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ABSTRACT

This paper introduces LST-Bench, a comprehensive benchmark designed for eval-
uating long sequence time-series forecasting(LSTF) models. This benchmark has
been developed in response to recent advancements in deep learning methods in
the field of LSTF tasks. LST-Bench includes Transformer-based, MLP-based,
CNN-based, and RNN-based models, evaluating the performance of 11 major
forecasting models on a set of commonly used 7 datasets and 7 new datasets that
we have introduced. We conduct a thorough analysis of the experimental results,
including the overall prediction performance of models and their generalization
across different prediction lengths and datasets. Notably, we found that regardless
of the model architecture, the phenomenon referred to as ”Degeneracy” occurs
when the model’s predictions consistently maintain a low Mean Squared Error
value but are characterized by repetitive and simplistic pattern generation, thus
losing the meaningfulness of the predictions. Also, the model’s optimal perfor-
mance is very close to its performance after training for just one epoch. These
two phenomenons emphasize the need for further investigation. Our LST-Bench
will serve as a valuable resource for advancing research in the field of time series
forecasting.

1 INTRODUCTION

Time series analysis plays a crucial role in practical applications, and its significance is evident in its
capability to provide strong support for decision-making, trend forecasting, and problem-solving by
mining patterns and trends in historical data, especially for complex problems that change over time.
Time series forecasting has always been a central issue in the field of time series. In 2021, Zhou
et al. (2021) introduced the concept of long-term time series forecasting for the first time, leading
to the emergence of many new models in this field, including variations of Transformer (Vaswani
et al. (2017)), CNN, RNN, and MLP/FC structures. In 2023, Zeng et al. (2023) raised an important
question about the practical effectiveness of the Transformer structure in long sequence time-series
forecasting. At the same time, Nie et al. (2022) addressed the concerns about the effectiveness
of Transformer-based solutions for LSTF problem in their research and successfully achieved per-
formance surpassing by a simple MLP-based model on widely used datasets, thereby providing
valuable insights and innovations for the development of the field of time series forecasting.

To comprehensively evaluate the currently widely used long sequence time-series forecasting mod-
els, we propose the LST (Long Sequence Time Series) benchmark, which conducts a comprehensive
assessment of the major 11 time series forecasting models. In addition to covering common datasets
such as Weather, Traffic, Electricity, and 4 ETT datasets, we introduce 7 new datasets called NEW,
enriching the data samples and diversity for time series evaluation, providing a broader range of
experimental resources and challenges for the time series field. Simultaneously, we conducted ex-
periments at four different prediction lengths, covering prediction intervals from 96 to 720 time
steps, to evaluate the performance differences of the models in short-term and long-term forecast-
ing. Furthermore, we conducted experiments related to the length of the model input sequence,
prediction consistency, execution speed, and generalization, to compare the comprehensive perfor-
mance of different models and elaborate on their similarities and differences.

After benchmark testing experiments, we propose some new academic viewpoints and questions
for the current time series forecasting tasks. Firstly, we notice that in the context of addressing
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LSTF problems, all models exhibit significantly faster convergence compared to models within the
NLPDevlin et al. (2018), CVLiu et al. (2021b), and speech recognizationDong et al. (2018) domains,
which indicate that it does not fully capture the complex patterns and information in the time-series
data. Secondly, in nearly all models, we have observed a phenomenon we named as Degeneracy,
which signifies that the model’s predictions exhibit lower MSE/MAE values, yet in fact, the fore-
casted outcomes tend to manifest as periodic repetitions, failing to genuinely predict the future data.
We believe it is because the current metrics fail to adequately reflect the actual requirements of time
series forecasting tasks or are influenced by certain data characteristics. Addressing this issue re-
quires a reevaluation or redefinition of evaluation metrics applicable to time series forecasting to
more accurately measure model performance, model design, and improvement on that. These issues
require in-depth research and discussion to further advance the field.

2 RELATED WORK

2.1 TIME SERIES PREDICTION MODEL

2.1.1 TRANSFORMER BASED

Transformer architecture stands out as one of the most prominent and widely applied model archi-
tectures in the field of deep learning. After making remarkable strides in NLP tasks, it swiftly found
its way into the domain of time series analysis, giving rise to a continuous stream of innovative
models built upon this foundational structure. In Wu et al. (2020), a Transformer structure similar
to GPT was first used to tackle time series forecasting tasks with promising results.

While demonstrating the effectiveness of the Transformer architecture in the field of time series, it
still encounters challenges related to quadratic computational complexity and high memory usage,
particularly when dealing with long sequence forecasting. To address these problems, LogTrans Li
et al. (2019) combined CNN and Transformer and introduced a convolutional self-attention mecha-
nism. In the attention layer, causal convolutions are used to generate queries and keys. Additionally,
it introduced a log-sparse mask, reducing the model’s complexity from O(L2) to O(L logL). In-
former Zhou et al. (2021) observed that attention scores in the original Transformer follow a long-tail
distribution. Therefore, it selects important queries for computation based on query-key similarity,
achieving similar computational complexity as LogTrans. Informer also designs a generative-style
decoder for direct long-term forecasting to avoid cumulative errors in one-step predictions for long-
term forecasts. Pyraformer Liu et al. (2021a) structures multiple layers into a pyramid-like structure,
reducing the number of similarity calculations between nodes, thus lowering complexity while en-
suring the effectiveness of capturing long-term dependencies.

On the other hand, some research explores frequency-domain self-attention mechanismsTorrence
& Compo (1998) and decomposition mechanismsCleveland et al. (1990) in time series modeling.
Autoformer Wu et al. (2021) introduces a short-term trend decomposition architecture and employs
autocorrelation mechanisms in its attention module. Unlike previous attention mechanisms, autocor-
relation measures the time-delay similarity between input signals and aggregates the top-k similar
subsequences to produce outputs with O(L logL) complexity. FEDformer Zhou et al. (2022) calcu-
lates attention mechanisms in the frequency domain using Fourier and wavelet transforms, randomly
selecting a fixed-size subset of frequencies, achieving linear complexity.

PatchTSTNie et al. (2022) introduced the concept of patching for the first time in the field of time
series, thus disrupting the traditional approach of predominantly using point-wise attention in the
most of existing models. The introduction of patches enhances the model’s ability to learn infor-
mation from data sub-series, with a greater focus on the interrelatedness between these sub-series.
The use of sub-series also facilitates the model in capturing data periodicity more effectively, as it
readily identifies repetitions or similarities among sub-series while attending to their relationships.
In the experimental section, we observed that models employing sub-series attention mechanisms
and decomposition outperform those using point-wise attention.

2.1.2 MLP BASED

The N-BEATS Oreshkin et al. (2019) model is a novel time series forecasting backbone introduced
in 2019, which achieves time series forecasting solely through fully connected layers. In N-BEATS,
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the input is limited to a single time series and does not allow for the inclusion of external features
such as date information, holiday information, or attribute information, which are important in time
series forecasting tasks. To address this limitation, N-BEATSx Olivares et al. (2023) was proposed,
allowing the integration of external features into the N-BEATS model. DLinear Zeng et al. (2023)
questions the necessity of using Transformers for LSTF problem, and shows that a simpler MLP-
based model can achieve better results compared to some Transformer baselines through empirical
studies.

2.1.3 RNN BASED

LSTM (Long Short-Term Memory) Chung et al. (2014) was introduced as an improvement over
basic RNNs to address the vanishing gradient or exploding gradient problem when dealing with
long-term dependencies. LSTM uses gate mechanisms, including the forget gate, input gate, and
output gate, to control the flow of information. This allows LSTM to capture long-term dependencies
and is suitable for tasks that require memorizing information over long intervals. GRU (Gated
Recurrent Unit) Cho et al. (2014) is a structure similar to LSTM but simplifies the gate mechanisms
to only two: the update gate and the reset gate. GRU performs comparably to LSTM in some cases
but has fewer parameters and trains faster.

2.1.4 CNN BASED

CNN (Convolutional Neural Network) is typically composed of layers such as the input layer, con-
volutional layers, activation layers, pooling layers, and fully connected layers. It is primarily used
for tasks like image classification, but in recent years, CNN-based variants have been applied to time
series forecasting tasks as well. SCINet Liu et al. (2022) constructs basic blocks called SCI-blocks.
These blocks sub-sample the input data into two sub-sequences and use different convolutional fil-
ters to extract features from each sub-sequence, preserving information about different features. To
mitigate the impact of information loss during subsampling, SCINet introduces learning of convo-
lutional features between sequences within each SCI-Block.

2.2 EXISTING BENCHMARK

At present, there is a notable scarcity of benchmarks for time series forecasting, and the few bench-
marks available are considerably dated, with limited representation of deep learning methodolo-
gies. Libra Bauer et al. (2021) only includes statistical and machine learning methods such as
ARIMAZhang (2003), XgboostChen & Guestrin (2016), and Random ForestBreiman (2001). Is-
mail et al. (2020) focuses specifically on addressing the interpretabilityHooker et al. (2019) of time
series prediction problems. Our work can be considered as the first benchmark for this problem after
the widespread application of deep learning in time series forecasting.

3 EXPERIMENT DESIGN

3.1 PROBLEM SETUP

The definition of a time series forecasting problem is as follows. Given the input sequences Xt =
{xt

1, ...,x
t
Lx

|xt
i ∈ Rdx} at time t, time scries forecasting is to predict the output sequences Yt =

{yt
1, ...,y

t
Ly

|yt
i ∈ Rdy}, where xt

i(or yt
i) is a subserie with dimension dx(or dy) at the t-th moment.

In the long sequence time-series forecasting (LSTF) problem, the following more conditions are
required. Firstly, the output’s length Yt is longer than previous work (Cho et al. (2014); Sutskever
et al. (2014)), like predicting 48 points or less(Hochreiter & Schmidhuber (1997);Li et al. (2017);Yu
et al. (2017);Liu et al. (2020);Qin et al. (2017);Wen et al. (2017)); Secondly, the feature dimension
of the output is not limited to univariate case(dy ≤ 1).
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3.2 DATASETS

3.2.1 DATASETS DESCRIPTION

Our dataset NEW consists of two years’ worth of 15-minute-level data from the power industry,
primarily used for equipment monitoring in the electricity sector. The data will be made open
source.

We perform experiments on 7 commonly used public datasets, including 4 ETT datasets Zhou et al.
(2021), Weather, ECL, Traffic, and our 7 NEW datasets. The train/val/test is 12/4/4 months for
ETT and NEW. As for ETT, Weather, ECL, Traffic, the ratio of train/val/test is 7:2:1.The 7 com-
monly used public datasets’ details please refer to AppendixA.6.

3.3 FAIRNESS

In order to ensure fairness, we restricted several key conditions to the same:

Platform: All models were trained and tested on the single Nvidia V100 32GB GPU.

Metrics: We chose two metrics: Mean Square Error(MSE) and Mean Absolute Error(MAE), where
MSE = 1

n

∑n
i=1(y − ŷ)2 and MAE = 1

n

∑n
i=1 |y − ŷ|. For each model, we test on each sliding

prediction window and roll the whole test set with stride = 1. The final result is the average of the
results of all Windows.

Dataset: All models were trained and tested using the data and partitioning methods mentioned in
Section 3.2. The input data length of all experiments is unified to 336, and the predicted data length
is unified to 192.

Implemention: Unless otherwise specified, for all models evaluated in the benchmark, we used the
model code and scripts from the model authors’ open-source code repository. Hyperparameters and
scripts were kept consistent with the defaults. We do not implement RevIN(Kim et al. (2021)), which
is a general normalization method. For specific model replication details, please refer to Appendix
A.2.

4 RESULTS AND EVALUATION

Overall Prediction Accuracy: Table 1 summarizes the multivariate time series prediction results
of the top 6 models in terms of overall performance on the 7 NEW datasets we provided. For full
benchmark results, please refer to Appendix A.1. The experiment is designed to test the models’
overall prediction performance and their ability to handle longer prediction lengths.

We find that the performance rankings of the models (see Table 2) can be broadly categorized into
three tiers and others. The performance of models in each tier is closely matched:

• The first-tier models are PatchTST and DLinear, with average rankings 1 to 2.
• The second-tier models are SCINet and FEDformer, with average rankings 3 to 4.
• The third-tier models are Autoformer and N-BEATS, with average rankings 5 to 6.

From a model architecture perspective, the high-performing models are those based on Transformer
architecture, MLP/FC architecture, and CNN architecture, whereas RNN architecture models con-
sistently underperform.

From figure 1, the rankings of various models are very stable across different datasets and prediction
lengths. Upon averaging the results across all datasets, minimal fluctuations in model rankings are
evident, with most models experiencing marginal variations of approximately one position. From
more details about the stability of the rankings, please refer to Appendix A.5.

Results of prediction consistency within different prediction length: We assume that the pre-
diction results of a model should be more and more inaccurate with the prediction length becomes
longer. We proceeded to verify the consistency of model predictive accuracy with changing predic-
tion horizons. From Table 3, within the prediction lengths of {336, 720}, all Transformer structure
models exhibit some degree of inconsistency on several datasets. Conversely, MLP/FC structure
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Table 1: Multivariate long-term series forecasting results on 7 NEW datasets with input length
I = 336 and prediction length O ∈ {96, 192, 336, 720}. A lower MSE indicates better performance,
and the best results are highlighted in bold. For full benchmark results please refer to Appendix A.1.

Prediction
96 192 336 720

MSE MAE MSE MAE MSE MAE MSE MAE

NEW1

PatchTST 0.079 0.163 0.141 0.251 0.161 0.261 0.318 0.425
DLinear 0.079 0.161 0.111 0.200 0.146 0.237 0.247 0.344
SCINet 0.088 0.169 0.128 0.213 0.167 0.252 0.242 0.312

FEDformer 0.105 0.220 0.136 0.253 0.180 0.285 0.228 0.317
N-BEATS 0.108 0.211 0.226 0.324 0.278 0.361 0.339 0.398

Autoformer 0.252 0.349 0.264 0.362 0.355 0.420 0.380 0.427

NEW2

PatchTST 0.105 0.214 0.156 0.267 0.183 0.280 0.330 0.377
DLinear 0.079 0.174 0.110 0.209 0.148 0.245 0.320 0.389
SCINet 0.089 0.189 0.133 0.239 0.178 0.279 0.312 0.378

FEDformer 0.143 0.274 0.183 0.308 0.233 0.343 0.304 0.387
N-BEATS 0.118 0.234 0.231 0.341 0.292 0.382 0.390 0.432

Autoformer 0.300 0.383 0.279 0.363 0.362 0.423 0.474 0.472

NEW3

PatchTST 0.210 0.321 0.269 0.372 0.312 0.402 0.400 0.463
DLinear 0.200 0.311 0.265 0.366 0.323 0.412 0.455 0.502
SCINet 0.233 0.344 0.361 0.436 0.554 0.545 0.825 0.676

FEDformer 0.304 0.409 0.346 0.435 0.383 0.461 0.465 0.510
N-BEATS 0.255 0.359 0.321 0.412 0.361 0.437 0.431 0.485

Autoformer 0.379 0.460 0.451 0.506 0.478 0.507 0.483 0.509

NEW4

PatchTST 0.506 0.404 0.530 0.435 0.621 0.478 0.844 0.571
DLinear 0.397 0.373 0.493 0.422 0.626 0.487 0.905 0.616
SCINet 0.514 0.415 0.636 0.476 0.785 0.545 1.072 0.677

FEDformer 0.543 0.458 0.628 0.495 0.713 0.523 0.928 0.605
N-BEATS 0.625 0.466 0.803 0.561 0.998 0.631 1.202 0.710

Autoformer 0.900 0.624 1.017 0.667 1.096 0.676 1.419 0.760

NEW5

PatchTST 0.191 0.296 0.240 0.342 0.297 0.385 0.409 0.461
DLinear 0.181 0.283 0.220 0.320 0.276 0.369 0.395 0.455
SCINet 0.194 0.303 0.251 0.354 0.327 0.413 0.435 0.485

FEDformer 0.239 0.353 0.290 0.393 0.350 0.432 0.444 0.485
N-BEATS 0.393 0.391 0.639 0.524 0.802 0.598 0.986 0.671

Autoformer 0.876 0.650 0.860 0.637 1.017 0.694 1.220 0.773

NEW6

PatchTST 0.284 0.364 0.306 0.392 0.377 0.440 0.434 0.491
DLinear 0.263 0.356 0.294 0.385 0.332 0.419 0.432 0.497
SCINet 0.275 0.366 0.316 0.407 0.357 0.435 0.469 0.512

FEDformer 0.347 0.430 0.377 0.452 0.407 0.473 0.497 0.529
N-BEATS 0.207 0.322 0.296 0.396 0.347 0.437 0.414 0.484

Autoformer 0.405 0.488 0.413 0.488 0.380 0.468 0.427 0.490

NEW7

PatchTST 0.663 0.504 0.762 0.552 0.837 0.594 0.944 0.654
DLinear 0.629 0.487 0.699 0.531 0.782 0.574 1.050 0.700
SCINet 0.654 0.527 0.744 0.566 0.861 0.619 1.099 0.720

FEDformer 0.979 0.643 1.094 0.667 1.241 0.733 1.123 0.734
N-BEATS 0.754 0.588 0.945 0.668 1.027 0.712 1.096 0.768

Autoformer 1.060 0.744 1.000 0.725 1.108 0.775 1.233 0.819
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Figure 1: The average ranking of the model across different prediction lengths. From left to right,
top to bottom, these are rankings of various models on a specific dataset at prediction lengths in
{96, 192, 336, 720}. The lighter the color, the higher the ranking. The number in the center of each
square represents the model’s ranking on that dataset. Firstly, we sorted the predictions made by
all models for each prediction horizon within each dataset. Then, we averaged the rankings across
different prediction horizons within the same dataset. In cases where rankings were tied, they were
considered equivalent.

Table 2: The average ranking of models across different prediction lengths. Obtained by taking the
average of model performance rankings across all datasets.

PatchTST Dlinear SCINet FEDformer N-BEATS Autoformer Pyraformer Informer Reformer GRU LSTM

96 2.4 1.8 3.1 4.4 4.8 7.0 8.5 7.6 7.9 8.6 9.6
192 2.2 1.4 3.5 3.9 5.1 6.1 7.8 8.1 8.1 9.5 10.0
336 1.9 1.6 4.1 4.3 5.4 5.6 7.9 8.4 8.7 8.6 9.3
720 2.3 2.8 4.2 3.2 5.1 5.4 7.9 8.4 8.8 8.6 9.1

avg. 1.7 1.8 3.7 3.8 5.2 5.8 7.6 8.1 8.4 8.9 9.7

models demonstrate excellent performance, essentially upholding consistency across the entirety of
the datasets. The performance of the CNN structural model is second only to the MLP/FC structural
model. RNN structure models appear to struggle with consistency, to the extent that they don’t even
maintain consistency on a single dataset. When the prediction horizon is reduced to 336, it becomes
easier for the models to maintain consistency. However, the three poorest-performing models, Auto-
former, RNN, and LSTM, show no improvement even when the requirements are relaxed. Regarding
the predictive performance drop of the model from 96 to 720, please refer to Appendix A.3.
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Table 3: The number of datasets on which the model exist inconsistency across different prediction
lengths. Within a certain prediction range, if the model performs better on a dataset with longer
prediction lengths, count once.

Numbers of datasets within 720 Numbers of datasets within 336

PatchTST 1/14 Pyraformer 3/14 PatchTST 1/14 Pyraformer 2/14
DLinear 0/14 Informer 7/14 DLinear 0/14 Informer 4/14
SCINet 1/14 Reformer 3/14 SCINet 0/14 Reformer 3/14

FEDformer 2/14 GRU 11/11 FEDformer 0/14 GRU 11/11
N-BEATS 0/14 LSTM 11/11 N-BEATS 0/14 LSTM 11/11

Autoformer 9/14 AvgPred 2/11 Autoformer 9/14 AvgPred 2/11

Model generality on different dataset: For the rankings of models, as shown in the figure 2,
we find that there are significant performance differences among models from different tiers, and
there is almost no difference in evaluation when using both MSE and MAE. Under these two met-
rics, Transformer-based models (PatchTST, FEDformer, Autoformer) in the first three tiers have
demonstrated better performance on longer prediction length: as the prediction length increases,
the model’s ranking also improves. Models based on MLP/FC and CNN architectures (DLinear,
SCINet, N-BEATS) have an advantage in shorter prediction lengths, but gradually get surpassed by
Transformer-based models in their tiers as the prediction length increases. For models outside of the
three tiers, the relationship between prediction horizon and prediction performance is unclear due to
their inadequate performance.

Figure 2: The average ranking of models according to MSE and MAE across all datasets for predic-
tion length in {96, 192, 336, 720}.

For the MSE of models, as shown in the figure 3. The median of MSE values predicted by the
models across all datasets generally follows an increasing trend as the prediction length increases,
except for LSTM and GRU. Among the models in the first three tiers, PatchTST and DLinear in
tier 1 have relatively concentrated MSE values within the middle 50% range, with very few outliers,
indicating strong stability in their performance across different datasets. In tier 2, FEDformer has
a smaller interquartile range compared to tier 1 models but has the highest number of outliers,
suggesting sensitivity of its performance to the datasets. Similarly, SCINet in tier 2 has a much
larger interquartile range than FEDformer but lacks outliers. Autoformer exhibits characteristics
similar to FEDformer. RNN-based models consistently exhibit a uniform MSE distribution across
all prediction lengths, suggesting that their predictive performance is independent of the prediction
horizon. This observation indicates that RNN-based models may struggle to capture the inherent
characteristics of time series data. Even in the case of AvgPred1, there is a slight increase in MSE
as the prediction horizon grows, although this change is relatively small.

1For the purpose of comparing experimental results, we introduce a simple model called AvgPred. AvgPred
takes a multivariate time series as input and outputs a repetition of the average value of each input variable as
the required length.
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Figure 3: Box plot of MSE for the model at different prediction lengths. The horizontal red line
represents the median. To enhance the clarity of the results in the graph, the MSE results have been
log-transformed with base 8.

Results of training epoch and time-consuming : We conducted experiments to determine the
number of epochs and training time required for model training. The results revealed that, regardless
of the architecture on which the model is trained, in most cases, it only took 1 epoch to achieve the
lowest loss on the training dataset, and the results are very close to the model’s published optimal
performance, even achieve SOTA performance. This is probably because the existing single metric
is insufficient to drive the model to achieve optimal performance. For specific experimental settings
and detailed results, please refer to Appendix A.7.

Figure 4: Model validation loss over traning epochs.
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5 DEGENERACY

When studying the performance of different models on the LSTF problem, we observed that all
models frequently exhibit degeneracy. Degeneracy refers to a phenomenon where the model’s pre-
dictions maintain a low MSE value but consist of simple pattern repetition. Specifically, there are
typically two scenarios:

The first type refers to the situation where the model only captures a certain level of periodicity
but fails to learn other data characteristics, as shown in figure 5(a)(c)(d). In figure 5(a), even though
PatchTST and DLinear models are based on different structures, they both capture similar periodicity
and oscillation amplitudes. However, the models do not capture other characteristics of the data and
consistently oscillate around the center line of the data. In figure 5(b)(c), the models also capture the
periodicity of the data but are not as good as PatchTST and DLinear in controlling the oscillation
amplitudes. Reformer and SCINet even learn opposite trends.

The second scenario is similar to the first one, but in this case, the model also fails to learn the
periodicity of the data and instead predicts a straight line with a low slope, as illustrated in figure
5(b). The predictions made by N-BEATS completely degenerate into straight lines, while Informer
exhibits a similar behavior. These predictions still have a low MSE because they remain close to the
center line of the data. However, they fail to capture any meaningful data patterns. For predictions
that completely degenerate into the mean of the input by using AvgPred, please refer to Appendix
A.8.
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Figure 5: A sample illustrating model prediction degeneracy. The solid black line represents the
model input data, the gray dashed line represents the ground truth, and the colored lines represent
the model’s predicted values.

6 CONCLUSION

In conclusion, we introduce 7 NEW time-series datasets and present a comprehensive evaluation of
long sequence time-series forecasting models through the LST-Bench, addressing key aspects such
as the overall prediction performance of models, and the models’ generalization across different
prediction lengths and datasets. We have observed a phenomenon named Degeneracy where the
predictive performance deteriorates as models produce increasingly accurate MSE predictions. Ad-
ditionally, we have noted that the model’s optimal performance is achieved very early in the training
process, often after just one epoch. This raises questions about the efficiency of training procedures
and suggests potential opportunities for model optimization. These insights underscore the ongoing
evolution and challenges in the field and pave the way for future research and innovations that will
advance the effectiveness and applicability of time series forecasting methods.
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A APPENDIX

A.1 FULL BENCHMARK RESULTS

Table 4: Sample table title

Prediction
sl336/pl96 sl336/pl192 sl336/pl336 sl336/pl720

MSE MAE MSE MAE MSE MAE MSE MAE

Weather

PatchTST 0.238 0.298 0.199 0.251 0.247 0.294 0.315 0.346
DLinear 0.174 0.234 0.219 0.280 0.263 0.315 0.326 0.367
SCINet 0.156 0.208 0.209 0.261 0.261 0.299 0.319 0.342

FEDformer 0.250 0.337 0.285 0.355 0.359 0.399 0.404 0.415
N-BEATS 0.158 0.221 0.206 0.274 0.275 0.330 0.350 0.383

Autoformer 0.278 0.353 0.347 0.401 0.449 0.469 0.493 0.457
Pyraformer 0.271 0.349 0.295 0.362 0.323 0.379 0.393 0.429
Informer 0.243 0.312 0.316 0.368 0.433 0.450 0.442 0.460
Reformer 0.360 0.401 0.507 0.513 0.743 0.626 0.790 0.662

GRU OOM OOM OOM OOM OOM OOM OOM OOM
LSTM OOM OOM OOM OOM OOM OOM OOM OOM

Traffic

PatchTST 0.429 0.305 0.440 0.304 0.457 0.316 0.494 0.329
DLinear 0.430 0.316 0.443 0.319 0.459 0.331 0.488 0.345
SCINet 0.442 0.281 0.454 0.283 0.470 0.291 0.484 0.303

FEDformer 0.575 0.357 0.607 0.376 0.621 0.380 0.630 0.383
N-BEATS 1.302 0.760 1.354 0.781 1.402 0.790 1.457 0.795

Autoformer 0.644 0.415 0.643 0.401 0.620 0.385 0.677 0.418
Pyraformer 0.908 0.502 0.903 0.495 0.913 0.497 0.936 0.506
Informer 0.956 0.520 0.874 0.479 1.323 0.685 1.508 0.795
Reformer 0.706 0.394 0.699 0.381 0.700 0.380 0.693 0.376

GRU OOM OOM OOM OOM OOM OOM OOM OOM
LSTM OOM OOM OOM OOM OOM OOM OOM OOM

Electricity

PatchTST 0.131 0.226 0.149 0.242 0.169 0.269 0.201 0.299
DLinear 0.140 0.237 0.153 0.250 0.169 0.267 0.203 0.300
SCINet 0.173 0.276 0.194 0.300 0.214 0.317 0.207 0.311

FEDformer 0.188 0.304 0.196 0.311 0.212 0.327 0.244 0.352
N-BEATS 0.760 0.715 0.806 0.740 0.841 0.759 0.872 0.772

Autoformer 0.210 0.325 0.209 0.322 0.256 0.369 0.264 0.374
Pyraformer 0.791 0.603 0.779 0.598 0.770 0.592 0.773 0.595
Informer 0.322 0.409 0.420 0.476 0.499 0.517 0.953 0.785
Reformer 0.302 0.403 0.328 0.421 0.345 0.431 0.399 0.475

GRU OOM OOM OOM OOM OOM OOM OOM OOM
LSTM OOM OOM OOM OOM OOM OOM OOM OOM

ETTh1

PatchTST 0.388 0.412 0.429 0.436 0.455 0.459 0.500 0.507
DLinear 0.387 0.408 0.427 0.439 0.470 0.468 0.503 0.513
SCINet 0.402 0.425 0.467 0.469 0.543 0.521 0.858 0.695

FEDformer 0.375 0.415 0.427 0.448 0.458 0.465 0.484 0.496
N-BEATS 0.714 0.579 0.750 0.612 0.761 0.624 0.920 0.719

Autoformer 0.531 0.501 0.546 0.508 0.505 0.505 0.526 0.530
Pyraformer 1.115 0.828 1.140 0.846 1.241 0.903 1.268 0.924
Informer 1.306 0.943 1.367 0.946 1.591 1.057 1.295 0.931
Reformer 0.813 0.671 0.890 0.711 1.006 0.730 1.160 0.840

GRU 0.776 0.635 1.090 0.804 1.244 0.847 1.133 0.808
LSTM 0.897 0.698 1.128 0.811 1.215 0.837 1.171 0.825
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Table 5: Sample table title

Prediction
sl336/pl96 sl336/pl192 sl336/pl336 sl336/pl720

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2

PatchTST 0.320 0.380 0.404 0.434 0.438 0.460 0.710 0.598
DLinear 0.369 0.416 0.375 0.410 0.481 0.479 0.844 0.658
SCINet 0.416 0.446 0.617 0.551 0.744 0.607 1.314 0.827

FEDformer 0.341 0.385 0.433 0.441 0.504 0.495 0.479 0.486
N-BEATS 0.335 0.388 0.465 0.479 0.609 0.539 1.396 0.825

Autoformer 0.447 0.487 0.469 0.504 0.430 0.468 0.668 0.634
Pyraformer 2.009 1.129 2.429 1.275 2.537 1.311 2.754 1.414

Informer 5.328 1.966 6.150 2.180 3.651 1.610 2.863 1.468
Reformer 2.073 1.180 2.417 1.234 2.369 1.227 2.893 1.290

GRU 0.280 0.392 0.742 0.735 0.561 0.625 0.622 0.649
LSTM 0.343 0.449 0.654 0.674 0.547 0.616 0.616 0.633

ETTm1

PatchTST 0.313 0.362 0.348 0.387 0.389 0.412 0.440 0.439
DLinear 0.300 0.344 0.338 0.370 0.372 0.390 0.431 0.427
SCINet 0.315 0.367 0.368 0.405 0.404 0.425 0.543 0.527

FEDformer 0.363 0.413 0.394 0.425 0.440 0.456 0.499 0.484
N-BEATS 0.420 0.431 0.676 0.545 0.719 0.568 0.777 0.611

Autoformer 0.617 0.516 0.584 0.529 0.604 0.523 0.615 0.536
Pyraformer 0.787 0.651 0.847 0.683 0.891 0.697 0.871 0.697

Informer 0.576 0.558 0.670 0.647 0.897 0.738 0.895 0.714
Reformer 0.760 0.639 0.966 0.711 0.984 0.718 1.105 0.779

GRU 0.445 0.448 1.154 0.830 1.188 0.828 1.110 0.799
LSTM 0.479 0.474 1.171 0.832 1.268 0.850 1.147 0.811

ETTm2

PatchTST 0.170 0.256 0.227 0.299 0.301 0.347 0.408 0.416
DLinear 0.168 0.257 0.224 0.303 0.278 0.336 0.654 0.562
SCINet 0.192 0.289 0.309 0.380 0.498 0.495 1.169 0.771

FEDformer 0.189 0.283 0.261 0.326 0.327 0.365 0.437 0.427
N-BEATS 0.205 0.283 0.303 0.353 0.396 0.408 0.496 0.480

Autoformer 0.336 0.396 0.361 0.411 0.406 0.433 0.467 0.451
Pyraformer 0.805 0.678 1.016 0.800 1.258 0.938 3.458 1.636

Informer 1.941 1.050 2.428 1.240 2.190 1.120 5.391 2.004
Reformer 0.790 0.672 1.464 0.913 1.764 1.002 3.106 1.328

GRU 0.220 0.350 0.777 0.744 0.562 0.585 0.667 0.661
LSTM 0.252 0.387 0.785 0.755 0.625 0.645 0.708 0.691

NEW1

PatchTST 0.079 0.163 0.141 0.251 0.161 0.261 0.318 0.425
DLinear 0.079 0.161 0.111 0.200 0.146 0.237 0.247 0.344
SCINet 0.088 0.169 0.128 0.213 0.167 0.252 0.242 0.312

FEDformer 0.105 0.220 0.136 0.253 0.180 0.285 0.228 0.317
N-BEATS 0.108 0.211 0.226 0.324 0.278 0.361 0.339 0.398

Autoformer 0.252 0.349 0.264 0.362 0.355 0.420 0.380 0.427
Pyraformer 0.505 0.559 0.574 0.599 0.606 0.602 0.697 0.650

Informer 0.116 0.232 0.186 0.295 0.280 0.365 0.467 0.495
Reformer 0.304 0.410 0.440 0.509 0.781 0.649 1.368 1.368

GRU 0.599 0.635 0.612 0.645 0.390 0.476 0.625 0.654
LSTM 0.664 0.671 0.677 0.680 0.474 0.521 0.667 0.675
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Table 6: Sample table title

Prediction
sl336/pl96 sl336/pl192 sl336/pl336 sl336/pl720

MSE MAE MSE MAE MSE MAE MSE MAE

NEW2

PatchTST 0.105 0.214 0.156 0.267 0.183 0.280 0.330 0.377
DLinear 0.079 0.174 0.110 0.209 0.148 0.245 0.320 0.389
SCINet 0.089 0.189 0.133 0.239 0.178 0.279 0.312 0.378

FEDformer 0.143 0.274 0.183 0.308 0.233 0.343 0.304 0.387
N-BEATS 0.118 0.234 0.231 0.341 0.292 0.382 0.390 0.432

Autoformer 0.300 0.383 0.279 0.363 0.362 0.423 0.474 0.472
Pyraformer 0.423 0.488 0.474 0.508 0.550 0.539 0.792 0.626
Informer 0.134 0.239 0.243 0.322 0.327 0.359 0.392 0.395
Reformer 0.309 0.403 0.515 0.531 0.778 0.645 1.680 1.060

GRU 0.626 0.617 0.632 0.621 0.446 0.494 0.670 0.633
LSTM 0.619 0.609 0.623 0.611 0.455 0.489 0.658 0.625

NEW3

PatchTST 0.210 0.321 0.269 0.372 0.312 0.402 0.400 0.463
DLinear 0.200 0.311 0.265 0.366 0.323 0.412 0.455 0.502
SCINet 0.233 0.344 0.361 0.436 0.554 0.545 0.825 0.676

FEDformer 0.304 0.409 0.346 0.435 0.383 0.461 0.465 0.510
N-BEATS 0.255 0.359 0.321 0.412 0.361 0.437 0.431 0.485

Autoformer 0.379 0.460 0.451 0.506 0.478 0.507 0.483 0.509
Pyraformer 0.459 0.517 0.559 0.573 0.698 0.649 0.974 0.777
Informer 0.290 0.395 0.386 0.467 0.461 0.510 0.556 0.562
Reformer 0.495 0.537 0.663 0.639 1.018 0.781 1.110 0.820

GRU 0.615 0.610 0.619 0.613 0.462 0.505 0.627 0.626
LSTM 0.631 0.615 0.634 0.617 0.490 0.527 0.630 0.624

NEW4

PatchTST 0.506 0.404 0.530 0.435 0.621 0.478 0.844 0.571
DLinear 0.397 0.373 0.493 0.422 0.626 0.487 0.905 0.616
SCINet 0.514 0.415 0.636 0.476 0.785 0.545 1.072 0.677

FEDformer 0.543 0.458 0.628 0.495 0.713 0.523 0.928 0.605
N-BEATS 0.625 0.466 0.803 0.561 0.998 0.631 1.202 0.710

Autoformer 0.900 0.624 1.017 0.667 1.096 0.676 1.419 0.760
Pyraformer 1.084 0.674 1.246 0.726 1.385 0.767 1.533 0.833
Informer 1.150 0.676 1.302 0.740 1.333 0.732 1.660 0.821
Reformer 0.979 0.620 1.228 0.729 1.474 0.807 1.687 0.867

GRU 2.031 0.964 2.029 0.961 1.387 0.798 2.012 0.954
LSTM 2.040 0.970 2.036 0.965 1.539 0.847 2.017 0.956

NEW5

PatchTST 0.191 0.296 0.240 0.342 0.297 0.385 0.409 0.461
DLinear 0.181 0.283 0.220 0.320 0.276 0.369 0.395 0.455
SCINet 0.194 0.303 0.251 0.354 0.327 0.413 0.435 0.485

FEDformer 0.239 0.353 0.290 0.393 0.350 0.432 0.444 0.485
N-BEATS 0.393 0.391 0.639 0.524 0.802 0.598 0.986 0.671

Autoformer 0.876 0.650 0.860 0.637 1.017 0.694 1.220 0.773
Pyraformer 0.450 0.494 0.488 0.518 0.534 0.544 0.671 0.631
Informer 0.690 0.549 0.956 0.670 1.273 0.792 1.156 0.759
Reformer 0.355 0.447 0.650 0.641 0.709 0.660 0.945 0.781

GRU 1.323 0.857 1.324 0.858 1.242 0.793 1.317 0.858
LSTM 1.324 0.857 1.326 0.859 1.201 0.780 1.317 0.858
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Table 7: Sample table title

Prediction
sl336/pl96 sl336/pl192 sl336/pl336 sl336/pl720

MSE MAE MSE MAE MSE MAE MSE MAE

NEW6

PatchTST 0.284 0.364 0.306 0.392 0.377 0.440 0.434 0.491
DLinear 0.263 0.356 0.294 0.385 0.332 0.419 0.432 0.497
SCINet 0.275 0.366 0.316 0.407 0.357 0.435 0.469 0.512

FEDformer 0.347 0.430 0.377 0.452 0.407 0.473 0.497 0.529
N-BEATS 0.207 0.322 0.296 0.396 0.347 0.437 0.414 0.484

Autoformer 0.405 0.488 0.413 0.488 0.380 0.468 0.427 0.490
Pyraformer 0.530 0.552 0.554 0.569 0.570 0.576 0.614 0.606
Informer 0.471 0.529 0.795 0.670 0.652 0.648 0.810 0.713
Reformer 0.454 0.501 0.561 0.576 0.689 0.649 0.923 0.763

GRU 1.032 0.836 1.034 0.834 0.648 0.643 1.037 0.833
LSTM 1.038 0.838 1.044 0.838 0.776 0.708 1.042 0.836

NEW7

PatchTST 0.663 0.504 0.762 0.552 0.837 0.594 0.944 0.654
DLinear 0.629 0.487 0.699 0.531 0.782 0.574 1.050 0.700
SCINet 0.654 0.527 0.744 0.566 0.861 0.619 1.099 0.720

FEDformer 0.979 0.643 1.094 0.667 1.241 0.733 1.123 0.734
N-BEATS 0.754 0.588 0.945 0.668 1.027 0.712 1.096 0.768

Autoformer 1.060 0.744 1.000 0.725 1.108 0.775 1.233 0.819
Pyraformer 0.943 0.702 0.992 0.725 1.070 0.761 1.215 0.838
Informer 0.882 0.702 1.217 0.861 1.366 0.926 1.563 0.999
Reformer 1.177 0.768 1.136 0.793 1.141 0.805 1.463 0.954

GRU 2.001 1.120 1.996 1.119 1.333 0.916 1.978 1.112
LSTM 2.026 1.142 2.020 1.140 1.439 0.959 1.997 1.130

A.2 MODEL IMPLEMENT

Informer was acquired at https://github.com/zhouhaoyi/Informer2020. During the experiment, the
hyperparameter label-len was set to 168, half of seq-len, and other hyperparameters were set to
default settings.

Autoformer and Reformer was acquired at https://github.com/thuml/Autoformer. The hyperpa-
rameter setting method is the same as Informer.

FEDformer was acquired at https://github.com/MAZiqing/FEDformer. During the experiment, hy-
perparameters were set to default settings.

N-BEATS was acquired at https://github.com/philipperemy/n-beats. During the experiment, certain
modifications were made to it so that it can perform multi-variable predictions: we exchange the last
two dimensions of the input data with a shape of [batchSize, seqLen, features] during training. But
we did not modify the hyperparameters.

PatchTST was acquired at https://github.com/yuqinie98/PatchTST. During the experiment, hyper-
parameters were set to default settings.

DLinear We used the implementation of DLinear from the PatchTST GitHub repository. During
the experiment, hyperparameters were set to default settings.

SCINet was acquired at https://github.com/cure-lab/SCINet. During the experiment, hyperparame-
ters were set to default settings.

Pyraformer was acquired at https://github.com/ant-research/Pyraformer. During the experiment,
hyperparameters were set to default settings.
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A.3 MODELS’ PERFORMANCE ACROSS DIFFERENT PREDICTION LENGTH

We assume that, by using the same model, the prediction results should be more and more inac-
curate with the prediction length becomes longer. We initially conducted a comparative analysis
of the models’ predictive performance at prediction horizons of 96 and 720, as outlined in Table
8. It is noteworthy that as the prediction horizon extended to 720, all models exhibited a decline
in performance; however, the extent of this decline varied across models. Among the 15 datasets
considered, the most significant percentage decrease in predictive performance was observed in the
case of the Reformer model, with a reduction of up to 199.9%. In contrast, the GRU model exhibited
the least decline, at a modest 27.1%. It is important to highlight that the GRU model does not at-
tain state-of-the-art predictive performance by itself. Among the models belonging to the top tier in
terms of predictive accuracy, both PatchTST and DLinear showed relatively moderate declines, with
respectively reductions of 36.4% and 36.5%. In contrast, the performance of SCINet experienced a
substantial decrease, amounting to 79.7%.

Table 8: Model performance decline percentage

Model PatchTST DLinear SCINet FEDformer N-BEATS Autoformer

performance decline 100% 0.419 0.473 0.514 0.341 0.464 0.218

Model Pyraformer Informer Reformer GRU LSTM AvgPred

performance decline 100% 0.273 0.361 0.450 0.204 0.176 0.193

A.4 RESULTS OF TRAINING TIME CONSUMING

To compare the training time of the models, we conducted experiments with a training batch size
of 32, and an early stopping tolerance of 5 for each model. The maximum training epochs for each
model were set to 50.

A.5 STABILITY OF MODELS’ RANKING

It is noteworthy that, when comparing the results in PatchTST, where the authors re-ran FEDformer,
Autoformer, and Informer using six different look-back windows and selected the best-performing
configuration, the rankings of model performance remained consistent. This observation under-
scores the presence of a performance barrier among the four tiers of models. Although there is
indeed variability in model performance, exemplified by Pyraformer’s mean squared error values on
the Weather and Electricity datasets for prediction lengths in {96, 192, 336, 720}, which were re-
ported as {0.896, 0.622, 0.739, 1.004} and {0.386, 0.386, 0.378, 0.376} in PatchTST, and observed
as {0.280, 0.288, 0.329, 0.364} and {0.791, 0.779, 0.770, 0.773} in our own results, this variability
does not significantly impact the model’s ranking on individual datasets, nor does it influence the
overall ranking across all datasets.

A.6 DETAILS OF DATASETS

ETT (Electricity Transformer Temperature)2: In the electric power industry, the ETT is widely used
as an indicator in equipment monitoring. The dataset of ETT contains 2-year ETT data from two
separated countries in China. We create separate datasets as {ETTh1, ETTh2} for 1-hour level and
{ETTm1, ETTm2} for 15-minute-level. Each data point consists of the target value ”oil tempera-
ture” and 6 power load features.

ECL (Electricity Consuming Load)3: The ECL dataset collects the electricity consumption (Kwh)
of 321 clients, which is powerful in the analysis of the behavior in electricity consumption. We set
‘MT 320’ as the target value.

2ETT dataset was acquired at https://github.com/zhouhaoyi/ETDataset.
3ECL dataset was acquired at https://archive.ics.uci.edu/ml/ datasets/ElectricityLoadDiagrams20112014.
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Weather4: The Weather dataset contains local climatological data from 21 meteorological indicators
in Germany. The data points are collected every 1 hour.

Traffic5: The traffic dataset is a collection of hourly data from California Department of Transporta-
tion, which describes the road occupancy rates (between 0 and 1) measured by different sensors on
San Francisco Bay area freeways.

A.7 TRAINING EPOCHS AND TIME-CONSUMING

Table 9: Model performance on training epochs and time-consuming

Model Dataset Training Epochs Total Time Epoch Time

Reformer

ETTh1 7 445.355 63.622
NEW1 7 1874.410 267.773
Weather 10 2873.441 287.344
Traffic 22 3398.867 154.494

DLinear

ETTh1 19 76.129 4.007
NEW1 6 100.824 16.804
Weather 15 385.276 25.685
Traffic 6 909.391 151.565

FEDformer

ETTh1 6 885.595 147.599
NEW1 8 5116.847 639.606
Weather 6 4109.424 684.904
Traffic 7 2320.914 331.559

Informer

ETTh1 7 265.129 37.876
NEW1 6 1002.969 167.162
Weather 8 1445.666 180.708
Traffic 7 1093.404 156.201

Autoformer

ETTh1 8 415.201 51.900
NEW1 6 1349.438 224.906
Weather 6 1438.323 239.721
Traffic 11 1648.682 149.880

Pyraformer

ETTh1 22 743.286 33.786
NEW1 10 766.974 76.697
Weather 13 1245.314 95.793
Traffic 13 1961.292 150.869

PatchTST

ETTh1 12 124.752 10.396
NEW1 9 445.306 49.479
Weather 14 684.931 48.924
Traffic 8 3173.363 396.670

SCINet

ETTh1 12 171.018 14.252
NEW1 6 1035.571 172.595
Weather 6 423.238 70.540
Traffic 21 7217.767 343.703

N-BEATS

ETTh1 7 23.986 3.427
NEW1 11 251.665 22.879
Weather 8 248.152 31.019
Traffic 10 6699.644 669.964

A.8 AVGPRED PERFORMANCE

4Weather dataset was acquired at https://www.bgc-jena.mpg.de/wetter/
5Traffic dataset was acquired at http://pems.dot.ca.gov.
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Table 10: Average Prediction Performance

Prediction
sl336/pl96 sl336/pl192 sl336/pl336 sl336/pl720

MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.256 0.311 0.284 0.328 0.317 0.347 0.368 0.380
Traffic 1.378 0.794 1.394 0.798 1.409 0.801 1.429 0.804

Electricity 0.834 0.757 0.844 0.760 0.857 0.764 0.883 0.773
ETTh1 0.706 0.567 0.713 0.575 0.706 0.579 0.700 0.596
ETTh2 0.385 0.419 0.401 0.430 0.393 0.428 0.432 0.455
ETTm1 0.680 0.544 0.689 0.549 0.703 0.558 0.721 0.570
ETTm2 0.490 0.481 0.539 0.504 0.593 0.530 0.718 0.588
NEW1 0.337 0.389 0.357 0.399 0.386 0.413 0.442 0.434
NEW2 0.448 0.494 0.471 0.506 0.511 0.526 0.602 0.567
NEW3 0.350 0.438 0.379 0.457 0.412 0.474 0.489 0.518
NEW4 0.700 0.570 0.771 0.594 0.863 0.626 1.064 0.690
NEW5 0.473 0.519 0.501 0.536 0.543 0.560 0.630 0.606
NEW6 0.427 0.473 0.445 0.488 0.473 0.509 0.527 0.549
NEW7 0.812 0.612 0.867 0.633 0.945 0.662 1.111 0.724
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