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ABSTRACT

Roundabouts are a popular alternative to traditional intersections due to their abil-
ity to reduce traffic collisions, but they pose challenges for autonomous vehicles
due to their complex traffic situation. Previous attempts at decision-making in
multi-lane roundabouts have been hindered due to the difficulty of accurately pre-
dicting the behavior of other traffic participants and the complexity of the overall
traffic flow. To address the above challenges, this paper proposes a neural MPC-
based decision-making framework for autonomous vehicles, in which multiple
backup static paths are generate in real-time according to the road topology, and
the decision-making problem is formulated as a series of parallel static path track-
ing problems with safety constraints, subject to dynamic surrounding vehicles. To
overcome the uncertainty of traffic dynamics, we propose a neural model predic-
tive control algorithm (NMPC), which learns a dynamics model with interaction
data and solves the optimization problem with the gradient guidance via model
predictive control. The path with the lowest cost is then chosen as the target path
after solving all the constrained tracking problems and the corresponding action is
chosen accordingly. To enhance computational efficiency, a critic network is used
to approximate the constrained tracking cost and an actor network to approximate
the control policy, reducing the burden of online solving. To evaluate the pro-
posed framework, a multi-lane roundabout simulator is built to benchmark a real
roundabout in Beijing and the proposed approach is tested with various densities
of traffic flow. The results show that our method can successfully navigate the
roundabout, perform lane change maneuvers safely and efficiently.

1 INTRODUCTION

Roundabouts have become a favored alternative to traditional intersections due to their ability to re-
duce severity of traffic collisions by eliminating left turns and allow vehicles to continuously move
through the intersection, rather than having to wait for a stop sign or traffic light (Pérez et al., 2011).
Generally, there are always multiple entrances and exits, and the driving process in roundabouts
involves three stages: entering, circumnavigating, and exiting the roundabout. To enter the round-
about, drivers must yield to traffic already in the roundabout and then enter in a counterclockwise
direction. Drivers then circumnavigate the roundabout, yielding to incoming traffic at each entry
point, until they reach their desired exit. When exiting, drivers should signal their intention to leave
the roundabout, and then wait for a gap in traffic before exiting. Although roundabouts provide
convenience for human drivers, they pose significant challenges for decision-making and control of
autonomous vehicles (Tian et al., 2018). In multi-lane roundabout the number of lane of different
entrances and exits may be different and each entrance may have several vehicles entering and each
exit may have vehicles exiting, thus the traffic flow in multi-lane roundabout has a high degree of
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Figure 1: Overall framework of Neural MPC-based decision-making system for autonomous driv-
ing. The proposed framework is divided into two phases: model-based offline training and online
application. In the offline training phase, the decision-making problem is formulated as a generalized
constrained optimization problem that involves parallel static path tracking tasks under safety con-
straints in the presence of dynamic surrounding vehicles. A neural model predictive control (NMPC)
solver is utilized to solve the optimization problem, which consists of a state trasition model, an ac-
tor network and a critic network. The state trasition model learns the state transition model and
predicts future states according to the current actor’s behavior. The actor is then optimized through
stochastic gradient descent (SGD) by minimizing the cost of each constrained tracking problem.
The critic learns the optimal cost of each constrained tracking task. In the online application phase,
the critic is utilized to select the optimal target static path, while the actor outputs the corresponding
actions. This seamless integration of the actor and critic allows for real-time decision-making while
ensuring safety constraints are satisfied.

uncertainty (Abnili & Azad, 2021; Muhammad & Åstrand, 2019). Therefore, the intelligent vehi-
cle requires quick and accurate reactions to drive the limited space and avoid collisions. Previous
approaches require complex rules (Rastelli & Peñas, 2015) and modules to handle the diverse traf-
fic situations, including lane selection and merging at intersections and unique inflow and outflow
scenarios at each entrance and exit (Garcia Cuenca et al., 2019; Garcı́a Cuenca et al., 2019). De-
spite these efforts, autonomous driving in multi-lane roundabouts still has a long way to go due
to the complexity of traffic, road topology, and difficulty in predicting the behavior of other road
participants.

The current decision-making framework in autonomous vehicles typically consists of prediction,
planning, and control modules. The prediction module uses sensor data to anticipate the behavior of
other traffic participants, such as pedestrians and vehicles. The planning module generates a safe and
efficient target trajectory based on the static and dynamic traffic information, and the control module
tracks the trajectory by sending commands to the vehicle’s actuators. Early decision-making func-
tions were largely based on expert rules (Urmson et al., 2009; Montemerlo et al., 2008). This frame-
work designs behavior patterns for specific driving tasks such as lane maintenance, lane change,
etc., using a finite state machine to switch and select driving behavior. With the rapid development
of deep learning technology, end-to-end learning-based decision-making systems are also emerging.
This architecture uses artificial neural networks as the carrier of control policy and directly learns
a complex mapping from sensory input to control output. Bojarski et al. (2016) established a vi-
sual driving dataset, which maps image data to steering wheel angle, and realized lane maintenance
based on convolutional neural networks. Lillicrap et al. (2015) used the DDPG algorithm to train
a control policy in a simulation platform, achieving lane maintenance control. Duan et al. (2020)
achieves decision and control in a two-lane highway scenario, using hierarchical RL method.

Model Predictive Control (MPC) as a typical receding horizon optimization method (Camacho &
Alba, 2013; Rawlings, 2000) has gradually become a popular framework for autonomous control that
can optimize the target trajectory and low level control together (Williams et al., 2018; Cesari et al.,
2017; Liu et al., 2017). For example, Guan et al. (2022; 2021) proposed a integrated decision control
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framework for intersection scenario based on MPC framework. Conventional MPC used in previous
works utilizes a mathematical model of the system to predict future behavior and determine control
outputs that minimize a cost function that represents desired performance and constraints. However,
there are several challenges in using MPC for multi-lane roundabouts. Firstly, the complex road
topology and traffic environment make it difficult to formulate the whole driving process “entering-
circling-exiting” to a unified optimal control problem. Secondly, the high uncertainty of vehicle
behavior makes it challenging to accurately predict the future behavior of other road users and
obstacles. Simplified mathematical model is hard to capture the behavior of surrounding traffic
participators accurately. Finally, the process of solving large scale nonlinear optimization usually
brings the high online computational burdens and leads to slow reaction issues.

To overcome the aforementioned challenges, we propose a neural MPC-based decision-making
framework for the multi-lane roundabout scenario which casts decision-making problems under
different situations into a generalized constrained optimization problem. The whole constrained op-
timization problem consists of a series of parallel static path tracking problems subject to the safety
constraints with dynamic surrounding vehicles. The static paths are generated based on the road
structure and typologies. To solve such constrained optimization problem with dynamic traffic flow
in roundabout scenarios, we propose a Neural Model Predictive Control (NMPC) algorithm, which
learns dynamics model with data-driven method to capture the characteristic of the current traffic
flow, enabling accurate prediction of the behaviour of other traffic participants. Moreover, the gradi-
ents of state transitions given by the learned model are used as guidance to improve the efficiency of
policy learning. We solve the constrained optimization problems for tracking each candidate static
path with safety constraints separately, and choose the path with minimal optimal cost as the target
path. The corresponding actions are then chosen. To further improve the computational efficiency,
we train two networks to distill the knowledge obtained by solving the constrained optimization
problem during training process. We learn a critic network to approximate the constrained tracking
cost and an actor network to approximate the control policy. Thus, during testing process, the critic
network can predict the constrained tracking cost for every backup static path, thus select the target
static path with minimum cost, and the actor network can output the action directly without any
online computing.

This framework has several advantages compared to conventional methods.

1). It has high online computing efficiency during the application. We can generate the static paths
in real-time and two feed-forward networks are used to compute optimal target path and control
command directly, which is also time-saving due to neural networks’ extremely fast forward
propagation.

2). It can be easily transferred to different traffic scenarios without a lot of human design. The static
path planning module only uses static information of the road map. Thus, it’s easy to develop
static reference paths for different traffic scenarios (e.g., intersections, roundabouts, multiple
lanes, interchange ramps, etc.). Besides, the constrained optimal control problem formulation is
applicable for different kinds of dynamic traffic participants, including red lights, bicycles, and
pedestrians.

2 NEURAL MPC-BASED DECISION-MAKING FRAMEWORK

We propose an neural MPC-based decision-making framework that consists of two parts, i.e., a
static path planning module, a dynamic optimal tracking module and a neural model predictive
control (NMPC) solver.

The static path planning module considers static traffic information like road structure and traffic
signs to generate a set of candidate reference paths, along with their respective expected speeds.
Unlike the planning modules in current autonomous driving systems, this module does not incor-
porate dynamic traffic participants in the scenario into its calculations. The generated static paths
only indicate the permissible road area, determined by the shape and topology of the road. As a re-
sult, the computational cost of this approach is significantly lower compared to traditional trajectory
planning methods.

The dynamic optimal tracking module is tasked with selecting and tracking the optimal path from
the set of reference paths, taking into account dynamic traffic information in the scenario, such as the
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Figure 2: The generated static paths under different driving status.

presence of surrounding vehicles and pedestrians. For each candidate path, the module formulates a
trajectory tracking problem with safety constraints of preventing collision with surrounding vehicles
and road boundaries. Other driving objectives, such as avoiding harsh actions and maintaining
relatively high speeds, are also reflected in the overall loss function. The module solves these optimal
control problems in parallel and select the path with lowest optimal tracking cost as the target and
then output the corresponding control commands.

The proposed Neural Model Predictive Control (NMPC) utilizes neural networks to enhance the
precision of predicting the behavior of surrounding traffic participants. By integrating prior knowl-
edge with interaction data, NMPC trains a prediction model that has superior capacity in anticipating
traffic flow. The algorithm then uses the model to evaluate the total cumulative cost by rolling out
H time steps from the current position. The model’s state transitions are differentiable at every step,
enabling the optimization of the policy through random gradient descent. This innovative combina-
tion of machine learning and control theory results in an efficient solution for learning the optimal
policy in complex traffic flow.

2.1 STATIC PATH PLANNING MODULE

The static path planning module generates multiple candidate paths based on static traffic informa-
tion, such as road structure and topology. Each path is represented as a sequence of coordinate
points, along with its expected velocity, serving as the primary driving guidance for the autonomous
vehicle. The candidate paths are generated by equidistantly discretizing the centerline of lanes. In
areas without defined lanes, such as intersections, virtual lanes are constructed to connect the allow-
able entrance and exit lanes, which are then discretized in the same manner. The expected velocity
of each path is also assigned, taking into account the road region and traffic regulations. For exam-
ple, the expected velocity of paths in intersections is set at a lower value, incentivizing the vehicle
to slow down and avoid potential collisions.

This paper is focused on driving tasks in a 3-lane roundabout scenario, which can be divided into
three stages: entering, circling, and exiting. The candidate static paths for each stage are illustrated
in Figure 2. During the circling stage, the candidate static paths include the current lane of the ego
vehicle and its adjacent lanes, allowing the vehicle to perform tactical lane changes to overtake other
vehicles. In the entering and exiting stages, virtual lanes are constructed by linking the current lane
of the ego vehicle to the exit lanes with Bezier curves, from which the static paths are generated.

To ensure driving safety and compliance with traffic rules, we incorporate two additional constraints
in the generation of static paths, as illustrated in Figure 2. Firstly, the set of candidate paths is
restricted to only include adjacent lanes, preventing continuous lane-changing behavior, which is
prohibited by traffic rules. Thus, the outer lane is not included in the set of candidate paths for
vehicles driving on the inner lane. Secondly, vehicles are not permitted to exit from the inner lane
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to prevent potential collisions and improve traffic efficiency. Therefore, vehicles that are within a
predefined distance threshold from the exit are not provided with a static path of the inner lane.

Finally, a set of reference trajectory is generated based on the set of static path, serving as the input
of the subsequent dynamic optimal tracking module. The reference trajectory, denoted as τ (t), t ∈
{0, 1, . . . , T − 1}, is a temporal sequence of coordinates with T as length. It starts from the point
on the static path nearest to the vehicle’s current position and satisfies ∥τ (t)− τ (t− 1)∥2 = ve · δt,
where ve is the expected speed of the static path and δt is the time step length.

It is worth noting that the static path planning module does not determine which path is optimal,
neither does it consider the constraints of vehicle dynamics and the presence of other traffic partici-
pants. It only gives all the feasible driving area based on static traffic information, which is different
from traditional trajectory planning methods. In addition, the static paths can be pre-processed and
stored in an electronic map for faster retrieval, thereby improving real-time performance.

2.2 DYNAMIC OPTIMAL TRACKING MODULE

The dynamic optimal tracking module undertakes the task of selecting and tracking the optimal ref-
erence trajectory based on the reference trajectories and information of dynamic traffic participants.
The module formulates an optimal control problem (OCP) for each candidate reference trajectory to
track it under the constraints of road and surrounding traffic participants. After solving these OCPs,
the trajectory with minimal tracking cost is selected as the tracking target and the corresponding
solution as the control command.

2.2.1 FORMULATION OF OCP

The mathematical form of the optimal control problem for tracking the ith trajectory τi(t) =
[pref
x,t, p

ref
y,t]

⊤ is as follows:

Ji =

t+N∑
τ=t

[Jx(τ) + Jc(τ)] + I1 + I2,

Jx(t) =
(
xref(τ)− x(τ)

)⊤
Q

(
xref(τ)− x(τ)

)
,

Jc(t) = u⊤(τ)Ru(τ),

(1)

where Q,R are positive-definite weighting matrices. The variables are defined as follows:

x(t) = [px,t, py,t, vt, wt, φt, rt]
⊤,

xref(t) = [pref
x,t, p

ref
y,t, ve, 0, 0, 0]

⊤,

u(t) = [at, δt]
⊤,

(2)

where x(t) is the state of the vehicle, px, py are the position coordinates of the vehicle, v, w are
longitudinal and lateral velocities, φ is the heading angle, r is the yaw rate. u(t) is the control
command as well as the optimization variable, where a is the acceleration and δ is the steering
angle. The loss term Jx represents tracking cost to reference trajectory and Jc is added to prevent
sharp turning and acceleration. In order to enable the autonomous vehicle to avoid the surrounding
cars and prevent rushing out of the lane, another two collision constraints are incorporated into
the overall loss function, namely I1 and I2. The form of vehicle-vehicle(V2V) collision constraint
depends on the contour of vehicles, which are represented as rectangles.

Since it is hard to determine intersection of two rectangle based
on solely center-to-center distance, we argue for the covering-
circles method to represent the shape of vehicle and construct
the V2V collision constraint. Specifically, as shown in Figure 3,
three equal-sized circles are placed along the central axis of the
vehicle with the second one located at the vehicle centroid. The
centers of the circles are separated by a distance equal to their
radius, which is set to 0.65 times the width of the vehicle.

Figure 3: V2V and V2B collision
constraints
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To avoid collision with surrounding vehicles, the distance between each pair of covering circles of
two cars should satisfy the following inequality:

dV2V
j,k ≥ rego + rsurr + rsafe,

j = {1, 2, 3} , k = {1, 2, 3} ,
(3)

where dV2V
jk is the distance between the jth circle of ego vehicle and the kth circle of the sur-

rounding vehicle. rsafe is the safety margin of distance, set to be 0.1m in this paper. The vehicle-
boundary(V2B) collision constraint is similar:

dV2B
j,k ≥ rego + rsafe,

j = {1, 2, 3} , k = {1, 2} ,
(4)

where dV2B
jk is the distance between the jth circle of ego vehicle and the k−th boundary.

After obtaining the above two constraints, we design the corresponding penalty function by applying
a sigmoid function on the remaining distance:

I1 = P1

N∑
i=1

3∑
j=1

3∑
k=1

σ
[
ρ
(
rego + rsurr + rsafe − dV 2V

i,j,k (τ)
)]
, (5)

I2 = P2

N∑
i=1

3∑
j=1

2∑
k=1

σ
[
ρ
(
rego + rsafe − dV 2B

i,j,k (τ)
)]
, (6)

where P1 and P2 are the coefficients of each penalty term. The sigmoid function σ(x) = 1
1+e−x

can be seen as a differentiable version of the heaviside function, and ρ is a hyper-parameter which
determines the intensity of safety-aware punishment. Given the candidate trajectory set {τ1, τ2, . . . }
and the corresponding optimal values {J∗

1 , J
∗
2 , . . . }, the target trajectory τi∗ is chosen to be:

i∗ = argmin
k
J∗
k . (7)

The predictive tracking cost may vary based on the dynamic changes in the environment as it tracks
a particular trajectory. Figure 4 demonstrates this phenomenon, where the predictive tracking cost
rises when approaching the obstacle, suggesting the necessity and motivation of lane-changing. Fig-
ure 5 provides an exemplary illustration to clarify the functionality of the dynamic optimal tracking
module, which tends to tracking the trajectory with lower predictive tracking cost.
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Figure 5: Example of Path selection. In this case,
τ1 has the lowest tracking cost, thus the ego ve-
hicle (red) switches to the inner lane.

2.2.2 LOCAL TRAJECTORY REFINEMENT

Although the reference trajectory starts from the closest point on the static path to the vehicle, there
may still remain a notable gap between the vehicle and the reference trajectory, as shown in Figure
6.

p(t) = a0 + a1t+ a2t
2 + a3t

3,

p(0) = p0, ṗ(0) = v0,

p(L) = pl, ṗ(L) = vl,

(8)
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Figure 6: The static paths before and
after local refinement
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Figure 7: Vehicle performs lane-changing tasks under two
kinds of reference trajectory.

This may result in discontinuity in
control output when the vehicle tran-
sits between different trajectories. To
fix this issue, we introduce an ad-
ditional module for local trajectory
smoothing. For the trajectories with
its projective distance exceeding a
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local trajectory is represented by a
third-order spline curve,
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Figure 8: Curves of yaw rate and steering angle. The over-
shoot value of the steering control can be reduced from
389% to 179% by trajectory refine.

where t ∈ {0, 1, . . . , L − 1}. The coefficients of the cubic polynomial is determined to ensure the
continuity of trajectory in both position and velocity. p0,v0 are current position and velocity vectors
of the vehicle and pl,vl are the position and velocity vectors of the Lth point in the origin trajectory
which is to be refined. The coefficients are given by solving the above equations,

a0 = p0, a1 = v0,

a2 =
3(pl − p0)− (2v0 + vl)L · δt

(L · δt)2
,

a3 =
−2(pl − p0) + (v0 + vl)L · δt

(L · δt)3
,

(9)

with δt = 0.1s as the time step length. We investigate the effects of local trajectory smoothing
on vehicle control in a simulated lane-changing scenario. We utilized Model Predictive Control
(MPC) to control the vehicle and track reference trajectories with and without the local smoothing
operation. The results, as depicted in Figure 7, show that the implementation of local smoothing
leads to a flatter vehicle trajectory. Furthermore, as illustrated in Figure 8, the curves of the yaw
rate and steering angle exhibit a smoother profile, and the maximum yaw rate was reduced by 40%,
indicative of enhanced driving comfort.

2.3 NEURAL MPC SOLVER

The Neural MPC solver consists of an actor network πθ(·), a critic network vψ(·), and a state predic-
tion model preϕ(·). The actor network takes the current state and target path as inputs and outputs
the action commands, while the critic network aims to fit the tracking cost for each path. The actor
and critic networks need to be trained offline first. For each target path, we use the actor to sample
H time steps of actions, and the state prediction model to predict the future state of the vehicle and
other vehicles. The tracking cost and violations of constraints and their corresponding penalty costs
are then calculated. The actor network can be updated using stochastic gradient descent (SGD).
The critic network predicts the final cost of tracking each target path using the optimized actor, and
is optimized using SGD. During online testing, the critic network is used to select the target static
path with the minimum cost, and the actor network directly outputs the action. The state predic-
tion model consists of a vehicle dynamics model of the ego vehicle and a state prediction model of
surrounding vehicles. By combining these two models, a comprehensive state prediction model can
be constructed to help predict the future behavior of all vehicles in a scene. To deal with the un-
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certainty of the environment, we use an RNN-based neural network (Medsker & Jain, 2001; 1999)
to predict future states of the environment. As shown equation 10, an LSTM network (Hochreiter
& Schmidhuber, 1997) is applied here to predict the next state of surrounding cars using historical
information. In the prediction stage, information from the ego car-like steer angle, throttle, angular
position, and information from surrounding cars like position and speed are stacked and sent into
the LSTM encoder. A fully connected decoder is then used to predict the next state of surrounding
cars from the hidden layer output of the LSTM network. Note that the residual connection is used
here, and we predict the difference between the next state and the current state to reduce variance.

Xsurr (t+ 1) = Xsurr (t) + preϕ(X(t), ht−1;W,U, b)

X(t) = {Xsurr (t), Xego (t)}
(10)

3 EXPERIMENTS

We construct the simulated scene to benchmark ROMA roundabout which is located in Changping
District, Beijing based on SUMO (Lopez et al., 2018). Its main structure is a one-way circular
road consisting of three lanes. External roadways converge to this roundabout from four orthogonal
directions. The specifics and parameter values of the scenario are shown in Figure 11 and Table 3 in
the Appendix. Besides, the values of parameters used in vehicle dynamics are depicted in Table 2.
The whole driving task is divided into four sub-tasks: going straight, turning left or right, and making
a U-turn. We conducted 100 independent experiments with random initialization for each of the four
sub-tasks at three different levels of traffic density (40, 50, and 60 vehicles per thousand seconds).
The reported results are the average performance across all experiments for each sub-task. The
performance metrics include collision rate, driving-out-of-bound rate, comfort index, and average
speed. In order to verify the effectiveness of our algorithm, we compared it against three different
algorithms: a rule-based decision-making method provided by SUMO, MPC, and SAC, which is
state-of-art model-free reinforcement learning algorithm. The results are reported in the Tabel 1. It
turns out that our method outperforms or achieves parity with the best baseline approach across all
performance criteria. We visualize the driving process of our method in a typical scenario with a
dense traffic flow, as shown in Figure 9. It demonstrates that our algorithm can make lane-changing
decisions reasonably under congested traffic conditions, while ensuring safety and improving traffic
efficiency.

Algorithm Collision Out-of-Bound Comfort index Average Travel Speed
Neural MPC(Ours) 0 0 1.104 14.74
MPC (w/ data-driven) 3% 0 1.082 14.06
SAC 30% 24% 1.925 15.37
Rule Based 0 0 0.846 12.11

Table 1: Performance Comparison

4 CONCLUSION

This paper proposes a neural MPC-based decision-making (NMPC) framework for autonomous ve-
hicles in multi-lane roundabouts. The proposed framework transforms the decision-making problem
into a series of parallel static path tracking problems, while ensuring safety constraints are met. To
address challenges arising from traffic uncertainty, the paper proposes a neural model predictive
control algorithm that utilizes gradient guidance and an LSTM-based traffic participant behavior
predictor to solve the constrained optimization problems. The results indicate that the proposed
framework is successful in navigating the roundabout and performing lane change maneuvers safely
and efficiently, outperforming the baseline methods.
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Figure 9: Visualization of a typical scenario in dense traffic, where the ego vehicle is represented by
a red rectangle and the surrounding vehicles are represented by blue rectangles. The target reference
trajectory for the ego vehicle is depicted as a yellow line in front of it. In order to pass a slow-moving
vehicle in front, the ego vehicle first switched to the inner lane, completed the overtaking and then
changed to the middle lane, and finally drove out of the roundabout.

REFERENCES

Mehran Zamani Abnili and Nasser L Azad. On-line situational awareness for autonomous driving
at roundabouts using artificial intelligence. Journal of Machine Intelligence and Data Science
(JMIDS), 2, 2021.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science &
business media, 2013.

Gianluca Cesari, Georg Schildbach, Ashwin Carvalho, and Francesco Borrelli. Scenario model pre-
dictive control for lane change assistance and autonomous driving on highways. IEEE Intelligent
transportation systems magazine, 9(3):23–35, 2017.

Jingliang Duan, Shengbo Eben Li, Yang Guan, Qi Sun, and Bo Cheng. Hierarchical reinforcement
learning for self-driving decision-making without reliance on labelled driving data. IET Intelligent
Transport Systems, 14(5):297–305, 2020.

Laura Garcı́a Cuenca, Enrique Puertas, Javier Fernandez Andrés, and Nourdine Aliane. Autonomous
driving in roundabout maneuvers using reinforcement learning with q-learning. Electronics, 8
(12):1536, 2019.

Laura Garcia Cuenca, Javier Sanchez-Soriano, Enrique Puertas, Javier Fernandez Andres, and Nour-
dine Aliane. Machine learning techniques for undertaking roundabouts in autonomous driving.
Sensors, 19(10):2386, 2019.

Yang Guan, Yangang Ren, Haitong Ma, Shengbo Eben Li, Qi Sun, Yifan Dai, and Bo Cheng. Learn
collision-free self-driving skills at urban intersections with model-based reinforcement learning.
In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3462–
3469. IEEE, 2021.

Yang Guan, Yangang Ren, Qi Sun, Shengbo Eben Li, Haitong Ma, Jingliang Duan, Yifan Dai, and
Bo Cheng. Integrated decision and control: toward interpretable and computationally efficient
driving intelligence. IEEE transactions on cybernetics, 53(2):859–873, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

9



Published as a conference paper at ICLR 2023

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chang Liu, Seungho Lee, Scott Varnhagen, and H Eric Tseng. Path planning for autonomous ve-
hicles using model predictive control. In 2017 IEEE Intelligent Vehicles Symposium (IV), pp.
174–179. IEEE, 2017.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd,
Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner.
Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent
transportation systems (ITSC), pp. 2575–2582. IEEE, 2018.

Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC
press, 1999.

Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications, 5:64–67, 2001.

Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov, Scott Ettinger,
Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke, et al. Junior: The stanford entry
in the urban challenge. Journal of field Robotics, 25(9):569–597, 2008.
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A THE PSEUDO-CODE OF NEURAL MPC

Algorithm 1: Neural MPC Solver

Input: Current state st, backup static paths [x0ref , x
1
ref , . . . , x

N
ref ]

Output: selected Path x∗refaction commands at+Hτ=t

Initialize the actor network πθ and critic network vϕ for each target path xiref do
for each iteration do

Initialize cost J = 0.
for each time step τ ∈ [t, t+ 1, . . . ,H] do

Sample action with the actor network: aτ ∼ πθ(sτ ).
Predict future state of the vehicle st+1 using the state prediction model ϕ(·):
st+1 = ϕ(st, at).

Calculate the current step cost c and update the overall cost: J = J + c.
end
Update the Actor network using SGD: θ = θ − α∂J∂θ .

Update the Critic network vψ using SGD: ψ = ψ − α
∂(vψ(st)−J)2

∂ψ .
end
update the optimal cost: J∗

i = J
end
Select the path x∗ref with the minimum cost from x0ref , x

1
ref , . . . , x

N
ref

B IMPLEMENTATION DETAILS

This paper uses a 3-DoF vehicle model, with system dynamics governed by the following equation:

ẋ = f(x, u) =



v cosφ− w sinφ
w cosφ+ v sinφ

a+ wr − kf (w+lfr−δv) sin δ
mv

kf (w+lfr−δv)+kr(w−lrr)−mvr
mv
r

lfkf (w+lfr−δv)−lrkr(w−lrr)
IZZv

 (11)

The variables in 10 of vehicle dynamics are listed in Table 2.
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Figure 10: 3-DoF vehicle dynamical model

The detailed structure of ROMA roundabout scenario is shown in Figure 11. The structure parame-
ters of ROMA roundabout which is used as the evaluation environment are listed in Table 3.

The LSTM network is applied in this paper to predict the next state of surrounding cars using his-
torical information. In the prediction stage, information from the ego car-like steer angle, throttle,

11
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Parameter Description Value
m mass of vehicle 1412 kg
lf distance between C.G. and front axle 1.06 m
lr distance between C.G. and rear axle 1.85 m
kf front axle equivalent sideslip stiffness -128915 N/rad
kr rear axle equivalent sideslip stiffness -85943 N/rad
IZZ yaw inertia of vehicle body 1536.7 kg · m2

Table 2: Vehicle model parameters

extrance

exit

Figure 11: The structure and parameters of roundabout scene

angular position, and information from surrounding cars like position and speed are stacked and
sent into the LSTM encoder. A fully connected decoder is then used to predict the next state of sur-
rounding cars from the hidden layer output of the LSTM network. Note that the residual connection
is used here, and we predict the difference between the next state and the current state to reduce
variance.

ℎ𝑡−2

𝑐𝑡−2

𝑋(𝑡) = {𝑋𝑠𝑢𝑟𝑟 𝑡 , 𝑋𝑒𝑔𝑜(𝑡)}𝑋(𝑡 − 1) = {𝑋𝑠𝑢𝑟𝑟 𝑡 − 1 , 𝑋𝑒𝑔𝑜(𝑡 − 1)}

ℎ𝑡−1

𝑐𝑡−1

ℎ𝑡

𝑐𝑡

𝑋𝑠𝑢𝑟𝑟(𝑡 − 1)

𝑋𝑒𝑔𝑜(𝑡 − 1)

𝑋𝑠𝑢𝑟𝑟(𝑡)

𝑋𝑒𝑔𝑜(𝑡) 𝑋𝑠𝑢𝑟𝑟 𝑡+1

ℎ𝑡−1 ℎ𝑡

Feature decoder

Figure 12: Surrounding traffic participants behavior prediction.

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

ct = ft · ct−1 + it · σc (Wcxt + Ucht−1 + bc)

ht = ot · σh (ct)

(12)
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Parameter Description Value
w lane width 3.75 m
r radius of the inner lane 100 m
αi cut-in angle of the entering road 24 deg
αo cut-in angle of the exiting road 24 deg
αpre angle threshold of pre-exit area 60 deg
d distance between origin and external road 135 m

Table 3: Roundabout parameters

where σg , σc, σh are all non-linear activation functions. Specifically, σg is the Sigmoid activate
function, σc and σh are Hyperbolic Tangent function. ht is the hidden state output by the recurrent
neural network. The final state prediction Xsurr(t) is the output of feature transformation layer
network ψ(·) which take the hidden state ht as input.

C MORE EXPERIMENTAL RESULTS

t=10.5s t=11.4s t=12.3s t=13.2s t=14.1s

t=15.0s t=15.9s t=16.8s t=17.7s t=18.5s

Figure 13: Visualization of lane change overtaking maneuver. The ego vehicle is represented by a
red rectangle and the surrounding vehicles are represented by blue rectangles. The target reference
trajectory for the ego vehicle is depicted as a yellow line in front of it. To avoid the merging traffic
at an intersection, the ego vehicle made the decision to transit from the outer lane to the middle lane,
and subsequently performed a lane change overtaking maneuver.
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