CLUSTERING

Rapid clustering of whole genomes is valuable for placing newly sequenced metagenome assem-
bled genomes (MAGSs) into the bacterial tree of life and quality control. Therefore, we propose a
metagenomic strain clustering task where the goal is to recover taxonomy using genome only. In
this task, we feed every MAG to the model without using any species tokens or other metadata—so
evaluation is fully zero-shot. We then evaluate whether models’ genome embeddings preserve the
taxonomy. A good embedding should cluster genomes from the same species close together and, at
broader levels, conserve members of e.g. the same genus or family. We perform the clustering by
computing k nearest neighbors across different k& and running Leiden clustering (Traag et al.,2019)
at various resolutions (Appendix B).

Data. In this BacBench task, we draw 6, 071 strains from MGnify (Mitchell et al.| |2023), spanning
25 species distributed across 10 genera and 7 families chosen to give a balanced phylogenetic spread.
We process DNA and protein inputs in the same way for every model; and average the vector from
the final hidden layer over the whole genome to yield one fixed-length embedding per genome.

Metrics. We quantify clustering performance with the adjusted Rand index (ARI), normalized
mutual information (NMI) and average silhouette width (ASW). Higher is better for all metrics. To
obtain cluster assignments for each model we run Leiden clustering across resolutions, retaining the
resolution that maximized the mean of the three metrics over the species, genus and family ranks.
The ASW is unaffected by taxonomic rank, so we report it once in the Combined section.
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Table 2: Clustering performance (higher is better) across taxonomic ranks and metrics. Best value for
each metric is bolded. DNA LMs, pLMs and bLMs are separated by a horizontal line.

Method Species Genus Family Combined

ARI NMI ARI NMI ARI NMI ARI NMI ASW
Mistral-DNA 89.57 94.85 69.04 86.60 48.52 78.56 69.04 86.67 39.88
DNABERT-2 97.10 98.33 64.98 85.81 43.85 76.35 68.64 86.83 63.10
Nucleotide Transformer 98.14 98.89 64.06 85.28 43.14 75.84 68.45 86.67 39.24
ProkBERT 98.75 99.38 63.55 84.88 42.76 75.46 68.35 86.58 65.03
Evo 55.56 76.98 49.28 72.42 35.53 66.58 46.79 72.00 25.33
ESM-2 50.94 71.67 56.82 72.20 46.84 69.06 51.53 70.97 16.75
ESM-C 72.65 87.70 79.76 89.87 60.39 83.43 70.93 87.00 29.55
ProtBERT 68.53 86.47 85.98 9240 6578 8642 7343 8843 39.12
gLM2 72.33 84.03 66.60 82.27 49.03 75.93 62.65 80.74 40.16
Bacformer 79.39 90.62 77.92 90.20 54.74 80.71 70.68 87.17 30.12

Results. At the species level, DNA LMs attain the highest scores, indicating that species boundaries
can be recovered from sequence alone and consistent with the extra signal carried in non-coding
regions. Moving up to genus and family levels, the advantage shifts: pLMs and Bacformer overtake
the DNA LMs, suggesting that protein embeddings retain deeper evolutionary relationships more
faithfully. Aggregated across all ranks, ProtBERT shows the highest ARI and NMI values, whereas
the DNA models have the overall highest ASW. Interestingly, gLM2 which is a mixed modality
model combining DNA and protein sequences performs worse than other models. Upon investigation,
we believe this is due to the large variance in its embeddings and suggest that a mixed modality
method with improved regularization could capture both fine-grained strain identity and higher-order
phylogeny in a single embedding space.

4.5 ANTIBIOTIC RESISTANCE PREDICTION “#

Predicting antibiotic resistance is a task with (i) immediate clinical value for guiding antimicrobial
drug therapy, (ii) monitoring the spread of resistant lineages and (iii) prioritizing compounds in
drug-discovery pipelines. In this BacBench task, we define two subtasks: (1) given a bacterial
genome, predict whether the strain is resistant or susceptible to a specific drug, and (2) given a
bacterial genome, estimate its minimum inhibitory concentration (MIC). The first subtask is a binary
classification problem (resistant vs susceptible), while the second subtask is a regression problem.
Due to the computational complexity of computing genome-level embeddings on over 25k genomes
(Appendix B), we (i) do not include Evo in the analysis due to its size (6.5B parameters), which
makes it computationally infeasible to embed the entire corpus in most academic environments (see
Runtime analysis; Appendix B), (ii) perform evaluation by stacking a linear layer on top of the frozen
genome representation, and fine-tune a separate linear classifier for each model.

Data. We assemble a cross-species panel from the NIH Antimicrobial Susceptibility Test browser
(National Center for Biotechnology Information, 2025), covering 25,032 strains drawn from 38
bacterial species. After quality control and removal of sparsely sampled drugs, the dataset retains 36
antibiotics for binary label and 56 for regression prediction that span diverse classes of antibiotics
(Appendix A). For the binary task we use the resistant/susceptible calls and discard any ambigu-
ous entries (Appendix A). For the regression task we extract the raw MIC values, apply a loglp
transformation to dampen heavy tails and train a separate linear model for each drug—model pair.

Metrics. We report performance in the classification setting with AUROC and AUPRC across
drugs. For the MIC regression we compute the Pearson correlation coefficient and the coefficient of
determination (R2) averaged across antibiotics. We report mean scores across antibiotics and include
full per-antibiotic tables in the Appendix C.

Results. On both binary and regression setup, bLMs and pLMs tend to outperform DNA LMs. This
may be explained by the fact that resistance is usually acquired through the mutation in the coding
sequence, with studies showing that 90% of characterized resistance-conferring variants reside in
coding regions (Sandgren et al.,[2009; |[Farhat et al.||2019). Finally, the bLM-Bacformer achieves the
best results implying the importance of epistatic effects on antibiotic resistance (Irindade et al., 2009)
which the model considers by modeling the interactions between all of the proteins present in the
genome. Notably, the methods record highly variable performance across antibiotics, underscoring
the difficulty of building a single model that generalizes across the resistance mechanisms.
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Table 3: Performance (%, higher is better) on the antibiotic-resistance prediction tasks across drugs. Values
are mean =+ standard deviation across 3 runs; best for each metric is bolded. DNA LMs, pLMs and bLMs are
separated by a horizontal line.

Method Binary Regression
AUPRC AUROC R? Pearson

Mistral-DNA 49.86 £+ 22.73 76.05 +9.14 19.71 £ 17.37 40.95 & 21.51
DNABERT-2 52.35 £ 23.55 79.88 £ 7.26 23.61 4+ 18.33 45.89 4+ 19.27
Nucleotide Transformer 59.70 4= 22.90 84.22 + 6.47 27.74 4+ 17.80 51.19 £+ 16.76
ProkBERT 58.90 + 23.67 83.94 + 6.39 28.00 + 17.57 51.24 4+ 16.91
ESM-2 62.04 = 23.64 85.05 £+ 6.63 31.18 £+ 17.39 54.60 & 16.15
ESM-C 63.41 £+ 23.43 85.68 4+ 6.81 33.15 £+ 17.62 56.79 & 15.46
ProtBERT 61.79 == 23.19 84.51 £ 6.31 28.23 £+ 18.46 51.56 & 17.61
gLM2 55.80 + 24.46 82.16 £ 6.75 26.15 + 18.13 49.41 4+ 17.14
Bacformer 67.97 £+ 20.73 87.61 £+ 5.68 33.84 + 18.60 57.53 4 15.43

4.6 PHENOTYPIC TRAITS PREDICTION “#

Accurately predicting phenotype from a genomic sequence enables (i) inference of the biological or
ecological function of bacteria (Feldbauer et al.,2015)) and (ii) engineering organisms with the exact
metabolic traits needed for efficient waste remediation (Rafeeq et al.,|2023), accelerating sustainable
industrial bioproduction (Lawson et al.,2021). We evaluate whether the models’ genome embeddings
are predictive of diverse phenotypic traits. Here, given a genome embedding, the task is to predict
a trait. Similarly as in the antibiotic resistance prediction task above, we perform linear probing
evaluation, training a separate linear classifier per phenotype and exclude the Evo model due to the
computational costs (Appendix B).

Data. To create the benchmark we collated large trait inventories (Madin et al., [2020; Brbic et al.,
20165 |Weimann et al.l 2016)), apply stringent quality filters and discard traits represented by only
a handful of isolates (Appendix A). The final corpus covers 139 discrete phenotypes spanning
15,477 bacterial species, making it the broadest dataset of its kind and challenging the models to
generalize well beyond their training clades. We group traits into carbon utilisation, biochemical
activity, growth conditions and cellular morphology (Appendix A), which we use later for stratified
analysis. As similar genomes often share the same phenotype, we split the data for each phenotype by
genus—placing all genomes from a genus in one split—and evaluate on held-out genera, enforcing
generalization to phylogenetically distant strains.

Metrics. For BacBench, we restrict the phenotypic traits to categorical traits due to their sufficient
number of available samples, and evaluate performance using the macro-averaged AUROC and
AUPRC over phenotype categories. We report mean scores for every phenotype group and include
full per-trait tables in the Appendix C.

Results. pLMs and bLMs outperform DNA LMs across phenotype groups and metrics (Fig. [3]
& Appendix C). The relative difference is especially large for biochemical activity and carbon
utilization traits, likely because these phenotypes hinge on enzyme active-site composition and
pathway membership—information that is explicit in amino-acid space and can be better captured
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Figure 5: AUROC across diverse phenotypic traits groups and methods. The box spans the inter-quartile range
with a line marking the median value.
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by pLMs (Teukam et al.l [2024; Lawson et al., |2021). The Bacformer bLM attains the highest
scores, indicating that whole-genome context helps explain phenotypes arising from coordinated
protein function and epistatic interactions (Irindade et al., [2009). In contrast, Mistral-DNA, the
only autoregressive model in the task, lags well behind the other models. Overall performance
remains moderate—especially for carbon utilization, biochemical activity and growth condition
traits—highlighting considerable room for improvement. Progress will likely require more complex
contextualized models that incorporate environmental metadata, together with larger, more balanced
phenotype datasets.

5 DISCUSSION

Summary. BacBench addresses the lack of a comprehensive, cross-species evaluation resource
for bacterial genomics by providing unified datasets and benchmarks, and by evaluating existing
genomic language models across species, tasks, and biological scales. It introduces a newly generated
dataset for operon identification—a key problem for refining genome-scale metabolic models—and
curates five additional tasks (gene essentiality, protein—protein interaction, strain clustering, antibi-
otic resistance, and 139 phenotypic traits) into a single framework covering 67k genomes from
17.6k species. Our experiments show that (i) existing genomic LMs (DNA LMs, pLMs, and bLMs)
capture core taxonomic structure and functional relatedness, providing a strong baseline representa-
tion of bacterial genomes, but fall short at accurate genome-to-phenotype prediction, as evidenced
by antibiotic resistance and phenotype tasks; (ii) models purpose-built for bacteria (gL.M2, Bac-
former) or trained on bacteria-specific corpora (ProkBERT) tend to outperform broad, cross-kingdom
counterparts across most tasks, underscoring the value of domain-matched pretraining and induc-
tive biases; (iii) different modeling approaches excel at different problems—DNA LMs capture
fine-grained taxonomic signals and do well on operon identification, pLMs better preserve deeper
phylogeny and functional similarity for strain clustering, and bLMs like Bacformer perform best
on tasks driven by multi-gene interactions (phenotypes, antibiotic resistance). All datasets are
accompanied with extensive documentation; the embedding and evaluation library is provided at
https://anonymous.4open.science/r/BacBench—-B6EF.

Towards accurate genome-to-phenotype bacterial prediction. Our results suggest a practical path
forward towards building model for genome-to-phenotype mapping in bacteria: (i) the model should
represent entire genomes end-to-end to capture long-range, cross-protein dependencies (currently
only feasible in Bacformer); (ii) pretrain on substantially larger, bacteria-focused corpora (we estimate
>4M unique strains remain untapped (Mitchell et al.| 2023; Markowitz et al.| |2012; Blackwell et al.,
2024)); (iii) integrate DNA and protein modalities—and where available RNA—to couple regulatory
and coding signals in a single embedding while remaining computationally efficient; (iv) allow
inclusion of structured priors (e.g., resistance gene catalogs, operon maps, HGT markers) to improve
data efficiency on scarce phenotype labels; (v) expand high-quality phenotype supervision (including
knock-outs and standardized trait panels) to close the supervision gap limiting genome-to-phenotype
learning.

Limitations & Future Work. By releasing BacBench we provide a foundation for more expressive,
cross-species models of bacterial genomics, yet the present benchmark covers only part of the
functional landscape. Other tasksa re not yet included, and certain phenotypes and antibiotic classes
remain sparse (Appendix A), underscoring the need for generating new data. We benchmarked a
representative set of publicly available models capable of cross-species generalization, and expect
the model suite to expand in future iterations. Finally, the current tasks do not include modalities
such as transcriptomics and metabolomics due to data sparsity and inconsistent metadata. As
community datasets mature, incorporating multi-omics will enable more faithful evaluation of causal,
context-dependent genome-to-phenotype mappings.

We anticipate that subsequent iterations will broaden task and model coverage, ultimately enabling
contextual, genome-scale representations for bacterial genomes. Community contributions of datasets,
models, and evaluation routines are encouraged so that BacBench evolves into a continually updated
standard for bacterial ML.


https://anonymous.4open.science/r/BacBench-B6EF

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We release an anonymous codebase for preprocessing, embedding, and evaluation at https
//anonymous.4open.science/r/BacBench-B6EF, together with helper utilities for bac-
terial genomics to lower the barrier for adding new models and tasks. All datasets in BacBench are
fully documented and accompanied by anonymized MLCommons Croissant metadata files in the
supplementary materials, enabling unambiguous data loading and lineage tracking. The Appendix
details quality filtering, preprocessing pipelines, train/validation/test splits, model and training config-
urations, and hyperparameters; it also specifies random seeds, hardware, and optimization settings.
Further details on the exact scripts to reproduce the results can be found in the anonymous reposi-
tory linked above. These artifacts together provide the necessary pointers—code, data descriptors,
and experimental specifications—to reproduce our results and to extend BacBench as an evolving
benchmark for the ML community.
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A ADDITIONAL DATASETS & TASKS DETAILS

In this section we outline the dataset details, including the overall and per dataset statistics as well
as the preprocessing details. For each dataset we performed additional quality checks which we
detail below. All of the genomes across datasets contain genome ID, which can be used to identify
the genome source. Finally, we provide metadata on genes, proteins and genomes together with the
datasets when available, together with extensive documentation.

Supplementary Table 1: Dataset summary for the six benchmark tasks used in this study.

Task # Species # Genomes # Proteins # Base pairs
Gene essentiality prediction 37 51 169k 279 MB
Operon identification 5 5 22k 25 MB
Protein—protein interaction prediction 6956 10533 36 M N/A
Strain clustering 25 6710 14 M 16 GB
Phenotypic traits prediction 15477 24462 100 M 111 GB
Antibiotic resistance prediction 38 26302 105 M 112 GB

A.1 GENE ESSENTIALITY PREDICTION

We downloaded the gene essentiality annotations for bacteria across genomes from the Database
of Essential Genes (DEG, http://origin.tubic.org/deg) (Zhang et al.,[2004). Using the
genome RefSeq ID provided in the database, we downloaded the associated genomes in both DNA and
protein sequence modalities from the NCBI GenBank (https://www.ncbi.nlm.nih.gov/
genbank/). Across 66 genomes from DEG, there were multiple genomes with more than 98%
overlap when it comes to annotations. We therefore removed these genomes, as including it could
lead to inflated evaluation metrics, leaving us with 51 genomes across 37 distinct species. For each
genome we provide start and end for each gene together with essentiality annotations (Yes=essential,
No=non-essential), verifying the gene locations are correct. We also provide the strand of the gene to
allow for the extraction of the region upstream of the gene.

Split. We performed a random data split into training, validation, and test sets in a 60 / 20 / 20 %
ratio. Additionally, to prevent train-test leakage, we split by genus—placing all genomes from a
genus in one split—and evaluate on held-out genera, enforcing generalization to phylogenetically
distant strains. AUROC

A.2 OPERON IDENTIFICATION

Due to the lack or reliable whole-genome operon annotations, we performed long-read RNA sequenc-
ing to annotate operons across five distinct strains, processing three independent biological replicates
for each strain.

Bacterial strains and culture conditions. Five bacterial strains were used in this experiment:
Staphylococcus aureus RN450 (S. aureus RN450), Mycobacterium abscessus ATCC 19977 (M. ab),
AleuD ApanCD Mycobacterium tuberculosis H37Rv 102J23 (AleuD ApanCD M. tb), Pseudomonas
aeruginosa PAO1, and Escherichia coli DH5«. Each strain was cultured in triplicate under nutrient-
rich conditions until mid-exponential phase (O Dggy = 0.4-0.6) was reached.

RNA isolation. Cells were harvested by centrifugation and processed for total RNA extraction using
the MasterPure Complete DNA and RNA Purification Kit (Lucigen) with strain-specific modifications:
For S. aureus RN450, cell pellets were pre-treated with lysostaphin (Tris buffer, pH 8.0) at 37 °C
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for 30 min to aid lysis. For the mycobacterial strains (M. ab and AleuD ApanCD M. 1b), cells were
mechanically disrupted by bead beating in lysis buffer, followed by extraction with the standard
kit protocol. Isolated RNA was treated twice with TURBO DNase (Invitrogen) to remove residual
genomic DNA and purified using RNA Clean & Concentrator columns (Zymo Research). RNA
integrity was assessed on an Agilent TapeStation RNA ScreenTape system, and concentrations were
measured with a Qubit fluorometer (Invitrogen).

Library preparation and sequencing. For each replicate, 1,000 ng of total RNA underwent
rRNA depletion with riboPOOLSs (siTOOLs Biotech). The depleted RNA was polyadenylated with
poly(A) polymerase (PAP) in the presence of a manganese catalyst, adding 50-90 adenosines per
molecule. cDNA libraries were prepared with the Nanopore cDNA-PCR kit, pooled and sequenced
on a PromethION device equipped with R10 flow cells (Oxford Nanopore Technologies).

Long-read RNA sequencing data preprocessing. For each sequenced strain, the fol-
lowing genome assemblies and gene annotations from NCBI RefSeq [ref] were used:
GCF_000013425.1 (Staphylococcus aureus RN450), GCF_000069185 .1 (Mycobacterium ab-
scessus ATCC 19977), GCF_000195955. 2 (AleuD ApanCD Mycobacterium tuberculosis H37Rv
102J23), GCF_000006765. 1 - (Pseudomonas aeruginosa PAOI), and GCF_002899475.1 (Es-
cherichia coli DH5q).

ONT reads from each replicate were polished with Pychopper (v2.7.10), polyA tails longer than
10 bases and sequencing adapters were trimmed using cutadapt and mapped against the genome
assemblies using Minimap2 (v2.29)(Li,|2018) and Samtools (v1.22) (Danecek et al.,[2021). Candidate
operons were identified from read alignments spanning at least two genes on the same strand and
then extended by combining overlapping candidates at most 50 base pairs apart. Operons were then
collated from the triplicates for each strain and used as our operon annotations.

Split. We evaluate the operon identification in a zero-shot manner, therefore, we do not split the data
into train, validation and test splits and use the entire dataset as a test set.

A.3 PROTEIN-PROTEIN INTERACTION PREDICTION

We downloaded all the data from the STRING DB download site (https://string-db.org/
cgi/download). Using the species metadata file we selected only bacterial organisms and down-
loaded the protein sequences for them together with protein-protein interaction scores for protein pairs.
After running the download scripts we ended up with 10, 533 unique strains across 6,956 species.
We used the combined interaction score which combines information from various sources to get a
final score. STRING DB provides only protein sequences and no DNA, and the interaction scores are
computed mainly at the protein-level, therefore, for this dataset we only provide protein sequences
and omit DNA. To binarize the interaction scores, we set the threshold at 0.6 (> 0.6=interaction,
i0.6=no interaction). This threshold was chosen through conducting small-scale experiments and
looking at the average performance of AUROC and AUPRC on the validation set across genomes,
choosing the threshold which attains the best average performance across the two.

Split. 'We performed a random data split into training, validation, and test sets ina 70/ 10/ 20 %
ratio. The larger proportion of the train set compared to the gene essentiality task is motivated by the
larger size of the overall dataset, with the 10% validation set still allowing for meaningful evaluation.

A.4 STRAIN CLUSTERING

To extract the metagenome assembled genomes (MAGs) for strain clustering, we use MGnify
(Mitchell et al.l 2023)), which is a large-scale bacterial genomics database containing a diverse set of
MAGs across numerous environments. The main reason for choosing MGnify over other potential
resources is its large size combined with a uniform processing pipeline, providing comparable
genomes. We wanted to evaluate whether various methods capture phylogenetic similarities across
different taxonomic levels, therefore, we looked at strains which span different species, genera
and families. These nested ranks provide three increasingly coarse resolutions to test whether an
embedding preserves evolutionary signal. We use the taxonomic annotations provided by MGnify.
The total number of unique genomes in the dataset is 6, 071.
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To extract the genomes of interest, we extracted the most common species from MGnify from the
corpus of 300k bacterial genomes and selected 25 species which are distributed across distinct genera
and families. For a meaningful evaluation each genus (or family) must contain at least two species,
otherwise the genus- or family-level clustering metrics become degenerate (every strain would be
trivially assigned to a unique cluster at that rank). We download the chosen assemblies and use the
accompanying annotations to translate gene DNA to protein sequences, while retaining the original
DNA for the DNA-modality experiments.

Split. The strain clustering task is a fully unsupervised task, therefore, we do not split the data into
train, validation and test splits and use the entire dataset as a test set.

A.5 ANTIBIOTIC RESISTANCE PREDICTION

We leveraged the antibiotic sensitivity readings from the NCBI AST browser (https://wwwl
ncbi.nlm.nih.gov/pathogens/ast), which contains hundreds of thousands of antibiotic-
susceptibility test (AST) records for a diverse set of antibiotics. Using the genome assembly iden-
tifiers provided by the NCBI AST browser, we downloaded the DNA and protein sequences for
each genome from the NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/)and
matched them with the antibiotic resistance readings. This left us with 26, 052 unique genomes with
matched antibiotic resistance labels. We then processed the antibiotic resistance readings into (i)
binary and (ii) regression labels decribed below.

Binary. For binary prediction, antibiotic sensitivity labels from NCBI AST browser of either sensitive
(S) or resistant (R) were used for training and testing. If the antibiotic sensitivity test had no S/R
label, they were not included. We remove antibiotics which 1) have less than 500 available unique
genomes in total, and 2) have less than 50 unique genomes per class. This is motivated by the need
to ensure that every classifier is trained on a sufficiently large and reasonably balanced data set;
with fewer than 500 genomes overall, or fewer than 50 genomes in either class, the resulting model
would suffer from poor statistical power and unreliable performance estimates. This resulted in 37
unique antibiotics. The Supp. Table[2]shows the number of available genomes per drug, including
the number of susceptible and resistant genomes. The number of available readings varies strongly
between antibiotics, which partly explains the high variance between the per drug performance.

Regression. For regression MIC prediction, NCBI AST browser quotes minimum inhibitory concen-
trations (MICs) as < z, < x, = x, > x and > z. These strings were translated to an actual number
(y) by y = « if NCBI quoted MIC=z, < z or > z; y = 2 X z if MIC quoted as MIC > z, and
y = 0.5 x z if MIC was < z. We filter out antibiotics with less than 500 available readings to ensure
that the models are trained on a sufficiently large sample. This resulted in 56 antibiotics. To dampen
the long tails, we normalized the MIC with a loglp transformation. The final MIC distributions per
antibiotic can be found in Supp. Fig[l]|&

Split. Due to low number of samples for many antibiotics and the variability between genomes,
which may skew the results when using a single split, we trained and evaluated all models and
antibiotics with k-fold split. Specifically, for each antibiotic we recommend: (1) splitting the available
data into 5 equal splits using stratified split for the binary case and random split for regression. (2) In
each split, further divide the larger train set into train and val, where validation makes up 20% of the
train split. (3) Training the model on the train set and use the best performing model on the validation
to evaluate the model on the test set.
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Supplementary Table 2: Number of resistant, susceptible, and total labelled genomes for every
antibiotic in the binary prediction setting.

Drug #Resistant  # Susceptible  # Total
amikacin 7353 588 7941
ampicillin 10052 6211 16263
amoxicillin—clavulanic acid 12458 1683 14141
azithromycin 10497 2509 13006
cefazolin 1666 1897 3563
cefepime 3237 1188 4425
cefotaxime 566 446 1012
cefoxitin 12463 3902 16365
ceftazidime 2362 717 3079
ceftriaxone 13385 3469 16854
ciprofloxacin 17353 4280 21633
clindamycin 4327 337 4664
ertapenem 7708 373 8081
erythromycin 5605 1860 7465
fosfomycin 1186 396 1582
gentamicin 18242 2951 21193
imipenem 8485 409 8894
kanamycin 3768 410 4178
levofloxacin 3302 1106 4408
meropenem 11320 811 12131
nalidixic acid 1262 780 2042
nitrofurantoin 10535 5316 15851
oxacillin 6929 762 7691
piperacillin—tazobactam 3294 968 4262
rifampin 611 354 965
streptomycin 11965 2442 14407
sulfamethoxazole 3770 707 4477
sulfisoxazole 1569 323 1892
tetracycline 6936 3242 10178
tigecycline 662 357 1019
trimethoprim 2617 582 3199
ampicillin—sulbactam 1632 451 2083
aztreonam 2530 728 3258
ceftaroline 611 152 763
chloramphenicol 5345 1016 6361
colistin 572 290 862
daptomycin 492 131 623
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Supplementary Figure 1: The log1p(MIC) distribution per antibiotic (1/2).
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A.6 PHENOTYPIC TRAITS PREDICTION

We collected the phenotypic traits by collating two major sources (Madin et al.,2020; |Weimann et al.}
2016). To each phenotypic trait label we prepend its data source name so that the provenance of
every label is explicit and any potential name collisions between the two catalogues are avoided. We
keep duplicate traits that appear in both sources because they expand the number of labelled genomes
without forcing us to merge measurements that were obtained with different experimental protocols.
Using the taxonomy IDs and assembly accessions provided in the phenotypic traits datasets, we
downloaded the associated genome DNA and protein sequences from the NCBI GenBank (https:
//www.ncbi.nlm.nih.gov/genbank/). We limit ourselves to categorical phenotypes and
filter out the phenotypic traits with less than 500 genomes to ensure that the models are trained and
evaluated on a sufficiently large sample. Additionally, we removed the classes with less than 50
samples. This resulted in 139 unique phenotypes across 24,462 genomes. We group the phenotypic
traits into 5 distinct groups according to the type of biological information they capture (Supp. Fig.
[3). We include the distributions of each phenotypic trait label in the Supp. Fig. which shows
large variation in the number of available labels per phenotypic trait which affects the final results.

Split. For each phenotype, we split the data into 60/20/20 train, validation and test partitions
respectively. As similar genomes often share the same phenotype, we split the data for each phenotype
by genus—placing all genomes from a genus in one split—and evaluate on held-out genera, enforcing
generalization to phylogenetically distant strains. To obtain stable estimates, as many traits are rare,
we aggregate the per-phenotype results across 5 independent runs with different data splits.

Supplementary Table 3: Phenotype groups and their associated phenotypes. The name before the first
”_” symbolizes the dataset source. madin phenotypes were extracted from |Madin et al.|(2020) and

gideon from |Weimann et al.| (2016).

Phenotype group Phenotype

Biochemical Activity gideon_Gelatin hydrolysis, gideon_Indole, gideon_Urea hydrolysis, gideon_Methyl red, gideon_-VP
(Voges Proskauer), gideon_-Gal (beta-galactosidase), gideon_Beta hemolysis, gideon_Hydrogen sulfide,
gideon_Esculin hydrolysis

Carbon Utilization madin_carbsubs_cellobiose, madin_carbsubs_glucose, madin_carbsubs_glycerol,
madin_carbsubs_lactose, madin_carbsubs_maltose, madin_carbsubs_mannitol, madin_carbsubs_sucrose,
madin_carbsubs_xylose, gideon_D-Arabitol, gideon_D-Mannose, gideon_Sucrose, gideon_D-Sorbitol

Growth Conditions madin_categorical_range_tmp,  madin_categorical_range_.pH, madin_quantitative_optimum_tmp,
madin_quantitative_optimum_pH, madin_quantitative_optimum_O2, madin_quantitative_growth_rate,
gideon_Growth on ordinary blood agar, gideon_Growth on MacConkey agar

Morphology madin_categorical gram_stain, madin_categorical _sporulation, madin_categorical _cell_shape,
madin_quantitative_average_cell_size, gideon_Motility, gideon_Spores, gideon_Shape: bacillus or
coccobacillus, gideon_Branching filaments present

Respiration Metabolism  madin_categorical_metabolism, gideon_Nitrate reduction, gideon_Alanine aminopeptidase, gideon_-O/F
glucose oxidizer, gideon_Gas from glucose, gideon_Glucose fermenter, gideon_Aerobe, gideon_Oxidase,
gideon_Facultative
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B ADDITIONAL MODELING & EVALUATION DETAILS

We outline the experimental details used for modeling & evaluation for all model types; DNA
Language Models (DNA LMs), protein Language Models (pLMs) and bacterial Language Models
(bLMs). Implementation and further details can be found at https://anonymous.4open.
science/r/BacBench-B6EF. All of the modeling code has been implemented in PyTorch
(Paszkel, [2019).

DNA LMs. For every model we load the public checkpoint (Supp. Table[d)) and keep the hidden
states of the last encoder layer. If a DNA string has length of G tokens, the encoder produces
X € RE*P; we collapse it with a simple mean-pool to obtain a vector

1 G
zZ = EZX“]’. ERD
g=1

Gene- & system-level. When the input gene (plus upstream promoter) is longer than the model
context C, we slide a window of length C' with stride s and embed each window. Averaging the M
window vectors {z(1), ..., z(™)} gives the final gene representation Zgene = 57 >, 2.

Genome-level. We treat the whole genome in the same way: split into C-bp windows, embed each,
and average; if several contigs are present we first average per-contig and then across contigs.

pLMs. A protein of K amino acids yields X € REX*P and z = % > x Xk,.. For genome-level tasks

we aggregate the M protein vectors in that genome via Zpro = ﬁ vail z;. Gene- and operon-level

tasks use only the proteins involved.

bLMs. gLM2 ingests mixed-modality genomic scaffolds in which protein-coding regions are
translated to amino-acid tokens and intergenic regions remain as nucleotide tokens. We tokenize
each scaffold into a single sequence up to the model context C' (4,096 tokens); longer scaffolds are
processed with a sliding window of length C' and stride s, mirroring the DNA LM setup. For each
window, we retain the last-layer hidden states and mean-pool to obtain a window vector z("™) ¢ R?;
genome-level embeddings average across windows (and across contigs when present):

Zgenome = % Z z(m)'
m=1
For gene essentiality and operon tasks, inputs include contextual flanking sequence to supply regu-
latory/positional cues, but the gene embedding is computed by averaging only the hidden states of
tokens that fall within the gene’s coordinates; empirically this has shown to outperform averaging the
entire slice.

Bacformer model takes as input local protein vectors z1, . . ., z); obtained exactly as in the pLM
setting. They are then ordered by their genomic coordinates (chromosome followed by plasmids)
so that the model can “see” genome organisation. Rotary positional embeddings (Su et al., [2024)
are added to these vectors and the ordered sequence is fed to a genome-level Transformer encoder
(Vaswani et al.,|2017) with L layers,

HO® = [Z1; ... ;20m], HHD = Transformer(e)(H(e)), £=0,...,L—1.

The output H") = [Z;;...;Z/] contains contextualised protein embeddings Z; € R” that encode
both the protein sequence and its genomic neighbourhood. During pre-training Bacformer learns
to predict which proteins co-evolved, so these embeddings capture functional coupling across the
genome.

Empirically, averaging token embeddings performed slightly better than using the special [CLS]
token, so mean pooling was used for every model throughout the paper.

B.1 GENERAL TRAINING DETAILS.

For all tasks and settings which required finetuning except gene essentiality prediction, we kept the
frozen backbone encoder model frozen, and only finetuned the neural network layer(s) stacked on
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Supplementary Table 4: Summary of benchmarked models. “Max ctx.” = maximum context length supported at
inference; for DNA models measured in base pairs, for pLMs in amino acids, and for Bacformer in number of
proteins present in the genome. “dim” = dimensionsionality of the output of the last hidden layer. *We use either
bacformer-masked-complete—genomes or bacformer-masked-MAG depending on the genome
type used as input. The DNA LMs, pLMs and bLLMs are separated by a horizontal line.

Ob;j Params  dim  Trainis

138M 768 B
H7M 768 My
250M 768 M
2IM 384 B
65B 4096 M
M
M
M
B:

Input Varia

DNA
DNA
DNA
DNA
DNA

512

512
2,048
4,096
8,192

35M 480
300M 960
420M 1,024
oacid  650M 1280 Ba
27M 480  Bacteri

Single protein seq.

1,024
1,024
1,024

lity (DNA & protein seq.)
Multiple protein seq n

4,096

« Masked sin 6,000

top of the model encoder. This was motivated by the computational cost required to embed all 67k
genomes with all models. Further details on runtime and computational cost can be found below.
We used Adam optimizer (Kingmal 2014) in all finetuning setups. All of the checkpoints used have
been downloaded directly from HuggingFace and are specified in Supp. Table[d For each task and
model combination, we tuned the learning rate keeping other parameters unchanged. Further details
on hyperparameters used for each task and setup can be found in task-specific sections below.

Supplementary Table 5: Model-specific context parameters used in this study. “Max ctx.” is the
maximum input length; “DNA-seq overlap” is the stride between consecutive windows when sliding
across a genome; “Promoter length” is the upstream sequence length concatenated for promoter
prediction.* For Bacformer the maximum input size of a protein is 1,024 amino acids and maximum
number of proteins in the genome is set to 6, 000.

Model Max ctx. DNA-seq overlap  Promoter length
Mistral-DNA 512 16 128
DNABERT-2 512 16 128
Nucleotide Transformer 2,048 32 128
ProkBERT 4,096 64 128
Evo 8,192 32 128
ProtBERT 1,024 N/A N/A
ESM-2 1,024 N/A N/A
ESM-C 1,024 N/A N/A
gL.M2 4,096 64 128
Bacformer 1,024 / 6,000* N/A N/A

B.2 TASK DETAILS

We outline the experimental details for each task, outlining the hyperparameters used and evaluation
setup. All of the experiments have been performed on a single NVIDIA A100 with 32 CPU cores.

Gene essentiality prediction. We stacked a single linear layer preceeded by a dropout of 0.2
and layer normalization (Ba et al.|2016) on top of the gene embeddings and trained it with binary
cross-entropy loss to predict gene essentiality (1=essential, 0=non-essential). We trained the model
for maximum of 100 epochs with early stopping patience of 10, monitoring the macro AUROC across
genomes on the validation set. For each model we tuned the learning rate specified in Supp. Table[6]
The weight decay for the Adam optimizer has been set to 0.02 for all models.

Evo. Evo natively does not provide straight-forward access to the output of the last hidden layer
of the model. Therefore, we experimented with two ways of extracting the gene embeddings from
Evo. Given a gene sequence G of size IV, 1) we used the script provided as part of the Evo
implementation (https://github.com/evo-design/evo) to score the log-likelihoods of
the nucleotides in a sequence, resulting in a vector z € R, and 2) modified the Evo model to return
the output of the last hidden state, resulting in a matrix X € RV*P, where D is model dimensionality
which here equals 4, 096. We then similarly as with other models took the average of all sequence
tokens resulting in a vector € RP. We include this Evo implementation in the BacBench code
repository (https://anonymous.4open.science/r/BacBench-B6EF). The option 1)
yielded much better results on the validation set, therefore, we used it for final benchmarking.
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Supplementary Table 6: Learning rates used for essential genes linear layer.

Method Learning rate
Mistral-DNA 0.005
DNABERT-2 0.005
Nucleotide Transformer 0.005
ProkBERT 0.01
Evo 0.001
ProtBERT 0.005
ESM-2 0.005
ESM-C 0.005
gLM2 0.001
Bacformer 0.005

Operon identification. The operon—identification task is evaluated zero-shot; no fine-tuning is
performed. We formulated operon prediction as a binary boundary classification problem, evaluating
whether two contiguous genes form an operon. To address this, we developed a method that
incorporates three features: (1) gene embeddings and (2) the strand of each gene.

First, we compute cosine similarity between adjacent genes using embeddings from the last hidden
layer of pretrained models. We also record each gene’s transcriptional strand from the genome
assembly.

We then define a simple score that combines similarity and strand co-orientation:
- — 1 -
$i = Cilgana, ¢ = 3(1+cos(hs, hiy1)),

where Igrana = 1 if both genes are on the same strand and O otherwise, and fz,;, }ALH_l are the /o-
normalised embeddings of genes ¢ and i+1. The score s; € [0, 1] serves as the operon-membership
score; a pair is classified as belonging to the same operon when s; exceeds a threshold. Mapping
cosine similarity to [0, 1] stabilizes the scale across models, while the strand indicator provides a hard
veto since genes on opposite strands do not belong to the same operon.

Performance is computed per strain.

Evo. Evo natively does not provide straight-forward access to the output of the last hidden layer
of the model. Therefore, we experimented with two ways of extracting the gene embeddings from
Evo. Given a gene sequence GG of size IV, 1) we used the script provided as part of the Evo
implementation (https://github.com/evo-design/evo) to score the log-likelihoods of
the nucleotides in a sequence, resulting in a vector z € R”, and 2) modified the Evo model to
return the output of the last hidden state, resulting in a matrix X € RV*P where D is model
dimensionality which here equals 4,096. We then similarly as with other models took the average
of all sequence tokens resulting in a vector z € RP. We include this Evo implementation in the
BacBench code repository (https://anonymous.4open.science/r/BacBench-B6EF).
The option 2) yielded significantly better results on operon identification, therefore, we used it for
final benchmarking.

Protein-protein interaction prediction. To predict whether the two proteins interact, we fed the
two protein embeddings into a linear model, which is trained to predict a binary label (1=interaction,
O=no interaction). The linear model is a single-layer neural network preceeded by a dropout of 0.2 and
layer normalization (Ba et al.|[2016). The protein embeddings are fed into the linear classifier, after
which the pairs of interacting proteins are averaged and passed through a final binary classification
layer preceeded by a dropout of 0.2. The model is trained to minimize the binary cross-entropy
loss. We experimented with different learning rates for all the models and set the final learning rate
to 0.001, which has shown to perform the best for all the models. We trained the model for the
maximum epochs of 10 and no early stopping patience. We set the maximum gradient norm to 2.0
and monitor the validation loss across genomes. The weight decay for the Adam optimizer is set to
0.01.

Strain clustering. To compute the strain-clustering metrics we run Leiden clustering (Traag et al.,
2019) over a grid of parameters. We vary the resolutionin [0.1, 0.25, 0.5, 1.0] and the
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number of neighboursin [5, 10, 15], evaluating every pairwise combination. Lower resolutions
are omitted to avoid collapsing many genomes into a single (or just a few) giant clusters. After
computing the clustering metrics for every parameter pair, we keep for each method the combination
that maximises the mean performance across species-, genus- and family-level labels. The Leiden
clustering is performed using the scanpy package (Wolf et al., 2018)).

Antibiotic resistance prediction. To predict the antibiotic resistance, we train a linear model for
each drug and method combination. The linear model is a single-layer neural network preceeded
by a dropout of 0.2 and layer normalization (Ba et al.,2016). We train the models separately for
the (i) binary and (ii) regression MIC prediction case. We optimize the former for the binary cross
entropy loss and the latter for the mean squared error loss. We train all models for the maximum of
100 epochs with early stopping patience of 5, monitoring the validation AUPRC in the binary setup
and validation R? in the regresssion setup. We experimented with various learning rates for each
model, setting the final learning rate to 0.005 which attained the best results across folds and seeds
for all models. We set the weight decay in the Adam optimizer to 0.01.

We have also experimented with training a multi-task linear model, which simultaneously predicts
antibiotic resistance of a genome to multiple drugs, however, it performed worse then a separate
linear model for each drug.

Phenotypic traits prediction. To predict a phenotypic trait from a genome-level embedding, we
train an linear model for each phenotype and method combination. The linear model is a single-layer
neural network preceeded by a dropout of 0.2 and layer normalization (Ba et al.l 2016). As all labels
are categorical, we optimize it to minimize the cross-entropy loss. We set the maximum number of
epochs to 2,000 and early stopping patience to 50, monitoring the validation loss. The learning rate
for all models was set to 0.01. We use the cross-entropy loss. To account for the class imbalance, we
weigh each class according to:

N
_Knc’

We

ey

where 7. is the number of training samples in class ¢, K is the total number of classes, and [V is the
total number of training samples.

Runtime analysis. A typical bacterial genome contains on the order of 3,000—5,000 genes and
~ 4—6 Mbp of DNA, with average protein lengths of ~ 300 amino acids; embedding an entire
genome therefore entails thousands of forward passes for protein LMs and millions of tokens for
DNA LMs, making raw throughput a practical bottleneck for population-scale studies. We measured
the wall-clock time required to embed the 7/ genomes used in the operon identification task on a
single NVIDIA A100 and extrapolated to BacBench’s full collection of 67,000 genomes (Table[7).
The fastest models are ESM-2 and Bacformer (64-67 s for 11 genomes; ~1.2—1.25k GPU-hours for
67k genomes). DNA LMs add a modest cost (e.g., 93 s for Mistral-DNA; 168 s for DNABERT-2)
yet remain tractable on a single GPU. In stark contrast, the 6.5B-parameter Evo is ~ 10*x slower
(5.76x10° s for 11 genomes, i.e., ~14 h per genome), yielding an impractical ~1.07x 107 GPU-
hours for 67k genomes on one GPU. These measurements underline that—even when accuracy is the
primary goal—runtime quickly becomes the limiting factor for population-scale analyses.

Beyond embedding costs, fine-tuning on genome-level tasks requires backpropagating through all
proteins per genome (median ~2,506 proteins across our datasets) or through multi-megabase DNA
contexts, which dramatically amplifies memory and compute, requiring often ;200 NVIDIA A100
GPUs for a single genome. Practically, this makes genome-scale fine-tuning out of reach for most
academic labs for DNA LMs and pLMs, while remaining feasible for Bacformer-style bLMs; thus,
linear-probe evaluations are a necessary, controlled proxy for model selection at scale.

B.3 DATASETS & MODELS LICENSES
To ensure that our datasets and benchmarks are reusable in the academic setting, we checked the

license for each resource used in the manuscript. The Supp. Table[§]details a license for all models
and datasets used in the manuscript.
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Supplementary Table 7: Embedding runtime (s=seconds) on the operon identification task (11
genomes) on one NVIDIA A100 GPU and the extrapolated wall-clock time (h=hours) to process the
entire collection of 67k bacterial genomes on the same hardware.

Model Runtime (s) Estimated time for 67 k genomes (h)
Mistral-DNA 93 1,731
DNABERT-2 168 3,127
Nucleotide Transformer 100 1,861
ProkBERT 106 1,973
Evo 575,629 10,712,540
ProtBERT 95 1,768
ESM-2 64 1,191
ESM-C 137 2,550
gLM2 182 3,387
Bacformer 67 1,247

Supplementary Table 8: External resources used in this study and their licences.

Resource Type Licence

ESM-2 Model MIT

ESM-C Model Cambrian Open License Agreement
ProtBERT Model Academic Free License v. 3.0
gl M2 Model Apache 2.0
Bacformer Model Apache 2.0
DNABERT-2 Model Apache 2.0
ProkBERT Model MIT

Evo Model Apache 2.0
Nucleotide Transformer Model CCBY-NC-SA 4.0
Mistral-DNA Model Apache 2.0

MGnity Data CCO0 1.0 Universal
NCBI AST Browser Data Public domain (U.S. Gov data)
NCBI GenBank/RefSeq Data Public domain (U.S. Gov data)
Database of Essential Genes Data CCBY 4.0

Operon DB Data CCBY 4.0

STRING DB Data CCBY 4.0

C ADDITIONAL RESULTS

We show and discuss further results across all tasks. To allow for comparability in future work, we
include tables with all numerical results as well as per antibiotic and phenotypic traits scores.

C.1 GENE ESSENTIALITY PREDICTION

The results on AUPRC show the bLMs and pLMs outperforming DNA LMs (Supp. Fig[7). gLM2
performs the best, showing the benefits of taking as input both DNA as well as protein sequence in-
formation. Moreover, increasing the pLM size appears to further boost performance, as demonstrated
by ESM-C (300M) and ProtBERT (420M) outperforming ESM-2 (35M). Bacformer outperforms
its protein representation backbone ESM-2, showing the benefits of incorporating whole-genome
context. Evo outperforms other DNA LMs, except ProkBERT, demonstrating the performance gain
by conducting pretraining on a relevant corpus. Finally the results on AUPRC show that there is large
room for improvement. We believe that increasing the number and diversity of annotated genomes
would significantly boost model performance.

The Supp. Table 9] shows the exact results across AUROC and AUPRC measured across disinct
genomes.

Finetuning performance. To further analyse model performance, we have conducted finetuning on
the gene essentiality task. The results show that finetuning boosts performance (Table[I0); however,
the model ranking remains largely unchanged, with the pLMs and bLMs outperforming DNA LMs.
We have excluded Evo from finetuning due to the computational complexity required to finetune
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Evo (Table[7). Gene essentiality is the only task for which we finetuned all models; genome-level
tasks such as antibiotic-resistance prediction require end-to-end, whole-genome context and are
prohibitively expensive for all models except Bacformer—underscoring the need for models that can
be finetuned efficiently for whole-genome tasks.

0.8

0.7

& S e:@ga <
Supplementary Figure 7: AUPRC across test genomes on the gene—essentiality prediction task. The box spans
the inter-quartile range with a line marking the median value.

Supplementary Table 9: Overall performance on gene—essentiality prediction. Values are mean +
standard deviation over 3 random seeds; the best score for each metric is highlighted in bold.

Method AUROC AUPRC

Mistral-DNA 5752 £2.86 22.69 £ 14.21
DNABERT-2 6821 £7.17 3576 + 12.46
Nucleotide Transformer  67.03 +5.56  31.78 4= 11.88
ProkBERT 74.79 £6.22 4479 £ 15.25
Evo 7371 £7.10  39.08 & 15.21
ESM-2 77.99 £5.82  46.23 £+ 15.87
ESM-C 8225 £6.04 55.08 £15.83
ProtBERT 80.72 £5.85 52.00 £ 15.90
gLM2 83.77 £ 6.17 58.61 & 14.96
Bacformer 80.72 £5.87 50.33 £15.43

Supplementary Table 10: Overall finetuning performance on gene—essentiality prediction. Values are
mean =+ standard deviation over 3 random seeds; the best score for each metric is highlighted in bold.

Method AUROC AUPRC

Mistral-DNA 62.18 £7.87 28.81 £13.51
DNABERT-2 74.88 £ 16.75 56.12 4+ 29.71
Nucleotide Transformer 73.06 £ 14.99 48.56 + 28.65
ProkBERT 69.88 = 8.60  44.98 4 14.36
ESM-2 8536 +9.12 6442 +17.79
ESM-C 89.96 £7.53  71.85 £ 14.49
ProtBERT 91.31 +73.02 73.02 £ 16.56
gL.M2 90.12 £7.87 74.03 & 21.70
Bacformer 90.31 £7.40 72.13 £15.16

C.2 OPERON IDENTIFICATION

The AUPRC follows the same trend as the AUROC described in the main manuscript: Bacformer
attains the best scores, ProkBERT ranks second, and the remaining DNA LMs and pLMs form
a tight cluster with broadly comparable performance—reinforcing that genome-level context and
bacteria-specific pretraining matter more than modality alone; absolute AUPRC values are lower (as
expected under class imbalance) but track the same model ordering.
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Supplementary Figure 8: AUPRC across test genomes on gene essentiality prediction task. The box spans the

inter-quartile range with a line marking the median value.

Supplementary Table 11: Overall performance on operon identification. Values are mean + standard
deviation; the best score for each metric is highlighted in bold.

Method AUROC AUPRC

Mistral-DNA 74.16 +9.70 47.48 +29.47
DNABERT-2 74.13 £ 10.14  47.53 + 30.07
Nucleotide Transformer 74.50 £ 8.57 48.19 4+ 27.47
ProkBERT 75.77 +9.69 49.03 4+ 30.07
Evo 74.77 £+ 8.33 48.21 4+ 28.27
ESM-2 73.02 £10.30  46.27 +29.55
ESM-C 75.25 £9.26 47.79 4+ 29.39
ProtBERT 75.11 £+ 8.65 47.58 +27.98
gLM2 72.85 +£10.77  45.86 + 30.18
Bacformer 77.59 + 6.64 50.31 + 26.61

C.3 PROTEIN-PROTEIN INTERACTION PREDICTION

The protein-protein interaction (PPI) prediction results on AUPRC (Supp. Fig. [9) show that contextual
pLM, Bacformer, consistently outperforms other methods. We credit it to its usage of the genomic
context. Moreover, the performance does not increase by scaling the model size, as shown by
ESM-C and ProtBERT underperforming ESM-2. The overall results (Supp. Table[12) show relatively
low performance considering the trainins set size (; 7k genomes) even in the finetuned setting. We
believe this is due to the 1) complexity of the task, 2) noisy source data, as STRING DB where the
interactions have been extracted from collates information from a variety of sources and is not limited
to experimentally validated interactions, highlighting the importance of building high quality PPI
datasets.

B ESM-2 °
[ ProtBert

B ESM-C

[ Bacformer

0.8 1

0.6

AUPRC

0.2 q

8 3

0.0 +

Zero-shot Finetuned
Supplementary Figure 9: AUPRC across test genomes on the protein—protein-interaction task in both zero-shot
and fine-tuned settings. The box spans the inter-quartile range with a line marking the median.
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Supplementary Table 12: Protein—protein-interaction prediction on the held-out genomes. Values are
mean =+ standard deviation over five seeds; the best score for each metric is shown in bold.

Method Zero-shot Finetuned

AUROC AUPRC AUROC AUPRC
ESM-2 56.46 £2.10 1494 £6.04 76.62 +2.35 40.68 +10.71
ProtBERT 47.20 +3.88 11.454+4.89 74.054+2.53 38.15+£11.16
ESM-C 55.17 £2.66 1333 £4.61 7421+2.37 37.30410.98
Bacformer 63.09 +2.73 18.20 = 6.28 79.09 £ 2.25 43.47 + 10.61

C.4 STRAIN CLUSTERING

In addition to the strain clustering metrics included in the main manuscript, we plotted 2-dimensional
UMAP results colored by species (Supp. Fig. [I0), genus (Supp. Fig. [IT) and family (Supp. Fig.[12)
for a subset of models for further investigation. The UMAPs show that the strain representations
differ between the models. All models cluster strains into separate species clusters, however, not all of
them retain the phylogenetic similarities between species in the same genus or family. We also notice
that the DNA LMs tend to output less overlapping species clusters, which boosts its performance at
species level, but leads to lower results at higher taxonomic levels (genus and family).
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Supplementary Figure 10: UMAP plots of strains (i.e. genome-level embeddings) across diverse methods

colored by species.
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C.5 ANTIBIOTIC RESISTANCE PREDICTION

On the following pages we present the results per antibiotic across metrics. This includes binary
prediction results (susceptible/resistant, Supp. Table[I3) and MIC regression prediction results (Supp.
Table[T4). Each antibiotic was run across 5-folds with 3 random seeds to avoid variance stemming
from random initialization and data-split bias. In the binary prediction setting the bLM-Bacformer
outperforms other methods, achieving the best AUROC on 26 drugs, AUPRC on 27 drugs and
F1 on 24 drugs out of 37 in total. Thus, showcasing the benefits of considering the interactions
between proteins present in the genome. In the regression setting, Bacformer attains the best result
on 44 drugs on R? and 45 on Pearson correlation coefficient out of total of 56 antibiotics. Finally,
we see large variance across as well as within drugs. The former can be partly explained by the
variable number of labels available per antibiotic, while the latter shows that, even within a single
antibiotic, model performance can fluctuate markedly across folds and random seeds—highlighting
sensitivity to sample composition and pointing to the need for larger, more balanced datasets or
stronger regularisation to obtain stabler estimates.
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C.6 PHENOTYPIC TRAITS PREDICTION

We measure the AUPRC across phenotype groups (Supp. Fig. [[3)) as well as overall performance
across metrics and all phenotypic traits (Supp. Table[T5), and groups (Supp. Table[I6). Finally, we
include the results for each individual phenotype (Supp. Table [I7] & [I8). Analyzing performance
across phenotype groups and metrics (Supp. Fig. [[3]& Supp. Table[16), bLM-Bacformer achieves
the best or combined best result across all groups and metrics, showing the benefits of incorporating
genomic interactions into phenotype prediction models. Across metrics and phenotypes, Bacformer
achieves the best result on 80 phenotypes on AUROC, 78 on AUPRC and 86 on F1 out of a total of
139 phenotypes. Therefore, showing that there is a considerable variation between phenotypes and
one should choose a model specific for a phenotype. We believe this is due to the variable number
of labels available for a phenotype as well as the inherent differences in the phenotypes themselves,
which make some phenotypes easier to predict using a computational approach than others.

Predicting phenotypes is often a very challenging task which includes understanding the effect of
mutations and multi-level genomic interactions. However, accurately predicting phenotypes could
allow us to engineer genomes for a desired purpose, such as sustainable bioproduction, thus having
potentially massive positive impact. We believe that next-generation models should consider the
genomic context and incorporate the prior knowledge, such as genome-scale metabolic models to

make the most out of available data for a given phenotype.
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Supplementary Figure 13: AUPRC across diverse phenotypic traits groups and methods. The box spans the
inter-quartile range with a line marking the median value. The results were macro-averaged across classes for
each phenotype.

Supplementary Table 15: Overall phenotypic traits prediction performance across all phenotypes.
Values are mean =+ standard deviation across 5 seeds. The results were macro-averaged across classes
for each phenotype.

Method AUROC AUPRC F1

Mistral-DNA 60.34 £9.81 39.72 +33.09 47.25+6.67
DNABERT-2 63.83 £11.06 42.10 +£34.24 4942 4+ 8.99
Nucleotide Transformer 6598 +11.45 4322 +34.85 52.04 +11.07
ProkBERT 67.64 £11.87 44.80+34.72 52.03+11.56
ESM-2 68.71 £12.36 45.61 £35.45 53.10+11.90
ESM-C 69.07 = 11.98 45.54 +35.38 52.28 +11.39
ProtBERT 68.47 £11.97 4547 £34.89 53.71 +£11.65
gL.M2 65.82 &= 11.41 44.00 &=34.40 51.11 & 10.86
Bacformer 71.34 1291 47.80 - 35.99 56.14 - 13.19
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Supplementary Table 16: Phenotype-group prediction results; mean + standard deviation over five
random seeds. The highest score in each column is shown in bold. Results are macro-averaged across

classes for each phenotype.

Method Biochemical activity Carbon utilisati Growth conditions Morphology Respiration & metabolism
AUROC AUPRC FI AUROC AUPRC Fl AUROC AUPRC F1 AUROC AUPRC Fl AUROC
Mistral-DNA 546741273 79.60£1006 4448£240 5817725 279552792 4667+£325 63734434 40583770 3680+ 1774 70071196 72052363 5281992 TLI9E IS4 7730+ 1847
- 59884916 82394855 46194605 2829 47634390 712241707 4941+4069 458942795 791541239 797542257 568341423 768841106 80.97 £ 1672
Nucleotide Transformer 6374 £859 8340+ 847 5062+ 488 2872 4920£403 7933+ 1337 S082£4L12 SIT3£3388 7963+ 1400 789442627 61552066 81741026 8390+ 1608
ERT 6184889 83414829 49524528 2850 49344449 86104833 568243742 490742041 827641295 812942640 61872345 8491-£816 8555+ 1614
ESM-2 628641275 83304929 51304954 £2934 49384458 81701120 569743748 527042963 §7.97+1047 89361486 TLALE£ 1824 8346+ 1148 8663+ 1562 6611 %1631
ESM-C 627161190 8390£816 50824924 2054 49274424 TRTNE1527 534424005 SST243SBI 8805967 872642001 676842043 BLI9LI2I3 85051695 6105+ 1490
ProtBERT 6193£1325 8230+ 1008 5078 +7.31 2914 5030+505 82071145 5406+3932 548743397 832741336 8610+ 1870 6S.60+ 1870 8471840 8648 £ 1450
gLM2 60396839 82714945 2827 48654406 71552657 SLI0E4136 454942739 774441690 B279 42188 62182077 8226924 842241668
Bacformer 674251645 86324903 339453024 5199+ 644 8618985 582543722 595343308 89531001 9LI3EIS07 702041926 SIS 931 89.19 £ 1412
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D BROADER IMPACT & LIMITATIONS

Broader impact BacBench provides the first public, multi-task testbed that spans gene-, system-
and genome-scale prediction problems over 67k genomes from 17.6k species. By standardising data
splits, evaluation code and baseline embeddings, it lowers the entry barrier for machine-learning
researchers who lack domain-specific pipelines yet want to work on microbial genomics. In the near
term, more reliable essential-gene or antibiotic-resistance predictors could shorten drug-development
cycles and inform stewardship policies, while better phenotype-from-genome models will accelerate
the search for chassis strains that sequester carbon, degrade waste or synthesise valuable biochemicals.
Because the benchmark emphasises cross-species generalization, methods that succeed on BacBench
are naturally suited to poorly studied or newly sequenced taxa, helping global health laboratories track
emerging pathogens even when only draft assemblies are available. Finally, releasing all data under
permissive licences and exposing a HuggingFace hub invites continual community contributions,
which should foster an open, comparative culture similar to computer-vision or NLP benchmarks
and, in turn, drive rapid, reproducible advances in microbial bio-Al research.

Limitations Despite its breadth, BacBench still samples an uneven slice of bacterial diversity:
phenotypic-trait labels cluster heavily around medically important genera, and some antibiotic classes
remain sparsely represented, which could bias models towards well-studied lineages and mechanisms.
Tasks that matter for ecology and biotechnology—horizontal-gene-transfer detection, host—phage
interaction, metabolic-flux prediction or transcriptome conditioning—are absent, so performance
on BacBench should not be interpreted as general mastery of bacterial genomics. Moreover, the
benchmark inherits experimental noise from upstream databases: STRING DB interaction scores
mix heterogeneous evidence; operon annotations are incomplete; and phenotype labels amalgamate
disparate growth protocols, introducing label uncertainty that caps achievable accuracy. Finally,
computing embeddings for every update is resource-intensive, which may hinder participation from
groups without access to multi-GPU servers, although smaller surrogate splits are planned for future
releases.
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