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ABSTRACT

Foundation models enable prompt-based classifiers for zero-shot and few-shot
learning. Nonetheless, the conventional method of employing fixed prompts suffers
from distributional shifts that negatively impact generalizability to unseen samples.
This paper introduces prompt diffusion, which uses a diffusion model to gradually
refine the prompts to obtain a customized prompt for each sample. Specifically, we
first optimize a collection of prompts to obtain over-fitted prompts per sample. Then,
we propose a prompt diffusion model within the prompt space, enabling the training
of a generative transition process from a random prompt to its overfitted prompt.
As we cannot access the label of a test image during inference, our model gradually
generates customized prompts solely from random prompts using our trained,
prompt diffusion. Our prompt diffusion is generic, flexible, and modality-agnostic,
making it a simple plug-and-play module seamlessly embedded into existing
prompt learning methods for textual, visual, or multi-modal prompt learning.
Our diffusion model uses a fast ODE-based sampling strategy to optimize test
sample prompts in just five steps, offering a good trade-off between performance
improvement and computational efficiency. For all prompt learning methods tested,
adding prompt diffusion yields more robust results for base-to-new generalization,
cross-dataset generalization, and domain generalization in classification tasks tested
over 15 diverse datasets.

1 INTRODUCTION

Foundation models trained on a diverse set of image-text pairs that encapsulate a virtually limitless
vocabulary of real-world concepts (Radford et al., 2021b; Jia et al., 2021; Li et al., 2022a), have
demonstrated remarkable adaptability across various downstream tasks (Lin et al., 2014; Li et al.,
2022b; 2023a; Zhang et al., 2022b; 2024). These models perform zero-shot image classification
by filling in a predefined prompt template (e.g., “a photo of a [CLASS]”) with specific class
names for the text encoder. Despite their effectiveness in generalizing to new tasks, performance
can be affected by minor alterations in the wording of prompt templates, (Zhou et al., 2021). Rather
than manually creating hand-made prompts, several new prompt learning techniques in natural
language processing (Lester et al., 2021; Liu et al., 2021) and computer vision (Zhou et al., 2021;
2022a; Jia et al., 2022; Khattak et al., 2023a; Roy & Etemad, 2024; Li et al., 2024e) have been
suggested, which focus on learning a set of soft prompts with the aid of a small amount of labeled
data. However, training a model with such deterministic prompts often results in overfitting, causing
the model to focus too much on the training data, which affects its ability to generalize. These
methods usually fail when a considerable distribution shift between training and test data leads to
suboptimal generalization performance. We propose generating a distribution of prompts for each
sample, employing a probabilistic approach that effectively incorporates visual (domain) information
in a manner capable of learning and adaptation.

We are inspired by diffusion models (Song et al., 2020; Zhou et al., 2024) that have
emerged as a powerful generative technique with broad applicability for tasks as diverse as
image generation (Ho et al., 2020), video processing (Ho et al., 2022), and text genera-
tion (Gong et al., 2022). The core principle behind diffusion involves an iterative refine-
ment of the data distributions, transitioning from a simple initial distribution to the desired
target distribution. This iterative improvement process transforms the simple initial distribu-
tion into a series of sub-transformations, making it a versatile tool suitable for various tasks.
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Figure 1: Prompt diffusion enhances traditional prompt learning
methods such as CoCoOp (Zhou et al., 2022a) by introducing a
diffusion process within the prompt space (colored arrows). Unlike
deterministic prompt learning methods (black arrows), we employ a
diffusion transformer to refine the prompts gradually. This process
creates tailored prompts for each sample, complementing and aug-
menting existing prompting methods to achieve higher prediction
accuracy through stronger generalization.

To the best of our knowledge, we are
the first to introduce diffusion mod-
els into prompt learning. Our process
of generating prompts through a dif-
fusion model is depicted in Figure 1.
Our prompt diffusion involves gradu-
ally refining the prompts with a diffu-
sion transformer, which leads to the
development of custom prompts tai-
lored to each sample, thereby enhanc-
ing the accuracy of predictions and ro-
bustifying their generalization across
downstream tasks.

In this paper, we make three contri-
butions. First, we propose a prompt
diffusion method based on the trans-
former within the prompt space, en-
abling the learning of a generative
pathway that seamlessly transitions
from a random prompt to its person-
alized prompt. Rather than relying
on a single static prompt acquired for
the entire dataset, our prompt diffu-
sion can learn and evolve from noise
to the example prompt throughout the
training process. These personalized
prompts are adept at generalizing the
unique domain characteristics inher-
ent in each sample, thus enhancing
the model’s ability to generalize. Second, to better deploy prompt diffusion, we propose a per-sample
overfitting strategy to obtain “optima” prompts for each data sample, allowing our diffusion trans-
former to effectively navigate the transition from general to highly personalized prompts within the
training phase. Third, our prompt diffusion approach is versatile, adaptable, and modality-agnostic,
which makes it easily integrated as a plug-and-play module within existing prompt learning tech-
niques. This includes methods specialized for text-based prompts (e.g., CoCoOP (Zhou et al., 2022a)),
visual prompts (e.g., VPT (Jia et al., 2022)), as well as three approaches that combine both text
and visual inputs (e.g., MaPLe (Khattak et al., 2023a), PromptSRC (Khattak et al., 2023b), and
CoPrompt (Roy & Etemad, 2024)). Our diffusion model leverages a state-of-the-art fast ODE-based
sampling strategy (Zhou et al., 2024) that optimizes test sample prompts in just five steps, achieving
an effective balance between performance enhancement and computational efficiency. To validate
the effectiveness of our method, we conduct extensive testing across three common prompt learning
experimental setups over 15 datasets: base-to-new generalization, cross-dataset generalization, and
domain generalization. Adding prompt diffusion yields more robust results for all prompt learning
methods tested.

2 RELATED WORK

Foundation models. Foundation models developed through training on a wide and varied collection
of image-text pairs, capture a nearly boundless array of concepts from the real world (Radford et al.,
2021b; Jia et al., 2021; Li et al., 2022a; Schneider et al., 2024; Xu et al., 2024), and have exhibited
exceptional versatility in numerous downstream tasks (Lin et al., 2014; Li et al., 2022b; 2023a; Zhang
et al., 2022b; 2024). Foundation models can be categorized into four types: 1) Masked language
modeling, as investigated in studies such as (Kim et al., 2021; Lu et al., 2019), 2) Masked region
prediction exemplified by (Tan & Bansal, 2019; Su et al., 2019), 3) Image-text matching addressed by
works like (Tan & Bansal, 2019; Kim et al., 2021), and 4) Contrastive learning, with notable references
including (Radford et al., 2021a; Jia et al., 2021; Li et al., 2021; Huo et al., 2021). Numerous studies
have demonstrated improved performance in tasks such as few-shot image recognition (Gao et al.,
2021; Zhang et al., 2022a; Kim et al., 2022), object detection (Li et al., 2024b; Maaz et al., 2022;
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Zhou et al., 2022b; Gu et al., 2021; Zang et al., 2022; Cheng et al., 2024), and segmentation (Li et al.,
2024d; Rao et al., 2022; Li et al., 2024c; Lüddecke & Ecker, 2022) using tailored methods. In this
paper, we introduce a novel plugin designed to unify different prompt-learning approaches to address
the issues of prompt engineering in traditional foundation models, aimed at solving the base-to-new,
cross-dataset, and domain generalization of visual recognition problems.

Prompt learning. Prompt learning, originally introduced in the natural language processing commu-
nity (Shin et al., 2020; Jiang et al., 2020; Liu et al., 2023a), involves applying a fixed function to input
tokens to provide task instructions to the model. In the computer vision community, prompt learning
has been explored in various forms, including textual prompts (Zhou et al., 2021; 2022a; Derakhshani
et al., 2023; Lu et al., 2022b; Zhu et al., 2023; Liu et al., 2023b), visual prompts (Jia et al., 2022; Ge
et al., 2022; Wang et al., 2022; Bahng et al., 2022; Li et al., 2024a; Yang et al., 2024), and multi-modal
prompts (Khattak et al., 2023a; Lee et al., 2023; Li et al., 2023b; Roy & Etemad, 2024; Li et al.,
2024e). 1) Textual prompt learning, as pioneered by CoOp (Zhou et al., 2021) and CoCoOp (Zhou
et al., 2022a), fine-tunes a CLIP vision-language model (Radford et al., 2021a) for few-shot transfer
by optimizing a continuous set of prompt vectors within its language branch. Bayesian prompt
learning (Derakhshani et al., 2023) formulated prompt learning as a variational inference problem and
demonstrated its ability to generalize unseen classes at the expense of base class accuracy. 2) Visual
prompt tuning (Jia et al., 2022) introduces task-specific learnable prompts in the input visual space
while keeping the pre-trained backbone fixed, optimizing them using the downstream task’s label.
3) Multi-modal prompt learning (Khattak et al., 2023a;b; Li et al., 2024e; Xiao et al., 2024) applied
prompt learning in both vision and language branches to improve the alignment between the vision
and language representations. In contrast to previous prompt learning methods, this paper introduces
modality-agnostic prompt diffusion, which leverages a diffusion model to generate prompts gradually.
Our method serves as a simple plug-and-play module that seamlessly integrates with existing prompt
learning methods, whether textual, visual, or multi-modal.

3 PRELIMINARIES

Before detailing our prompt diffusion, we first present the technical background on the CLIP
foundation model, prompt-based learning, and diffusion models.

Contrastive Language-Image Pre-Training (CLIP). The objective of CLIP (Radford et al., 2021a)
is to train an image encoder fI and a text encoder gT through contrastive pre-training using a large set
of paired images and texts. This encourages the encoders to align corresponding image-text pairs in a
shared semantic space. After pre-training, CLIP exhibits the capacity for zero-shot visual recognition
by casting classification as an image-text matching task. Specifically, the term “[CLASS]” is utilized
as a placeholder within a prompt template (e.g., “a photo of a [CLASS]”) for the text encoder
gT . If we let gT (Ti) represent text features extended for class i, the classification probability for
class i given an image I is:

p(y=i|I)= exp(⟨gT (Ti), fI(I)⟩/τ)∑K
j=1 exp(⟨gT (Tj), fI(I)⟩/τ)

, (1)

where ⟨gT (Ti), fI(I)⟩ denotes the cosine similarity between the image feature fI(I) and the class-
specific text feature gT (Ti) for the i-th class, K the total number of classes, and τ the temperature
parameter optimized during training.

Prompt-based learning enhances the transferability of the CLIP model by avoiding the need for
prompt engineering. Instead, it enables automatic learning of prompts with a few samples from a
downstream task. CoOp (Zhou et al., 2021) introduces and refines a set of M continuous context
vectors V ={v1,v2, . . . ,vM} as the learnable prompt. The prompt Ti={v1,v2, . . . ,vM , ci} is a
concatenation of the learnable context vectors V and the class token embedding ci, which is then
inputted to the text encoder gT (·). CoOp tailors the static context vectors V by minimizing the
negative log-likelihood for the correct class token:

LCE(V )=−
∑
i

yi log p(Ti|I), (2)

Here, yi denotes the one-hot ground-truth label for class i. In downstream tasks, the pre-trained
model parameters remain frozen, allowing the learnable prompt vectors V to be efficiently optimized
through the minimization of the cross-entropy loss with only a limited number of samples.
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Diffusion model. In denoising diffusion probabilistic models (Ho et al., 2020), q(xt|xt−1), is
characterized as a Markov chain that progressively introduces Gaussian noise at each time step t,
beginning with a clean image x0 ∼ q(x0). The forward diffusion process is formulated as:

q(xT |x0) : =

T∏
t=1

q(xt|xt−1), (3)

where q(xt|xt−1) : =N (xt;
√
1− βtxt−1, βtI), {β}Tt=0 is a variance schedule. By defining

αt: =1−βt and ᾱt: =
∏t

s=1 αs, the forward diffused sample at time step t, denoted as xt, can
be generated in a single step as xt=

√
ᾱtx0 +

√
1− ᾱtϵ.

The reverse process of the diffusion model learns to maximize the variational lower bound using
parameterized Gaussian transitions, pθ(xt−1|xt). Consequently, the reverse process is approximated
as a Markov chain with the learned mean and fixed variance, starting from random noise xT ∼
N (xT ; 0, I). The diffusion model is trained by optimizing the following objective function:

Lθ=Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
. (4)

In the sampling phase of diffusion, to sample from pθ(xt−1|xt), one can perform the following:

xt−1=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σtϵ. (5)

Based on the geometric property that each sampling trajectory approximately resides within a two-
dimensional subspace embedded in a high-dimensional space, Zhou et al. (2024) introduce the
Approximate MEan-Direction Solver (AMED-Solver), a single-step ODE solver that predicts the
mean direction at each sampling step. By appropriately selecting sn and cn, the AMED-Solver
achieves an approximation given by:

xtn ≈ xtn+1
+ cn(tn − tn+1)ϵθ(xsn , sn). (6)

This formulation provides a single-step ODE solver, and the DPM-Solver-2 (Lu et al., 2022a) can be
derived by setting sn =

√
tntn+1 and cn = 1. Unlike typical approaches that operate on images, our

prompt diffusion model directly optimizes prompts. Given that prompt learning in vision-language
tasks aims for faster and more accurate image classification, our proposed prompt diffusion, built
upon the AMED-Solver, enables more rapid image classification during inference time.

4 METHODOLOGY

This section outlines our approach to training prompt learning via our proposed prompt diffusion
model. Our prompt diffusion model is an end-to-end framework that integrates the generation of
sample-specific overfitted prompts with the diffusion process for prompt refinement. We begin by
explaining how to generate sample-specific overfitted prompts in Section 4.1. Next, we introduce
prompt diffusion during both the training and testing phases to obtain diffused prompts in Section 4.2.

4.1 PER-SAMPLE PROMPT OVERFITTING

Our approach begins by fine-tuning various prompts to achieve individualized overfitting for each
data sample. This ensures the precise generation of prompts that are tailored to specific instances.
Specifically, when dealing with an image represented as x, we aim to obtain a set of prompts, denoted
as V ∗, which have been explicitly overfitted to that sample. We feed both the image x and the
initial prompts V ={v1, v2, . . . , vM} into various prompt learning models and then employ iterative
gradient descent on Eq. (2) to optimize the set of prompts, resulting in V ∗={v∗1 , v∗2 , . . . , v∗M}. These
optimized prompts can be considered as the “optima” prompts for each sample. Note that the
intermediate loss is solely adjusted to achieve overfitted prompts in this process. Afterward, the
gradient information for the learnable prompts will be discarded without optimization incorporated
into the final loss. We illustrate this per-sample prompt overfitting for textual prompt learning with
CoCoOp (Zhou et al., 2022a) in Figure 2.

Once we obtain the overfitted prompts, our objective is to train the model using random prompts
about these overfitted prompts. This is necessary because we cannot access the overfitted prompts

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

img
encoder

class

text
encoder

Gradient
descent

Per-sample prompt overfitting

Overfitted
 prompts

=
Figure 2: Per-sample prompt overfitting for textual
prompt learning. Through a minimal number of iter-
ations I using gradient descent, we successfully de-
rive overfitted prompts for each sample in the dataset.
These overfitted prompts act as a “ground truth” for the
prompts of each sample, enabling our proposed diffusion
transformer to grasp the transition from generic prompts
to highly personalized overfitted prompts.

during the testing stage. Therefore, in the following section, we use the diffusion model to learn the
generative process of sample-specific prompts, thus robustifying the generalizability of the prompts
for each sample.

4.2 PROMPT DIFFUSION

We leverage the diffusion model (Song et al., 2020) to model textual, visual, or multi-modal prompts.
In our implementation, we adapt the diffusion process to incrementally denoise and refine overfitted
prompts, thereby enhancing the generative quality and coherence of the prompts. Consequently,
we introduce the concept of modality-agnostic prompt diffusion, a novel method that incrementally
crafts sample-specific prompts for each instance. This methodical generation of prompts enhances
their overall quality, ensuring that each prompt is optimally tuned to the nuances of its corresponding
sample. This adaptive approach is designed to fine-tune the diffusion process, allowing for a more
targeted and effective prompt generation that elevates the efficacy of the model’s performance.

Training phase. During the initial training stage, we obtain the overfitted prompts V ∗ of individual
samples via our proposed per-sample prompt overfitting. Then, the diffusion model is used to
progressively approximate the overfitted prompts, from a Gaussian noise vector ṼT ∼ N (0, I),
which possesses the exact dimensions as V ∗. The approximation process iterates through the noise
vectors Ṽ ∗

t , with t representing the diffusion step from T to 0. This process leads to the reconstruction
of Ṽ0, which is expected to closely mirror the overfitted prompt associated with the particular sample
being analyzed.

Specifically, throughout the forward diffusion phase at an increment in time t, we derive the overfitted
prompts V ∗

t . Subsequently, the noised prompts, denoted as Ṽt, and the training image feature π -
extracted through a lightweight neural network, Meta-Net π(θ) (Zhou et al., 2022a) - are utilized to
create a conditional token for each input and the temporal timestep t. These are then inputted into the
diffusion transformer. This process yields the interim diffused prompts Ṽt. These prompts then, the
token [CLASS] is synergized and integrated into the text encoder to generate the corresponding text
features. The prediction of the final classification outcome for the training image is then conducted by
Eq. (1). For each sample, our diffusion model encapsulates a dual-component objective comprising
the variational lower bound Ldiff for the diffusion model and the cross-entropy loss LCE. The
overarching schema of our training scheme is depicted at the top of Figure 3.

The objective function, the simplified variational lower bound, aims to predict the denoised overfitted
prompts accurately. Formally, the loss function is given by:

Ldiff =
∥∥∥V ∗ − Ṽθ

(√
ᾱtV

∗ +
√
1− ᾱtϵ, π, t

)∥∥∥2 , (7)

where Ṽθ(·, ·, ·) denotes the function parameterized by the transformer architecture (Vaswani et al.,
2017). This function processes the input comprising the original overfitted prompts V ∗, image feature
π, and the diffusion time step t. The efficacy of our model is measured by its ability to minimize
this loss, thus accurately reconstructing the overfitted prompts from their noised counterparts. By
utilizing Eq. (2), we derive the final prediction ŷ using diffused prompts Ṽt. The final objective is:

Lfinal =
∑
(x,y)

[
− Eq(Ṽt|Ṽt+1,π)

[
log p(y|x, Ṽt)

]
+ β

∥∥∥V ∗ − Ṽθ

(√
ᾱtV

∗ +
√
1− ᾱtϵ, π, t

)∥∥∥2 , (8)

where β represents a hyperparameter.
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Figure 3: Prompt diffusion. (1) Training by generating prompts that are initially overfitted using per-sample
overfitting. These prompts are then subjected to a noise injection before entering the forward diffusion process.
The inputs for diffusion include noisy prompts Ṽ ∗

t , the image features π, and a randomly chosen time step
t, which leads to the generation of diffused prompts Ṽt. After training, the diffusion transformer can convert
generic prompts into their overfitted counterparts for each sample. (2) During testing, the sampling process
begins with an initial random noise ṼT , which is gradually refined into diffused prompts Ṽt. At each time step
t, the sampling process incorporates the previous state Ṽt−1, test image features π, and current time step t as
inputs. The resulting diffused prompts Ṽ0 are then employed to make test sample predictions. Throughout
T with our diffusion transformer, the vanilla prompts are adapted into customized prompts that contain more
specific information about the test sample, thereby enhancing prediction accuracy.

In the supplemental materials, we provide the computational graph, which showcases the sequential
steps of the forward and inverse diffusion processes on the prompts. Our method balances adaptability
and informativeness by incorporating probabilistic prompts with the diffusion model. Our model has
also been applied to visual prompt tuning (VPT) (Jia et al., 2022) and multi-modal prompt learning
(MaPLe, PromptSRC, and CoPrompt) (Khattak et al., 2023a;b; Roy & Etemad, 2024), generating
visual prompts through a process identical to that used for generating text prompts.

Testing phase. During the testing phase, the generation of overfitted prompts is infeasible due
to the unavailability of test sample labels. Consequently, the diffusion sampling process begins
with the introduction of Gaussian noise ṼT alongside the computed image feature set π, followed
by a systematic denoising procedure. To address an unseen test instance x, initial image feature
computations π are performed. After this, the noise vector ϵ is drawn from a standard normal
distribution N (0, I) for each model and data/set. This ensures a diverse starting point for each prompt
without using multiple models, training multiple times, or employing different checkpoints. These
elements, comprising ṼT , π, and ϵ, are then supplied to the trained prompt diffusion model to derive
intermediate diffused prompts ṼT−1, represented by Ṽθ(ṼT , π, T ). This iterative process unfolds
over T steps, culminating in the acquisition of the terminal diffused prompts Ṽ0=Ṽθ(Ṽ1, π, t0).
Upon retrieval of Ṽ0, integration with the text encoder occurs, facilitating the generation of relevant
text features. The final stage involves the deployment of these features to predict the classification
result for the test image, as delineated by Eq. (1). The diffusion sampling framework throughout the
testing phase is shown at the bottom of Figure 3.

5 EXPERIMENTS

We validate the effectiveness of our approach across three widely adopted scenarios for evaluat-
ing prompt learning in vision-language models: (1) base-to-new generalization, (2) cross-dataset
generalization, and (3) domain generalization.
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Table 1: Base-to-new generalization. Prompts are derived from base class examples. The harmonic mean (H)
underscores the trade-off in generalization. Top-performing results are emphasized in blue. By integrating our
plugin within five different prompt learning methods, we consistently improve their average accuracy across 11
datasets, demonstrating enhanced performance over approaches without our plugin.

(a) Average over 11 datasets.
Base New H

VPT (Jia et al., 2022) 72.53 72.34 72.43
+ Prompt Diffusion 74.98 74.97 74.97

CoCoOp (Zhou et al., 2022a) 80.47 71.69 75.83
+ Prompt Diffusion 81.35 74.97 78.02

MaPLe (Khattak et al., 2023a) 82.28 75.14 78.55
+ Prompt Diffusion 83.39 77.32 80.24
PromptSRC (Khattak et al., 2023b) 84.26 76.10 79.97
+ Prompt Diffusion 85.74 78.97 82.22
CoPrompt (Roy & Etemad, 2024) 84.00 77.23 80.48
+ Prompt Diffusion 86.14 80.01 82.96

(b) ImageNet.
Base New H

VPT (Jia et al., 2022) 74.45 69.22 71.74
+ Prompt Diffusion 74.97 69.99 72.39

CoCoOp (Zhou et al., 2022a) 75.98 70.43 73.10
+ Prompt Diffusion 76.46 70.97 73.61

MaPLe (Khattak et al., 2023a) 76.66 70.54 73.47
+ Prompt Diffusion 77.01 71.03 73.89
PromptSRC (Khattak et al., 2023b) 77.60 70.73 74.01
+ Prompt Diffusion 79.13 72.46 75.65
CoPrompt (Roy & Etemad, 2024) 77.67 71.27 74.33
+ Prompt Diffusion 80.73 73.25 76.81

(c) Caltech101.
Base New H

VPT (Jia et al., 2022) 96.92 93.44 95.15
+ Prompt Diffusion 97.43 94.23 95.80

CoCoOp (Zhou et al., 2022a) 97.96 93.81 95.84
+ Prompt Diffusion 98.12 94.97 96.52

MaPLe (Khattak et al., 2023a) 97.74 94.36 96.02
+ Prompt Diffusion 97.25 95.98 96.61
PromptSRC (Khattak et al., 2023b) 98.10 94.03 96.02
+ Prompt Diffusion 98.08 96.86 97.47
CoPrompt (Roy & Etemad, 2024) 98.27 94.90 96.55
+ Prompt Diffusion 98.73 95.75 97.22

(d) OxfordPets.
Base New H

VPT (Jia et al., 2022) 92.63 94.96 93.78
+ Prompt Diffusion 93.17 97.18 95.14

CoCoOp (Zhou et al., 2022a) 95.20 97.69 96.43
+ Prompt Diffusion 94.97 97.98 96.45

MaPLe (Khattak et al., 2023a) 95.43 97.76 96.58
+ Prompt Diffusion 95.96 98.11 97.02
PromptSRC (Khattak et al., 2023b) 95.33 97.30 96.30
+ Prompt Diffusion 95.44 98.05 96.73
CoPrompt (Roy & Etemad, 2024) 95.67 98.10 96.87
+ Prompt Diffusion 96.74 98.91 97.81

(e) StanfordCars.
Base New H

VPT (Jia et al., 2022) 65.06 74.68 69.54
+ Prompt Diffusion 65.75 75.23 70.17

CoCoOp (Zhou et al., 2022a) 70.49 73.59 72.01
+ Prompt Diffusion 70.98 75.32 73.08

MaPLe (Khattak et al., 2023a) 72.94 74.00 73.47
+ Prompt Diffusion 73.11 75.03 74.06
PromptSRC (Khattak et al., 2023b) 78.27 74.97 76.58
+ Prompt Diffusion 80.14 76.15 78.09
CoPrompt (Roy & Etemad, 2024) 76.97 74.40 75.66
+ Prompt Diffusion 79.13 75.83 77.44

(f) Flowers102.
Base New H

VPT (Jia et al., 2022) 76.23 71.55 73.82
+ Prompt Diffusion 77.29 72.33 74.73

CoCoOp (Zhou et al., 2022a) 94.87 71.75 81.71
+ Prompt Diffusion 94.17 75.73 83.95

MaPLe (Khattak et al., 2023a) 95.92 72.46 82.56
+ Prompt Diffusion 95.90 73.14 82.99
PromptSRC (Khattak et al., 2023b) 98.07 76.50 85.95
+ Prompt Diffusion 98.96 78.27 87.41
CoPrompt (Roy & Etemad, 2024) 97.27 76.60 85.71
+ Prompt Diffusion 98.73 78.49 87.45

(g) Food101.
Base New H

VPT (Jia et al., 2022) 89.27 90.50 89.88
+ Prompt Diffusion 89.97 92.12 91.03

CoCoOp (Zhou et al., 2022a) 90.70 91.29 90.99
+ Prompt Diffusion 90.21 92.01 91.10

MaPLe (Khattak et al., 2023a) 90.71 92.05 91.38
+ Prompt Diffusion 91.26 93.11 92.18
PromptSRC (Khattak et al., 2023b) 90.67 91.53 91.10
+ Prompt Diffusion 90.74 92.58 91.65
CoPrompt (Roy & Etemad, 2024) 90.73 92.07 91.40
+ Prompt Diffusion 91.34 92.98 91.25

(h) FGVCAircraft.
Base New H

VPT (Jia et al., 2022) 28.23 32.21 30.09
+ Prompt Diffusion 28.82 35.07 31.64

CoCoOp (Zhou et al., 2022a) 33.41 23.71 27.74
+ Prompt Diffusion 34.21 35.27 34.73

MaPLe (Khattak et al., 2023a) 37.44 35.61 36.50
+ Prompt Diffusion 37.11 36.15 36.62
PromptSRC (Khattak et al., 2023b) 42.73 37.87 40.15
+ Prompt Diffusion 44.81 39.98 42.26
CoPrompt (Roy & Etemad, 2024) 40.20 39.33 39.76
+ Prompt Diffusion 42.35 41.27 41.80

(i) SUN397.
Base New H

VPT (Jia et al., 2022) 75.14 76.89 76.00
+ Prompt Diffusion 75.74 77.82 76.77

CoCoOp (Zhou et al., 2022a) 79.74 76.86 78.27
+ Prompt Diffusion 80.14 77.53 78.81

MaPLe (Khattak et al., 2023a) 80.82 78.70 79.75
+ Prompt Diffusion 81.03 79.54 80.28
PromptSRC (Khattak et al., 2023b) 82.67 78.47 80.52
+ Prompt Diffusion 84.15 80.27 82.16
CoPrompt (Roy & Etemad, 2024) 82.63 80.03 81.31
+ Prompt Diffusion 84.71 81.97 83.32

(j) DTD.
Base New H

VPT (Jia et al., 2022) 56.71 57.25 56.98
+ Prompt Diffusion 58.43 58.13 58.28

CoCoOp (Zhou et al., 2022a) 77.01 56.00 64.85
+ Prompt Diffusion 73.43 60.19 66.15

MaPLe (Khattak et al., 2023a) 80.36 59.18 68.16
+ Prompt Diffusion 80.25 59.94 68.62
PromptSRC (Khattak et al., 2023b) 83.37 62.97 71.75
+ Prompt Diffusion 85.71 65.07 73.98
CoPrompt (Roy & Etemad, 2024) 83.13 64.73 72.79
+ Prompt Diffusion 85.14 65.96 74.33

(k) EuroSAT.
Base New H

VPT (Jia et al., 2022) 67.57 59.69 63.39
+ Prompt Diffusion 67.26 69.01 68.13

CoCoOp (Zhou et al., 2022a) 87.49 60.04 71.21
+ Prompt Diffusion 88.13 70.22 78.16

MaPLe (Khattak et al., 2023a) 94.07 73.23 82.35
+ Prompt Diffusion 94.76 73.34 82.69
PromptSRC (Khattak et al., 2023b) 92.90 73.90 82.32
+ Prompt Diffusion 93.94 76.07 84.07
CoPrompt (Roy & Etemad, 2024) 94.60 78.57 85.84
+ Prompt Diffusion 94.98 80.17 86.95

(l) UCF101.
Base New H

VPT (Jia et al., 2022) 75.65 75.31 75.48
+ Prompt Diffusion 76.31 76.23 76.27

CoCoOp (Zhou et al., 2022a) 82.33 73.45 77.64
+ Prompt Diffusion 81.97 77.03 79.42

MaPLe (Khattak et al., 2023a) 83.00 78.66 80.77
+ Prompt Diffusion 82.86 79.64 81.22
PromptSRC (Khattak et al., 2023b) 87.10 78.80 82.74
+ Prompt Diffusion 88.21 79.91 83.86
CoPrompt (Roy & Etemad, 2024) 86.90 79.57 83.07
+ Prompt Diffusion 88.14 80.28 84.03

5.1 EXPERIMENTAL SETUP

15 diverse datasets. For base-to-new generalization and cross-dataset gneralization, we follow
CLIP (Radford et al., 2021a) and CoOp (Zhou et al., 2021) to use 11 image classification datasets, i.e.,
ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) for generic object classification,
OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisser-
man, 2008), Food101 (Bossard et al., 2014) and FGVCAircraft (Maji et al., 2013) for fine-grained
image recognition, EuroSAT (Helber et al., 2019) for satellite image classification, UCF101 (Soomro
et al., 2012) for action classification, DTD (Cimpoi et al., 2014) for texture classification, and
SUN397 (Xiao et al., 2010) for scene recognition. For domain generalization, we follow CoOp (Zhou
et al., 2021) with ImageNet as the source dataset, and we select four variants of ImageNet: Ima-
geNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al.,
2021b) and ImageNet-R (Hendrycks et al., 2021a) as the target datasets.

5 prompt learning baselines. For comparative evaluation, we employ several established baselines:
(1) Textual prompt learning CoCoOp (Zhou et al., 2022a); (2) Visual prompt tuning (VPT) (Jia
et al., 2022), representing the visual prompt learning method; (3) Multi-modal prompt learning
(MaPLe (Khattak et al., 2023a), PromptSRC (Khattak et al., 2023b)), and CoPrompt (Roy & Etemad,
2024) employing prompt learning in both the visual and textual domains. Note that our method acts
as a plugin that is easily integrated into each of these methods.

Training details. To ensure a fair comparison, we utilize the CLIP-ViT-B/16 as the base pre-training
model for CoCoOp (Zhou et al., 2022a), and VPT (Jia et al., 2022), setting the prompt token
count to 4. This configuration is based on recommendations in (Zhou et al., 2022a), indicating

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Cross-dataset generalization. Accuracy (%) evaluation for prompts learned from the source dataset.
Our plugin consistently enhances existing prompt learning methods, whether textual, visual, or multi-modal.

Source Target
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VPT (Jia et al., 2022) 68.92 93.07 89.44 64.77 67.79 84.91 23.72 66.16 45.02 37.74 67.00 63.96
+ Prompt diffusion 70.23 94.71 90.93 65.53 68.93 85.71 24.81 66.98 46.16 39.67 67.91 65.11

CoCoOp (Zhou et al., 2022a) 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
+ Prompt diffusion 71.98 95.07 91.11 66.73 73.52 87.18 22.23 68.25 46.84 47.13 69.53 66.76

MaPLe (Khattak et al., 2023a) 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
+ Prompt diffusion 71.23 95.98 92.49 67.17 74.13 88.24 26.23 69.43 47.95 49.73 69.53 68.09
PromptSRC (Khattak et al., 2023b) 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
+ Prompt diffusion 71.73 96.01 93.13 68.12 73.71 88.31 26.14 70.21 48.35 48.15 70.24 68.23
CoPrompt (Roy & Etemad, 2024) 70.80 94.50 90.73 65.67 72.30 86.43 24.00 67.57 47.07 51.90 69.73 67.00
+ Prompt diffusion 71.46 96.12 93.94 68.81 74.98 88.11 26.31 71.73 49.15 54.41 71.14 69.47

optimal performance with a more concise context length. For MaPLe (Khattak et al., 2023a),
PromptSRC (Khattak et al., 2023b) and CoPrompt (Roy & Etemad, 2024), the prompt depth M is
adjusted to 9, and we configure the language and vision prompt lengths at two tokens each. In the
diffusion preprocessing stage, we adapt the strategy of positional token assignment (Dosovitskiy
et al., 2021) to the input prompts Ṽ ∗ and the image features π. Furthermore, the diffusion time
step t is encoded as a series of individual tokens, adopting a frequency-based vector representation
scheme (Mildenhall et al., 2021). We set the diffusion time step t as 100 for our experiments. Our
transformer-based model architecture is the same as the GPT-2 framework (Radford et al., 2019).
This includes a 12-layer transformer, a linear transformation, and an attention mechanism with 16
heads. The batch size is 32 for all prompt-based models, except for CoCoOp, which is trained with a
batch size of 4. Each model leverages a learning rate 0.0035 applied through the SGD optimizer on a
single NVIDIA A100 GPU for execution. Code will be made available.

Evaluation setting. Across all experiments, we benchmark the models’ performance in a 16-shot
setting, standardizing the number of training epochs to 50 for each baseline and dataset. The
appendix presents a 4-shot experiment, compares outcomes across different epochs, and evaluates
various parameter-efficient approaches. For consistency, all results from learning-based methods are
computed as an average over three random seeds.

5.2 COMPARATIVE EXPERIMENTS

Base-to-new generalization. Table 1 shows that various prompting methods, when combined with
our prompt diffusion approach, consistently surpass the average performance across all datasets.
Regarding base class accuracy averaged across 11 datasets, our approach advances VPT, CoCoOp,
MaPle, PromptSRC, and CoPrompt by 2.54%, 1.08%, 1.11%, 2.25% and 2.48%, respectively,
showcasing that our approach strengthens the adaptation of existing methods. When it comes to
recognizing new classes, our approach also shows good improvement, with gains of 2.60% for VPT,
1.26% for CoCoOp, 2.78% for MaPle 1.81% for PromptSRC, and 2.87% for CoPrompt, emphasizing
its effectiveness in dealing with unseen samples. Regarding the harmonic mean, which considers
both base and new classes, our method retains a superior few-shot generalization capacity across all
datasets compared to baseline models. Notably, CoPrompt, with our prompt diffusion, consistently
outperforms all other methods across most datasets, demonstrating the advantages of using both
modalities in prompt learning. Our prompt diffusion, applied to different prompt learning models,
consistently improves the outcomes by generating more informative and precise prompts.

Cross-dataset generalization. Our study assesses how well models can adapt prompt learning from
one dataset and apply it effectively to different datasets for cross-dataset generalization. We test the
zero-shot transfer capabilities of the models on a wide range of 10 datasets. As shown in Table 2,
our prompt diffusion substantially improves the average transfer performance of models like VPT,
CoCoOp, MaPLe, PromptSRC and CoPrompt, with respective increases of1.15%, 1.02%, 1.79%,
2.43%, and 2.47%. These results not only confirm the effectiveness of our method in enhancing
cross-dataset generalization but also highlight its versatility across various prompt learning methods.

Domain generalization. The performance of various ImageNet variants, which have a domain
shift compared with the source dataset, is evaluated. Table 3 summarizes these findings, high-
lighting not only the improvement in performance across VPT, CoCoOp, MaPLe, PromptSRC,
and CoPrompt but also the maintenance of performance on the source dataset itself. Interest-
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ingly, using prompt diffusion with CoCoOp performs better than all multi-modal prompt learn-
ing methods on the ImageNet-A dataset. This could be due to CoCoOp’s emphasis on textual
prompt learning, which may be more suited to these types of datasets. ImageNet-A images fre-
quently display anomalies or atypical features, whereas visual prompts could highlight deceptive
or overly intricate aspects, making classification less accurate. Thus, when addressing real-world
datasets like ImageNet-A, it is advantageous to use textual prompting with our prompt diffusion.

Table 3: Domain generalization. Accuracy (%) evaluation on target datasets
using prompts learned from a source dataset. Our method delivers consistent,
prompt learning improvements across all datasets.

Source Target

ImageNet -V2 -S -A -R Average

VPT (Jia et al., 2022) 68.92 61.84 47.64 46.50 75.86 57.96
+ Prompt diffusion 70.23 62.97 48.77 47.25 77.06 59.01

CoCoOp (Zhou et al., 2022a) 71.02 64.07 48.75 50.63 76.18 59.91
+ Prompt diffusion 71.98 65.28 50.11 52.23 77.50 61.25

MaPLe (Khattak et al., 2023a) 70.72 64.07 49.15 50.90 76.98 60.83
+ Prompt diffusion 71.23 65.49 50.46 52.18 78.31 62.36
PromptSRC (Khattak et al., 2023b) 71.27 64.35 49.55 50.90 77.80 60.65
+ Prompt diffusion 71.73 66.33 51.21 52.02 79.86 62.88
CoPrompt (Roy & Etemad, 2024) 70.80 64.25 49.43 50.50 77.51 60.42
+ Prompt diffusion 71.46 66.01 50.71 51.75 80.76 62.30

Since such datasets often con-
tain natural images, textual
prompts can leverage the se-
mantic context effectively. On
the other hand, in scenarios
involving a clear distribution
shift (e.g. sketch, cartoon),
employing a multi-modality
prompt with our prompt diffu-
sion is more effective. From
the results of these experi-
ments, our method fosters a
level of adaptability that al-
lows models to maintain their
initial generalizability even af-
ter being fine-tuned to limited
datasets.

5.3 ABLATION EXPERIMENTS

Benefit of the diffusion model. To confirm that the performance gain of our model can be attributed
to the diffusion model, we first conducted the experiments using MLP and transformers as non-
generative models, using overfitted prompts as supervision. We also compared it with three widely
used generative models: generative adversarial networks (GAN) (Goodfellow et al., 2020), variational
auto-encoders (VAE) (Kingma & Welling, 2013), and normalizing flows (Rezende & Mohamed,
2015). First, we obtain the overfitted prompts with per-sample prompt overfitting. In the case of
non-generative models, the process involves solely using image features π, and then employing
overfitted prompts, V ∗, for supervising the training of MLP and transformer models. The input
is extended for GANs, VAE and normalizing flows to include image features π and a variable
ϵ sampled from a standard normal distribution N (0, I). These inputs, along with the overfitted

Table 4: Benefit of diffusion model in the
base-to-new generalization.

Base New H

CoCoOp (Zhou et al., 2022a) 80.47 71.69 75.83

w/ MLP 79.18 71.98 75.41
w/ Transformer 80.17 72.03 75.88

w/ GAN 81.15 71.44 75.99
w/ VAE 80.73 72.09 76.17
w/ Normalizing flows 80.65 72.43 76.32
w/ Diffusion 81.35 74.97 78.02

prompts V ∗, are used to supervise and train these three
types of generative models. Table 4 shows the diffusion
model outperforms all variants in accuracy. Specifically,
our proposed per-sample overfitting integration with MLP
and transformer architectures shows a slight harmonic
mean improvement over the CoCoOp baseline, validat-
ing the effectiveness of our per-sample prompt overfitting.
Notably, our diffusion model presents a good increase in
accuracy, surpassing the GAN, VAE and normalizing flows
models by 2.01%, 1.85% and 1.70%, respectively.

Effect of the number of function evaluation. Our prompt diffusion utilizes the fast ODE-based
sampling strategy introduced by (Zhou et al., 2024) enabling efficient sampling with a reduced
number of timesteps during testing. In Figure 4, we analyze the effect of different numbers of
function evaluations (NFE) on both final performance and inference time. Our findings indicate
that at an NFE of 5, our method achieves the best balance between performance and prediction
time. In comparison to the original CoCoOp, our approach results in only a 0.045-second increase
in prediction time while delivering a substantial performance improvement. This highlights the
effectiveness of our method in balancing accuracy and computational efficiency.

Impact of iterations on per-sample prompt overfitting. In our prompt diffusion method, per-sample
prompt overfitting is crucial to generate optimal prompts during training. Figure 5 shows that as
iterations increase, accuracy on novel classes improves for all methods, peaking at iteration 5. This
shows that the quality of the optimal prompt directly influences the final performance. Moreover, our
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Figure 4: Effect of number of function evalua-
tion on base-to-new generalization.

Figure 5: Impact of iterations on per-sample
prompt overfitting for novel classes.

Figure 6: Visualization of generated prompts by ControlNet (Zhang et al., 2023). We generate diverse images
by utilizing three distinct Monte Carlo prompt samples, each derived from our prompt distribution and based on
varying random noise. When using ground truth names (red names), images produced by CoCoOp, MaPLe,
PromptSRC, and CoPrompt are more realistic, while prompt diffusion incorporates domain-specific details from
the test image. Regarding the other classes (blue names), CoCoOp, MaPLe, PromptSRC, and CoPrompt blend
true class features with others, potentially leading to confusion, but our plugin using these methods can generate
a stylized version of the specified class. This suggests that our plugin enables the distilling of unique domain
details from the test image without conflating them with class labels.

prompt diffusion effectively learns the transformation from a vanilla prompt to an optimal prompt
throughout training using a diffusion transformer. As a result, during testing, our method can generate
a sample-specific prompt for each test sample, thereby improving accuracy.

Visualization of generated prompts. We also visualize the generated per-sample prompts during
inference in Figure 6, demonstrating our diffusion prompting method effectively distills unique
domain details from the test image without mixing them with class labels. This shows the better
capability of the diffusion model in refining the prompt learning process for vision-language tasks.

6 CONCLUSION

Our approach addresses the limitations of fixed prompts by introducing a method that crafts cus-
tomized prompts for individual test samples, enhancing model robustness against distributional
shifts. The diffusion model serves as the backbone of this method, enabling a generative process
that refines prompts from a random initialization to an optimized state, tailored to each specific
instance. The versatility and modality-agnostic nature of prompt diffusion mark it as an universally
applicable solution that integrates smoothly with existing prompt learning methods, regardless of the
data type. The empirical results across a wide range of datasets validate the efficacy of our method,
demonstrating its increased robustness in generalization tasks.
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Figure 7: Computational Graph and Diffused Prompt. The top diagram illustrates the computational
structure of our method. On the bottom left, we showcase the graphical representation of our method’s diffused
prompt. Through diffusion sampling techniques, the diffused prompt Vt−1 emerges as a fusion of Vt and x.
The resultant prediction y is then formed by leveraging the diffused prompt, expanded as ”[CLASS]” label
c: {V0, c}, and paired with the image descriptor x. Within the shaded rectangle, dashed arrows denote the
diffusion procedure, while solid arrows highlight the sampling steps.

A COMPUTATIONAL GRAPH OF DIFFUSION PROMPTING

In this section, we illustrate the computational graph of diffusion prompting in Figure 7. The figure is
divided into two parts: the top diagram displays the overall computational structure of the method,
while the bottom left part presents a graphical representation of the method’s diffused prompt. In this
process, the diffused prompt Vt−1 is created through a fusion of Vt and the image descriptor x using
diffusion sampling techniques. This results in the prediction y, which is generated by combining the
diffused prompt, expanded as the ”[CLASS]” label c: {V0, c}, with the image descriptor x. The
shaded rectangle in the diagram helps to visually differentiate the components of the process, where
dashed arrows indicate the diffusion steps, and solid arrows represent the sampling stages. This figure
provides a clear and concise visual representation of the complex processes involved in diffused
prompting, highlighting the intricate interactions between different components of the computational
model.

B ADDITIONAL RELATED WORKS

Diffusion models. This class of neural generative models is characterized by the employment of
stochastic diffusion processes akin to those observed in thermodynamic systems (Sohl-Dickstein
et al., 2015; Song et al., 2020). The operational principle of these models involves a sequential
noise addition to data samples, followed by a learned neural network’s effort to reverse this process.
This is achieved by gradually denoising the noise-saturated sample to retrieve data reflecting the
trained data distribution. Significant strides in the realm of image generation have been accredited
to the works of Ho et al. (Ho et al., 2020) and Song et al. (Song et al., 2020), while Dhariwal and
Nichol (Dhariwal & Nichol, 2021) have been pivotal in pioneering classifier-guided diffusion for
generation under specific conditions. Building on this foundation, GLIDE (Nichol et al., 2021) has
further refined the methodology by incorporating conditioning on textual representations derived
from CLIP. The concept of classifier-free guidance introduced by Ho et al. (Ho & Salimans, 2022) has
brought forward a method of conditioning that judiciously balances fidelity and diversity, leading to
notable enhancements in model performance (Nichol et al., 2021). However, guided diffusion models
typically necessitate an extensive corpus of image-annotation pairs for effective training, prompting
Hu et al. (Hu et al., 2023) to suggest the novel concept of self-guided diffusion models. More
contemporary developments include Hyperdiffusion (Lutati & Wolf, 2022; Erkoç et al., 2023), which
targets the generation of implicit neural representations and 3D reconstruction through diffusion
in weight space. To the best of our knowledge, we are the first to introduce diffusion models into
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Table 5: Comparison with CoOp for various epochs.

Epochs Base New H

10 80.29 73.51 76.26
50 81.35 74.97 77.72
100 81.47 74.88 77.70
200 81.78 74.24 77.65

Table 6: Comparison with 4-shots on domain generalization. Our results are competitive for all domains.

Source Target

ImageNet -V2 -S -A -R Average

VPT (Jia et al., 2022) 69.24 62.13 45.78 48.16 72.91 57.37
+ Prompt Diffusion 70.27 63.83 48.15 50.97 76.15 60.12

CoCoOp (Zhou et al., 2022a) 70.13 63.05 46.48 49.36 73.80 58.17
+ Prompt Diffusion 70.96 64.12 48.92 51.47 76.93 60.75

MaPLe (Khattak et al., 2023a) 70.72 64.07 49.15 50.90 76.98 60.83
+ Prompt Diffusion 71.23 65.24 50.21 51.93 78.06 62.11

the realm of prompt learning. Our diffusion prompting involves gradually refining prompts with a
diffusion transformer, which leads to the development of custom prompts tailored to each sample,
thereby enhancing the accuracy of predictions and their generalization across downstream tasks.

C HYPERPARAMETER SENSITIVITY AND FEW-SHOT.

Table 5 presents a comparison of our model’s performance over different epochs relative to CoOp’s
training duration of 200 epochs. Our model reaches convergence around the 50-epoch mark and
surpasses the performance of CoOp after 200 epochs. Additionally, we also conduct a few-shot
learning experiment (4-shot) similar to those conducted with CoOp and CoCoOp, as shown in Table 6.
In these comparisons, our model consistently achieves improved performance across a range of
datasets.

D PARAMETER-EFFICIENT COMPARISON.

Table 7 contrasts our approach with four other parameter-efficient fine-tuning techniques. Our
integration with MaPLe (Khattak et al., 2023a) showcases superior average performance, underscoring
its superior ability to generalize in comparison to other parameter-efficient fine-tuning approaches.
Furthermore, we have applied our plugin in conjunction with LLU (Ibing et al., 2023) in a base-to-new
setting, where it also exhibits enhanced performance relative to LLU alone.

E EFFECT OF PROMPT LENGTH ON PERFORMANCE

The length of prompts plays a significant role in the final performance of prompt learning methods.
To analyze the impact of prompt length, we conducted experiments with our prompt diffusion method
using different prompt lengths across various baseline methods. It is worth noting that the prompt
lengths used in our experiments align with the default prompt lengths adopted by the respective
baseline methods: L = 4 for VPT and CoCoOp, and L = 9 for MaPLe. The results are summarized
in Tables 8, 9, and 10. These results demonstrate that the optimal prompt length varies across different
baselines, with moderate lengths generally leading to better performance. For our method, we use the
respective default prompt lengths for fair comparisons: L = 4 for VPT and CoCoOp, and L = 9 for
MaPLe. This ensures consistency and fairness in our evaluation.
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Table 7: Comparison with parameter-efficient fine-tuning methods in the base-to-new setting across 11 datasets.

Venues Base New H

ProGrad (Zhu et al., 2023) ICCV 23 82.79 68.55 74.46
CLIP Adapter (Gao et al., 2024) IJCV 82.62 70.97 76.02
LLU (Ibing et al., 2023) CVPR 23 83.48 74.47 78.46
MaPLe (Khattak et al., 2023a) CVPR 23 82.28 75.14 78.55

LLU + Diffusion Prompt 84.45 75.99 79.17
MaPLe + Diffusion Prompt 83.39 77.12 79.96

Table 8: Effect of prompt length on VPT + Prompt Diffusion.

Length (L) Base New H
4 74.98 74.97 74.97
8 75.73 75.26 75.49
16 72.97 72.65 72.80

Table 9: Effect of prompt length on CoCoOp + Prompt Diffusion.

Length (L) Base New H
4 81.35 74.97 78.02
8 82.97 76.93 79.84
16 78.91 74.11 76.43

Table 10: Effect of prompt length on MaPLe + Prompt Diffusion.

Length (L) Base New H
4 82.93 76.15 79.40
9 83.39 77.32 80.24
16 82.77 75.93 79.20

F COMPUTATIONAL LOAD AND TRAINING EFFICIENCY

To address concerns about the computational load introduced by our method, we conducted a
comparative analysis of training time across baseline methods and our proposed approach. While
our method introduces a slightly higher computational load due to the per-sample prompt overfitting
step and the diffusion process, the increase is modest. Specifically, the per-sample prompt overfitting
step requires only three iterations to generate the overfitted prompts, ensuring efficiency without
compromising performance. The training times (in hours) and corresponding performance (Base,
New, and Harmonic Mean) for each method are summarized in Table 11. The results demonstrate
that while the training time increases slightly (approximately 1.1× to 1.3× that of baseline methods),
our method consistently achieves better performance in terms of Base, New, and Harmonic Mean (H).
This highlights a favorable trade-off between computational load and performance. The per-sample
prompt overfitting step, coupled with the diffusion model, plays a critical role in enhancing the
model’s adaptability to diverse samples.

G ADDITIONAL EXPERIMENTS ON VPT-DEEP

To demonstrate the versatility of our method, we conducted additional experiments with VPT-deep.
The results, presented in Table 12, show that incorporating our prompt diffusion significantly improves
the performance of VPT-deep across all metrics, including Base, New, and Harmonic Mean (H).
These results confirm that our approach is not limited to VPT-shallow but can also effectively enhance
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Table 11: Training time (in hours) and performance comparison across baseline methods and our approach.

Method Base New H Training Time (hours)
VPT Jia et al. (2022) 72.53 72.34 72.43 25
+ Prompt Diffusion 74.98 74.97 74.97 28
CoCoOp Zhou et al. (2022a) 80.47 71.69 75.83 17
+ Prompt Diffusion 81.35 74.97 78.02 20
MaPLe Khattak et al. (2023a) 82.28 75.14 78.55 21
+ Prompt Diffusion 83.39 77.32 80.24 27
PromptSRC Khattak et al. (2023b) 84.26 76.10 79.97 23
+ Prompt Diffusion 85.74 78.97 82.22 30
CoPrompt Roy & Etemad (2024) 84.00 77.23 80.48 23
+ Prompt Diffusion 86.14 80.01 82.96 30

the VPT-deep prompt learning paradigm. The consistent improvement across all metrics highlights
the adaptability and effectiveness of our method in different prompt learning settings.

Table 12: Performance comparison of VPT-deep with and without Prompt Diffusion.

Method Base New H
VPT-deep 74.15 74.01 74.08
+ Prompt Diffusion 77.15 76.89 77.02

H PROMPT DIFFUSION FOR VARIOUS PROMPT LEARNING METHODS

While the proposed method leverages the meta-net π in CoCoOp, it is fully adaptable to other prompt
learning methods, such as VPT and MaPLe, which do not rely on π. For these methods, during
training, we perform per-sample prompt overfitting to generate the corresponding overfitted prompts
or tokens. These overfitted prompts or tokens are then reconstructed using the diffusion process.
Specifically, for multi-modal prompt learning methods, such as MaPLe, we generate overfitted
prompts for both the textual and visual branches during the per-sample prompt overfitting stage.
The diffusion process then reconstructs these overfitted prompts independently for each modality.
This dual reconstruction ensures that both the textual and visual prompts are refined and aligned
with their respective input modalities, contributing to improved performance in multi-modal tasks.
Finally, the reconstructed prompts or tokens are embedded back into the original models, such as
VPT and MaPLe, for prediction. This flexibility highlights that our method is not tied to any specific
architecture. Instead, it serves as a plug-and-play module that can seamlessly integrate with various
prompt learning paradigms, including visual prompt tuning and multi-modal prompt tuning. By
adapting to the needs of different frameworks, our method enhances generalizability and improves
performance across a wide range of tasks.

I EFFECT OF LOSS WEIGHT β ON PERFORMANCE

To analyze the impact of the loss weight β in Equation (8), we conducted experiments with different
values of β across VPT, CoCoOp, and MaPLe. The results are summarized in Tables 13, 14, and 15.
The results show that the best performance across all metrics (Base, New, and Harmonic Mean) is
achieved when β = 0.01. This indicates that a small weight for the diffusion loss term provides the
optimal balance between the cross-entropy loss and the reconstruction objective. Setting β too high
(β = 1) places excessive emphasis on the diffusion term, slightly degrading performance. Conversely,
setting β = 0 removes the benefits of the diffusion process entirely, leading to a significant drop in
performance.
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Table 13: Effect of β on VPT + Prompt Diffusion.

β Base New H
0 72.53 72.34 72.43

0.01 74.98 74.97 74.97
0.1 73.45 74.71 74.07
1 73.16 73.15 73.16

Table 14: Effect of β on CoCoOp + Prompt Diffusion.

β Base New H
0 80.47 71.69 75.83

0.01 81.35 74.97 78.02
0.1 80.93 73.88 77.24
1 80.75 71.82 76.02

Table 15: Effect of β on MaPLe + Prompt Diffusion.

β Base New H
0 82.28 75.14 78.02

0.01 83.39 77.32 80.24
0.1 83.03 76.81 79.80
1 82.74 75.97 79.21

J EVALUATION UNDER DISTRIBUTIONAL SHIFTS

To address the limitations of existing SOTA prompt methods under different distributional shifts, we
conducted a comprehensive evaluation of our method in combination with Xiao et al.’s ”Any-Shift
Prompting for Generalization over Distributions” (CVPR 2024). We evaluated performance across
various types of shifts, including covariate, label, concept, conditional, and multiple shifts. The results
are summarized in Tables 16, 17, 18, and 19. From these results, it is evident that our method improves
performance across all types of shifts compared to Xiao et al.’s method alone. This comprehensive
comparison highlights the limitations of existing SOTA methods in adapting to distributional shifts
and underscores the critical importance of our contribution. Specifically, Prompt Diffusion enhances
instance-level adaptability by refining prompts during inference, thereby addressing the instability
and inefficiency caused by fixed prompts under shifting distributions.

Table 16: Performance under covariate shifts.

Method PACS VLCS Office-Home DomainNet ImageNet-v2 ImageNet-S ImageNet-A ImageNet-R
Xiao et al. (2024) 98.16 86.54 85.16 60.93 64.53 49.80 51.52 77.56
+ Prompt Diffusion 99.11 87.63 86.25 62.11 65.71 51.12 52.74 78.91

Table 17: Performance under label shifts.

Method Base New H
Xiao et al. (2024) 82.36 76.30 79.21
+ Prompt Diffusion 83.71 78.21 80.87

Table 18: Performance under concept and conditional shifts.

Method Concept Shift (ImageNet-superclass) Conditional Shift (Living-17) Conditional Shift (Entity-30)
Xiao et al. (2024) 71.12 88.41 81.74
+ Prompt Diffusion 73.24 90.17 83.25
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Table 19: Performance under multiple shifts.

Method Art Clipart Product Real Mean
Xiao et al. (2024) 83.40 72.53 91.24 90.84 84.50
+ Prompt Diffusion 85.11 74.07 92.72 91.71 85.90

K GENERALIZABILITY TO VIDEO UNDERSTANDING TASKS

To explore the generalizability of our method beyond the image-text domain, we applied our approach
to video understanding tasks, specifically using the setup from Ju et al. (”Prompting visual-language
models for efficient video understanding,” ECCV 2022). We conducted experiments on closed-set
action recognition datasets, including HMDB-51, UCF-101, Kinetics-400 (K-400), and Kinetics-700
(K-700). The results, presented in Table 20, are reported in terms of Top-1 accuracy. Our method
consistently improves performance across all datasets. This demonstrates that Prompt Diffusion
can effectively adapt to video tasks, leveraging its ability to generate instance-specific prompts that
capture temporal and contextual information unique to video data. However, we recognize that
applying our method to other modalities, such as audio or multi-modal tasks, may introduce new
challenges. For instance, the nature of sequential and hierarchical dependencies in audio signals may
require further adaptations to the diffusion process, such as incorporating domain-specific priors or
preconditioning steps for better feature alignment. These experimental results and a discussion of
potential challenges and adaptations are included to highlight the versatility of our approach and to
address suggestions regarding generalizability beyond image-text tasks.

Table 20: Performance on closed-set action recognition datasets.

Method HMDB-51 UCF-101 K-400 K-700
Ju et al. (2022) 66.4 93.6 76.6 64.7
+ Prompt Diffusion 67.3 95.1 77.8 66.3
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