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Hierarchical Debiasing and Noisy Correction for Cross-domain
Video Tube Retrieval
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ABSTRACT
Video Tube Retrieval (VTR) has attractedwide attention in themulti-
modal domain, aiming to accurately localize the spatial-temporal
tube in videos based on the natural language description. Despite
the remarkable progress, existing VTR models trained on a specific
domain (source domain) often perform unsatisfactory in another
domain (target domain), due to the domain gap. Toward this issue,
we introduce the learning strategy, Unsupervised Domain Adapta-
tion, into the VTR task (UDA-VTR), which enables the knowledge
transfer from the labeled source domain to the unlabeled target
domain without additional manual annotations. An intuitive solu-
tion is generating the pseudo labels for the target domain samples
with the fully trained source model and fine-tuning the source
model on the target domain with pseudo labels. However, the ex-
isting domain gap gives rise to two problems for this process: (1)
The transfer of model parameters across domains may introduce
source domain bias into target-domain features, significantly im-
pacting the feature-based prediction for target domain samples.
(2) The pseudo labels tend to identify video tubes that are widely
present in the source domain, rather than accurately localizing
the correct video tubes specific to the target domain samples. To
address the above issues, we propose the unsupervised domain
adaptation model via Hierarchical dEbiAsing and noisy correction
for cRoss-domain video Tube retrieval (HEART), which contains
two characteristic modules: Layered Feature Debiasing (including
the adversarial feature alignment and the graph-based alignment)
and Pseudo Label Refinement. Extensive experiments prove the
effectiveness of our HEART model by significantly surpassing the
state-of-the-arts. The code is available 1.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning.

KEYWORDS
Video Tube Retrieval, Unsupervised Domain Adaptation

1 INTRODUCTION
Video Tube Retrieval (VTR) task, which aims to ground the tar-
get spatial-temporal tubes according to the described language
1https://anonymous.4open.science/r/HEART
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Query: A little child grabs the hands of a man and jumps off the blue slide.

tstart tend

Supervised Knowledge Learning with Spatial-Temporal Tube Annotations

Query: The long-haired woman goes to the stool and sits down..

Unsupervised Knowledge Transfer without Spatial-Temporal Tube Annotations

Source Domain (Real-life)

Target Domain (Movie)

Tube

Figure 1: An illustration of the unsupervised domain adapta-
tion for video tube retrieval (UDA-VTR) task, emphasizing
the knowledge transfer from the labeled source domain to
the unlabeled target domain without requiring additional
annotations.

sentences, is a fundamental and vital task in the visual-language
understanding field [24, 25, 36]. There are mainly two stages in
the feature-extracted process for most existing models [24, 36]: (1)
Global Feature Extraction. Given the video-language pair, the
VTR model extracts the cross-modal fusion features (global fea-
tures) from the multi-modal input. (2) Local Feature Retrieval.
With the global features, the VTR model further retrieves the local
features of the spatial-temporal semantics described by the natural
language query for each video frame. Subsequently, the extracted
local features undergo further processing through simple linear
layers to predict the final spatial-temporal tube. Despite the sig-
nificant progress, the performance of existing VTR models trained
in the specific domain (source domain) drops sharply in another
different domain (target domain) due to the domain gap. Intuitively,
fine-tuning the VTR models in the target domain with manual an-
notations may facilitate the model’s acquisition of domain-specific
knowledge. Unfortunately, it is tremendously time-consuming and
labor-intensive to annotate the dense labels of bounding boxes
frame-by-frame and temporal boundaries for each video-language
sample of the target domain.

To alleviate the unbearable demand for dense annotations of the
target domain, we introduce the learning strategy, Unsupervised

1
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Domain Adaptation (UDA), to the VTR task, which transfers the
source domain knowledge to the target domain without the target
domain manual annotations. An intuitive solution for the UDA-VTR
task is applying the source-domain VTR model (teacher model) to
initialize the parameters of the target-domain VTR model, and then
generate the pseudo labels of the target domain to fine-tune the
target-domain VTR model (student model). However, the presence
of the domain gap gives rise to two critical issues that significantly
impair the performance of the student model: (i) Multi-level Fea-
ture Bias. Initializing the student model with the teacher model
parameters may introduce the source domain bias from the teacher
model into the feature-extraction module of the student model,
resulting in the student model producing global and local features
influenced by the source domain bias. Due to the domain gap, the
source domain bias is not applicable to the target domain, which re-
duces the precision of the features extracted by the student model,
thereby impacting the final prediction accuracy based on those
features. Thus, how to alleviate the source domain bias in both the
global and local features extracted by the student model is an essential
problem. Furthermore, the local features capture the visual charac-
teristics of each video frame, which is vital for generating distinct
predictions for individual frames. However, such visual characteris-
tics are intertwined with the information of the source domain bias.
Therefore, in addition to eliminating the source domain bias of the
global and local features, how to protect each frame’s visual charac-
teristics in the local features from being impacted in this elimination
process is another problem worth considering. (ii) Pseudo Label
Noise. The pseudo labels generated by the source-domain teacher
model tend to ground the video clips/video objects widely existing
in the source domain samples, which may not be suitable for the
target domain samples due to the domain gap. There are mainly
two types of failed grounding in pseudo labels: 1) Some pseudo
labels fail to capture the essential video semantics corresponding
to the natural language query. Such pseudo labels with excessive
deviation may not be suitable for the training of the student model
and should be filtered out. 2) Even if grounding the essential video se-
mantics, there may still be discrepancies in the grounded temporal
boundaries of the pseudo labels. As a result, the pseudo labels may
exclude the correct bounding boxes of frames within the correct
temporal boundaries. This leads to a decrease in the availability
of accurate training labels for the student model, which in turn
negatively impacts its accuracy. In addition, the pseudo labels may
include nonsensical bounding boxes of frames that fall outside the
correct temporal boundaries. These nonsensical bounding boxes in
the pseudo labels often encompass visual objects not aligned with
the natural language queries, and in some cases, even ground back-
ground information. Thus, such pseudo labels with relatively minor
discrepancies in the grounded temporal boundaries may significantly
disrupt the spatial grounding learning process of the target-domain
student model.

To address the aforementioned issues, we propose the unsuper-
vised domain adaptation model via Hierarchical dEbiAsing and
noisy correction for cRoss-domain video Tube retrieval (HEART).
Based on the teacher-student framework, our HEART model con-
tains two carefully designed modules: (i) Layered Feature Debias-
ing. To enhance the student model’s extraction of global features,
we introduce adversarial learning as a training mechanism, which

enables the student model to capture invariant information across
different domains. In addition, for the extracted local features, we
establish the relation graph to preserve their variance among dif-
ferent frames. Subsequently, we project the local feature graphs
of both the source domain and the target domain into the shared
eigenspace and align them according to their respective eigenvalues.
(ii) Pseudo Label Refinement. Firstly, we calculate the confidence
of each pseudo label for the target domain samples and filter out un-
certain items. Secondly, we extend the grounded temporal boundary
in the pseudo labels. Specifically, we identify the frames near the
grounded temporal boundary and incorporate the bounding boxes
predicted by the source-domain teacher model for these frames into
the pseudo labels. Then, we introduce the training weights for the
bounding boxes, mitigating the adverse effects of low-quality ones.

Our contributions can be summarized as:

• To the best of our knowledge, we take the early exploration
of the unsupervised domain adaptation for the video tube
retrieval task. Toward this issue, we propose a novel model,
HEART, based on the teacher-student framework.

• We utilize adversarial learning and graph-based alignment
to alleviate the source domain bias in the target domain
features while retaining the crucial visual characteristics.
In addition, we refine the pseudo labels generated for the
student model with excessive or minor deviation, respec-
tively.

• Extensive experiments prove the effectiveness of ourHEART
model by surpassing the state-of-the-arts by a large margin.

2 RELATEDWORKS
Video Tube Retrieval. In the field of video tube retrieval, early
techniques [25, 36] typically embraced a two-stage approach. They
first necessitated the proposal of potential interest regions through a
pre-trained object detector, followed by a custom-designed network
to accurately select the relevant regions. The significant limitation
inherent in these approaches is their heavy dependence on the
capabilities of pre-trained detectors, which inherently constraint
their performance. Contrastingly, a paradigm shift is observed in
more recent research, [14, 15, 19, 24, 29, 31, 34] have pivoted to-
wards a unified-stage methodology that bypasses the reliance on
pre-trained object detectors entirely. For instance, [24] marked a
significant milestone by employing a visual-linguistic transformer
to achieve simultaneous spatial and temporal localization corre-
sponding to the given textual query. Drawing inspiration from
the success of text-driven object detection in [15], [34] unveiled
a combined video-text encoder and spatial-temporal transformer
decoder to effectively bridge temporal, spatial, and multimodal in-
teractions. In a similar vein, [14] introduced a multi-modal template
approach to directly address the issues of alignment and consistency
in feature prediction. Furthermore, [19] explores the integration of
static and dynamic cues to refine target localization. Despite these
advancements, the exploration into how these methods perform
when applied to samples that deviate from their initial training set
remains largely underexplored.
Unsupervised Domain Adaption. Unsupervised domain adap-
tation, originally applied to image classification, has been broadly
adapted for other tasks, among which object detection and video

2
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tasks are most closely related to our work. In recent years, cross-
Domain object detection has attracted significant attention from
researchers. Adversarial feature learning techniques [7, 23] utilize
a domain discriminator to train the feature encoder, facilitating
the extraction of domain-invariant features. Meanwhile, image-to-
image translation approaches [4, 13] employ generative models like
CycleGAN [38] to transform target-domain images into the style
of the source domain, thereby bridging the domain gap. Recent
efforts in domain adaptation [3, 5, 8, 9, 18, 35, 37] have focused
on employing the Mean Teacher [26]. [8] tackles domain shift by
leveraging [38] to augment training data, while [18] introduces a
combination of weak and strong augmentations alongside adver-
sarial training. Video unsupervised domain adaptation methods
typically fall within a few common categories. Adversarial meth-
ods [6, 17] align representations across source and target domains
through a domain discriminator network. Techniques like DANN
[11], originally designed for images, are also applicable to video
architectures. [6] is a video-specific approach that uses separate
adversaries for the spatial and temporal dimensions. Another class
of methods [22] use contrastive learning and exploit the intrinsic
structure of video. Despite rapid advancements, to the best of our
knowledge, there has not yet been success in applying unsuper-
vised domain adaptation to complex multimodal spatial-temporal
video understanding tasks.

3 PRELIMINARIES
3.1 Adversarial Learning
Adversarial domain adaptation techniques are predicated on the
notion of explicitly diminishing the discrepancy between domains
by learning transferable features. These methods contrast with tra-
ditional supervised learning techniques by integrating a domain
discriminator 𝐷 to differentiate between source and target domain
features. Concurrently, the objective of the feature extractor 𝐹 is
to generate features that confuse 𝐷 , thereby promoting learning
domain-invariant features. The loss function for the domain dis-
criminator, 𝐿dis, is expressed as follows:

𝐿dis (𝐹, 𝐷) = E𝑥𝑠
𝑖
∼𝐷𝑠

log[𝐷 (𝐹 (𝑥𝑠𝑖 ))]
+ E𝑥𝑡

𝑖
∼𝐷𝑡

log[1 − 𝐷 (𝐹 (𝑥𝑡𝑖 ))],
(1)

where 𝐷𝑠 and 𝐷𝑡 represent the features distributions within the
source and target domains, respectively. The domain adversarial
loss 𝐿adv is formulated using a minimax optimization strategy:

𝐿adv (𝐹, 𝐷) = max
𝐹

min
𝐷

𝐿dis (𝐹, 𝐷). (2)

To facilitate the minimax optimization, Gradient Reversal Lay-
ers (GRL) [10] are inserted to reverse the gradient during back-
propagation from 𝐷 .

3.2 Graph Spectra Theory
In graph theory, the distance between graph spectra quantifies the
divergence in spectral characteristics of graphs with an equal num-
ber of vertices, simplifying the comparison of their discrepancies
[1, 28]. Drawing from [33], we present the definitions of graph
Laplacians and spectral distances.

3.2.1 Graph Laplacians. Consider a finite graph 𝐺 = (𝑉 , 𝐸), com-
prising a set of vertices 𝑉 and weighted edges 𝐸. Define a vertex
function 𝜑 : 𝑉 → R, mapping each vertex to a real value, and an
edge weighting function 𝛾 : 𝐸 → R, assigning weights to edges.
The graph Laplacian Δ, operating on 𝜑 for a vertex 𝑣 , is given by

(Δ𝜑) (𝑣) =
∑︁

𝑢:𝑑 (𝑢,𝑣)=1
𝛾𝑢𝑣 (𝜑 (𝑢) − 𝜑 (𝑣)), (3)

where 𝑑 (𝑢, 𝑣) denotes the distance between vertices 𝑢 and 𝑣 , and
𝛾𝑢𝑣 represents the weight of the edge connecting 𝑢 and 𝑣 .

3.2.2 Spectral Distances. Consider two distinct, nonisomorphic
simple graphs 𝐺𝑠 and 𝐺𝑡 , each with 𝑛 vertices. Let their Laplacian
spectra be denoted as Λ𝑠 = {𝜆𝑠𝑖 }𝑛𝑖=1 and Λ𝑡 = {𝜆𝑡𝑖 }𝑛𝑖=1, where
𝜆𝑠1 ≥ 𝜆𝑠2 ≥ . . . ≥ 𝜆𝑠𝑛 and 𝜆𝑡1 ≥ 𝜆𝑡2 ≥ . . . ≥ 𝜆𝑡𝑛 , respectively. The
spectral distance 𝜎 (𝐺𝑠 ,𝐺𝑡 ) between 𝐺𝑠 and 𝐺𝑡 is defined by

𝜎 (𝐺𝑠 ,𝐺𝑡 ) = ∥Λ𝑠 − Λ𝑡 ∥𝑝 , 𝑝 ≥ 1. (4)

This metric quantifies the dissimilarity between the graphs based
on their Laplacian spectra, facilitating a nuanced comparison of
their structural properties.

4 METHODOLOGY
Before delving into the details of our proposed methodology, we
first outline the problem formulation and revisit the base video tube
retrieval model and the teacher-student framework in Section 4.1,
which forms the basis of our study. Subsequently, we introduce
the Layered Feature Debiasing (LFD) module in Section 4.2 and the
Pseudo Label Refinement (PLR) module in Section 4.3. Finally, we
describe the overall training pipeline in Section 4.4.

4.1 Overview
Given an untrimmed video𝑉 = {𝑣𝑡 }𝑇𝑡=1 with𝑇 frames and a textual
query 𝑆 = {𝑠𝑛}𝑁𝑛=1, the objective of the Video Tube Retrieval (VTR)
task is to localize a spatial-temporal video tube 𝐵 = {𝑏𝑡 }𝑡𝑒𝑡=𝑡𝑠 de-
scribed by the textual query 𝑆 . Here, 𝑏𝑡 denotes the bounding box
in the 𝑡-th frame, and 𝑡𝑠 and 𝑡𝑒 are the start and end frames of the
retrieved tube, respectively. In the unsupervised domain adaptation
context, we are given a set of untrimmed videos 𝑉 𝑆 and language
queries 𝑄𝑆 in the source domain, and another set of untrimmed
videos𝑉𝑇 and language queries𝑄𝑇 in the target domain. The video-
query pairs are labeled with the spatial-temporal tube 𝐵𝑆 in the
source domain but not in the target one. Under such circumstances,
the main objective is to derive an effective VTR model on the target
domain by fully exploiting labeled data in the source domain.

State-of-the-art models for video tube retrieval are primarily
based on the encoder-decoder paradigm. For example, STCAT [14]
firstly utilizes two feature extractors to obtain both visual and
textual features from the video frames and query sentence, re-
spectively. It then models the video-text interactions through a
spatial-temporal cross-modal encoder, which introduces a video-
level learnable token for the whole video to encode target object
semantics, and a frame-level learnable token for each individual
frame to represent the frame specific appearance. These tokens
are further leveraged to produce a template for the target object
by a template generator. Finally, the yielded template is treated as
a query and fed into a decoder to aggregate features and predict

3
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A little child grabs
the hands of a man
and jumps off the

blue slide.

The long-haired
woman goes to the
stool and sits down.

Domain Query

Layered Feature Debiasing Pseudo Label Refinementsource flow
target flow

Refined 
Pseudo Labels

Figure 2: Our model features a teacher-student framework, with both initially trained on the source domain. The teacher
generates pseudo labels for weakly augmented video-query pairs in the target domain, while the student learns from strongly
augmented pairs across both domains, supervised by ground truth and pseudo labels respectively. The Layered Feature Debiasing
enables the student model to capture invariant information across different domains through adversarial learning and achieves
cross-domain alignment while preserving inter-frame variance within videos through graph based alignment. The Pseudo Label
Refinement filters out uncertain pseudo labels and refines them by temporally extending the grounded temporal boundaries.

the spatial-temporal tube. In this paper, we employ STCAT as the
base video tube retrieval model. However, it is important to note
that our module is not specifically designed for STACT, but can
be universally applied to models based on the encoder-decoder
architecture.

Our teacher-student framework is composed of two architec-
turally identical models: target-only teachermodel and cross-domain
studentmodel. The teachermodel only takes theweakly-augmented
video-query pairs from target domain while the student model takes
strongly-augmented video-query pairs from both source and tar-
get domains. The student model is learned by standard gradient
descent, and the teacher model is updated with the exponential
moving average (EMA) of the weights from the student model.
Thus, the teacher model can be considered as a temporal ensemble
of multiple student models: the weights 𝜃 ′𝑡 of the teacher model
at time step 𝑡 are derived from the EMA of the student model’s
successive weights 𝜃𝑡 :

𝜃 ′𝑡 = 𝛼𝜃 ′𝑡−1 + (1 − 𝛼)𝜃𝑡 , (5)

where𝛼 is a smoothing coefficient hyperparameter. Thenwe use the
temporally ensembled teacher model to guide the student model’s
training in the target domain via pseudo labels.

To generate precise and accurate pseudo labels for target do-
main video-query pairs, we feed the video-query pairs with weak
augmentation to the teacher model and pairs with strong augmen-
tation the student model. Specifically, weak augmentations include

random horizontal flipping and cropping, while strong augmen-
tations additionally comprise random color jittering, grayscaling,
and Gaussian blurring. We further utilize the random temporal
shift perturbation [32] on the encoded features within the student
branch. Concretely, a subset of feature channels is selected at ran-
dom; half of these are shifted forward in time, while the remaining
half are shifted backward in time. In such ways, the teacher model’s
predictions can be more accurate than those of the student model,
allowing the student model to learn from pseudo labels generated
by the teacher model.

4.2 Layered Feature Debiasing
As stated in Section 1, the feature-extraction process of most cur-
rent video tube retrieval methods may be summarized into two
stages: Global Feature Extraction and Local Feature Retrieval. Ini-
tializing the student model with the teacher model parameters may
introduce the source domain bias from the teacher model into the
feature-extraction module of the student model, resulting in the
student model producing global and local features influenced by
the source domain bias. To alleviate the source domain bias in
the extraction of global features, we introduce Adversarial Feature
Alignment (Section 4.2.1), which enables the student model to cap-
ture invariant information across different domains. Furthermore,
to eliminate the source domain bias in local features while simulta-
neously protecting each frame’s visual characteristics, we employ
Graph Based Alignment (Section 4.2.2), which establishes a relation
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graph that preserves the local feature variance among different
frames and projects these graphs from both the source and target
domains into a shared eigenspace for alignment according to their
respective eigenvalues.

4.2.1 Adversarial Feature Alignment. The visual encoder 𝐸vis in-
dependently extracts visual features from each frame in the video,
while the textual encoder 𝐸txt encodes the query sentences into the
linguistic representation. We incorporate two frame-level domain
discriminators, denoted as 𝐷vis and 𝐷txt, immediately after the vi-
sual and textual encoders and before these unimodal features are
concatenated. For the cross-modal encoder, we employ frame-level
domain queries to extract and align spatial features for individual
frames. Afterwards, video-level domain queries are utilized to ex-
tract and align spatial-temporal features across the entire video.
The features corresponding to these domain queries are then clas-
sified by two respective domain discriminators [30], represented
as 𝐷frame and 𝐷video. Actually, we reuse the frame-level and video-
level learnable tokens in the STCAT encoder instead of introducing
another set of tokens, denoted as 𝐸frame and 𝐸video. We define the
adversarial feature alignment loss, 𝐿afa, as an amalgamation of four
components: the domain adversarial losses on visual features (𝐿vis)
and textual features (𝐿txt), as well as features corresponding to
frame-level domain queries (𝐿frame) and video-level domain queries
(𝐿video) within their respective encoders. Formally, the adversarial
feature alignment loss is defined as follows:

𝐿afa = 𝜆vis𝐿adv (𝐸vis, 𝐷vis) + 𝜆txt𝐿adv (𝐸txt, 𝐷txt)
+ 𝜆frame𝐿adv (𝐸frame, 𝐷frame) + 𝜆video𝐿adv (𝐸video, 𝐷video), (6)

where 𝐿adv is defined in Equation (2), 𝜆vis, 𝜆txt, 𝜆frame and 𝜆video
are hyper-parameters that weight the importance of each loss com-
ponent in the overall adversarial alignment objective.

4.2.2 Graph Based Alignment. We meticulously construct self-
correlation graphs for the source and target videos independently to
model the relations between different frames in each video. Specifi-
cally, given the cross-modal decoder outputs of the source video
and target video, denoted as 𝑂𝑠 and 𝑂𝑡 respectively, our objective
is to construct undirected and weighted graphs 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) for
the source domain videos and𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) for the target domain
videos. In these graphs, each vertex 𝑣𝑖 belonging to 𝑉𝑠 or 𝑉𝑡 is rep-
resented by a corresponding output vector 𝑂𝑖 in the output sets
𝑂𝑠 or 𝑂𝑡 , respectively. The weighted edge 𝑒𝑖, 𝑗 is formulated as the
relation between vertices 𝑣𝑖 and 𝑣 𝑗 , quantified using a metric func-
tion 𝑠 between their feature representations 𝑂𝑖 and 𝑂 𝑗 , based on
the Gaussian similarity metric:

𝑒𝑖, 𝑗 = 𝑠 (𝑂𝑖 ,𝑂 𝑗 ) = exp
(
− 1
2𝜎2

∥𝑂𝑖 −𝑂 𝑗 ∥2
)
, (7)

where 𝜎 is the standard deviation of the Gaussian distribution and
∥ · ∥ represents the Euclidean norm.

For a simple undirected graph with a finite number of vertices
and edges, the definition of graph laplacians (Section 3.2.1) is just
identical to the Laplacian matrix. We opt for the random walk
Laplacian matrix𝑀 using the formula:

𝑀 = 𝐼 − 𝐷−1𝐴, (8)

where𝐴 is the adjacency matrix of the graph, 𝐼 is the identity matrix
and𝐷 is degree matrix of𝐴. With the adjacency matrices𝐴𝑠 and𝐴𝑡

of the source and target domain graphs, we can obtain the Laplacian
matrices𝑀𝑠 and𝑀𝑡 , and their eigenvalues Λ𝑠 and Λ𝑡 , respectively.
Following the definition of spectral distances (Section 3.2.2), we can
calculate the spectral distances between source domain graph 𝐺𝑠

and target domain graph 𝐺𝑡 , and thus the graph based alignment
loss 𝐿gba is defined using the function 𝜎 (·) detailed in Equation (4):

𝐿gba = 𝜎 (𝐺𝑠 ,𝐺𝑡 ) . (9)

4.3 Pseudo Label Refinement
In this section, we first describe the Threshold Filtering (Section 4.3.1)
which calculates the confidence of each pseudo label for the target
domain samples and filters out uncertain items. Then, we design
the Temporal Extension (Section 4.3.2) to extend the grounded tem-
poral boundary in the pseudo labels and introduce the training
weights for the bounding boxes.

4.3.1 Threshold Filtering. The pseudo labels generated by the source-
domain teacher model tend to ground the video clips/video ob-
jects widely existing in the source domain samples. However, these
pseudo labels may not be suitable for the target domain samples
due to the domain gap and even fail to capture the essential video
semantics corresponding to the natural language query. To address
this issue, we filter out a portion of the low-quality pseudo labels
based on the confidence threshold. Specifically, for each frame,
while predicting a bounding box, we also predict an "actionness"
score, which indicates the confidence level of the match between
the bounding box area in that frame and the associated text. We
calculate the average actionness score for all frames within the
predicted temporal boundaries, and only videos with an average
score exceeding the threshold are included in the training with
their pseudo labels. Formally, we define the filter function 𝐹 (·) as:

𝐹 (𝐴, 𝑠, 𝑒) =
{
1 if

∑𝑒
𝑡=𝑠 𝐴𝑡

𝑒−𝑠+1 > 𝜏

0 otherwise
(10)

where 𝐴𝑡 represents the actionness score at frame 𝑡 , 𝑠 and 𝑒 are the
predicted start and end of the temporal boundaries, and 𝜏 is the
predefined confidence level above which the video is considered
suitable for training inclusion.

4.3.2 Temporal Extension. The VTR model predicts the probability
of each frame being the start and end boundaries of the pseudo
tube (i.e., the tube-shaped pseudo labels predicted by the teacher
model), denoted as 𝜏𝑠 and 𝜏𝑒 , respectively. The start and end times
of the pseudo tube, 𝑡𝑠 and 𝑡𝑒 , are determined by the formula:

(𝑡𝑠 , 𝑡𝑒 ) = argmax
(𝑠,𝑒 ) :𝑠<𝑒

(𝜏𝑠 (𝑠) × 𝜏𝑒 (𝑒)) . (11)

This formula selects the maximum from the joint start and end
probability distribution (𝜏𝑠 , 𝜏𝑒 ), excluding invalid combinations
where 𝑡𝑒 ≤ 𝑡𝑠 . The pseudo tube {𝑏𝑡 }𝑡𝑒𝑡=𝑡𝑠 is formed from bounding
boxes 𝑏𝑡 within the selected start and end times 𝑡𝑠 and 𝑡𝑒 . For target
domain, even when the essential video semantics are grounded,
there may still be discrepancies in the temporal boundaries of the
pseudo labels. As a result, the pseudo labels may exclude the correct
bounding boxes of frames within the correct temporal boundaries.
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This leads to a decrease in the availability of accurate training la-
bels for the student model, which in turn negatively impacts its
accuracy. In addition, the pseudo labels may include nonsensical
bounding boxes of frames that fall outside the correct temporal
boundaries. These nonsensical bounding boxes in the pseudo la-
bels often encompass visual objects not aligned with the natural
language queries.

We introduce two strategies to extend the predicted temporal
interval and refine the calculation of spatial loss via a frame weight-
ing scheme throughout the entire expanded interval, based on the
previously obtained actionness scores {𝐴𝑡 }𝑇𝑡=1. First, we employ
temporal non-maximum suppression (NMS) on (𝜏𝑠 , 𝜏𝑒 ) to find the
second-best starting and ending frame pair 𝑡 ′𝑠 and 𝑡 ′𝑒 , which satisfies
the condition that the temporal Intersection over Union (IoU) with
(𝑡𝑠 , 𝑡𝑒 ) is below threshold 𝜏𝑖𝑜𝑢 , and the average actionness score
exceeds threshold 𝜏𝑎𝑐𝑡 . If such a pair does not exist, the attempt
is abandoned. Moreover, we bidirectionally expand a new interval
(𝑡 ′′𝑠 , 𝑡 ′′𝑒 ) around the frame 𝑡𝑐 with the highest confidence score (opt-
ing for the most central one in cases of multiple candidates) such
that the difference between the mean confidence score inside the
new interval and outside is maximized:

𝑡 ′′𝑠 , 𝑡
′′
𝑒 = argmax

𝑠≤𝑡𝑐≤𝑒

( ∑𝑒
𝑡=𝑠 𝐴𝑡

𝑒 − 𝑠 + 1
−

∑𝑠−1
𝑡=1 𝐴𝑡 +

∑𝑇
𝑡=𝑒+1𝐴𝑡

𝑇 − (𝑒 − 𝑠 + 1) .

)
(12)

The final temporal boundary of pseudo tube, (𝑡ext𝑠 , 𝑡ext𝑒 ), is derived
by unifying the original interval with these expanded ones:

𝑡ext𝑠 = min(𝑡𝑠 , 𝑡 ′𝑠 , 𝑡 ′′𝑠 ), 𝑡ext𝑒 = max(𝑡𝑒 , 𝑡 ′𝑒 , 𝑡 ′′𝑒 ) . (13)

The extension allows more spatial bounding boxes to participate in
training. We use the normalized actionness score as a weighting
factor for the spatial loss across the entire extended interval.

4.4 Overall Training
The overall objective of our model is formulated as follows:

𝐿 = 𝐿sup + 𝐿adv + 𝜆gba𝐿gba + 𝜆unsup𝐿unsup, (14)

where 𝐿sup is the supervised loss in the base VTR model, 𝐿adv is the
adversarial feature alignment loss defined in Equation (6), 𝐿gba is
the graph based alignment loss defined in Equation (9) and 𝐿unsup is
the unsupervised loss that computed on pseudo labels that passed
through Equation (10) and were processed by Equation (13). 𝜆gba
and 𝜆unsup serve as the weighting hyper-parameters.

Prior to the domain adaptation process, the model undergoes
initial training with 𝐿sup using the annotated source domain data.
This preliminary phase is designed to equip the model with the
source domain knowledge, thereby facilitating the generation of
informative pseudo labels. Both the teacher and student models
are initialized with parameters acquired from this initial training
stage. During the domain adaptation stage, we periodically reset
the training of the student model’s visual encoder, textual encoder
and cross-modal encoder to their states trained only on the source
domain, as proposed by [37]. After re-initialization, these retrained
modules contain no knowledge of the target domain. Subsequently,
the enhanced cross-modal decoder component of the student model,
along with the teacher model, promotes convergence towards a
more favorable optimum.

5 EXPERIMENTS
5.1 Datasets
We evaluated our model’s performance using two domain pairs:
Indoor-to-Outdoor Video Tube Retrieval (I2O-VTR) and Real-to-
Movie Video Tube Retrieval (R2M-VTR). The I2O-VTR dataset is
derived from the comprehensive VidSTG dataset [36], which con-
sists of 6,924 videos annotated for video tube retrieval task, parti-
tioned into training, validation, and test sets with 5,563, 618, and 743
videos, respectively. To facilitate indoor-to-outdoor domain adapta-
tion studies, the VidSTG dataset was manually segmented into two
subsets: indoor and outdoor scenes [2]. The segmentation resulted
in 3,386 videos designated as indoor (with a split of 3,386/358/429
for training, validation, and test sets, respectively) and 2,177 videos
categorized as outdoor (with a split of 2,177/260/314). The indoor
domain encapsulates environments defined by limited spatial ex-
tents, while the outdoor domain encompasses scenes characterized
by unbounded spatial areas. The R2M-VTR dataset incorporates
the HC-STVG dataset [25], consisting of 5,660 videos sourced from
cinematic productions, along with the entire VidSTG dataset, which
encompasses a broad spectrum of real-life scenarios. The HC-STVG
dataset is segmented into training and test sets, containing 4,500
and 1,160 videos, respectively. This combination of datasets from
cinematic and real-life sources establishes the groundwork for real-
to-movie domain adaptation analysis. We adhere to the original
dataset splits provided for both the VidSTG and HC-STVG datasets
to maintain consistency and integrity in our evaluation.

5.2 Evaluation Metrics
To evaluate video tube retrieval, we follow the previous work [36]
and define 𝑣𝐼𝑜𝑈 = 1

|𝑆𝑢 |
∑
𝑡 ∈𝑆𝑖 𝐼𝑜𝑈 (𝑏𝑡 , 𝑏′𝑡 ), where 𝑆𝑢 and 𝑆𝑖 denote

the sets of frames at the union and the intersection of the ground
truth and the predicted timestamps, respectively. The terms 𝑏𝑡 and
𝑏′𝑡 represent the ground truth and the predicted bounding boxes
at time 𝑡 , respectively. We use𝑚_𝑣𝐼𝑜𝑈 as the metric, which is the
average of 𝑣𝐼𝑜𝑈 . We also use 𝑣𝐼𝑜𝑈@𝑅, which is the proportion of
samples whose 𝑣𝐼𝑜𝑈 > 𝑅. To isolate the evaluation of temporal
localization, we employ the metric𝑚_𝑡𝐼𝑜𝑈 (mean of 𝑡𝐼𝑜𝑈 ), which
is defined as 𝑡𝐼𝑜𝑈 =

|𝑆𝑖 |
|𝑆𝑢 | .

5.3 Implementation Details
We configure the batch size at 8 and the learning rates for the
visual encoder ResNet-101 [12] and the textual encoder RoBERTa
[21] at 10−5, while setting the learning rate for other modules
at 10−4. The AdamW optimizer is employed for training with a
weight decay of 10−4. Our training spans 10 epochs on the I2O-
VTR dataset and drops the learning rate by 0.1 after 8 epochs. For
the R2M-VTR dataset, the training duration extends to 90 epochs,
with a similar learning rate reduction enacted after 50 epochs. To
enhance computational efficiency, the input video was uniformly
down-sampled to 64 frames and a resolution of 224. The final object
tubes are generated through linear interpolation of the predicted
bounding boxes in the sampled frames. We empirically determine
the hyper-parameters, setting 𝜆unsup = 1, 𝜆vis = 𝜆txt = 0.3, 𝜆frame =
𝜆video = 1 and 𝜆gba = 100 in our experiments.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Hierarchical Debiasing and Noisy Correction for Cross-domain Video Tube Retrieval ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Comparison with baselines on the I2O-VTR dataset. A higher score denotes superior performance, and we highlight
the best and second best scores.

Methods Declarative Sentences Interrogative Sentences

m_tIoU m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU m_tIoU vIoU@0.3 vIoU@0.5

TubeDETR [34] 35.77 12.72 17.02 6.97 37.49 10.61 13.38 4.17
STCAT [14] 37.70 14.27 19.06 8.63 37.58 11.97 15.21 5.88
STCAT+MDD [16] 37.96 14.83 20.31 9.35 37.89 12.40 16.05 6.34
STCAT+CST [20] 38.65 16.77 23.96 11.75 38.70 13.73 18.98 7.88
STCAT+Ours 41.33 23.22 36.80 20.81 41.63 18.91 28.85 13.83

Table 2: Ablation studies on the I2O-VTR dataset.

LFD PLR Declarative Sentences Interrogative Sentences

m_tIoU m_vIoU vIoU@0.3 vIoU@0.5 m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

37.70 14.27 19.06 8.63 37.58 11.97 15.21 5.88
✓ 38.91 17.08 25.23 12.76 38.90 14.12 19.94 8.55

✓ 39.39 18.32 27.67 14.44 39.48 15.10 21.94 9.60
✓ ✓ 41.33 23.22 36.80 20.81 41.63 18.91 28.85 13.83

Table 3: Comparison with baselines on the R2M-VTR dataset.
A higher score denotes superior performance, and we high-
light the best and second best scores.

Methods m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

TubeDETR [34] 31.05 11.49 10.09 2.61
STCAT [14] 32.46 12.57 11.99 3.28
STCAT+MDD [16] 32.37 12.94 12.60 3.68
STCAT+CST [20] 33.11 13.91 15.05 5.05
STCAT+Ours 35.91 25.72 42.45 21.78

Table 4: Ablation studies on the R2M-VTR dataset.

LFD PLR m_tIoU m_vIoU vIoU@0.3 vIoU@0.5

32.46 12.57 11.99 3.28
✓ 33.63 16.61 22.45 9.33

✓ 34.09 18.54 26.82 11.97
✓ ✓ 35.91 25.72 42.45 21.78

5.4 Performance Comparison
To enable a thorough evaluation of model efficacy across domains,
we augment the capabilities of the state-of-the-art video tube re-
trieval model, TubeDETR [34] and STCAT [14]. Specifically, we
first train the model on the source domain dataset and generate
pseudo labels for the target domain dataset, which then serve as
supervision for training the model within the target domain dataset.
For the remaining experiments, we leverage the STCAT model as
our base VTR model. Furthermore, we incorporate advanced do-
main adaptation strategies into the STCAT model, including MDD
[16] and CST [20], in an attempt to address the inherent challenges

associated with UDA-VTR task. The comparison results between
our model and baselines are shown in Table 1 and Table 3. Be-
yond components specific to unsupervised domain adaptation, the
configuration across the five models is identical.

Our model significantly outperforms all baselines across two
datasets. When examining four methods utilizing the same base
video tube retrieval model, our approach boosts the m_vIoU metric
from 14.27/14.83/16.77 to 23.22 in the I2O-VTR dataset, and from
12.57/12.94/13.91 to 25.72 in the R2M-VTR dataset. The limitations
of the state-of-the-art STCAT model stem from its design, which is
not tailored for the unsupervised domain adaptation scenario, lead-
ing to a lack of nuanced understanding and adaptation to domain-
specific challenges. Traditional domain adaptation strategies, such
as MDD and CST, fall short of achieving high performance due
to the absence of targeted adaptations for the complex UDA-VTR
task. Our approach leverages the teacher-student framework, in-
corporating specific module enhancements to tackle the challenges
of unsupervised domain adaptation in the VTR task, achieving
substantial improvements.

5.5 Ablation Studies
Our model comprises of two core modules: the Layered Feature
Debiasing (LFD) and the Pseudo Label Refinement (PLR). Ablation
studies conducted on both LFD and PLR, with results detailed in
Table 2 and Table 4 for the I2O-VTR and R2M-VTR datasets respec-
tively, demonstrate that the inclusion of either module significantly
improves model performance, highlighting their individual effec-
tiveness. When both modules are employed together, the observed
synergistic effect surpasses the performance gains achieved by each
module in isolation, emphasizing the indispensability and combined
efficiency of the LFD and PLR. This synergy underscores the com-
plementary nature of our modules, which can function together
and be progressively optimized in a mutual manner.
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Query: A child in white is away an adult in a shirt.

Ground Truth

Ground Truth

Pseudo Label w/o Temporal Extension

Pseudo Label that will be filter out

Pseudo Label w/ Temporal Extension

Query: A child with sun glasses holds a fruits.

Ground Truth
Pseudo Label w/ Temporal Extension

Query: A child with sun glasses holds a fruits.

Pseudo Label w/o Temporal Extension

(a)

(b)

(c)

Figure 3: Visualization examples of pseudo labels that are filtered out and those expanded after filtering.

(a) (b)

source domain

target domain

source domain

target domain

Figure 4: Visualizations of features with t-SNE comparing
before (a) and after (b) applying our method.

5.6 Case Studies
We randomly select several samples from the target domain dataset
for case studies and visualize the processes of handling pseudo la-
bels, as shown in Figure 3. From these case studies, we can observe:
In case (a), the model fails to capture the essential video semantics
that correspond to the natural language query. It predicts bound-
ing boxes that frequently switch among multiple humans, with a
lower average confidence level throughout the predicted temporal
interval. These predictions will be filtered out by our module and
no longer participate in the calculation of unsupervised loss in the
current iteration. In cases (b) and (c), the model shows better learn-
ing of spatial objects, but its understanding of temporal actions is
weaker. This leads to predictions with a higher average confidence

level but with temporal intervals that are either too short or signifi-
cantly shifted. Our module will temporally extend the pseudo labels
in these cases, allowing more spatial boxes to participate in the
calculation of unsupervised loss. It is observed that the temporally
extended intervals are closer to the ground truth, which aids the
model in better learning action information.

We also show the t-SNE [27] visualizations of the features before
and after the application of our model in Figure 4. It is evident that
there is a significant distribution gap between the source and target
domains in Figure 4(a). Our model narrows the domain shift, leading
to closely intertwined feature distributions from both domains in
Figure 4(b), demonstrating the effectiveness of our approach in
mitigating domain discrepancies.

6 CONCLUSION
In conclusion, the HEART model significantly advances the field
of Video Tube Retrieval (VTR) with its approach to Unsupervised
Domain Adaptation (UDA). It effectively resolves major domain
adaptation challenges, including source domain bias and inaccura-
cies in pseudo labels for target domain samples. By integrating the
Layered Feature Debiasing module, HEART substantially reduces
source domain bias, which enhances the accuracy of target domain
feature representations. Concurrently, the Pseudo Label Refinement
module elevates the quality and relevance of pseudo labels, ensuring
more precise localization of video tubes in the target domain. Our
extensive experiments validate that HEART not only outperforms
existing state-of-the-art methods and establishes a new benchmark
for future research in domain-adaptive VTR, but also highlights the
potential of hierarchical debiasing and label correction strategies
to effectively tackle the cross-domain challenges.
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