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Abstract

The success of modern multimodal representation learning relies on internet-scale
datasets. Due to the low quality of a large fraction of raw web data, data curation
has become a critical step in the training pipeline. Filtering using a trained model
(i.e., teacher-based filtering) has emerged as a successful solution, leveraging a
pre-trained model to compute quality scores. To explain the empirical success
of teacher-based filtering, we characterize the performance of filtered contrastive
learning under the standard bimodal data generation model. Denoting η ∈ (0, 1]
as the fraction of data with correctly matched modalities among n paired samples,
we utilize a linear contrastive learning setup to show a provable benefit of data
filtering: (i) the error without filtering is upper and lower bounded by 1/η

√
n, and

(ii) the error with teacher-based filtering is upper bounded by 1/√ηn in the large η
regime, and by 1/

√
n in the small η regime.

1 Introduction

The seminal work of Radford et al. [29] introduced CLIP, a large-scale multimodal training paradigm
that leverages contrastive learning on image and language modalities. This marked a significant
advancement in general purpose representation learning that enabled unprecedented zero-shot down-
stream performance. A crucial factor in the success of CLIP and other vision-language models
(VLMs) was the shift towards training on massive datasets [39], often comprising billions of image-
text pairs scraped from the internet (e.g., LAION-5B [30] and DataComp-1B [11]). The sheer quantity
of data unlocks the capability to learn robust representations [9]. However, due to the inherently noisy
nature of web data, this introduces significant challenges regarding the quality, resulting in the need
for data curation. Smaller but higher quality subsets of the data have been observed to result in better
models than larger but noisier datasets [39, 25, 11]. Gadre et al. [11, Figure 2] observe that training
on only a selected 30% of the dataset results in a better performing model than training on the full
corpus. To handle such a significant fraction of low-quality data, data curation has become a critical
step in modern internet-scale pretraining pipeline of foundation models [1].

For vision-language datasets, a number of methods have been introduced for data filtering [10, 35, 18,
8, 32, 22]. Among these, teacher-based filtering, where a pre-trained model is used to score samples
and retain high-quality ones, has emerged as a particularly effective strategy [10, 35]. This approach
marks a progression from earlier efforts which relied on heuristic-based filtering (e.g., the WIT400M
dataset used in CLIP [29]). Subsequent and ongoing curation efforts have increasingly leveraged
strong existing models, like CLIP itself, to refine datasets further [30, 11].

In the theory community, the success of CLIP models has been attributed to two factors: the choice of
using a contrastive loss and the use of multimodal datasets. A series of modeling and analyses followed
to explain the benefits from these two factors under various scenarios [24, 14, 33, 27, 17, 13, 6, 7].
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However, despite the empirical successes of data filtering in the CLIP training pipeline, a theoretical
understanding of this phenomenon has been lacking. Our goal is to provide a deeper understanding
of the benefits of using teacher-based data filtering in the CLIP training pipeline, i.e., multimodal
representation learning with a contrastive loss. In particular, we aim to understand the benefits of
data filtering against the baseline of contrastive learning without filtering, by focusing on one key
parameter of interest: the fraction of high-quality data present. Using η ∈ (0, 1] to denote the fraction
of high-quality data pairs within the dataset, for both the filtering and no-filtering approaches, we ask
the question: How does the quality of the learned representation behave as a function of η?

The choice of the data corruption model is crucial. In the related field of robust statistics, similar
questions have been studied under adversarial corruptions. However, for large multimodal datasets,
we posit that a stochastic corruption model is more relevant in capturing the nature of real data. For
instance, in vision-language data, a significant portion of the misalignment arises randomly: images
paired with irrelevant or tangentially related captions due to the processes of automated web scraping
and the uncontrolled nature of internet data (see, e.g., [26, Figure 1] for examples). We adopt such a
model (detailed in Section 3.1), where a fraction η of pairs are correctly aligned, while the remaining
1− η fraction has mismatched modalities. Under the stochastic corruption model of Section 3.1 and
the contrastive learning setup of Section 3.2, we analyze the performance of teacher-based filtering
(Figure 1c) and compare against the baseline of no filtering (Figure 1a).

Contributions. We demonstrate a provable benefit of data filtering. The error of the unfiltered
contrastive learning with n samples and η clean fraction depends as 1/η

√
n, as shown by an upper

bound in Corollary 1 (result from Nakada et al. [24, Theorem 3.1]) and a lower bound in Proposition 1.
On the other hand, for teacher-based filtering (Theorem 1, main result), the dependency on η is
improved to 1/√ηn when η is large, and to 1/

√
n when η is small. Note that our result includes the

training of the teacher model on the given dataset, i.e., we do not assume the existence of any strong
pre-trained model. In Section 7, we empirically demonstrate the benefit of teacher-based data filtering
in a synthetic experimental setting. Figure 3a verifies the 1/η dependence of the unfiltered contrastive
learning, and the improved dependence achieved by the teacher-based filtering in two regimes, namely
1/√η for large η and independent of η for small η. Figure 3b restates the finding of Fang et al. [10,
Figure 4] to show that the qualitative observation of improved η dependence via filtering holds true
even with real data.

2 Related work

Our theoretical investigation of data filtering builds upon existing analyses of multimodal contrastive
learning [24, 14, 33]. In particular, Nakada et al. [24, Theorem 3.1] gives the rate for the unfiltered
contrastive learning, and we study the rate with data filtering. The theory of contrastive learning
(CL) has been studied in many other contexts [13, 6, 7, 17, 27]. Chen et al. [6] build a theoretical
understanding for zero-shot transfer in CLIP-style models. Huang et al. [13] theoretically compare
unimodal and multimodal CL, and Daunhawer et al. [7] study identifiability of the latent factors with
the CL objective. We remark that the assumptions on the data generative model across these works
are related but sometimes subtly different.

The practical need for data curation arises from the inherent noise in web-scale datasets used for
training vision-language models [39, 25, 11] and increasingly, large language models [1, 20, 38,
34, 37]. In the multimodal context, numerous empirical techniques have been developed [10, 35,
18, 22, 8, 32], with community benchmarks like DataComp [11] facilitating systematic evaluation.
Teacher-based filtering, the focus of our work, is a widely adopted and effective empirical strategy
[11, 35, 39], but we note that other approaches have also been explored, in particular, editing bad data
[26] (with some theoretical explanations [28, 41]). However, theoretical studies of data filtering are
limited. Some works include the study of data selection under weak supervision in general statistical
models [19], and selecting data during training [31].

3 Setup

Section 3.1 describes our model for multimodal data and the assumptions on the related parameters.
Section 3.2 formulates the contrastive learning objective on data pairs from the model.
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3.1 Bimodal data model

Building on recent theoretical work in multimodal contrastive learning [36, 14, 24], we assume
the signal has a low-rank structure, while the noise is unstructured and dense. Adopting a linear
generative model, the paired bimodal data, x ∈ Rd and x̃ ∈ Rd̃, is expressed as:

x = U z + ξ , x̃ = Ũ z̃ + ξ̃ , (1)

representing, for example, image and text in the case of vision-language data. Here z, z̃ ∈ Rr denote
the latent variables lying in a shared r-dimensional space that captures the common underlying
concept. The first terms Uz and Ũ z̃ represent the signals of interest, residing in r-dimensional
subspaces spanned by the columns of U and Ũ, and the terms ξ and ξ̃ represent the dense noise.
For simplicity, we assume that the maps U ∈ Rd×r and Ũ ∈ Rd̃×r are composed of unit-norm
orthogonal columns, fixing the scale of this problem.

We say a bimodal paired example is corrupted if the individual modalities do not correspond to the
same latent concept. This models how a large fraction of image-text pairs found on the internet are
corrupted by arbitrary captions that are unrelated to the content of the image. We formalize this in
Assumption 1, with η denoting the clean fraction. Figure 4 in Appendix A provides an illustration.
For the noise, we assume a Gaussian distribution with a diagonal covariance (Assumption 2).
Assumption 1 (Corruption model). Let z1, z2 ∼ N (0, Ir) be two independent draws from the
r-dimensional standard Gaussian. For an η ∈ (0, 1], the joint distribution on (z, z̃) is induced by

w.p. η , z = z1 = z̃ , and (Clean case)
w.p. 1− η , z = z1, z̃ = z2 . (Corrupted case)

Assumption 2 (Noise model). The noise {ξ, ξ̃} are mutually independent and independent of {z, z̃},
and are zero-mean Gaussian variables given by ξ ∼ N

(
0, γ−1Id

)
and ξ̃ ∼ N

(
0, γ̃−1Id̃

)
.

The signal is unit-scale in r-dimensions since ∥U∥ = 1 and Cov(z) = Ir, hence the signal-to-noise
ratios (SNRs) for the two modalities are γ (r/d) and γ̃ (r/d̃) respectively. This model is parametrized
by (η,U, Ũ, γ, γ̃, r, d, d̃), and the aim is to recover U and Ũ, given paired samples. This is a standard
model in bimodal contrastive learning [36, 14, 24] and is inspired by the spiked covariance model
[3, 40]. Consider an extreme case where the images are matched to randomly shuffled captions. This
corresponds to η = 0, and recovering the subspaces U and Ũ becomes akin to two separate unimodal
estimation problems, whose optimal (up to constants) error rate is known with tight upper and lower
bounds [5, Eq. (9)]:

E
[
ERR(Û,

ˆ̃
U)
]
≍

√√√√ r max
{
d γ−1(1 + γ−1), d̃ γ̃−1(1 + γ̃−1)

}
n

, (2)

where ERR is defined via the chordal distance between two subspaces in Eq. (4). This follows from
the fact that E[xx⊤] = UU⊤ + γ−1 Id. The

√
d/n dependence is expected from the concentration,

the
√
r dependence comes from the error metric being chordal (frobenius norm) as opposed to

projection (spectral norm), and γ−1/2 dependence captures how the error vanishes with high SNR.
Refer to Appendix B.2 for a description of how to arrive at Eq. (2) using the result from Cai et al. [5,
Eq. (9)]. When η > 0 fraction of data is correctly matched, our goal is to characterize the error rate
achieved by the contrastive learning on the paired data and show that data filtering can improve the
error rate compared to the baseline of no filtering.

Notation. For a matrix Q = USV ⊤ and an integer a, let SVDa(Q) = UaSaV
⊤
a denote the projection

of Q onto its top-a components. Let lsv(Q) denote the left singular vectors of Q, and lsva(Q)
denote its top a left singular vectors. Similarly, let rsv(Q) and rsva(Q) be defined for the right
singular vectors. We use O(.) to denote asymptotic upper bounds, and Õ(.) to denote upper bounds
with only η, n factors (omitting the dimension and SNR parameters). Similarly, we use the standard
notation Ω(.), ω(.) to denote asymptotic lower bounds. The notation ≳,≲ hides absolute constants,
and we write a ≍ b when a ≲ b and a ≳ b holds simultaneously. Additionally, we will sometimes
use the random variable c ∼ Ber(η) ∈ {0, 1} to denote the (hidden) ‘coin toss’ in accordance with
Assumption 1, with c = 1 denoting to the clean case.
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3.2 Contrastive learning formulation

We utilize a linear contrastive learning framework from [24, 14]. By linear we mean (i) the encoders
that map the data, x and x̃, to the shared embedding space are linear, and (ii) the contrastive loss
computed on the embeddings is linear. This setting corresponds to the choice of ϵ = 0, ψ = ϕ = Id
maps in Nakada et al. [24, eq 2.1], an equation that captures a more general contrastive loss framework.
We refer the reader to Tian [33, Figure 1] for different contrastive learning setups achieved by different
choices of ψ and ϕ.

Let G ∈ Rr×d and G̃ ∈ Rr×d̃ denote the learnable encoders for the input, x and x̃ respectively.
Figure 5 in Appendix A provides a helpful visualization. The similarity score of a pair (x, x̃) is
computed as the inner product ⟨Gx, G̃x̃⟩, which is widely used theoretically [24, 14, 15, 33] and
empirically [29, 12]. The multimodal contrastive loss maximizes the similarity of observed pairs,
while minimizing the similarity of ‘generated’ pairs. Given n paired samples {(xi, x̃i)}ni=1, the
parameters G, G̃ are learned by minimizing the ρ-regularized objective given by:

Lρ(G, G̃) :=
1

2n(n− 1)

( n∑
i=1

( n∑
j=1
j ̸=i

(sij − sii) +
n∑

j=1
j ̸=i

(sji − sii)
))

+ Rρ(G, G̃) , (3)

where sij := ⟨Gxi, G̃x̃j⟩ for i, j ∈ [n] is the similarity score, and Rρ(G, G̃) := (ρ/2)∥G⊤G̃∥2F is
the regularizer with strength ρ > 0. The regularizer ensures that the learned parameters have finite
norms. Indeed, Eq. (6) shows that this objective has a closed-form solution with a 1/ρ multiplier,
which becomes infinite if ρ = 0. Note that CLIP [29] does not need a regularizer since the inner
product is taken with normalized vectors (i.e. (1/∥Gx∥)Gx instead of Gx). The parameters G and
G̃ assume the knowledge of the latent dimension r (since they are of sizes r × d and r × d̃). In
practice, the latent dimension is typically a design choice and is therefore known at training time.
Theoretically, assuming the latent dimension is known allows us to isolate the effects of data filtering
from the separate, well-studied problem of subspace rank estimation (for e.g., in Cai et al. [5]).

Also note that this objective is in a full-batch setting, i.e. the entire n× n grid of similarities is com-
puted to maximize the diagonals and minimize the off-diagonals. This does not cause computational
issues since the objective has a closed-form solution, given by Eq. (6).

To measure the quality of a solution, we use the chordal distance between two subspaces in Defini-
tion 1. This is a standard measure of how well G, G̃ recover U, Ũ respectively [24, 14].

Definition 1. The error metric for a learned embedding G, G̃ is defined as

ERR(G, G̃) := max
{∥∥∥ sinΘ (rsv (G) ,U)

∥∥∥
F
,
∥∥∥ sinΘ(rsv(G̃) , Ũ)∥∥∥

F

}
. (4)

We note two points. First, the metric only considers the right singular vectors. This is because
the essential information in G, G̃ is contained in the right subspaces. Indeed, the loss in Eq. (3) is
only affected by G⊤G̃, which is preserved under the transformation G← AG, G̃← AG̃ for any
orthonormal matrix A. Second, the metric uses the sinΘ distance, which is a geometrically intuitive
way to measure closeness between two subspaces (refer to Appendix B.1 for a background).

4 Baseline: unfiltered contrastive learning

We study the error rate of the unfiltered contrastive learning (Figure 1a). We show that the error is
upper and lower bounded by Õ (1/η

√
n). The upper bound is given in Corollary 1, which is a result

from Nakada et al. [24]. We show a matching lower bound in Proposition 1.
Corollary 1 (Corollary of [24, Theorem 3.1]). Given a dataset of pairs {(xi, x̃i)}ni=1 generated
i.i.d. according to the bimodal data model in Eq. (1) satisfying Assumptions 1 and 2, the solution of
minimizing the contrastive loss in Eq. (3) satisfies with probability 1− exp(−Ω(max{d, d̃})):

ERR(G, G̃) ≲
1

η

√
r max{d, d̃} (1 + γ−1) (1 + γ̃−1)

n
+ Õ

(
1

n

)
,

provided the number of samples n ≳ (1/η2) max{d, d̃}
(
1 + γ−1

) (
1 + γ̃−1

)
.
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(a) No filtering
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(c) Teacher-based filtering

Figure 1: Our goal is to analyze the Train-Filter-Train approach illustrated in (c) and show that it
improves upon the no filtering approach of (a). Here ϕ⋆ denotes the ground-truth parameters and ϕ̂
denotes the learned version. In our setting, ϕ∗ ≡ {U, Ũ} and ϕ̂ ≡ {G, G̃}.

Remark 4.1 (Looseness in SNR parameters compared to Eq. (2)). The dependence on SNR parame-
ters (γ, γ̃) in Corollary 1 is looser than the unimodal estimation counterpart in Eq. (2). As stated,
the error upper bound in Corollary 1 does not become zero when γ →∞. We remark that this is an
artifact of the analysis. Indeed a tighter analysis is possible that recovers a

√
γ−1γ̃−1 term also in

the upper bound, for instance, using the ideas in Cai et al. [5, Section 7], in particular [5, Eq. (39)].

A complete proof of Corollary 1 is presented in Appendix D, which is largely a reconstruction from
Nakada et al. [24] with some minor corrections. The analysis has three parts. First, the unregularized
term of the contrastive loss in Eq. (3) simplifies to L0(G, G̃) = −Tr

(
GSnG̃

⊤
)

, where Sn ∈ Rd×d̃

denotes the cross-covariance matrix of the data, defined as

Sn :=
1

n− 1

∑
i∈[n]

(xi − x)
(
x̃i − x̃

)⊤
≈ 1

n

∑
i∈[n]

xix̃
⊤
i . (5)

Second, the regularized contrastive loss, albeit nonconvex, admits a closed-form solution as the
SVD of Sn, given in Eq. (6). Due to this, we can directly analyze the solution without the need for
optimization analysis.

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (Sn)

}
. (6)

The third key piece is concentration of Sn. We show finite sample concentration of Sn in operator
norm, namely w.h.p.

∥∥Sn − S
∥∥ ≲ 1/ρ

√
n, for the limiting quantity S = (η/ρ)UŨ⊤. Using a Davis-

Kahan like result, we can translate the operator norm concentration to a distance between the angles
of subspaces, for both left and right singular vectors, yielding w.h.p. ERR(G, G̃) ≲ 1/η

√
n. Note

the dependence on the regularization strength ρ vanishes (as long as ρ > 0) due to its appearance
in both the numerator (via op-norm concentration) and denominator (since the singular values of
S scale as η/ρ). This sketch describes the 1/η dependence of the unfiltered contrastive learning.
In Proposition 1, we show that this dependence is tight. We present a proof of Proposition 1 in
Appendix E by constructing a hard problem instance (parameterized by η).
Proposition 1. Under the setting of Corollary 1, there is a class of problem instances with latent
dimension r = 1 such that the error achieved by the minimizer of Eq. (3) is lower bounded (up to
absolute constants) with probability 1− exp(−Ω(max{d, d̃})) as:

ERR(G, G̃) ≳
1

η

√√√√max
{
d γ−1, d̃ γ̃−1

}
n

.

5 Our approach: teacher-based filtering

In the previous section, we concluded that the unfiltered contrastive learning achieves a tight error
dependence of 1/η. In this section, we ask: can filtering algorithms improve upon the η dependency?
Intuitively, we expect the answer to be yes, since filtering can identify corrupted samples and remove
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them (increasing the clean fraction η). Indeed, if the filter could perfectly identify all clean samples,
it would achieve a dependence of 1/√η (since this would be akin to the unfiltered contrastive learning
with η ← 1 and n← ηn). We will now study the η dependence of teacher-based filtering.

Teacher-based filtering, which follows a Train-Filter-Train approach, has proven to be a successful
method in practice [10, 35]. In the first training step, a teacher model is trained on (potentially a part
of) the dataset. In the filter step, (the remaining part of) the dataset is filtered by using the teacher to
compute a similarity score to evaluate the quality of each sample. The filtering usually happens by
selecting samples with score above a certain threshold θ ∈ R. In the second training step, a student
model is trained on the filtered dataset. Refer to Figure 1c for an illustration. The student can be
initialized at the teacher’s solution, or even at a fresh random initialization. The intuition is that the
teacher can extract useful signal from the dataset despite the presence of corrupted samples, which
can help in identifying and discarding corrupted samples. Algorithm 1 describes this process in the
setup of Section 3. The split of the dataset into two halves is for the convenience of analysis, by
ensuring the filtering rule (which depends on the first half of samples and θ) is independent of the
samples being filtered (the second n/2 samples). We now state our main result.

Algorithm 1 Teacher-based filtering in the setup of Section 3.
Input: Dataset D = {(xi, x̃i)}ni=1, Threshold θ ∈ R.
Step 1 (Train): Obtain GT, G̃T by minimizing Eq. (3) on the first n/2 samples {(xi, x̃i)}i≤n/2.
Step 2 (Filter): Create Dfilt(θ) from {(xi, x̃i)}i>n/2 by retaining sample i iff ⟨GT xi, G̃T x̃i⟩ > θ.
Step 3 (Train): Output G(θ), G̃(θ) by minimizing Eq. (3) on Dfilt(θ).

Theorem 1. Under the model in Eq. (1) satisfying Assumptions 1 and 2 with r ≥ 2, there exists a
threshold θ∗ ∈ R such that, given a dataset of pairs {(xi, x̃i)}ni=1 generated i.i.d. according to the
model, the output of Algorithm 1 satisfies with probability 1− exp(−Ω(max{d, d̃})):

ERR
(
G(θ∗), G̃(θ∗)

)
≲ min {T0.5, T0} ,

provided n ≳ (1/η2) max{d, d̃}
(
1 + γ−1

) (
1 + γ̃−1

)
. Here T0.5, T0 are defined as

T0.5 =

√
r max{d, d̃} poly (γ−1, γ̃−1)

ηn
+ Õ

(
1

n

)
,

T0 =

√
r3 max{d, d̃} poly (γ−1, γ̃−1)

n
+ Õ

(
1

n

)
.

We provide a full proof in Appendix G, and discuss the sketch in Section 6. Certain observations are
in order. First, we see two regimes of behavior. The error behaves as 1/√η for large values of η, and
becomes independent of η for small values of η (note that η still needs to large enough to satisfy the
requirement of n ≳ 1/η2 for theorem to be valid). Both these regimes exhibit a better dependence
on η than the unfiltered contrastive learning’s rate of 1/η. From the expressions, we note that the
switch between the regimes happens at η = 1/r2 (up to constants). Second, this result is stated for the
optimal filtering threshold θ∗. The optimal choice of this hyperparameter depends on the problem
quantities, particularly n and η. Understanding this dependence is an interesting direction of research,
but outside the scope of the current work. Our analysis considers two fixed choices of θ that recover
each of the regimes. We also present a small experiment on varying the filtering threshold θ in the
vicinity of θ∗ in Appendix H. Third, we remark that it remains an interesting research question to
study whether an improved dependence on η (at least something better than 1/η) can be achieved with
a single training loop on the data (as the teacher-based filtering is a two-step training process).

It is perhaps surprising that the error can become independent of the clean fraction η, which is better
than the oracle rate of 1/√η. This counter intuitive benefit stems from the use of the inner product to
compute similarities (Section 3.2) on the corruption model given by Assumption 1. Owing to this,
the distribution of the similarity scores before filtering follows a very typical structure, explained in
Figure 2. Filtering can retain samples from the right tail of the noisy score distribution D0, and these
samples provide useful signal to recover the ground-truth U parameter. Finally, we remark on the
assumptions needed for this result. Assumption 2 makes this setting somewhat special, since Nakada
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et al. [24] allow for a general covariance Σξ,Σξ̃ (with bounded norms) on the noise. Handling a
more general noise covariance is trivial for unfiltered contrastive learning, but significantly more
challenging in the case of filtering. We argue that Assumption 2 preserves the essential characteristics
of the problem though, while simplifying the analysis of filtering. In the following section, we discuss
the proof ideas in more detail.

6 Analysis of the filtering algorithm

In this section, we describe the main ideas behind the proof of Theorem 1. In Section 6.1, we
study the distribution of the scalar score used for filtering samples. In Section 6.2, we use the score
characterization to understand filtering by thresholding on the scores.

6.1 The score used for filtering

For a sample (x, x̃), let S(x, x̃;A) for a matrix A ∈ Rd×d̃ denote the score of the sample, defined
in Eq. (7). This scalar score is meant to capture the quality of the sample (x, x̃). Treating (x, x̃)
as a random i.i.d. sample from the model in Section 3.1, we characterize the distribution of the
score. Note that the teacher-based filtering is simply using A := G⊤

T G̃T to score the data (the
subscript is used to denote the teacher’s parameters). To understand teacher-based filtering, an
intermediate step will be to understand filtering using an ‘oracle’ which has access to the ground-truth
problem parameters (refer to Figure 1b). The oracle scores data using A := UŨ⊤, given in Eq. (8).
Since G⊤

T G̃T → (η/ρ)UŨ⊤ as the number of samples n → ∞, we expect the teacher filtering to
resemble the oracle filtering in the large n regime. The positive scaling factor of η/ρ does not affect
threshold-based filtering, as the ordering of samples remains unchanged.

S(x, x̃;A) := x⊤Ax̃ , (7)

S(x, x̃;UŨ⊤) = (U z + ξ)
⊤
UŨ⊤

(
Ũ z̃ + ξ̃

)
= z⊤z̃ + z⊤Ũ⊤ξ̃ + ξ⊤U z̃ + ξ⊤UŨ⊤ξ̃︸ ︷︷ ︸

zero-mean terms involving (ξ,ξ̃)

. (8)

Remark 6.1 (Two versions of oracle). There are two possibilities for an ‘oracle’ in this setup. The
first kind has access to the ground-truth problem parameters, which is what we study. The second
kind has access to the clean/corrupted status of each sample. The second kind can trivially achieve
an error dependence of 1/√ηn by choosing to only use the clean samples.

Recalling Assumption 1, since z̃ = z for clean samples, the score in Eq. (8) is defined through
the independent randomness in z, ξ, ξ̃. For corrupted samples, it is defined via the independent
randomness in all z, z̃, ξ, ξ̃. We characterize the distribution in both cases, detailed in Appendix F. The
main observations are illustrated in Figure 2a. D0 denotes the distribution of the score in the corrupted
case, with mean µ(D0) = 0 (since z, z̃ are independent), and variance σ2

0 = r
(
1 + γ−1

) (
1 + γ̃−1

)
.

Similarly, D1 denotes the distribution in the clean case, with mean µ(D1) = r (since z = z̃ leading
to a squared term), and variance σ2

1 = r + r
(
1 + γ−1

) (
1 + γ̃−1

)
. Note that σ2

0 ≤ σ2
1 ≤ 2σ2

0 .

Since clean and corrupted data are mixed with η, 1− η proportions, the score of a generic sample
from the population is given by the mixture distribution D := ηD1 + (1− η)D0. Figure 2 provides
an illustration of the score distribution D. Due to i.i.d. data, the oracle filtering algorithm’s scores are
n i.i.d. draws from D. The filtering threshold θ can be picked in various ways, leading to various
algorithms for filtering. The threshold θ → −∞ corresponds to no filtering.

Remark 6.2. Since σ0 ≤ σ1 =
√

2r (1 + γ−1) (1 + γ̃−1), the condition γ, γ̃ = ω(
√
r) ensures that

r/σ1 = ω(1), leading to a separation between the modes of D0 and D1. In this case, the clean and
corrupted data become well-separated via the oracle score S(x, x̃;UŨ⊤).

6.2 Analysis of thresholding on the score distribution

In this section, we discuss an analysis for the oracle filtering algorithm (Figure 1b), which captures
the main conceptual ideas of data filtering in the setup of Section 3. The proof for the teacher-based
filtering (Theorem 1) is given in Appendix G, which uses the ideas from this section, along with the
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σ0 σ1
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1− η

η

(a) Theoretical (stylized). (b) Observed.

Figure 2: Distribution of the oracle score S(x, x̃;UŨ⊤) is given by the mixture of D0,D1 with
weights (1− η), η respectively. Here σ2

0 , σ
2
1 depend on parameters r, γ, γ̃. The threshold θ ∈ R is

used to filter the datapoints (score > θ are retained, others are discarded). Subfigure (b) shows the
observed histogram in a synthetic setting for n = 50000 samples with r = 16, γ = γ̃ = 104.

operator norm concentration in Corollary 1 to bound the deviation caused by the difference between
the teacher scores and the oracle scores. Given a dataset {(xi, x̃i)}ni=1, let nsel(θ) denote the number
of samples retained after oracle filtering, and let Isel(θ) ⊆ [n] denote the indices of the samples
selected, defined by the condition i ∈ Isel(θ) ⇐⇒ S(xi, x̃i;UŨ⊤) > θ. Analogous to Eq. (5), we
define Sn(θ) to be the empirical cross-covariance of the filtered data, given by Eq. (9).

Sn(θ) :=
1

nsel(θ)− 1

∑
i∈Isel(θ)

(xi − x)
(
x̃i − x̃

)⊤
, Sn(θ) :=

1

nP (θ)

∑
i∈Isel(θ)

xix̃
⊤
i , (9)

S(θ) := E
[
Sn(θ)

]
= E[xx̃⊤ |S(x, x̃;UŨ⊤) > θ ] . (10)

Observe that similar to Eq. (6), the closed-form solution of the optimization holds even on the
filtered dataset. The step that changes is the concentration, namely, the characterization of how Sn(θ)
concentrates as n increases, according to the distributions of the involved random quantities. In the
following, we argue that Sn(θ) concentrates to S(θ), given by Eq. (10), and characterize the behavior
of S(θ) to recover a guarantee akin to Theorem 1.

Notation. We set up some useful notation on the score distributions D0,D1 from Figure 2a. For
any a ∈ R, let P0(a) = PZ∼D0(Z > a) and P1(a) = PZ∼D1(Z > a) denote the probabilities
of the upper tails of the corrupted and clean parts respectively, and let P (a) = PZ∼D(Z > a) =
ηP1(a) + (1− η)P0(a) denote the probability of selection from the mixture distribution. Similarly
for expectations, define E0(a) := EZ∼D0

[Z|Z > a], E1(a) := EZ∼D1
[Z|Z > a].

Concentration of Sn(θ) to S(θ). We claim that Sn(θ) ≈ Sn(θ) by using two approximations. First,
the un-centered version in Sn(θ) approximates the centered version in Sn(θ). Second, although
nsel(θ) is a random quantity, it concentrates around nP (θ). We formally bound the error due to both
these approximations in the full proof. Since the filtering threshold θ is chosen independent of the
samples being filtered, the selected samples satisfy the i.i.d property under the conditional law of
the score being above θ. This allows us to show that the approximate version, Sn(θ), concentrates
around its expectation, S(θ), by bounding the spectral norm of the difference via a Matrix-Bernstein
type inequality. Overall, we get

w.p. 1− exp(−Ω(max{d, d̃})) , ∥Sn(θ)− S(θ)∥ ≲

√
max{d, d̃}
nP (θ)

. (11)

Analysis of S(θ) and P (θ). Simplifying S(θ) reveals that it is simply a scaled version of UŨ⊤,
with the scaling coefficient depending on θ described by the conditional expectations E0(θ) and
E1(θ). Concretely, S(θ) = 1/r (η E1(θ) + (1− η)E0(θ))UŨ⊤. Owing to this, the application
of a Davis-Kahan result on Eq. (11) will dictate the guarantee of recovering U, Ũ for the filtering
algorithm. The error behaves as:

ERR ∝ r

(η E1(θ) + (1− η)E0(θ))

1√
η P1(θ) + (1− η)P0(θ)

1√
n
.
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The behavior of the functions E0(θ), E1(θ) and P0(θ), P1(θ) precisely quantify this rate. As a
sanity check, setting θ = −∞ recovers the 1/η behavior of the unfiltered contrastive learning, as
E1(−∞) = r, E0(−∞) = 0 and P1(−∞) = 1, P0(−∞) = 1. Since E0(θ), E1(θ) are increasing
functions in θ, whereas P0(θ), P1(θ) are decreasing, we observe a tradeoff. A larger threshold
θ results in larger conditional expectations E0(θ), E1(θ), but smaller probabilities of selection
P0(θ), P1(θ). In the Appendix, we formally characterize this behavior, involving calculations on the
conditional expectations and probabilities of the Gaussian distribution. Here, we discuss the two
choices of θ that recover the two regimes of the filtering behavior. The threshold θ = 0 results in
E1(0) ≥ r, E0(0) ≥ 2/π and P1(0) ≥ 0.5, P0(0) = 0.5, recovering the independent of η regime.
And the threshold θ = r/2 results in E1(r/2) ≥ r, E0(r/2) ≥ r/2 (using a trivial lower bound for the
conditional expectation), and P1(r/2) ≥ 0.5 (but P0(r/2) is small), recovering the 1/√η regime. The
optimal θ∗ will achieve a rate better than the above two special points, hence the upper bound on the
error is given by the min of these two regimes, recovering the upper bound in Theorem 1.

7 Experiments

(a) Synthetic experiment. (b) Real experiment, Fang et al. [10, Figure 4].

Figure 3: (a). Observed dependence of ERR(G, G̃) on η for a synthetic experiment. The error
of the unfiltered contrastive learning follows a 1/η dependence, but deviates for small η since the
requirement of n ≳ 1/η2 in Corollary 1 gets violated. The error of the filtering algorithm follows
a 1/√η dependence in the large η (or small 1/η) regime, and an independent of η dependence in the
small η regime. Going beyond to even smaller η causes deviations since Theorem 1 also requires
n ≳ 1/η2. The teacher-based filtering is with the threshold θ = 0. (b). A similar trend on real data
observed by Fang et al. [10]. The y-axis shows 1−Accuracy, which is different than the error metric
in (a). However, we note that the qualitative trend of the orange line having a smaller slope than the
blue line still holds. Numbers from Fang et al. [10] are reproduced with permission.

In this section, we validate our theoretical results with a synthetic setup. With parameters d =

10, d̃ = 8, r = 4, and SNR γ = γ̃ = 104, and with randomly generated U, Ũ, we generate n = 10M
samples according to the model in Section 3.1, and vary the clean fraction η. We experiment over
10 values of η geometrically decreasing from 1 to 10−3. This experiment was run on a cluster of
50 CPUs with 500G memory, and required less than 10 minutes. Figure 3a shows the result and
discusses the observations, which validate Corollary 1 and Theorem 1. To extend these observations
to real settings, the main limitations are posed by the modeling assumptions in Section 3. Despite
the limitations, Figure 3b shows evidence that the qualitative conclusions drawn from the theory
hold with real image-text data too. Concretely, it shows that the downstream model performance on
reducing the clean fraction η degrades more steeply without data filtering.

8 Conclusion and Broader Impacts

This paper presents a theoretical investigation into teacher-based data filtering for multimodal con-
trastive learning with stochastically corrupted data. We rigorously establish its benefit, demonstrating
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that filtering improves the error dependence on the clean data fraction, η, from 1/η (no filtering) to
1/√η in the large η regime, and perhaps surprisingly, to independent of η in the small η regime. The
latter finding suggests that teacher-based filtering can be particularly beneficial when data quality is
low, achieving performance independent of the initial clean fraction. Our results provide a formal
basis for the empirical success of teacher-based data filtering. The main limitations are posed by the
assumption of linearity in Section 3, and the model of stochastic corruptions in Assumption 1. Future
work could explore the optimal selection of filtering thresholds and investigate whether similar gains
can be achieved with one-step filtering algorithms.

Our contributions are largely on the theoretical understanding of data filtering, and its potential
benefits. At a high-level, effective data filtering can reduce the compute cost needed to train models,
which has positive potential impacts through more judicious use of energy resources. On the other
hand, data filtering can exacerbate the biases present in a dataset by selecting certain subpopulations
more than the others. If this goes unchecked, it has potential negative impacts to society.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are written to summarize the sections that follow.
The main contributions are theoretical, and their key takeaways are mentioned in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work include assumptions and settings, and are discussed
with the text (e.g. section 3.1 discusses the modeling assumptions and their limitations).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical results contributed are Proposition 1 and Theorem 1. The
assumptions are discussed in section 3.1, and the proofs are provided in the Appendix
(sections E and G).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments (synthetic) are discussed in section 7 and necessary details
are provided (e.g. parameter settings).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not publish code, primarily because the synthetic experiments serve for
the verification of the theory and are relatively simple to implement.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: There is just one hyperparameter, the filtering threshold θ. Section 7 (Figure 3a)
includes the necessary details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure 3a includes error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 7 includes these details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 8 discusses the broader impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical study and no real-world data/models have been used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets (codebases/datasets/etc) have been used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets have been introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Illustrations

In this section, we provide some useful illustrations. Figure 4 illustrates the corruption model
described in Assumption 1. Figure 5 illustrates the linear maps G, G̃ used to generate the embeddings
from observed data (according to the model in Fig 4). Figure 6 accompanies Remark A.1.

z ∈ Rr

x ∈ Rd

x̃ ∈ Rd̃

f

f̃

(a) Clean data (w.p. η): z ∼ pZ , z̃ = z.

z, z̃ ∈ Rr

x ∈ Rd

x̃ ∈ Rd̃

f

f̃

(b) Corrupted data (w.p. 1− η): z, z̃ ∼i.i.d. pZ .

Figure 4: Model for stochastic corruptions. In this work, the forward maps f, f̃ are linear (refer to
Eq. (1)) and the latent distributions are Gaussians.

x ∈ Rd

x̃ ∈ Rd̃

RrG

G̃

Figure 5: On seeing multimodal data (x, x̃), linear maps G, G̃ (learnable parameters) create the
embeddings that lie in Rr (the knowledge of r, the true latent dimension, is assumed). The similarity
is measured with the inner product ⟨Gx, G̃x̃⟩.

x

x̃

independent: N (0,Σ0)
correlated: N (0,Σ1)

Figure 6: Illustration of the joint distribution of (x, x̃). The overall distribution is a mixture of two
zero mean Gaussians: the independent case (w.p. 1− η) and the correlated case (w.p. η).

Remark A.1. The distribution of (x, x̃) ∈ Rd+d̃ from Section 3.1 is a mixture of two zero-mean
Gaussians. With weight η, the covariance matrix is Σ1 (for c = 1, i.e. the clean case). With weight
1− η, the covariance is Σ0 (for c = 0). Figure 6 provides an illustration.

Σ1 =

[
UU⊤ + γ−1Id UŨ⊤

ŨU⊤ ŨŨ⊤ + γ̃−1Id̃

]
, Σ0 =

[
UU⊤ + γ−1Id 0

0 ŨŨ⊤ + γ̃−1Id̃

]
.
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B Background

This section covers some useful background concepts.

B.1 Measuring the distance between subspaces

The concept of principal angles provides a geometrically intuitive way to measure the closeness
between two subspaces. Let X and Y be two r-dimensional subspaces within a larger Euclidean
space Rd. There exist r principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π/2 that describe the relative
orientation of these subspaces.

• θ1 represents the smallest possible angle between any two unit vectors x ∈ X and y ∈ Y .
• Subsequent angles θk capture the minimum angles within directions orthogonal to those

defining the previous angles θ1, . . . , θk−1.
• The cosines cos(θi) measure the alignment (1 means aligned, 0 means orthogonal within

that principal direction), while the sines sin(θi) measure the separation or angle.

To aggregate this information into a single distance metric, we often use the frobenius norm of the
sine of the principal angles, denoted ∥ sinΘ(X ,Y)∥F . It is defined as

∥ sinΘ(X ,Y)∥F =

√√√√ r∑
i=1

sin2(θi) .

This metric provides an overall measure of the difference between the subspaces. It’s zero if and only
if X = Y (since all θi = 0), and it increases as the subspaces diverge.

Computing this metric relies on matrix operations involving orthonormal bases for the subspaces. Let
X ∈ Rd×r be a matrix whose columns form an orthonormal basis for X (so X⊤X = Ir). Similarly,
let Y ∈ Rd×r be a matrix with orthonormal columns forming a basis for Y . The distance metric
∥ sinΘ(X ,Y)∥F can be computed using X and Y via the following formula

∥ sinΘ(X ,Y)∥F =
∥∥X⊤

⊥Y
∥∥
F
.

Here, X⊥ is any d×(d−r) matrix such that its columns form an orthonormal basis for the orthogonal
complement of X , denoted X⊥. This means that the combined matrix [X X⊥] must be a d × d
orthogonal matrix. Notationally, we often just write ∥ sinΘ(X,Y)∥F instead of using X ,Y .

B.2 Optimal unimodal estimation rates in the spiked covariance model

Eq. (1) uses the well-known spiked covariance model for each of the two modalities, originally
introduced by Johnstone [16] and well-studied in the literature [3, 40, 5]. Cai et al. [5] establish
optimal (minimax) estimation rates for the covariance matrix (i.e. UU⊤ + γ−1Id) and the principal
subspace (i.e. U) in a more general sparse spiked covariance model. In particular, [5, Eq. (7)]
describes the minimax rate for covariance estimation, and [5, Eq. (9)] describes the minimax rate
for subspace estimation. We use the latter result to get Eq. (2). Since the problem of subspace
estimation is invariant to scaling, we instantiate [5, Eq. (9)] for the estimation of data with covariance
γUU⊤ + Id (since σ = 1 is assumed in [5, Eq. (1)] to fix the problem scaling). With this, the
paramaters map as λ = γ, p = d and k = d (since our model is not sparse). This establishes a rate

(up to constants) of
√

dγ−1(1+γ−1)
n for the estimation in 2-norm. An additional factor of

√
r appears

since we use the Frobenius-norm (i.e. the chordal distance in Definition 1), and Eq. (2) follows.

C Lemmas

This section presents Lemmas used in the proofs. The first three Lemmas are standard results in the
literature, and we include them without proof.
Lemma 1 (Weyl’s Inequality). For matrices A,B ∈ Rm×n, let p = min(m,n) and let σ1(M) ≥
σ2(M) ≥ · · · ≥ σp(M) ≥ 0 denote the singular values for M ∈ {A,B}. Then, for all j = 1, . . . , p,
it holds that

|σj(A)− σj(B)| ≤ ∥A−B∥2 .
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Lemma 2 (Wedin’s Theorem). Let A, Â ∈ Rm×n be matrices of the same size. Let r ≤ min(m,n)

be the rank of both A, Â, and let the SVDs be A = UΣV ⊤ and Â = Û Σ̂V̂ ⊤. Let σr(A) > 0 denote
the rth singular value of A, and assume σr(A) > ∥Â−A∥2. Then it holds that:∥∥∥sinΘ(Û , U)

∥∥∥
F
≤ ∥Â−A∥F
σr (A)− ∥Â−A∥2

,

∥∥∥sinΘ(V̂ , V )
∥∥∥
F
≤ ∥Â−A∥F
σr (A)− ∥Â−A∥2

.

Lemma 3 (Whittle’s Inequality). Let X1, X2, . . . be a sequence of independent random variables
such that: (i) E[Xk] = 0 for all k ≥ 1, and (ii) the distribution of each Xk is symmetric about zero
(i.e., Xk and−Xk have the same distribution). Let Sn =

∑n
k=1Xk be the partial sum (with S0 = 0).

If ϕ : R→ R is a convex function such that ϕ(0) = 0, then the sequence E[ϕ(Sn)] is non-decreasing
in n. That is, for all n ≥ 1:

E[ϕ(Sn)] ≥ E[ϕ(Sn−1)] .

Lemma 4. Let A,B ∈ Rm×n with rank(A) = r ≥ 1. If ∥A − B∥2 < σr(A), then for every
t ∈ [0, 1], it holds that rank

(
(1− t)A+ tB

)
≥ r.

Proof. Let Xt = (1− t)A+ tB. For any matrices M,N and any k,

σk(M) ≥ σk(N)− ∥M −N∥2,

which follows Lemma 1. Applying this with M = Xt, N = A, and k = r,

σr(Xt) ≥ σr(A)− ∥Xt −A∥2 = σr(A)− t∥A−B∥2 ≥ σr(A)− ∥A−B∥2 > 0,

for all t ∈ [0, 1] because ∥A−B∥2 < σr(A). Hence σr(Xt) > 0, so rank(Xt) ≥ r.

Lemma 5. Let X be a random variable with a log-concave density, mean µX , and variance σ2
X . It

holds that
E[X |X > θ] ≤ θ + e σX , for θ ≥ µX .

Proof. Let m(x) = E[X − x |X > x] be the mean residual life function. We want to bound
E[X |X > θ] = θ +m(θ) for θ ≥ µX . Due to log-concavity of X , m(x) is non-increasing (see,
eg, Bagnoli and Bergstrom [2, Theorem 6]). Since m(x) is non-increasing, m(θ) ≤ m(µX) =
E[X − µX |X > µX ]. We will now bound the conditional expectation for this case of θ = µX .

Let Y = X − µX . Then E[Y ] = 0 and V(Y ) = σ2
X . m(µX) = E[Y |Y > 0] = E[Y +]

P(Y >0) , where

Y + = max(0, Y ). We know E[Y +] ≤
√
E[(Y +)2] ≤

√
E[Y 2] = σX . As for the denominator, we

know that for any random variable X with a log-concave density and mean µX , P(X ≥ µX) ≥ 1/e
(see, eg, Lovász and Vempala [21, Lemma 5.4]). Thus, m(µX) ≤ σX

1/e = e σX .

Lemma 6. Let x, y ∈ Rd and x̃, ỹ ∈ Rd̃ be random vectors. Assume that the pair (x, x̃) is
independent of the pair (y, ỹ). Let A be a fixed d × d̃ matrix and let θ ∈ R be a scalar threshold.
Define the events Cx = {x⊤Ax̃ > θ} and Cy = {y⊤Aỹ > θ}. Assume that these events have
non-zero probability, i.e., P(Cx) > 0 and P(Cy) > 0. Then the conditional expectation of the outer
product xỹ⊤ given both events Cx and Cy factorizes as follows:

E
[
xỹ⊤ | x⊤A x̃ > θ, y⊤A ỹ > θ

]
= E

[
x | x⊤A x̃ > θ

]
·
(
E
[
ỹ | y⊤A ỹ > θ

])⊤

.

Proof. The definition of conditional expectation given multiple events is conditioning on their
intersection. Here I denotes the indicator function.

E [xỹ⊤ |Cx, Cy ] = E [xỹ⊤ |Cx ∩ Cy ] =
E [xỹ⊤ICx∩Cy ]

P(Cx ∩ Cy)
.

The event Cx is determined solely by the random variables x and x̃. The event Cy is determined
solely by the random variables y and ỹ. By the initial assumption, the pair (x, x̃) is independent of

22



the pair (y, ỹ). Therefore, the event Cx is independent of the event Cy . This implies P(Cx ∩ Cy) =
P(Cx)P(Cy). Hence the denominator factorizes (and is non-zero since P(Cx) > 0 and P(Cy) > 0).

Now consider the numerator. Since Cx and Cy are independent, ICx∩Cy
= ICx

ICy
, which implies

E [xỹ⊤ ICx∩Cy ] = E [xỹ⊤ ICxICy ] = E [x ICx ] · E [ỹ ICy ]
⊤ ,

again, due to independence of the pairs. Hence the numerator also factorizes.

Lemma 7. Let x ∈ Rd and x̃ ∈ Rd̃ be random vectors such that their joint distribution is a
multivariate normal distribution with zero mean. Let A be a fixed d × d̃ matrix, and consider
the conditioning event R = {(x, x̃) | x⊤A x̃ > θ} for some threshold θ ∈ R. Assume that the
probability of this event is non-zero, i.e., P(R) > 0. Then

E [x | x⊤Ax̃ > θ] = 0d .

Proof. Let Z = (x, x̃) ∈ Rd+d̃. The joint probability density function of Z, denoted by p(Z),
corresponds to the N (0,Σjoint) distribution for some covariance matrix Σjoint. The conditional
expectation is defined as:

E [x | x⊤A x̃ > θ] = E [x | Z ∈ R] =
∫
R x p(Z) dZ∫
R p(Z) dZ

=

∫
R x p(Z) dZ

P (R)

We focus on the numerator integral and show that it is zero owing to symmetry. First note that p(Z)
is symmetric around the origin. That is, p(Z) = p(−Z) for all Z ∈ Rd+d̃. Second, observe that
under the transformation Z 7→ −Z, the condition becomes (−u)⊤A(−ũ) > θ, which simplifies to
u⊤Aũ > θ. Thus, the regionR is symmetric with respect to the origin: Z ∈ R ⇐⇒ −Z ∈ R.

Lemma 8. Consider the random variable z := uv, where u, v are jointly Gaussian as(
u

v

)
∼ N

(
0,

(
σ2
u γ

γ σ2
v

))
, with 0 < σ2

u, σ
2
v , and 0 ≤ γ < σuσv .

Let {zk}rk=1 be r independent copies. The conditional expectation is upper and lower bounded as

E

[
zi

∣∣∣∣ r∑
k=1

zk > θ

]
≥ max

{
γ,
θ

r

}
for all θ ∈ R ,

E

[
zi

∣∣∣∣ r∑
k=1

zk > θ

]
≤ max

{
γ,
θ

r

}
+ e

√
σ2
uσ

2
v + γ2

r
for θ ≥ 0 .

For the specific case of γ = 0 (i.e. u, v independent) and θ = 0, a stronger lower bound is

E

[
zi

∣∣∣∣ r∑
k=1

zk > 0

]
≥ 2

πr
σu σv .

Proof. Simplify the expression. Observe that zk are i.i.d. random variables. The expectation is
E[zk] = E[uv] = γ (since E[u] = 0 = E[v]). Let S =

∑r
k=1 zk, and let pS(.) denote the PDF of S.

The expectation is E[S] = rγ, and the variance is V[S] = r
(
σ2
uσ

2
v + γ2

)
.

Due to the symmetry among the i.i.d. variables zk, the conditional expectation E[zi |S > θ] is the
same for all i ∈ {1, . . . , r}. Let Q(θ) = E[zi |S > θ]. By linearity of expectation, we have

E[S |S > θ] = E

[
r∑

k=1

zk

∣∣∣∣S > θ

]
=

r∑
k=1

E[zk |S > θ] = r Q(θ) .

=⇒ Q(θ) =
1

r
E[S |S > θ] . (12)
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Proof of lower bounds: general case lower bound θ
r . Observe that

E[S |S > θ] =

∫∞
θ
s pS(s)ds∫∞

θ
pS(s)ds

(13)

≥
∫∞
θ
θ pS(s)ds∫∞

θ
pS(s)ds

= θ .

Combining this with Eq. (12) shows the θ/r lower bound.

Proof of lower bounds: general case lower bound γ. For this, we show E[S |S > θ] is non-
decreasing in θ. Let h(θ) = E[S |S > θ]. Using Eq. (13), its derivative is given by

h′(θ) =
−θ pS(θ)

∫∞
θ
pS(s)ds+ pS(θ)

∫∞
θ
s pS(s)ds

P(S > θ)2

=
pS(θ)

P(S > θ)2

∫ ∞

θ

(s− θ)︸ ︷︷ ︸
≥0

pS(s)ds ≥ 0 . (14)

Thus E[S |S > θ] is non-decreasing in θ. In particular, E[S |S > θ] ≥ E[S] (i.e. the unconditional
limit in the limit θ → −∞). Since E[S] = rγ, using this in Eq. (12) shows the lower bound of γ.

Proof of lower bounds: the specific case of γ = 0 and θ = 0. Since the distribution of zk is
symmetric around zero, the distribution of S =

∑
k zk is also symmetric around zero. Therefore,

P(S > 0) = 1/2. Using this, we get

E[S |S > 0] =

∫∞
0
s pS(s)ds

P(S > 0)
= 2

∫ ∞

0

s pS(s)ds . (15)

Also, the expectation of the absolute value is E[|S|] =
∫∞
−∞ |s| pS(s)ds. Due to symmetry (i.e.

pS(−s) = pS(s)), we get

E[|S|] =
∫ 0

−∞
(−s) pS(s)ds+

∫ ∞

0

s pS(s)ds = 2

∫ ∞

0

s pS(s)ds . (16)

Using Eq. (15) and Eq. (16), we get

E[S |S > 0] = E[|S|] = E

[∣∣∣∣ r∑
k=1

zk

∣∣∣∣
]

≥(†) E[|z1|]
= E[|u1v1|] = E[|u1| |v1|] = E[|u1|]E[|v1|] (using independence)

= σuσv E[|a|]2 =
2

π
σuσv . (for a ∼ N (0, 1))

Eq (†) holds intuitively. To formally show it, we invoke Lemma 3 (Whittle’s inequality) on the convex
function ϕ(x) = |x|. Using this with Eq. (12) gives the desired result.

Proof of the upper bound. The probability density function of z = uv is given by

fz(x) =
1

πσuσv
√
1− ρ2

exp

(
ρx

σuσv(1− ρ2)

)
K0

(
|x|

σuσv(1− ρ2)

)
,

where ρ = γ/(σuσv) denotes the correlation factor. Note that |ρ| < 1 is ensured via γ < σuσv
in the lemma statement. The function K0(a|x|) is log-concave for a > 0. The term exp(bx) is
log-linear (hence log-concave). The product of log-concave functions is log-concave. Thus, fz(x) is
log-concave. Since S is a sum of r i.i.d. random variables with log-concave densities, S also has a
log-concave density. We use Lemma 5 to get that E[S |S > θ] ≤ θ + e

√
r (σ2

uσ
2
v + γ2) for θ ≥ rγ.

For θ ∈ [0, rγ], we use the non-decreasing property of E[S |S > θ] from Eq. (14). Plugging into
Eq. (12) concludes the argument.
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Lemma 9. Consider Gaussian random variables x, y ∈ Rr, such that(
x

y

)
∼ N

(
0,

(
axIr axy Ir
axy Ir ayIr

))
, with ax, ay > 0, axy ≥ 0 .

For θ ∈ R, define A(θ) := E
[
xy⊤ |x⊤y > θ

]
. It holds that A(θ) satisfies

A(θ) = f(θ) Ir ,

where f(θ) is a scalar function of θ ∈ R, such that

max

{
axy,

θ

r

}
+ e

√
axay + a2xy

r
≥ f(θ) ≥ max

{
axy,

θ

r

}
.

In the special case of axy = 0, it further holds that f(0) ≥ 2
√
axay/πr.

Proof. We first build an intuition for the quantity A(θ) ∈ Rr×r. For θ = −∞, A(θ) becomes the
unconditional expectation, which is axy Ir according to the given covariance structure. As θ increases
in R, we expect A(θ) to increase.

A(θ) is diagonal. We first show that A(θ) is a diagonal matrix. The (i, j)-th entry is A(θ)ij =
E[xiyj |Z > θ], where Z = x⊤y =

∑r
l=1 xlyl. Consider the transformation Ti : R2r → R2r that

maps (x, y) to (x′, y′) where x′l = xl for l ̸= i, x′i = −xi, and y′l = yl for l ̸= i, y′i = −yi.
First, note that Z ′ =

∑
l ̸=i xlyl + (−xi)(−yi) = Z. Hence the condition Z > θ is invariant

under the transformation Ti. Second, due to independence and the block diagonal structure of the
covariance, the overall joint density is a product of univariate Gaussians centered around zero. Due
to the symmetry of a univariate Gaussian, the overall density is also invariant under Ti. Third, the
entry xiyj becomes −xiyj under the transformation Ti. Due to this symmetry, we conclude that the
off-diagonal entries are zero.

All the diagonal entries of A(θ) are equal by symmetry. The diagonal entries are A(θ)ii =
E[xiyi |Z > θ]. Let Zi = xiyi, meaning Z =

∑r
l=1 Zl. Due to the block diagonal structure on

(x, y), each Zi is independent and identically distributed. Hence, A(θ)ii = A(θ)jj for any i, j ∈ [r].

Properties of f(θ). From the above two steps, we conclude that A(θ) = f(θ) Ir for some scalar
function f : R→ R. Using the trace trick, we see that

f(θ) · Tr(Ir) = Tr
(
E[xy⊤ |x⊤y > θ]

)
=⇒ f(θ) =

1

r
E[x⊤y |x⊤y > θ] .

Since the covariances of x, y are scaled identity, each xiyi, i ∈ [r] is identically distributed. This
distribution is akin to uv for u ∼ N (0, ax), v ∼ N (0, ay) with Cov(u, v) = axy . Hence

f(θ) = E

[
u1v1

∣∣∣∣ r∑
i=1

uivi > θ

]
,

for ui, vi i.i.d. according to the described distribution. Lemma 8 shows the required properties on
this conditional expectation, showing the desired inequalities in the statement of this lemma.

Lemma 10. Let x ∈ Rd and x̃ ∈ Rd̃ be jointly Gaussian vectors with mean zero and joint covariance
matrix Σfull which is positive definite. Consider MO,MT ∈ Rd×d̃ satisfying rank(MO) ≥ 2 and
∥MT −MO∥ < σrank(MO)(MO). For any A ∈ Rd×d̃, let YA := x⊤A x̃. For a real θ ≥ 0, define:

∆P (θ) := |P{YMT > θ} − P{YMO > θ} | , (17)

∆E(θ) :=
∥∥E[xx̃⊤I(YMT > θ)]− E[xx̃⊤I(YMO > θ)]

∥∥
2
, (18)

where the randomness is over the Gaussian (x, x̃). Then, there exist constants CP (θ,Σfull,MO) > 0
and CE(θ,Σfull,MO) > 0 that depend on θ, the covariance Σfull, and MO, such that:

∆P (θ) ≤ CP (θ,Σfull,MO) ∥MT −MO∥2 , (19)
∆E(θ) ≤ CE(θ,Σfull,MO) ∥MT −MO∥2 . (20)
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Proof. We prove the two bounds using differentiability arguments. Define ∆M := MT −MO, and
define the scalar Yt := x⊤(MO + t∆M) x̃. Note that we have overloaded notation by reusing Y ; it
shall be clear from the context that Yt for a scalar t and YA for a matrix A mean different things.

Using Lemma 4 with the given condition on ∥MT −MO∥, we conclude that rank(MO + t∆M) ≥
rank(MO) ≥ 2 for all t ∈ [0, 1]. Since (x, x̃) is jointly Gaussian, rank ≥ 2 ensures that Yt for all
t ∈ [0, 1] have a smooth and bounded density everywhere. This is because the random variable YA is
equivalent to the quadratic form on a Gaussian, (1/2)z⊤H z with

z :=

(
x

x̃

)
∼ N (0,Σfull) , H =

(
0 A

A⊤ 0

)
.

This quadratic form has a known characteristic function as below (Mathai and Provost [23, Sec 3.2])

ϕ(t) ∝ 1√
det (I − 2itΣfull H)

.

One can see that rank(H) = 2 · rank(A) and |ϕ(t)| decays as |t|−rank(H)/2 as |t| → ∞. This shows
that rank(H) ≥ 4 ensures at least a |t|−2 decay, which ensures boundedness everywhere.

(i) Probability Difference Bound (eq. (19)). Define the path h(t) := P{Yt > θ} for t ∈ [0, 1].
Then by the Mean Value Theorem, it holds that

∆P (θ) = |h(1)− h(0)| = |h′(ξ)| for some ξ ∈ (0, 1).

Since Yt has a finite and bounded density everywhere, h(t) is differentiable and its derivative is

h′(t) =
d

dt
P{Yt > θ} = E [δ(Yt − θ) · Y ′

t ] = E
[
δ(Yt − θ) · x⊤∆M x̃

]
,

where δ is the Dirac delta function. Using the Cauchy–Schwarz inequality, we can write

|h′(t)| ≤ E
[
δ(Yt − θ) · |x⊤∆M x̃|

]
≤ ∥∆M∥ · E [δ(Yt − θ) · ∥x∥ · ∥x̃∥]
= ∥∆M∥ · fYt

(θ) · E [∥x∥∥x̃∥ | Yt = θ] ,

where fYt
(θ) is the density of Yt at θ. Because Yt is non-degenerate for t ∈ [0, 1], both fYt

(θ) and
the conditional expectation are finite and bounded over t. Thus the linear dependence on ∥∆M∥ in
Eq. (19) follows, since any ξ ∈ (0, 1) satisfies the above conditions.

(ii) Expectation Difference Bound (eq. (20)). Define H(t) := E[xx̃⊤ · I{Yt > θ}]. Then by the
Mean Value Theorem, we have

∆E(θ) = ∥H(1)−H(0)∥ = ∥H ′(ξ)∥ for some ξ ∈ (0, 1).

Differentiating under the expectation gives

H ′(t) = E
[
xx̃⊤ · δ(Yt − θ) · x⊤∆M x̃

]
.

For any matrix norm, we have

∥H ′(t)∥ ≤ E[∥x∥ · ∥x̃∥ · |x⊤∆Mx̃| · δ(Yt − θ)]
≤ ∥∆M∥ · E[∥x∥2 · ∥x̃∥2 · δ(Yt − θ)]
= ∥∆M∥ · fYt(θ) · E[∥x∥2∥x̃∥2 | Yt = θ].

Again, all terms other than ∥∆M∥ are bounded for t ∈ [0, 1], yielding the desired Eq. (20).

Lemma 11. Let x1, . . . , xn ∈ Rd be n i.i.d. random vectors drawn from a Gaussian distribution
N (0,Σ), where Σ is a d× d positive definite covariance matrix, d ≥ 1, n ≥ 1. Let S be a random
subset of indices {1, . . . , n} generated by including each index j ∈ {1, . . . , n} independently with
probability p ∈ (0, 1]. Let nc = |S| denote the number of selected samples, and define the sample
covariance matrix for nc > 0 as Σ̂nc = (1/nc)

∑
i∈S xix

⊤
i . For a failure probability δ ∈ (0, 1),

assume that np > 8 log(2/δ) holds. Then, with probability at least 1− δ, both nc ≥ np/2 and the
sample covariance matrix of the selected data satisfies:∥∥∥Σ̂nc

− Σ
∥∥∥
2
≲ ∥Σ∥2

√
d+ log 1

δ

np
.
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Proof. Define kmin :=
⌈
np−

√
2np log(2/δ)

⌉
. Note that kmin ≥ np/2 due to the assumption. Let

F1 := {nc < kmin} , F2 :=

nc ≥ kmin and
∥∥∥Σ̂nc − Σ

∥∥∥
2
> ∥Σ∥2

√
d+ log 1

δ

kmin

 .

denote the failure events. A union bound over the two failure probabilities will give the desired result.
Below we bound the individual failure probabilities.

Bounding P(F1): Define ∆0 :=
√
2 log(2/δ)/(np), so that kmin = ⌈(1−∆0)np⌉. Since we

assumed np > 8 log(2/δ), ∆0 < 0.5. By a standard Chernoff bound for binomial distributions,
P(nc < (1 − ∆0)np) ≤ exp(−np∆2

0/2) = exp(− log(2/δ)) = δ/2. Since kmin ≥ (1 − ∆0)np
(due to the ceil operation), it follows that P(F1) = P(nc < kmin) ≤ P(nc ≤ (1−∆0)np) ≤ δ/2.

Bounding P(F2): Using the law of total probability, we write

P(F2) =

n∑
k=kmin

P

∥∥∥∥∥∥1k
∑

i∈S,|S|=k

xix
⊤
i − Σ

∥∥∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

kmin

∣∣∣∣∣∣ nc = k

P(nc = k)

For any k ≥ kmin, we have 1/
√
k ≤ 1/

√
kmin. Thus, for k ≥ kmin:

P

∥∥∥∥1k∑xix
⊤
i − Σ

∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

kmin

∣∣∣∣∣∣ nc = k

 ≤
P

∥∥∥∥1k∑xix
⊤
i − Σ

∥∥∥∥
2

> ∥Σ∥2

√
d+ log 1

δ

k

∣∣∣∣∣∣ nc = k

 .

And the right hand side is bounded by δ/2 owing to standard matrix concentration results. So,
P(F2) ≤

∑n
k=kmin

(δ/2)P(nc = k) ≤ δ/2.

D A proof of Corollary 1

We present a proof of Corollary 1, which follows the proof presented in Nakada et al. [24] while
fixing some typos. Before diving into the proof, we make some remarks.

First, the result stated in Corollary 1 is tighter than its counterpart Nakada et al. [24, Theorem 3.1]
by a dimension factor. This is because we use tighter concentration, as detailed in the explanation
between Eqs (28) and (29). Second, as remarked in Remark 4.1, Corollary 1 is not tight in the SNR
parameters γ, γ̃. Third, the result in Nakada et al. [24] is for a general covariance on the signal, Σz ,
and the noise, Σξ, whereas our setting is more restricted from Assumptions 1 and 2. This restriction
is required for the analysis of filtering in Theorem 1.

Fourth, the result in [24] is stated with probability 1−O(1/n), whereas we state it with probability
1− exp(−d). Due to this, Corollary 1 as stated does not have a log n factor inside the square root,
unlike Nakada et al. [24, Theorem 3.1]. Fifth, there is a small subtle difference in the setting of
[24] and ours. We use η to denote the fixed probability of clean samples in Assumption 1, whereas
Nakada et al. [24] use η to denote the fraction of clean samples in the sampled dataset, which is a
random quantity. Using nc to denote the number of clean samples, we go through the additional step
of controlling the error in |nc/n− η|, which scales as 1/

√
n, since this source of error is 1-dimensional.

Sixth, the result in Nakada et al. [24, Theorem 3.1] is stated as min{
√
r, .}. While it is true that the

sinΘ metric can be at most
√
r, the final step in the proof is the application Lemma 2, which requires

a condition that translates to n ≳ (1/η2)max{d, d̃} (1 + γ−1)(1 + γ̃−1). And so this is how we state
the result in Corollary 1, which makes the stated upper bound always smaller than

√
r.

For clarity, we write the algorithm:
Input. X ∈ Rn×d, X̃ ∈ Rn×d̃, r ∈ Z+, ρ ∈ (0,∞).
Output. G⊤G̃ ∈ Rd×d̃ (with rank = r, since G ∈ Rr×d, G̃ ∈ Rr×d̃) by minimizing Eq. (3).
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Step 1: Reduction of loss. We show that

L0(G, G̃) = −Tr
(
GSnG̃

⊤
)
, (21)

where Sn denotes the cross covariance matrix of the data, given by (Eq. (5) rewritten)

Sn =
1

n− 1

n∑
i=1

(xi − x)
(
x̃i − x̃

)⊤
∈ Rd×d̃ .

Proof. Expand the LHS as

L0(G, G̃) =
1

2n(n− 1)

 n∑
i=1

 n∑
j=1
j ̸=i

(sij − sii) +
n∑

j=1
j ̸=i

(sji − sii)




=(a) 1

n(n− 1)

 n∑
i=1

 n∑
j=1
j ̸=i

(sij − sii)




=
1

n(n− 1)

∑
i

∑
j ̸=i

sij − (n− 1)
∑
i

sii


=

1

n(n− 1)

∑
i

∑
j ̸=i

sij

− 1

n

(∑
i

sii

)
, (X)

where eq (a) holds because the overall sum over the n × n similarity matrix is the same whether
done over rows or columns.

For the RHS, we first rewrite Sn as

Sn =
1

n− 1

(
n∑

i=1

xix̃
⊤
i − nxx̃

⊤
)

=
1

n− 1

(
n∑

i=1

xix̃
⊤
i

)
− 1

n(n− 1)

(
n∑

i=1

xi

)(
n∑

i=1

x̃i

)⊤

=
1

n− 1

(∑
i

xix̃
⊤
i

)
− 1

n(n− 1)

∑
i

xix̃
⊤
i +

∑
i

∑
j ̸=i

xix̃
⊤
j


=

1

n− 1

(
1− 1

n

)(∑
i

xix̃
⊤
i

)
− 1

n(n− 1)

∑
i

∑
j ̸=i

xix̃
⊤
j


=

1

n

(∑
i

xix̃
⊤
i

)
− 1

n(n− 1)

∑
i

∑
j ̸=i

xix̃
⊤
j

 .

Using the above, we rewrite the RHS as

−Tr
(
GSnG̃

⊤
)
= −Tr

 1

n

(∑
i

Gxix̃
⊤
i G̃

⊤

)
− 1

n(n− 1)

∑
i

∑
j ̸=i

Gxix̃
⊤
j G̃

⊤


=

1

n(n− 1)

∑
i

∑
j ̸=i

Tr
(
Gxix̃

⊤
j G̃

⊤
)− 1

n

(∑
i

Tr
(
Gxix̃

⊤
i G̃

⊤
))

(Linearity of Trace)
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=
1

n(n− 1)

∑
i

∑
j ̸=i

⟨Gxi, G̃x̃j⟩

− 1

n

(∑
i

⟨Gxi, G̃x̃i⟩

)
(Cyclic nature of Trace)

=
1

n(n− 1)

∑
i

∑
j ̸=i

sij

− 1

n

(∑
i

sii

)
. (Definition of sij)

Comparing the above to eq (X) concludes the proof.

Step 2: Closed-form solution. We show that (Eq. (6) rewritten)

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (Sn)

}
.

Hence, even though the optimization problem is non-convex, there is a closed-form solution, and
no optimization analysis is needed. In particular, the right singular vectors of G, G̃ are determined
independent of the choice of ρ. This result is from Nakada et al. [24, Lemma 2.1].

Proof. Using Step 1’s result, we can write

min
G,G̃

Lρ(G, G̃) ≡ max
G,G̃

Tr
(
GSnG̃

⊤
)
− ρ

2
∥G⊤G̃∥2F . (22)

The objective can be rewritten as

Tr
(
GSnG̃

⊤
)
− ρ

2
∥G⊤G̃∥2F =

ρ

2

(∥∥∥∥Sn

ρ

∥∥∥∥2
F

−
∥∥∥∥G⊤G̃− Sn

ρ

∥∥∥∥2
F

)
.

The optimization variables appear only in the second term. Since rank
(
G⊤G̃

)
= r, by the

Eckart-Young-Minsky Theorem, the solution is given by the best rank r approximation of Sn/ρ.

Step 3: Relating error to op-norm concentration of Sn. We show the below, where Sn concentrates
to S = ηUŨ⊤.

∥SVDr (Sn)− S∥ ≤ 2 ∥Sn − S∥ . (23)

Proof. By triangle inequality, we have

∥SVDr (Sn)− S∥ ≤ ∥SVDr (Sn)− Sn∥+ ∥Sn − S∥ .

And for the first term on the right hand side, we use

∥SVDr (Sn)− Sn∥ = σr+1 (Sn)

≤(†) σr+1 (S) + ∥Sn − S∥
≤(††) ∥Sn − S∥ .

In Eq. (†), we used Lemma 1, and Eq. (††) holds because σr+1 (S) = 0, since S is rank r.

Step 4: Concentration of Sn. We show that with probability 1− exp
(
−Ω(max{d, d̃})

)
,

∥Sn − S∥ ≲

√
max{d, d̃} (1 + γ−1)(1 + γ̃−1)

n
+ Õ

(
1

n

)
. (24)

Before we prove this, we remark that the condition of n ≳ n0 (for the appropriate n0 stated in the
statement of Corollary 1) ensures that the Õ(1/n) term is at Õ(η2) whereas the first term is Õ(η).
This ensures that we are in the regime where the 1/

√
n term dominates.
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Proof. We start with the expansion of Sn,

Sn =
1

n− 1

n∑
i=1

xix̃
⊤
i −

n

n− 1
xx̃

⊤
=

1

n

n∑
i=1

xix̃
⊤
i︸ ︷︷ ︸

S
(1)
n

− 1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

xix̃
⊤
j

︸ ︷︷ ︸
S

(2)
n

.

The main term that dictates the convergence is S(1)
n . The term S

(2)
n concentrates around zero (since

samples i ̸= j, i, j ∈ [n] are independent), and the rate of convergence is Õ(1/n) due to averaging
over n2 terms, which is a higher order term. Let nc be a random variable that denotes the number of
clean data points. We expand the sum in S

(1)
n below.

nS(1)
n =

n∑
i=1

xix̃
⊤
i =

nc∑
i=1

Uziz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
J1

+

n∑
i=nc+1

Uziz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
J2

+

n∑
i=1

Uziξ̃
⊤
i︸ ︷︷ ︸

K1

+

n∑
i=1

ξiz̃
⊤
i Ũ⊤

︸ ︷︷ ︸
K2

+

n∑
i=1

ξiξ̃
⊤
i︸ ︷︷ ︸

K3

.

We control the error in each term separately. For terms J2,K1:3, we need a result like Nakada et al.
[24, Proposition C.1] in the simple case of X ⊥ X̃ . For term J1, we need it for X = X̃ .

The following two facts are going to be used multiple times. Here X,Y denote random quantities,
and all others are fixed quantities (matrices/vectors).

w.h.p. ∥X −A∥ ≤ EA, ∥Y −B∥ ≤ EB =⇒ w.h.p. ∥X + Y − (A+B)∥ ≤ EA + EB , (25)
w.h.p. ∥X −A∥ ≤ EA =⇒ w.h.p. ∥MXN −MAN∥ ≤ ∥M∥∥N∥EA . (26)

For the independent terms (J2,K1:3), we will use the below generic result. For Rdx ∋ x ∼ N (0,Σx)
and Rdy ∋ y ∼ N (0,Σy) andN i.i.d. draws from both, we have the below result from the application
of a Matrix-Bernstein result.

w.p. 1− e−t,

∥∥∥∥∥ 1

N

N∑
i=1

xiy
⊤
i

∥∥∥∥∥ ≲

√
∥Σx∥ · ∥Σy∥

N
(t+ log (dx + dy)) . (27)

For the dependent term (J1), we will use the below. Let Rdx ∋ x ∼ N (0,Σx) and N i.i.d. draws
from this. This is also known in the literature, for e.g., Bunea and Xiao [4, Theorem 2.2].

w.p. 1− e−t,

∥∥∥∥∥ 1

N

N∑
i=1

xix
⊤
i − Σx

∥∥∥∥∥ ≲ ∥Σx∥
√
t+ log (dx)

N
. (28)

Note that the above two concentration results are tighter than Nakada et al. [24, Proposition C.1] by a
factor of dimension, since the proposition has trace terms too, whereas only operator norms appear in
the above two equations. This manifests in Corollary 1 as stated being tighter than Nakada et al. [24,
Theorem 3.1] by a dimension factor inside the square root (since we avoided log n but did not incur
an additional dimension due to the failure probability of exp(−d)). Finally, since nc = Bin(n, η),
the ratio nc/n concentrates to η, with the error described by Hoeffding’s inequality as

P
(∣∣∣nc
n
− η
∣∣∣ ≥ ϵ) ≤ 2 exp

(
−2nϵ2

)
. (29)

Using these results, we bound the individual terms of deviation. We first bound the independent terms
using Eq. (27) with t := max{d, d̃}. The choice of N is given with each setting. With probability
1− exp(−Ω(max{d, d̃})), the following hold:∥∥∥∥K1

n

∥∥∥∥ ≲

√
∥Σz∥ · ∥Σξ̃∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ̃−1

n
, (N := n)
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∥∥∥∥K2

n

∥∥∥∥ ≲

√
∥Σz∥ · ∥Σξ∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ−1

n
, (N := n)

∥∥∥∥K3

n

∥∥∥∥ ≲

√
∥Σξ∥ · ∥Σξ̃∥ ·max{d, d̃}

n
=

√
max{d, d̃} γ−1 γ̃−1

n
, (N := n)

∥∥∥∥J2n
∥∥∥∥ ≲

√
1− nc

n
·

√
∥Σz∥2 ·max{d, d̃}

n
=

√
1− nc

n
·

√
max{d, d̃}

n
. (N := n− nc)

We now bound the dependent term using Eq. (28). We need some additional machinery to deal with
the random denominator, which we capture in Lemma 11. The requirement of np ≳ log(1/δ) in the
lemma translates to n ≳ max{d,d̃}/η, since we have p := η and δ := exp(−max{d, d̃}). As we will
see later, step 5 of the proof requires n ≳ max{d,d̃}/η2, hence this requirement is already satisfied.
With probability 1− exp(−Ω(max{d, d̃})), it holds:∥∥∥∥J1nc −UŨ⊤

∥∥∥∥ ≲
∥∥∥UŨ⊤

∥∥∥ ·
√

max{d, d̃}
nη

(30)

=⇒
∥∥∥∥J1n − nc

n
UŨ⊤

∥∥∥∥ ≲
nc
n

√
1

η
·

√
max{d, d̃}

n

=⇒
∥∥∥∥J1n − ηUŨ⊤

∥∥∥∥ ≲
nc
n

√
1

η
·

√
max{d, d̃}

n
+
∣∣∣nc
n
− η
∣∣∣ .

For the concentration of nc/n, we use Eq. (29) to get that with probability 1− exp(−Ω(max{d, d̃})):

∣∣∣nc
n
− η
∣∣∣ ≲

√
max{d, d̃}

n
. (31)

We now add all the error bounds. For the combined error from terms J1 and J2, we note that√
1− nc/n ≤ 1, and (nc/n√η) ≤ 2 with high probability (since nc/n concentrates around η). The

failure probability of this can be absorbed into the overall failure probability. Eq. (24) follows.

Step 5: Relating singular vector recovery error to operator norm concentration. We will apply
Lemma 2 (a Davis-Kahan type result) to relate the sinΘ metric to the operator norm. Combining
Eqs. (24), (23) and (6), we get that with probability 1− exp(−Ω(max{d, d̃})):∥∥∥∥G⊤G̃− η

ρ
UŨ⊤

∥∥∥∥ ≲
1

ρ

√max{d, d̃} (1 + γ−1)(1 + γ̃−1)

n
+ Õ

(
1

n

) . (32)

The instantiation for Lemma 2 is as follows: A = η
ρUŨ⊤, Â = G⊤G̃. Note that both A, Â are

rank-r, and σr(A) = η/ρ. We get∥∥∥sinΘ(lsv(G⊤G̃),U
)∥∥∥

F
≤

∥G⊤G̃− η
ρUŨ⊤∥F

η
ρ − ∥G⊤G̃− η

ρUŨ⊤∥2
. (33)

Now we will use three things. First, for the numerator, we use ∥M∥F ≤
√

rank(M) · ∥M∥2
for any matrix M . Second, for the denominator, we will need the additional condition of n ≳
(1/η2)max{d, d̃}(1 + γ−1)(1 + γ̃−1) to ensure the second term is at most half of the first term. This
also ensures that the Õ(1/n) does not dominate the 1/

√
n term. Third, triangle inequality with the fact

that
∥∥∥sinΘ(lsv(G⊤G̃), rsv(G)

)∥∥∥
F
= 0 gives the final result. To see this fact, write

G⊤G̃ = VG
(
ΣGU

⊤
GUG̃ΣG̃

)
V ⊤
G̃

= VGPSQ
⊤V ⊤

G̃
. (Using SVD of the middle component)
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Using the uniqueness of SVD, we get that lsv
(
G⊤G̃

)
= VGP and rsv

(
G⊤G̃

)
= VG̃Q. Since

P,Q are just orthogonal transforms, the subspace spanned by VG and VGP are the same, implying
∥ sinΘ(VG, VGP )∥F = 0 (and analogously for VG̃ and VG̃Q).

Combining Eqs. (32) and (33) gives the desired result. Since the upper bound is valid for recovery of
both U and Ũ, Corollary 1 as stated follows.

E A proof of Proposition 1

Consider the following construction for the hard problem instance (lower bound): (i) the latent
dimension r = 1, and (ii) the noise ξ̃ = 0 (i.e. γ̃ =∞), but ξ ̸= 0 (i.e. γ is finite). This means the
following proof recovers the dγ−1 part from the max{d γ−1, d̃ γ̃−1} term in Proposition 1. A similar
argument can be made for the case when ξ = 0, ξ̃ ̸= 0, leading to the max over both errors.

Owing to r = 1, this becomes a 1-dimensional vector recovery problem. Let u, ũ ∈ Rd denote the
vectors to recover. Upon seeing Sn, there is no error in estimating ũ since ξ̃ = 0, but there is error in
estimating u. To calculate this error, define un to be the top-left singular vector of Sn. Note that Sn

has only one non-zero singular value, since it fully lies on ũ in the right singular vector space (i.e.
Snv = 0 for any v ⊥ ũ). Hence

Sn = ∥Sn∥ · unũ
⊤ . (34)

Step 0. Writing down Sn.

Sn =
1

n− 1

n∑
i=1

xix̃
⊤
i −

1

n(n− 1)

(
n∑

i=1

xi

)(
n∑

i=1

x̃i

)⊤

=
1

n

n∑
i=1

xix̃
⊤
i︸ ︷︷ ︸

S
(1)
n

− 1

n(n− 1)

 n∑
i=1

n∑
j=1
j ̸=i

xix̃
⊤
j


︸ ︷︷ ︸

S
(2)
n

.

We expand S
(1)
n below, using nc to denote the random variable denoting the clean samples. Note that

Enc = ηn. Similarly one can expand S
(2)
n , however, the error of S(2)

n will behave as O(1/n) due to
averaging over n2 samples, which is a higher order term in the overall rate. That is, the behavior (in
the large n regime) will be largely dictated by S

(1)
n .

S(1)
n =

1

n

n∑
i=1

xix̃
⊤
i =

1

n

nc∑
i=1

(ziu+ ξi)(ziũ)
⊤ +

1

n

n∑
i=nc+1

(ziu+ ξi)(z̃iũ)
⊤ .

As for the expectations, they are given by:

E
[
S(1)
n

]
=

1

n
E

[
nc∑
i=1

z2i

]
uũ⊤ =

1

n
E [nc]uũ

⊤ = η uũ⊤ ,

E
[
S(2)
n

]
= 0 (since all random quantities are zero-mean and independent) .

Step 1. Decompose sin θ metric. Our goal is a high probability lower bound on |sin θ(un,u)|,
where un is the random quantity. Note that

|sin θ(un,u)| =
∥∥(Id − uu⊤)un

∥∥ . (35)

To see this, note that LHS =

√
1− (u⊤un)

2. Squaring both sides and expanding suffices.

Step 2. Compute the metric for this case. Using Eq. (34) in Eq. (35), we can write

|sin θ(un,u)| =
∥∥(Id − uu⊤)Snũ

∥∥
∥Sn∥

. (36)
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Step 3. Computing the high probability bound. We will give high probability lower bound on the
numerator and denominator of Eq. (36) separately.

Step 3.1. For the numerator: We first expand S
(1)
n as

S(1)
n ũ =

1

n

nc∑
i=1

(z2i u+ ziξi) +
1

n

n∑
i=nc+1

(ziz̃iu+ z̃iξi)

=⇒
(
Id − uu⊤)S(1)

n ũ =
(
Id − uu⊤)( 1

n

nc∑
i=1

ziξi +
1

n

n∑
i=nc+1

z̃iξi

)

d
=
(
Id − uu⊤)( 1

n

n∑
i=1

ziξi

)
.

Similarly, for S(2)
n we have

(
Id − uu⊤)S(2)

n ũ =
(
Id − uu⊤)

 1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

z̃jξi


d
=
(
Id − uu⊤)

 1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

zjξi

 .

Combining the two, we get(
Id − uu⊤)Snũ =

(
Id − uu⊤)( 1

n− 1

n∑
i=1

(zi − z)
(
ξi − ξ

))
︸ ︷︷ ︸

wn

.

Now we want to compute a high confidence lower bound on the norm of the above. We first relate∥∥(Id − uu⊤)wn

∥∥ to ∥wn∥. This is because wn is spherically symmetric, and
(
Id − uu⊤) is a

rank-(d− 1) matrix with all non-zero eigenvalues equal to one. We get∥∥(Id − uu⊤)wn

∥∥ = ∥wn∥ ·
√
1− (u⊤ŵn)

2
.

Now due to wn being spherically symmetric, ∥wn∥ (the magnitude) and ŵn (the direction) are
independent random quantities. Further, ŵn is uniformly distributed on Sd−1.

For ∥wn∥, we will use sharp Gaussian concentration. The intuition is that ∥wn∥ cannot be too
smaller than

√
d γ−1

/n, for large d. Concretely, it holds that

w.p. 1− δ,

∥∥∥∥∥ 1

n− 1

n∑
i=1

(zi − z̄)
(
ξi − ξ̄

)∥∥∥∥∥ ≥
√
γ−1

n
·

(
√
d−

√
2 ln

1

δ
−
√
2

)
. (37)

An appropriate choice of δ = exp(−d/4), which results in

w.p. 1− exp (−d/4) , ∥wn∥ ≳
√
d γ−1

n
. (38)

For the second term (with the direction ŵn), this will be at least Ω(1) with high probability, since
u⊤ŵn will be large only with very small probability when then dimension d is big enough. Concretely,
it holds that

w.p. 1− 2 exp (−d/4) ,

√
1− (u⊤ŵn)

2 ≥
√

1

2
. (39)

Overall, for the numerator, we conclude that

w.p. 1− c exp (−d/4) , Numerator ≳

√
d γ−1

n
. (40)
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Step 3.2. For the denominator: We need a high confidence upper bound on ∥Sn∥. We can use
Matrix-Bernstein type analysis. Note that E[Sn] = η uũ⊤. And the deviation is dominated by

Sn − ESn ≈
1

n

∑
i∈[n]

ziξiũ
⊤ +

1

n

∑
i∈[n(1−η)]

ziz̃iuũ
⊤ .

Again, the dominating term is the first one. This means that we only have to show high confidence
upper bound on ∥(1/n)

∑
i ziξi∥, and hence the problem has reduced to vector concentration instead

of matrix concentration. Analogous to Eq. (37), one can show

w.p. 1− δ,

∥∥∥∥∥ 1n
n∑

i=1

ziξi

∥∥∥∥∥ ≤
√
γ−1

n
·

(
√
d+

√
2 ln

1

δ

)
. (41)

Overall, using the triangle inequality, we have

w.p. 1− exp(−d/4), ∥Sn∥ ≤ ∥ESn∥︸ ︷︷ ︸
=η

+2

√
d γ−1

n
. (42)

Step 4. Combined result: From 3.1 and 3.2, for n ≥ 4d γ−1
/η2 (so the high-conf UB for ∥Sn∥ is 2η),

w.p. 1−O (exp(−d/4)) , |sin θ(un,u)| ≳
1

η

√
d γ−1

n
. (43)

F Characterizing the score distribution of the oracle

The Bernoulli variable c ∈ {0, 1} captures the status of clean/corrupted nature of a sample. We
first characterize the score distribution in both cases separately, and then create the relevant mixture
distribution using the proportions η, 1− η for clean, corrupted samples respectively.

Before the calculations, we state some Lemmas that will be used.
Lemma 12. Let X be distributed as N (0,Ω). For a fixed matrix A, it holds:

E[X⊤AX] = Tr (AΩ) ,

V[X⊤AX] =
1

2
Tr

((
A+A⊤)Ω (A+A⊤)Ω) .

Lemma 13. Let X be distributed as N (0,Ω), and X̃ be distributed as N (0, Ω̃). Let X, X̃ be
independent of each other. For a fixed matrix A, it holds:

E[X⊤AX̃] = 0 ,

V[X⊤AX̃] = Tr
(
ΩAΩ̃A⊤

)
.

Consider a block matrix X given as below

X =

[
A B

C D

]
.

Lemma 14. For a block matrix X given as above, it holds that

Tr(X) = Tr(A) + Tr(D) .

Lemma 15. For a block matrix X given as above, with A,D are square matrices, it holds that

X2 =

[
A2 +BC AB+BD

CA+DC CB+D2

]
.

Case 0: Corrupted samples (c = 0 case). Let Z0
d
= {S(x, x̃;UŨ⊤) | c = 0}, with distribution D0.

This (scalar) random variable is equivalent to X⊤UŨ⊤X̃ , where X, X̃ are independent and follow
X ∼ N

(
0,UU⊤ + γ−1 Id

)
, X̃ ∼ N

(
0, ŨŨ⊤ + γ̃−1 Id̃

)
. This is in-line with Remark A.1. We

invoke Lemma 13 to get the first two moments.
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1. Mean: 0.

2. Variance: r (1 + γ−1)(1 + γ̃−1).

Variance = Tr

((
UU⊤ + γ−1 Id

)
UŨ⊤

(
ŨŨ⊤ + γ̃−1 Id̃

)
ŨU⊤

)
= Tr

(
U⊤ (UU⊤ + γ−1 Id

)
U Ũ⊤

(
ŨŨ⊤ + γ̃−1 Id̃

)
Ũ

)
= Tr

((
Ir + γ−1Ir

) (
Ir + γ̃−1Ir

))
.

3. Tails: Since X, X̃ are independent, the tails are described by the quadratic form on two
independent Gaussians. This random variable is (i) symmetric, and (ii) uni-modal, and the
tails decay exponentially.

Case 1: Clean samples (c = 1 case). Let Z1
d
= {S(x, x̃;UŨ⊤) | c = 1}, with distribution D1.

This random variable is equivalent to X⊤BX , where X = [x, x̃]⊤ follows X ∼ N (0,Σ1) (refer
to Remark A.1); and B is a block matrix given as below. We invoke Lemma 12 to get the first two
moments.

B =

[
0d×d UŨ⊤

0d̃×d 0d̃×d̃

]
(d+d̃)×(d+d̃)

1. Mean: r.

Mean = Tr(BΣ1)

= Tr(

[
UU⊤ .

. 0

]
)

= Tr(UU⊤) = Tr(Ir) = r . (Using Lemma 14)

2. Variance: r + r (1 + γ−1)(1 + γ̃−1).

Variance =
1

2
Tr

((
B+B⊤)Σ1

(
B+B⊤)Σ1

)

=
1

2
Tr

( UU⊤

T1︷ ︸︸ ︷
UŨ⊤ + γ̃−1UŨ⊤

ŨU⊤ + γ−1ŨU⊤︸ ︷︷ ︸
T2

ŨŨ⊤


2)

=
1

2
Tr

([
UU⊤ +T1T2 .

. T2T1 + ŨŨ⊤

])
(Using Lemma 15)

= Tr(Ir) + Tr(T1T2) . (Using Lemma 14)

3. Tails: Since X, X̃ are dependent, the tails are described by the quadratic form on two
dependent Gaussians. The tails decay exponentially, and are described by the Hanson-
Wright inequality. A similar calculation as the variance provides the exact parameters, and
the inequality becomes:

P (|Z1 − EZ1| > t) ≲ exp

(
− cmin

{
2 t2

r (1 + (1 + γ−1)(1 + γ̃−1))
,

√
2 t√

r (1 + (1 + γ−1)(1 + γ̃−1))

})
. (44)
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G A proof of Theorem 1

In this section, we present a proof of Theorem 1. We first define one additional piece of notation. For
U, let U⊥ ∈ Rd×(d−r) denote the completion of the orthonormal basis. That is, the matrix Ufull =

[U U⊥] ∈ Rd×d is such that U⊤
fullUfull = Id = UfullU

⊤
full. Similarly define Ũ⊥ ∈ Rd̃×(d̃−r).

Recall that we have n samples of the form {(xi, x̃i)}ni=1, i.i.d from the mixture distribution (with
η, 1 − η ratios for clean, corrupted respectively). Let nT samples be used to train the teacher, and
let N = nT − n samples be used to train the student. Let ρT, ρ be the respective regularization
parameters, and let (GT, G̃T), (G, G̃) denote the respective embedding matrices at the solution of
Eq. (3). Consider a general threshold θ ∈ R that is used to filter the dataset based on the teacher
scores. Note that we have ensured that θ is independent of the N samples to be filtered, since it
depends only on the nT samples used for teacher training. For the teacher, from Corollary 1, we know
that with probability 1− exp(−Ω(max{d, d̃})):∥∥∥∥G⊤

T G̃T −
η

ρT
UŨ⊤

∥∥∥∥ ≤ 1

ρT

√max{d, d̃} (1 + γ−1) (1 + γ̃−1)

nT
+ Õ

(
1

nT

) . (45)

Here (GT, G̃T) are random quantities that depend on the nT samples used. For the rest of the analysis,
we will assume them to be fixed (since they don’t depend on the randomness of the remaining N
samples). Finally, we will give a high probability guarantee that will use the confidence bound in
Eq. (45) as one of the terms in the combined error bound, with an appropriate choice of nT and ρT.
We now study the student with data filtering. It is useful to define

MT := G⊤
T G̃T , MO := (η/ρT)UŨ⊤ . (46)

These are the matrices used for scoring the samples by the teacher and its oracle version, respectively.
Note that rank(MO) = r since both U, Ũ are rank-r matrices. From the teacher guarantee in Eq. (45),
it holds that MT →MO as nT →∞. Recall that the scoring function is S(x, x̃;M) = x⊤M x̃, and
a sample (x, x̃) is selected/retained iff S(x, x̃;MT) > θ.

We define certain quantities that will be central to the analysis. Akin to Eq. (5), we define the
empirical cross-covariance matrix of the data after selection in Eq. (47). Let nsel,T(θ) be the number
of samples selected, which is a random variable with E[nsel,T(θ)] = N PT(θ). Let Isel,T(θ) ⊆ [N ]
denote the indices of the points selected. That is, i ∈ Isel,T(θ) ⇐⇒ S(xi, x̃i;MT) > θ. Similarly,
define nsel,O(θ) and Isel,O(θ). Construct the empirical cross-covariance matrix for the filtered dataset:

SN,T(θ) :=
1

nsel,T(θ)− 1

∑
i∈Isel,T(θ)

(xi − x(θ))
(
x̃i − x̃(θ)

)⊤
︸ ︷︷ ︸

QN,T(θ)

. (47)

To analyze its asymptotic limit, we define S(θ) as the limit of the cross-covariance, for both the
teacher and the oracle. Similarly, let P (θ) denote the probability mass of data that is retained (also in
the limit of n→∞), for both the teacher and the oracle. These are described in Eqs (48), (49).

ST(θ) = E
[
xx̃⊤

∣∣S(x, x̃;MT) > θ
]
∈ Rd×d̃ , PT(θ) = P {S(x, x̃;MT) > θ} ; (48)

SO(θ) = E
[
xx̃⊤

∣∣S(x, x̃;MO) > θ
]
∈ Rd×d̃ , PO(θ) = P {S(x, x̃;MO) > θ} . (49)

Note that ST(θ),SO(θ) are the limits of SN,T(θ),SN,O(θ) as N → ∞. The threshold θ → −∞
recovers the no filtering case, i.e. both SN,T(θ), SN,O(θ) approach SN . We will now follow proof
steps similar to Section D. Steps 1 and 2 hold for a general cross covariance matrix, and can be used
directly. Steps 3 and 4 are concerned with the limit of Sn(θ) as n → ∞, and how it concentrates
around the limit. These steps will change significantly. Finally, we will be able to reuse Lemma 2 for
step 5. We detail each of these proof steps below.

Step 1. Following the exact same proof steps as in Section D, the unregularized contrastive loss
objective on the nsel,T(θ) samples is equivalent to

L0(G, G̃) = −Tr
(
GSN,T(θ) G̃

⊤
)
. (50)
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Step 2. Again, following the exact same proof steps as in Section D, the solution to the ρ-regularized
minimization problem is given by

argmin
G,G̃

Lρ

(
G, G̃

)
=

{(
G, G̃

) ∣∣∣ G⊤G̃ =
1

ρ
SVDr (SN,T(θ))

}
. (51)

Step 3. This step changes from Section D. We use the following:

∥SVDr (SN,T(θ))− SO(θ)∥ ≤ σr+1 (SO(θ)) + 2 ∥SN,T(θ)− SO(θ)∥ . (52)

By triangle inequality, we have

∥SVDr (SN,T(θ))− SO(θ)∥ ≤ ∥SVDr (SN,T(θ))− SN,T(θ)∥+ ∥SN,T(θ)− SO(θ)∥ .

And for the first term on the right hand side, we use

∥SVDr (SN,T(θ))− SN,T(θ)∥ = σr+1 (SN,T(θ))

≤(†) σr+1 (SO(θ)) + ∥SN,T(θ)− SO(θ)∥ ,

where we used Lemma 1 in Eq (†).

Step 3’. Analysis of SO(θ): The main difference in Eq. (23) and Eq. (52) is the term σr+1(SO(θ)).
This additional step of the proof analyzes the properties of SO(θ). In particular, we will show that
SO(θ) is rank-r, and hence σr+1(SO(θ)) = 0. Additionally, we establish upper and lower bounds on
the singular values of SO(θ) that will be used later in the proof. From Eq. (49), we simplify to write

SO(θ) = E
[
xx̃⊤

∣∣x⊤UŨ⊤x̃ >
θρT

η

]
,

where (x, x̃) is drawn from the mixture model: η · N (0,Σ1) + (1 − η) · N (0,Σ0). To simplify
notation, define θ̈ := (θρT)/η. From the conditioning event, it seems that U⊤x and Ũ⊤x̃ is a good
‘basis’ for a decomposition. Pre-multiply and post-multiply to recover this basis for the xx̃⊤ term
inside the expectation as

SO(θ) = UfullU
⊤
full︸ ︷︷ ︸

=Id

E
[
xx̃⊤

∣∣x⊤UŨ⊤x̃ > θ̈
]
ŨfullŨ

⊤
full︸ ︷︷ ︸

=I
d̃

= Ufull E




r×r︷ ︸︸ ︷
(U⊤x)(Ũ⊤x̃)⊤

r×(d̃−r)︷ ︸︸ ︷
(U⊤x)(Ũ⊤

⊥x̃)
⊤

(U⊤
⊥x)(Ũ

⊤x̃)⊤︸ ︷︷ ︸
(d−r)×r

(U⊤
⊥x)(Ũ

⊤
⊥x̃)

⊤︸ ︷︷ ︸
(d−r)×(d̃−r)


∣∣∣∣∣ (U⊤x)⊤(Ũ⊤x̃) > θ̈

 Ũ⊤
full .

Call the top left entry in this decomposition to be the ‘dominant’, and the other three as ‘non-
dominant’. We will show the non-dominant entries will be zero. The following reparametrization
makes things cleaner.

U⊤x = z +U⊤ξ︸︷︷︸
ε

, U⊤
⊥x = U⊤

⊥ξ︸︷︷︸
ε⊥

; Ũ⊤x̃ = z̃ + Ũ⊤ξ̃︸︷︷︸
ε̃

, Ũ⊤
⊥x̃ = Ũ⊤

⊥ξ̃︸︷︷︸
ε̃⊥

.

Let’s further simplify the expressions with another transformation. The subscripts S,N denote the
signal (containing some noise) and noise part.

xS︸︷︷︸
∈Rr

← z + ε, xN︸︷︷︸
∈Rd−r

← ε⊥ ; x̃S︸︷︷︸
∈Rr

← z̃ + ε̃, x̃N︸︷︷︸
∈Rd̃−r

← ε̃⊥ .

Due to the diagonal structure of Σξ,Σξ̃, we infer the distributions as

ε ∼ N
(
0,

1

γ
Ir

)
, ε⊥ ∼ N

(
0,

1

γ
I(d−r)

)
; ε̃ ∼ N

(
0,

1

γ̃
Ir

)
, ε̃⊥ ∼ N

(
0,

1

γ̃
I(d̃−r)

)
.
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And crucially, due to the diagonal structure of Σξ,Σξ̃, we infer that {ε, ε⊥, ε̃, ε̃⊥} are all mutually
independent, and independent of z, z̃. This entails that the transformed vector is Gaussian with mean
zero and covariance given as below.

xS
xN
x̃S
x̃N

 ∼ N
0,


(1 + 1/γ) Ir 0 0 (Ir) 0

. (1/γ) I(d−r) 0 0

. (.) . (1 + 1/γ̃) Ir 0

. . . (1/γ̃) I(d̃−r)


 . (53)

The above is for the corrupted case (w.p. 1− η). In the clean case (w.p. η), the blue entries change to
Ir due to the relation of z = z̃. Our E[.] notation includes the expectation over this randomness along
with the randomness of x, x̃. Denote by Ω0 and Ω1 the covariances of the signal part, i.e. (xS , x̃S) in
these two cases:

Ω0 :=

(
(1 + 1/γ) Ir 0

0 (1 + 1/γ̃) Ir

)
, Ω1 :=

(
(1 + 1/γ) Ir Ir

Ir (1 + 1/γ̃) Ir

)
. (54)

Overall, under the transformation, the expectation simplifies to

SO(θ) = Ufull E

[(
xS x̃

⊤
S xS x̃

⊤
N

xN x̃
⊤
S xN x̃

⊤
N

) ∣∣∣∣∣x⊤S x̃S > θ̈

]
Ũ⊤

full . (55)

Due to xN , x̃N being independent of all other entries via Eq. (53), and since the conditioning event
in Eq. (55) only involves xS , x̃S , we conclude that the non-dominant entries in the expectation will
be zero. Hence we are left with the simplified rank-r form for the d× d̃ matrix:

SO(θ) = UE
[
xS x̃

⊤
S |x⊤S x̃S > θ̈

]
Ũ⊤ = U

(
η · E(xS ,x̃S)∼N (0,Ω1)

[
xS x̃

⊤
S |x⊤S x̃S > θ̈

]
+ (1− η)·E(xS ,x̃S)∼N (0,Ω0)

[
xS x̃

⊤
S |x⊤S x̃S > θ̈

])
Ũ⊤ .

We will now use Lemma 9 to simplify both the terms above. Note that Ω1,Ω0 satisfy the lemma’s
requirement of the block diagonal covariance.

SO(θ) = U
(
η f1(θ) Ir + (1− η) f0(θ) Ir

)
Ũ⊤ =

(
η f1(θ) + (1− η) f0(θ)

)
UŨ⊤ , (56)

where the following conditions hold on f1, f0 (converting back from θ̈ to θ):

max{1, (θρT)/η r}+ e

√
((1+γ−1)(1+γ̃−1)+1)/r ≥ f1(θ) ≥ max{1, (θρT)/η r} ,

max{0, (θρT)/η r}+ e

√
((1+γ−1)(1+γ̃−1))/r ≥ f0(θ) ≥ max{0, (θρT)/η r} .

Using the above equations, and the special case of θ = 0 in Lemma 9, we conclude:

f1(0) ≥ 1, f0(0) ≥
2

πr
·
√
(1 + γ−1)(1 + γ̃−1) , (57)

f1

(
rη

2ρT

)
≥ 1, f0

(
rη

2ρT

)
≥ 1

2
. (58)

We will use these inequalities in step 5. In particular, since ∥SO(θ)∥ = η f1(θ) + (1− η) f0(θ),

for θ ∈ [0, rη/2ρT] , ∥SO(θ)∥ ≥
2

πr
·
√
(1 + γ−1)(1 + γ̃−1) . (59)

Step 4. Concentration of SN,T(θ) to SO(θ): We break this into subparts as below.

Step 4.1. Concentration of SN,T(θ) to ST(θ): Using the below substeps, we show that with probability
1− exp(−Ω(max{d, d̃})):

∥SN,T(θ)− ST(θ)∥ ≤

√
max{d, d̃} poly(γ−1, γ̃−1)

N PT(θ)
+ Õ

(
1

N PT(θ)

)
. (60)
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Step 4.1.1. Replacing the random denominator: Recall nsel,T(θ) =
∑N

i=1 I{S(xi, x̃i;MT) > θ} is
the (random) number of selected samples. Since the teacher’s score matrix MT and threshold θ are
fixed independently of these N samples, the indicators are i.i.d. Bernoulli random variables with
mean PT(θ). By a standard Chernoff bound for sums of independent Bernoulli variables, nsel,T(θ)
concentrates sharply around its expectation: for any 0 < δ < 1,

P
{
|nsel,T(θ)−NPT(θ)| ≥ δ NPT(θ)

}
≤ 2 exp

(
− Ω(δ2NPT(θ))

)
.

In particular, choosing δ =
(√

max{d,d̃}/N PT(θ)

)
, we conclude that

w.p. 1− exp(−Ω(max{d, d̃})) , nsel,T(θ) =

1±

√
max{d, d̃}
N PT(θ)

 NPT(θ) . (61)

On this high-probability event, the following holds (recall the definition of QN,T(θ) from Eq. (47)).∥∥∥ 1

nsel,T(θ)− 1
QN,T(θ)−

1

NPT(θ)− 1
QN,T(θ)

∥∥∥ =
|nsel,T(θ)−N PT(θ)|

(nsel,T(θ)− 1) (N PT(θ)− 1)
∥QN,T(θ)∥

≲(†) |nsel,T(θ)−N PT(θ)|
(N PT(θ)− 1)2

∥QN,T(θ)∥

≲(††)

√
max{d,d̃}/N PT(θ) ·N PT(θ)

(N PT(θ)− 1)2
∥QN,T(θ)∥

≲

√
max{d, d̃}
NPT(θ)

·
∥∥∥∥QN,T(θ)

N PT(θ)

∥∥∥∥
≲(†††)

√
max{d, d̃}
NPT(θ)

.

In (†), we used Eq. (61), which implies that 0.5N PT(θ) ≤ nsel,T(θ) ≤ 1.5N PT(θ) whenNPT(θ) ≳
max{d, d̃} (which is indeed true, since in Step 5 we set N = n/2 & n ≳ max{d, d̃} is assumed in
Theorem 1, and in Step 4.3 we ensure that PT(θ) ≳ 1). In (††), we again used Eq. (61) directly. In
(†††), we used that ∥QN,T(θ)∥ grows on the order of NPT(θ) (since it is the sum of nsel,T(θ) i.i.d.
outer products each with bounded expectation). Thus, overall, replacing the random nsel,T(θ) by

NPT(θ) in the normalization incurs an error of order
√

max{d,d̃}/NPT(θ) with high probability. In the
subsequent analysis, we may therefore work with the fixed denominator NPT(θ) for convenience.

Step 4.1.2. The centered vs un-centered version: We have that

1

N PT(θ)− 1

∑
i∈Isel,T(θ)

(xi − x(θ))
(
x̃i − x̃(θ)

)⊤
=

1

N PT(θ)

∑
i∈Isel,T(θ)

xix̃
⊤
i −

1

N PT(θ) (N PT(θ)− 1)

∑
i∈Isel,T(θ)

∑
j∈Isel,T(θ)

j ̸=i

xix̃
⊤
j .

The second term on the right hand side concentrates to E
[
xỹ⊤ | x⊤MT x̃ > θ, y⊤MT ỹ > θ

]
, where

(x, x̃) and (y, ỹ) are i.i.d. from the joint mixture distribution. This expectation is zero, which we
formally characterize in Lemmas 6 and 7. The rate of concentration is Õ

(
1

N PT(θ)

)
, due to averaging

over (N PT(θ))
2 terms, and is hence a higher order term.

Step 4.1.3. Analysis of the fixed-denominator un-centered version: The selected samples satisfy the
property of being i.i.d from the conditional law of the selection rule. In particular, for each i ∈ Isel,T(θ)
the matrix Xi := xix̃

⊤
i has expectation E[Xi] = ST(θ) and these matrices {Xi : i ∈ Isel,T(θ)} are

independent. Using a Matrix-Bernstein concentration result (Eqs. (27) and (28)), it follows that with
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probability 1− exp(−Ω(max{d, d̃})):∥∥∥∥∥∥ 1

N PT(θ)

∑
i∈Isel,T(θ)

xix̃
⊤
i − ST(θ)

∥∥∥∥∥∥ ≲

√
max{d, d̃}poly(γ−1, γ̃−1)

N PT(θ)
.

Step 4.2. Error between teacher and oracle: We show that ∥ST(θ)− SO(θ)∥ scales proportionally
to ∥MT −MO∥, and the latter is precisely bounded by Eq. (45). To show this, we first simplify the
conditional expectation in SO(θ),ST(θ), define EO(θ), ET(θ) as:

EO(θ) := E
[
xx̃⊤ I(x⊤MOx̃ > θ)

]
⇐⇒ SO(θ) = EO(θ)/PO(θ) ; (62)

ET(θ) := E
[
xx̃⊤ I(x⊤MTx̃ > θ)

]
⇐⇒ ST(θ) = ET(θ)/PT(θ) . (63)

where I(.) denotes the indicator. Let ∆E(θ) := ET(θ)−EO(θ) and ∆P (θ) := PT(θ)−PO(θ). Also
define ∆I(θ;x, x̃) := I(x⊤MTx̃ > θ)− I(x⊤MOx̃ > θ). Then, we write

ST(θ)− SO(θ) =
ET(θ)

PT(θ)
− EO(θ)

PO(θ)

=
(EO(θ) + ∆E(θ))PO(θ)−EO(θ) (PO(θ) + ∆P (θ))

PT(θ)PO(θ)
=

∆E(θ)

PT(θ)
− ∆P (θ)

PT(θ)
· EO(θ)

PO(θ)︸ ︷︷ ︸
SO(θ)

.

=⇒ ∥ST(θ)− SO(θ)∥2 ≤
1

PT(θ)
(∥∆E(θ)∥2 + |∆P (θ)| · ∥SO(θ)∥2) .

We will now bound ∥∆E(θ)∥2 and |∆P (θ)| in terms of ∥MT −MO∥2. Recall that (x, x̃) follow the
mixture distribution (Remark A.1). Decomposing the expectations and probabilities into respective
mixtures, we get

∆E(θ) = η E(x,x̃)∼N (0,Σ1)

[
xx̃⊤∆I(θ;x, x̃)

]
+ (1− η)E(x,x̃)∼N (0,Σ0)

[
xx̃⊤∆I(θ;x, x̃)

]
,

∆P (θ) = η E(x,x̃)∼N (0,Σ1) [ ∆I(θ;x, x̃) ] + (1− η)E(x,x̃)∼N (0,Σ0) [ ∆I(θ;x, x̃) ] .
From the above, since both η, 1− η are smaller than 1, we get that

∥∆E(θ)∥2 ≤ ∥∆E1(θ)∥2 + ∥∆E0(θ)∥2 , |∆P (θ)| ≤ |∆P1(θ)|+ |∆P0(θ)| ,
where the subscripts 1, 0 denote the fully clean, corrupted cases respectively (i.e. η = 1, η = 0 respec-
tively). Lemma 10 captures the general form of this, and we invoke this lemma on both the clean data
(with covariance Σ1) and the noisy data (with covariance Σ0). Note that rank(MO) ≥ 2 is satisfied
since rank(MO) = r and we assumed r ≥ 2 in the statement of Theorem 1. Further, the condition
of ∥MT −MO∥ < σr(MO) is satisfied due to n ≳ (1/η2) max{d, d̃}

(
1 + γ−1

) (
1 + γ̃−1

)
, since

MO has r non-zero singular values all equal to η/ρT and Eq. (45) with the condition on n implies
that ∥MT −MO∥ ≲ η/ρT (note that implicitly the condition also ensures that the contribution of the
Õ(1/n) term is bounded). The appropriate constants inside the ≳ notation will ensure the required
condition. Overall, we get

∥ST(θ)− SO(θ)∥2 ≲
1 + ∥SO(θ)∥2

PT(θ)
∥MT −MO∥2 . (64)

Step 4.3. Analysis of PT(θ) and PO(θ): In this part, we show that both PT(θ) and PO(θ) can be
lower bounded by an absolute constant (say, 1/10) for the relevant regime of filtering threshold θ.

Argument for PT(θ): Using Step 4.2, we have PT(θ) ≥ PO(θ)− |∆P (θ)|, and the deviation is small
since |∆P (θ)| ≲ ∥MT −MO∥. Using Eq. (45), we note that a large ρT can make ∥MT −MO∥
arbitrarily small. Indeed in Step 5, we will set ρT to a large value. Since the deviation is small, we can
use, for instance, PT(θ) ≥ (1/2)PO(θ). Hence, arguing PO(θ) is large suffices, which we do below.

Argument for PO(θ): Next, we show that PO(θ) is ‘large enough’ for the choices of θ ∈ {0, rη/2ρT},
and we will use these fixed points in Step 5. Recall from Section 6.2, due to the mixture distribution,
the below holds. Here we have accounted for the scaling factor in the definition of MO.

PO(θ) = η P1

(
θρT

η

)
+ (1− η)P0

(
θρT

η

)
. (65)
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In Step 5, we will consider the fixed points θ ∈ {0, rη/2ρT}, and so we need lower bounds on
P0(0), P0(r/2) and P1(0), P1(r/2). We state them below:

P0(0) ≥ 0.5 , P1(0) ≥ c , (66)
P0(r/2) ≥ 0 , P1(r/2) ≥ c , (67)

where c > 0 is an absolute constant. For P0(.), we have lower bounds 0.5 (due to symmetry) and 0
(trivially). For P1(.), we simply invoke the observation that both {0, r/2} are below the mean of the
distribution (refer to Figure 2a), and so an appropriate constant c exists satisfying the above. Overall,
we conclude that PO(0) = Ω(1) and PO(rη/2ρT) = Ω(η).

Step 5. Final guarantee via application of Lemma 2: Using Eqs. (60) and (64) in Eq. (52) with
Eq. (51), and combining the guarantee from Eq. (45), with probability 1− exp(−Ω(max{d, d̃})):∥∥∥∥G⊤G̃− 1

ρ
SO(θ)

∥∥∥∥ ≲
1

ρ

(√
max{d, d̃}poly(γ−1, γ̃−1)

N PT(θ)
+ Õ

(
1

N PT(θ)

))

+
1

ρ ρT

(
1 + ∥SO(θ)∥2

PT(θ)

)(√
max{d, d̃} (1 + γ−1) (1 + γ̃−1)

nT
+ Õ

(
1

nT

))
.

We set nT = n/2, and so N = n − nT = n/2 (as in Algorithm 1). For ρT, we note that it can be
chosen arbitrarily large to reduce the second term in the error above. This is because any ρT > 0 will
allow the teacher parameters GT, G̃T to recover the subspace spanned by U, Ũ respectively, but a
large choice of ρT will make the operator norm small. This does not cause the filtering to change,
since the threshold θ changes multiplicatively with ρT (effectively scaling the picture in Figure 2).

The condition of n ≳ 1
η2 max{d, d̃}(1 + γ−1)(1 + γ̃−1) is inherited from Corollary 1 (to be able to

use eq (45)). The additional condition on n, from the application of Lemma 2 to the above equation
(similar to Eq. (33)), results in a larger factor than 1/η2, hence is already satisfied.

Now we apply Lemma 2 on the above equation, and follow the argument similar to step 5 in Section D.
An additional factor of

√
r appears due to the norm being the chordal distance (frobenius norm).

Using Eq. (56) and Eq. (65), we get that with probability 1 − exp(−Ω(max{d, d̃})), the error
ERR

(
G, G̃

)
is upper bounded (up to constants) by:

1

[ηf1(θ) + (1− η)f0(θ)]︸ ︷︷ ︸
from ∥SO(θ)∥

√
η P1 (θρT/η) + (1− η)P0 (θρT/η)︸ ︷︷ ︸

from
√

PT(θ)

√
r max{d, d̃} poly(γ−1, γ̃−1)

n
.

Finally, we plug in the values θ ∈ {0, ηr/2ρT} to recover the terms T0, T0.5 as stated in Theorem 1.
Using Eq. (57) and (66), the scaling term of the error above becomes

1

[η + (1− η) (2/πr)] ·
√
η c+ (1− η) (1/2)

≲ r for any η ∈ (0, 1] .

Using Eq. (58) and (67), the scaling term of the error above becomes

1

[η + (1− η) (1/2)] · √η c
≲

1
√
η
.

The above describes both regimes of behavior, and why an extra factor of r appears in the term T0,
compared to the term T0.5, in Theorem 1. This concludes the argument.

H Discussion on robustness of the choice of filtering threshold

We note that the error achieved by teacher-based filtering can be fairly robust to the choice of θ,
the filtering threshold. Our synthetic experiment in Figure 3a was conducted with a fixed, untuned
threshold of θ = 0. Further, we conduct an experiment measuring the sensitivity of the final error
with respect to the choice of θ. In the setting of Figure 3a with n = 10000 samples, we fix η = 0.3
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(in-line with the empirically observed clean fraction in CLIP data [11]) and (implicitly) vary the
filtering threshold θ of the teacher-based filtering (by explicitly varying the fraction of data retained
in the filtering step). The below table shows that the error of teacher-based filtering is relatively flat
for values of θ in the vicinity of the optimal threshold θ∗. An analogous experiment on real data [11,
Figure 2] makes a similar observation.

Fraction of data retained Mean error (±1σ) (×10−4)

1% 28.76± 4.00

10% 11.79± 1.20

20% 9.85± 1.39

30% 9.08± 1.15

40% 8.97± 1.09

50% 8.71± 1.05

100% 16.51± 2.03

Table 1: Mean error vs. fraction of data retained.

I Discussion on the potential of robust statistics for the analysis of filtering

An initial instinct based on Figure 2 is to use ideas from robust statistics. As discussed in Remark 6.2,
we can expectD0 andD1 to be well-separated, which means there will exist some θ ∈ R (a reasonable
guess is θ ≈ r/2) such that the selected data is mostly clean. After filtering, the picture resembles
the robust statistics setting: an α corruption on the clean distribution for some small α. This is a
reasonable approach overall, but has two shortcomings. First, this approach will not achieve zero
error as n→∞. We are shooting for f(η) · 1/√n which is better than 1/

√
n + g(η), since the latter

is non-zero even when n → ∞. This approach will end up getting the latter. This is because the
canonical rate in robust statistics is

√
d/nsel + α. Under filtering, nsel and α are functions of θ. One

can determine the optimal θ to balance the tradeoff, but to get a final rate of the form f(η) · 1/√n,
this will require some conditions on n, η (possibly η bigger than a threshold, and n smaller than a
threshold). Since our case has stochastic corruption which is weaker than adversarial corruption,
we can expect to prove something for all n and all η. Second, this approach performs a “reductive"
operation of treating data as only clean v/s corrupted, and assuming the corrupted part provides no
signal. This is a closely linked argument to the first one above. The crucial observation is that the
right tail of the corrupted data (i.e. D0 in Figure 2) actually provides ‘close to clean’ samples. This
is because these just happened to be samples such that the z, z̃ – albeit independently sampled in a
high-dimensional space – happened to have a high inner product (small angle). Our adopted approach,
based on the conditional properties of the Gaussian distribution, formalizes this intuition that the
right tail of D0 also provides signal.
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