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ABSTRACT

Time series classification is a fundamental task in healthcare and industry, yet
the development of time series foundation models (TSFMs) remains limited by
the scarcity of publicly available time series datasets. In this work, we propose
Time Vision Transformer (TiViT), a framework that converts time series into im-
ages to leverage the representational power of frozen Vision Transformers (ViTs)
pretrained on large-scale image datasets. TiViT achieves state-of-the-art perfor-
mance on time series classification and anomaly detection benchmarks by utiliz-
ing the hidden representations of large OpenCLIP models. We explore the struc-
ture of TiViT representations and find that intermediate layers with high intrinsic
dimension are the most effective for time series classification. Furthermore, we
assess the alignment between TiViT and TSFM representation spaces and identify
a strong complementarity, with additional performance gains achieved by combin-
ing their features. Finally, we provide theoretical and qualitative insights about the
benefits of 2D patching for time series modeling with ViTs. Our findings reveal a
new direction for reusing vision representations in a non-visual domain.

1 INTRODUCTION

Foundation models have disrupted the field of machine learning. Typically built upon the Trans-
former (Vaswani et al., 2017) architecture, they are trained on large-scale datasets to learn general-
izable representations for a wide range of downstream tasks. Vision models like DINOv3 (Siméoni
et al., 2025) can be applied in image classification or segmentation with minimal supervision. Vision
language models (VLMs) such as CLIP (Radford et al., 2021) or SigLIP (Tschannen et al., 2025;
Zhai et al., 2023) can even be transferred to new tasks without any supervision since they have
learned to ground semantic concepts in natural language. VLMs have been increasingly applied in
new domains, including audio (Dixit et al., 2024; Xie et al., 2024) and medicine (Zhang et al., 2024).

Time series capture critical information in healthcare, finance, and manufacturing. Inspired by the
success of foundation models in natural language processing (NLP) and computer vision (CV),
similar models have recently been developed for the analysis of time series, following two different
approaches. The first one is to pretrain time series foundation models (TSFMs) in a self-supervised
way (Ansari et al., 2024; Das et al., 2024; Feofanov et al., 2025; Goswami et al., 2024; Lin et al.,
2023) using a large-scale real-world time series dataset. The second one is to repurpose foundation
models from other domains, such as NLP (Jin et al., 2024; Zhou et al., 2023) and CV (Chen et al.,
2024; Li et al., 2023b), for time series tasks. The idea behind this approach is to benefit from the
vast amount of samples that large vision and language models are trained on, and which are often
unavailable in the time series domain.

Adapting vision models to time series analysis is particularly compelling, since time series can be
visualized as line plots, heatmaps, or spectrograms (Ni et al., 2025). TimesNet (Wu et al., 2023)
has been trained end-to-end on heatmaps generated from time series, pretrained Masked Autoen-
coders have been applied in zero-shot time series forecasting (Chen et al., 2024), and pretrained
SwinTransformers have been finetuned on line plots of irregularly sampled time series (Li et al.,
2023b). However, these approaches are either restricted to the task of forecasting or require costly
per-dataset training and finetuning. No prior work has shown that large vision and vision-language
models trained on billions of images can be state-of-the-art in time series classification. Further-
more, there is no theoretical explanation yet for the effectiveness of 2D time series modeling.
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Figure 1: While TSFMs operate directly on the 1D time series signal, TiViT transforms time series
into images to leverage pretrained ViTs for feature extraction. We display the average time series
signal of two classes from ECG200 (Olszewski, 2001) and their corresponding 2D representations.
Utilizing the hidden representations of OpenCLIP, TiViT significantly outperforms Mantis in linear
classification on the UCR benchmark. Combining both models further improves accuracy.

In this work, we demonstrate that frozen vision foundation models such as OpenCLIP, SigLIP 2,
and DINOv3, pretrained solely on natural images or image-text pairs, can serve as universal feature
extractors for time series tasks without any pretraining or finetuning on time series data. The trans-
formation of time series into images for feature extraction with ViTs is motivated by the intuition
that 2D modeling spatially distributes label-relevant information across patches, thereby facilitat-
ing classification. To validate this hypothesis, we investigate 1D and 2D time series modeling with
Transformers, offering insights into when and why image-based modeling can be advantageous.

Our main contributions are summarized as follows: (1) We introduce the Time Vision Transformer
(TiViT), leveraging hidden representations of pretrained and frozen ViTs for time series analysis.
TiViT surpasses conventional TSFMs without any fine-tuning in time series classification across
128 datasets and time series anomaly detection across 248 datasets. (2) We study the alignment
of TiViTs and TSFMs and find that they extract complementary information from time series. By
merging their representations, we achieve an average improvement of +3% over TSFMs in time
series classification. (3) We provide a theoretical and empirical analysis at the patch level of Trans-
formers, showing that the image-based modeling of time series reduces sample complexity and thus
makes training more efficient than conventional 1D modeling.

2 RELATED WORK

Time series foundation models Recently, the research community has witnessed an impressive
surge in the number and variety of TSFMs. At first, such models were based on repurposing large
language models (LLMs) for time series tasks (Cao et al., 2024; Chang et al., 2025; Gruver et al.,
2023; Jin et al., 2024; Xue & Salim, 2024; Zhou et al., 2023), exploiting the ability of LLMs to
efficiently handle sequential data. A different approach that gained in popularity later was to train
TSFMs from the ground up on extensive and diverse datasets (Ansari et al., 2024; Bhethanabhotla
et al., 2024; Das et al., 2024; Feofanov et al., 2025; Gao et al., 2024; Goswami et al., 2024; Lin et al.,
2023; Liu et al., 2024a;b; Rasul et al., 2024; Wang et al., 2024). While most of the models were de-
signed for time series forecasting, several of them also specifically tackled time series classification
(Feofanov et al., 2025; Gao et al., 2024; Goswami et al., 2024; Lin et al., 2023; Zhou et al., 2023).
These TSFMs are on par with or exceed the performance of earlier deep learning models such as the
famous TimesNet (Wu et al., 2023), which has been trained separately per dataset.

Transforming time series into images Time series can be transformed into images in many ways,
either based on the 1D representation of the time series in the original space (line plot) or frequency
space (spectrogram), or by using a 2D modeling approach (heatmap, Gramian angular field, re-
currence plot) that stacks segments of the input time series based on a chosen periodicity. Vision
models, often based on CNNs and their variations, were applied on such image-based representa-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0
1

ViT

Classifier

Matrix 
transformation

2D 
patching

1D patching

Hidden ViT 
representation

TSFM
representation

for K + 1 tokens

Transformer

TiViT

TSFM

C
on

ca
te

na
te

 layer l

0
1

ViT

Classifier

Matrix 
transformation

2D 
patching

1D patching

Hidden ViT 
representation

TSFM
representation

for K + 1 tokens 
at layer l

Transformer

TiViT

TSFMC
on

ca
te

na
te

 layer l

Figure 2: Illustration of TiViT on a time series sample from ECG200 (Olszewski, 2001). We split
the time series into segments and stack them to form a grayscale image. Then, we patch the image
in 2D and feed it into a frozen ViT pretrained on large-scale image datasets. We average the hidden
representations from a specific layer and pass them to a learnable classification head. Concatenating
the representations of TiViT and TSFMs prior to classification improves accuracy.

tions of time series as early as 2013 (see Ni et al. (2025) for a recent survey). Most of them, however,
were trained in a supervised way to fit the dataset at hand. This work explores how pretrained vision
models can be used as powerful feature extractors without training or fine-tuning. Li et al. (2023b)
showed that pretrained ViTs can be effective in the classification of irregular time series from their
line plot representations after full finetuning. In a similar vein, Chen et al. (2024) applied a masked
auto-encoder with a pretrained frozen ViT to 2D transformed time series to perform time series fore-
casting. Different from these works, our TiViT model surpasses the performance of frontier TSFMs
across a broad set of classification and anomaly detection benchmarks. Moreover, we explain why
modeling time series in 2D rather than 1D can benefit time series classification with Transformers.

3 TIVIT: TIME SERIES CLASSIFICATION WITH PRETRAINED VITS

We introduce the Time Vision Transformer (TiViT) leveraging pretrained frozen ViTs from the vi-
sion or vision-language domain for time series classification. We consider a multivariate time series
dataset T = {tn|tn ∈ RT×D}Nn=1 containing N samples, each of length T and dimensionality D.
The corresponding targets Y = {yn}Nn=1 are labels yn ∈ {1, ..., C} from C different classes. We
transform the time series into images and apply ViTs on these images to extract representations for
linear classification. Figure 2 illustrates our approach.

Time series-to-image transformation Following the channel independence assumption, proposed
by Nie et al. (2023) and widely adopted in most recent TSFMs (Feofanov et al., 2025; Goswami
et al., 2024), we first split a multivariate time series tn ∈ RT×D into D univariate time series
{tnd ∈ RT }Dd=1. We then normalize each univariate time series tnd using robust scaling, defined as:
tnd−Q2

Q3−Q1
, where Q1, Q2, Q3 are the first, second (median), and third quartiles, respectively. We apply

padding at the beginning of each time series by replicating its first value and subsequently segment
it into M patches {xm}Mm=1 of size P . Given a patch length P and stride S, the total number of
patches is: M =

⌊
T−P
S

⌋
+ 1. We stack the patches to generate a 2D representation X ′ ∈ RM×P ,

which we then render into a grayscale image X ′ ∈ RM×P×3 by replicating its signals across three
channels. To align with the square input resolution (R,R) expected by the ViT, we resize the image.

Time series classification We feed each grayscale image X ′ representing a univariate time series
into a pretrained and frozen ViT v with L hidden layers. The ViT inherent 2D patching yields
a sequence {x′

k ∈ RU2}Kk=1 of flattened patches where (U,U) is the resolution per patch and
K = R2/U2 is the resulting number of patches. ViTs generally prepend a classification token
to this sequence. The ViT consumes all input tokens and produces a sequence of features at every

layer: v(X ′) =
{
[h

(l)
0 ,h

(l)
1 , ...,h

(l)
K ]

}L
l=0

. To obtain a single embedding vector e per image, we

select a specific layer l and average its K + 1 representations: e = h
(l)
avg = 1

K+1

∑K
k=0 h

(l)
k . For
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multivariate time series, we feed per-channel image representations {X ′
d}Dd=1 separately into the

ViT and concatenate the resulting embeddings for a specified layer: Concat(e1, ..., eD). We only
train a linear classifier on the ViT representations and their corresponding class labels. To enhance
performance, the embeddings of frozen TSFMs and ViTs can be concatenated prior to classification.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate TiViT on the disciminative time series tasks of classification and anomaly
detection, showing its state-of-the-art performance compared to supervised, self-supervised, and FM
competitors. Although the contrastive pre-training ViTs rely on is not suitable for generative tasks,
we further provide promising preliminary results with TiViT in long-term multivariate forecasting.
We note that classification and forecasting are two fundamentally different tasks, and most existing
TSFMs concentrate exclusively on only one of them.

For classification, we evaluate TiViT on 128 univariate time series dataset from the UCR bench-
mark (Dau et al., 2019) and on 27 multivariate datasets from the UEA benchmark (Bagnall et al.,
2018). Our study examines three differently pretrained ViTs: OpenCLIP (Cherti et al., 2023; Il-
harco et al., 2021), SigLIP 2 (Tschannen et al., 2025), and DINOv3 (Siméoni et al., 2025). We
compare TiViT to the state-of-the-art TSFMs Mantis (Feofanov et al., 2025) and Moment (Goswami
et al., 2024) which are exclusively pretrained on time series. We further consider GPT4TS (Zhou
et al., 2023) pretrained on textual data, the forecasting TSFMs VisionTS (Chen et al., 2024) and
Chronos (Ansari et al., 2024), and a wide range of (self-)supervised baselines (pre-)trained per time
series dataset. To evaluate the effectiveness of TiViT and TSFM representations in time series clas-
sification, we train a logistic regressor with the LBFGS solver per dataset. A detailed overview of
our experimental setup is provided in Appendix C.

4.1 TRANSFORMING TIME SERIES INTO IMAGES FOR FEATURE EXTRACTION
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Figure 3: Effect of patch size and
overlap on classification accuracy.

The performance of our time series-to-image transforma-
tion is sensitive to the patch size P , as extreme values can
create redundant visual tokens during resizing to the ViT in-
put resolution (see Figure 10). To avoid a computationally
expensive hyperparameter search for the optimal patch size
P ∗ per dataset, we propose the heuristic P =

√
T for any

series of length T . This choice yields a square-shaped ma-
trix representation prior to resizing, which minimizes hori-
zontal or vertical distortion and thus preserves patch diver-
sity. While an exhaustive search for P ∗ offers a marginal
accuracy improvement in the case of no overlap, our heuris-
tic provides a strong baseline at a fraction of the computa-
tional cost. As displayed in Figure 3, introducing overlap
between patches further boosts performance and makes the
impact of the optimal patch size vanish. Details can be found in Appendix D.1. Consequently, we
use a patch size of P =

√
T and a stride of S = P/10 in the following experiments.

4.2 EFFECTIVENESS OF HIDDEN VIT REPRESENTATIONS

We repurpose frozen ViTs as feature extractors for time series data. While the final representations
of ViTs typically capture high level semantics, intermediate layers encode lower level information
(Dorszewski et al., 2025). Our study reveals that the intermediate representations of ViTs are the
most effective for downstream classification. In Figure 4a we report the classification performance
of TiViT with pretrained ViTs from DINOv3, CLIP, and SigLIP 2 on the validation split of the UCR
benchmark. For each dataset, we extract representations from the hidden layers of ViTs, average
them, and train a linear classifier. The intermediate representations of ViTs, between 40% and 70%
of the layer depth, achieve the highest classification accuracy. CLIP and SigLIP 2, both optimized
with a contrastive loss on image-text pairs, reach best performance in their earlier layers: layer
14 of 33 for CLIP (ViT-H) and layer 12 of 28 for SigLIP 2 (SoViT-400m). In contrast, DINOv3
(ViT-L) trained with contrastive learning and masked modeling on images only, reaches the highest

4
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Figure 4: (a) Validation accuracy and (b) Intrinsic dimensionality using hidden representations at dif-
ferent depth of pretrained ViTs (CLIP, DINOv3, SigLIP 2). Results are averaged over 128 datasets
from the UCR benchmark.

Table 1: Classification accuracy of
TSFMs and TiViT per benchmark.

Model UCR UEA

Moment 79.0 69.9
Mantis 80.1 72.4

TiViT (Ours) 81.6 +1.5 72.0 -0.4

TiViT + Moment (Ours) 82.7 +2.6 72.6 +0.2

TiViT + Mantis (Ours) 83.1 +3.0 73.7 +1.3
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Figure 5: Classification accuracy across 91 UCR datasets.
SL and SSL baselines from Goswami et al. (2024).

classification accuracy with representations from a later layer (17 of 25). For each ViT, we determine
the optimal hidden layer based on its highest validation accuracy on the UCR benchmark.

Intrinsic dimension To better understand the hidden representations of ViTs, we analyze their in-
trinsic dimension (see Figure 4b) and principal components (see Appendix D.5). Valeriani et al.
(2023) have previously investigated the geometry of hidden representations of Transformers for in-
domain vision and language applications. We measure the intrinsic dimension of ViTs applied on
time series from the UCR archive using the DADApy (Glielmo et al., 2022) implementation of the
TWO-NN estimator (Facco et al., 2017). Figure 4b displays for three different ViT backbones the in-
trinsic dimensionality of their representations at varying layer depth. Across these three backbones,
the mean Pearson correlation coefficient between the intrinsic dimension and validation accuracy is
ρ = 0.704. The best performing layers exhibit the highest or second highest intrinsic dimension.

Benchmark Unless stated otherwise, we refer to our best-performing model with 14 layers of Open-
CLIP ViT-H as TiViT. A full comparison of TiViT and TSFMs on the UCR and UEA test set is
reported in Table 1. The state-of-the-art TSFM Mantis achieves a linear classification accuracy of
80.1% on the UCR benchmark. Our statistical analysis with a paired t-test and a significance level
of 0.05 confirms that TiViT significantly outperforms (p = 0.003) Mantis across the 128 datasets of
the UCR benchmark, achieving 81.6% accuracy. We further extend our analysis to multivariate time
series. TiViT reaches a classification accuracy of 72.0%, which is statistically on par with Mantis
on the UEA benchmark. The concatenation of per-channel representations, without learning any
explicit cross-channel interactions, achieves state-of-the-art performance. In line with prior work
(Feofanov et al., 2025), we could not observe any consistent benefit with channel-gating or atten-
tion pooling of channel-wise representations. Figure 5 shows that TiViT outperforms not only other
TSFMs, but also a series of supervised learning (SL) and self-supervised learning (SSL) methods
(pre-)trained per dataset. The comparison is limited to 91 UCR datasets since most of these models
can only handle time series up to T = 512. Interestingly, TSFMs such as Chronos and VisionTS,
primarily designed for forecasting, perform worse than TiViT or Mantis in time series classification.
This highlights that models optimized for forecasting cannot be simply transferred to classification
tasks and emphasizes the need for dedicated classification-focused TSFMs such as TiViT.
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Table 2: Joint classification accuracy and alignment score for TiViTs and TSFMs on UCR.

Fusion Model 1 Model 2 Joint accuracy Alignment score
Name Acc Name Acc

TSFM × TSFM Mantis 80.1 Moment 79.0 81.5 (+1.4, +2.5) 0.222

TiViT × TiViT CLIP 81.6 DINOv3 80.2 82.2 (+0.6, +2.0) 0.431

TiViT × TSFM

DINOv3 80.0 Moment 79.0 82.0 (+2.0, +3.0) 0.213
DINOv3 80.0 Mantis 80.1 82.5 (+2.5, +2.4) 0.243
CLIP 81.6 Moment 79.0 82.7 (+1.1, +3.7) 0.241
CLIP 81.6 Mantis 80.1 83.1 (+1.5, +3.0) 0.262

(a) Attention rollout (b) t-SNE visualization

Figure 6: Qualitative analysis of TiViT representations on samples from the UCR benchmark.

4.3 ALIGNMENT AND FUSION OF TIVIT AND TSFM REPRESENTATIONS

We do not only compare the effectiveness of TiViT and TSFM representations against each other,
but also explore their complementarity when concatenating their features for joint classification. As
depicted in Table 2, the combination of TiViT and TSFM consistently improves the classification
performance over any standalone model. While the combination of two TSFMs yields 81.5% ac-
curacy, fusing TiViT-CLIP with Moment and Mantis leads to even higher accuracies of 82.7% and
83.1%, respectively. These results underscore the potential of multimodal time series analysis.

To uncover the differences between TiViTs and TSFMs, we assess the alignment of their represen-
tation spaces using the mutual k-nearest neighbor metric (Huh et al., 2024) on the 10 largest UCR
datasets. Table 2 presents the average alignment scores across datasets for CLIP, DINOv3, Mantis,
and Moment. Interestingly, the alignment score of the two TSFMs is relatively low. We hypothesize
that this discrepancy arises from their different pretraining paradigms. A similarly low alignment
score is observed between any TiViT and TSFM, which we attribute to their domain gap. TiViT
and Mantis extract different representations for the same time series, which is beneficial for joint
classification. The highest alignment is measured between TiViT-CLIP and TiViT-DINOv3, both of
which are pretrained contrastively on image datasets.

4.4 FEATURE VISUALIZATION

To gain insights into the processing of TiViT, we employ attention rollout (Abnar & Zuidema, 2020)
on images generated from the ECG200 and ElectricDevices datasets of the UCR archive. As shown
in Figure 6a, the attention weights aggregated across layers highlight the most salient regions of the
input. In particular, high attention weights align with the bright and dark areas in the 2D image
representation, which correspond to high and low signals in the original time series. This indicates
that TiViT attends to the critical signals necessary for distinguishing samples of different classes.

In addition, we compare the representations of TiViT and Mantis in Figure 6b using t-SNE (van der
Maaten & Hinton, 2008) visualizations on the ElectricDevices dataset. Mantis is trained con-
trastively and can discover class-distinguishable time series representations without label super-
vision. Our findings go beyond this: even without any training on time series, TiViT generates
embeddings that form clusters aligned with the ground-truth classes illustrated in different colors.
More t-SNE visualizations for TiViT on UCR datasets are provided in Appendix D.11.
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Table 3: Classification accuracy on UCR subsets (left) and comparison of classifiers (right).

Model UCR subsets Classification head

Small Large Short Long Logistic R. Nearest C. Random F.

Moment 86.6 85.4 87.4 67.3 79.0 68.4 75.7
Mantis 87.2 82.6 88.2 71.4 80.1 71.2 77.7

TiViT (Ours) 90.5 85.4 87.8 75.6 81.6 71.9 77.7

TiViT + Moment (Ours) 90.7 87.2 88.8 75.7 82.7 73.6 79.5
TiViT + Mantis (Ours) 91.4 86.2 89.3 77.8 83.1 73.8 80.1

Table 4: Anomaly detection on 248 datasets from the UCR Anomaly Archive. We compare the
performance of TiViT to baselines reported by Goswami et al. (2024).

Metric TiViT MOMENT GPT4TS TimesNet Anomaly TF DGHL k-NN

Adj. F1
Mean 0.746 +0.118 0.628 0.424 0.537 0.492 0.425 0.554
Median 0.985 +0.207 0.778 0.331 0.541 0.432 0.331 0.595
Std 0.368 0.373 0.366 0.389 0.401 0.365 0.393

VUS ROC
Mean 0.770 +0.064 0.684 0.611 0.679 0.661 0.646 0.706
Median 0.795 +0.068 0.692 0.615 0.692 0.658 0.635 0.727
Std 0.169 0.146 0.114 0.141 0.147 0.137 0.155

4.5 ABLATION STUDIES

In Section 4.2, we report the performance of TiViT across all 128 UCR datasets. To further explore
its capabilities, we now select four UCR subsets: 10 datasets with the fewest training samples (16 ≤
Ntrain ≤ 20), the most training samples (1000 ≤ Ntrain ≤ 8926), the shortest time series (15 ≤
T ≤ 80), and the longest time series (1500 ≤ T ≤ 2844). The results are displayed in Table 3.
TiViT significantly outperforms Mantis on subsets with a small training set (90.5% vs. 87.2%) and
long time series (75.6% vs. 71.4%). These findings demonstrate that TiViT excels in generalizing
from limited training data and in modeling long-range dependencies.

Finally, we investigate the effectiveness of TiViT in zero-shot classification with a nearest centroid
classifier. On the UCR benchmark, TiViT achieves a zero-shot classification accuracy of 71.9%. Our
approach surpasses both Mantis (71.2%) and Moment (68.4%), highlighting the ability of TiViT to
extract generalizable representations. We further merge the representations of TiViT and Mantis,
reaching a state-of-the-art zero-shot accuracy of 73.8%.

4.6 TASKS BEYOND CLASSIFICATION

As shown above, TiViT excels in time series classification, providing rich embeddings with a very
strong zero-shot performance. This prompts us to apply it to anomaly detection, too, as both tasks
are of a discriminative nature. To this end, Table 4 reports the performance of TiViT in time series
anomaly detection following the setup considered in Goswami et al. (2024). We compare it to
foundation models and specialized methods across 248 datasets from the UCR Anomaly Archive
(Wu & Keogh, 2023) and observe that TiViT equipped with an OpenCLIP ViT-B backbone and
a trainable linear reconstruction head achieves an adjusted best F1 score of 0.746, substantially
outperforming Moment with a score of 0.628.

TiViT is especially tailored to discriminative tasks due to the large-scale contrastive pre-training of
the ViT backbone. To verify the usefulness of TiViT in generative tasks, we provide preliminary
results of its evaluation in long-term time series forecasting in Table 22 in the appendix. We note
that TiViT reaches linear probing performance comparable to that of Moment on the 8 standard
multivariate long-term forecasting datasets (Wu et al., 2021).
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Figure 7: 2D patching yields a higher number of label-relevant tokens (with constant negative signal)
than 1D patching. This facilitates time series classification with Transformers.

5 INSIGHTS ON MODELING TIME SERIES AS IMAGES

TiViT surpasses the performance of TSFMs in time series tasks by leveraging pretrained ViTs. This
raises a key question: is its success solely due to the rich representations learned from billions of
natural images, or is there an inherent advantage of the 2D patching strategy as well? We develop a
theoretical insight at the patch level showing how the 2D representation of time series can enhance
the classification performance of Transformer models. To empirically validate this, we compare the
performance of Transformers pretrained on real-world data using 1D versus 2D patching.

5.1 THEORETICAL ANALYSIS OF 1D AND 2D PATCHING

We consider a binary time series classification problem with N univariate training samples
{(tn, yn), yn ∈ {+1,−1}}Nn=1. Each time series tn ∈ RT can be patched as follows:

• 1D patching: The series t is split into k contiguous, non-overlapping tokens xl ∈ Rk.

• 2D patching: The series t is reshaped into a k × k matrix, then divided into k non-
overlapping

√
k ×

√
k patches, which are flattened to form tokens x′

(i,j) ∈ Rk.

This setup ensures the same number of tokens for 1D and 2D patching. Our analysis builds on
the notion of label-relevant tokens introduced by Li et al. (2023a). Following their data model, we
consider each token to be a noisy version of distinct patterns. In binary classification, there exist
two such patterns {µ1,µ2}, µi ∈ Rk,∀ i. For a time series tn with label yn = 1, tokens x that are
noisy µ1, i.e., ||x− µ1|| ≤ ||x− µ2||, are label-relevant. Similarly, for a time series tn with label
yn = −1, the noisy versions of µ2 are label-relevant.

Benefits of 2D patching Li et al. (2023a) showed that the sample complexity of a Transformer
scales as O(1/α2

∗) where α∗ denotes the fraction of label-relevant tokens in the training samples. In
Appendix A.2, we provide a constructive proof showing that under certain conditions, this fraction
of label-relevant tokens is greater when the time series is transformed into a 2D representation
compared to the conventional 1D representation. Therefore, 2D patching can lead to more efficient
learning with Transformers than 1D patching. Figure 7 illustrates our idea for an exemplary time
series with T = 91 and k = 9. We set µ1 = cos(x) for x ∈ [0, π] and define the label-relevant
signal as µ2 = −1. In the 1D case, only three tokens carry the label-relevant information, whereas
in the 2D case there are six such tokens. Following Li et al. (2023a), distributing the discriminative
signal across a larger number of tokens makes it easier for a Transformer to detect and leverage it.

Interpretability scores To confirm our hypothesis about the spread of information achieved with
2D modeling, we now illustrate it on samples from a real-world dataset from the UCR repository. In
particular, we show that a model trained on 2D representations of time series has more regions that it
deems relevant for predicting the class membership of the time series. To this end, we follow Early
et al. (2024) and use MILLET: a framework that provides interpretability scores for timestamps
within a time series given a pretrained model. For this, we train two shallow ViTs, ViT1D and
ViT2D, on the BirdChicken dataset from the UCR repository. ViT1D takes as input a raw 1D time
series, while ViT2D is trained on square 2D images of the time series. The only difference between
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Figure 8: Comparison of interpretability heatmaps for two ViTs trained on 1D (left) and 2D (right)
representations of time series from the BirdChicken dataset, respectively. The interpretability scores
for the correct class of a sample are more homogeneous in the 2D case.

these two models is their patching strategy: ViT1D patches the time series using a 1D convolutional
filter, while ViT2D applies a 2D convolutional filter. The obtained results for two samples from
different classes are presented in Figure 8, for 1D (left) and 2D (right) cases, respectively. Note
that the 1D heatmap for the sample with ground-truth class 0 highlights discriminative signals for
class 1 at the beginning and end of the time series, while the corresponding 2D heatmap displays no
such signals in these areas. The interpretability scores w.r.t. the ground-truth class of a sample are
generally more homogeneous for ViT2D which facilitates classification.

5.2 PRETRAINING TRANSFORMERS WITH 1D AND 2D PATCHING

Table 5: Evaluation of models pretrained
with different patching strategies on UCR.

Patching Non-overlap Overlap

1D 2D 1D 2D

Accuracy 76.4 76.8 76.6 77.4

To validate our hypothesis about the benefits of 2D
patching in practice, we study how patching affects
the quality of representations learned by Transformers
on real-world time series. In this experiment, we fix
the Transformer architecture and pretraining method,
and only vary the patching strategy. We then evaluate
the representations learned by the model on the UCR
benchmark. Following Feofanov et al. (2025), we pre-
train a Transformer model with 6 layers and 8 heads
per layer using contrastive learning. Details are provided in Appendix B. We compare 1D and
2D patching with both non-overlapping and overlapping patches. As summarized in Table 5, 2D
patching outperforms 1D patching, with overlapping 2D patches yielding the highest classification
accuracy. This finding shows that the transformation of time series to images is not only beneficial
when leveraging pretrained ViTs, but can also enhance time series pretraining from scratch.

6 CONCLUSION

In this paper, we introduced TiViT, the first method to successfully leverage large pretrained ViTs for
time series classification. Our analysis revealed that the most effective features for this task are the
hidden representations of ViTs which exhibit high intrinsic dimensionality. Building on this insight,
TiViT significantly outperformed TSFMs in time series classification on the UCR benchmark and
reached competitive results on UEA. We investigated the complementarity of TiViT and TSFMs,
and by combining their representations, established the new state-of-the-art in zero-shot and linear
classification on both benchmarks. Beyond the task of classification, TiViT excelled in time series
anomaly detection on the UCR Anomaly Archive. We finally provided theoretical and empirical
evidence that modeling time series in 2D rather than 1D is not only key to exploiting pretrained
ViTs but broadly advantageous for time series pretraining and classification with Transformers.

Limitations and future work While our study evaluated time series representations via linear prob-
ing, future work could explore the finetuning of TiViT. Moreover, the powerful representations of
large-scale ViTs present an opportunity for knowledge distillation into efficient time series models.
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A DETAILS ON THE THEORETICAL ANALYSIS

We first review the shallow ViT and data model introduced by Li et al. (2023a) in their theoretical
analysis of training a ViT. Their Theorem A.1 shows that the sample complexity for ViTs to achieve
a zero generalization error is inversely correlated with the fraction of label-relevant tokens. Building
on this insight, we introduce and proof Proposition 1, showing that 2D patching can increase the
number of label-relevant tokens compared to 1D patching. We further illustrate our Proposition 1
with various examples of time series and their corresponding 2D representations.

A.1 BACKGROUND

Model and setup Following the setup of Li et al. (2023a), we study a binary classification problem
withN training samples {(Xn, yn)}Nn=1. Each input Xn ∈ Rd×L containsL tokens {xn1 , . . . ,xnL}.
Labels yn ∈ {±1} are determined by majority vote over discriminative tokens. A simplified Vision
Transformer (ViT) (Dosovitskiy et al., 2021) model is defined as:

F (Xn) =
1

|Sn|
∑
l∈Sn

a⊤
(l)ReLU

(
WOWVX

nsoftmax
(
Xn⊤

W⊤
KWQx

n
l

))
,

where ψ = (A= {a(l)}l,WO,WV ,WK ,WQ) are trainable parameters. The empirical risk mini-
mization problem is:

min
ψ
fN (ψ) =

1

N

N∑
n=1

max {1− yn · F (Xn), 0} .

Training uses mini-batch SGD with fixed output layer weights A, following standard NTK initial-
ization practices.

Data model Tokens xnl are noisy versions of M patterns {µ1, . . . ,µM}, where µ1,µ2 are dis-
criminative. Label yn depends on majority vote over tokens closest to µ1/µ2. Noise level τ satisfies
τ < κ/4, with κ− 4τ = Θ(1).

Generalization of ViT We now recap the main results from Li et al. (2023a) from which we derive
our result, along with the main notations in Table 6.

Assumption (Initial Model Conditions, Li et al. (2023a)). Initial weights W (0)
V ,W

(0)
K ,W

(0)
Q sat-

isfy:

∥W (0)
V µj − pj∥ ≤ σ, ∥W (0)

K µj − qj∥ ≤ δ, ∥W (0)
Q µj − rj∥ ≤ δ,

for orthonormal bases P,Q,R and σ = O(1/M), δ < 1/2.

Theorem (Generalization of ViT, Li et al. (2023a)). Under Assumption 1, with sufficient model
width m ≳ ϵ−2M2 logN , fraction

α∗ ≥ α#/(ϵSe
−(δ+τ)(1− (σ + τ)),

and sample size
N ≥ Ω

(
(α∗ − c′(1− ζ)− c′′(σ + τ))−2

)
,

SGD achieves zero generalization error after

T = Θ

(
1

(1− ϵ− (σ + τ)M/π)ηα∗

)
iterations.

Proposition (Generalization without Self-Attention, Li et al. (2023a)). Without self-attention,
achieving zero error requires N ≥ Ω

(
(α∗(α∗ − σ − τ))−2

)
, demonstrating ViT’s sample com-

plexity reduction by 1/α2
∗.
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Table 6: Key Notations

Notation Description

α∗ Fraction of label-relevant tokens
σ, δ, τ Initialization/token noise parameters
κ Minimum pattern distance
M Total number of patterns

A.2 PROOF OF LABEL RELEVANCE IN 2D PATCHES

We introduce Proposition 1 that formalizes our theoretical analysis of 1D and 2D patching from
Section 5.1 and provide a detailed proof.
Proposition 1. For an arbitrary µ1,µ2 ∈ Rk, let t = [x1 x2 · · · xk]

⊤ ∈ RTwhere ∀i ∈ [k],xi ∈
Rk and either xi = µ1 or xi = µ2 with µ2 being a label-relevant pattern. Let |{i : xi = µ2}| = n′

and assume that 2x′ · (µ1−µ2) ≤ ||µ1||2−||µ2||2 whenever |{i : x′i ∈ µ2}| ≥
√
k. Then, it holds

that

α2D
∗ ≥ α1D

∗ =
n′

k
,

and the inequality is strict if n′ mod
√
k > 0.

Proof. For a token x′n to be label-relevant (aligned with µ2), it must satisfy:

∥x′n − µ2∥ ≤ ∥x′n − µ1∥.

Expanding both sides, we have that:

∥x′n∥2 + 2x′n · µ1 + ∥µ1∥2 ≤ ∥x′n∥2 − 2x′n · µ2 + ∥µ2∥2.

Regrouping the terms gives us the desired condition:

2x′n · (µ1 − µ2) ≤ ||µ1||2 − ||µ2||2. (1)

Recall that n′ denotes the number of segments of µ2 in time series t. Each such segment spans
√
k

tokens, contributing at least
√
k elements to each of them. Under the assumption of the proposition,

it implies (1) and makes each of these
√
k tokens label-relevant.

We now need to carefully consider how the µ2 segments can be placed within t to understand how
many tokens become label-relevant thanks to each µ2. We consider two cases: 1) n′ = c

√
k for

some c ∈ N satisfying n′ ∈ (0, k], and 2) n′ = c
√
k + b for some a, b ∈ N,

√
k > b > 0 such

that n′ ∈ (0, k]. In the first case, α1D
∗ = c

√
k/k. In the case of 2D patching, in the worst case, µ2

segments can be placed such that they will contribute to c
√
k tokens. In this case, α2D

∗ ≥ c
√
k/k

and α1D
∗ ≤ α2D

∗ . If n′ is not a multiple of
√
k, the same analysis applies for the c

√
k segments of

µ2. To account for the remainder b, we note that for any b > 0, in 2D case, it adds
√
k label-relevant

tokens to the fraction α2D
∗ so that α2D

∗ ≥ c
√
k+

√
k

k . In the case of 1D patching, α1D
∗ = c

√
k+b
k . Given

that b <
√
k, this concludes the proof.

A.3 ADDITIONAL ILLUSTRATIONS OF PROPOSITION 1

To illustrate the benefits of 2D modeling and patching, we present several examples of time series in
Figure 9. We define µ1 using functions such as log, cosine, and sine. We then set µ2 = 1k, n′ = 3
and randomly shuffle µ1 and µ2 segments within the generated input time series.
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Figure 9: Illustration of Proposition 1 on more generated time series. In each example considered,
2D patching is more beneficial due the higher number of label-relevant tokens.
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Table 7: Data used to pretrain Transformers for comparison of 1D and 2D patching.

Dataset Number of examples Prop. of taken examples

ECG 20835 45.7%
EMG 163 100%
Epilepsy 11480 100%
FD-A 10912 100%
FD-B 13619 100%
Gesture 1320 100%
HAR 20835 78.7%
SleepEEG 20836 4.5%

B DETAILS ON THE COMPARISON OF 1D AND 2D PATCHING FOR
TRANSFORMERS

B.1 ARCHITECTURE AND PRETRAINING

To evaluate the effect of 1D versus 2D patching on representations learned by Transformers, we
fix the Transformer architecture and pretraining strategy, and only change the patching approach
for generating input tokens. We adopt the setup of Feofanov et al. (2025) since their Transformer
block implementation (ViTUnit class here) for time series classification is similar to the classical
ViT. Specifically, the model comprises 6 Transformer layers, each with 8 attention heads and an
embedding dimension of 256.

For pretraining, we employ contrastive learning following (Feofanov et al., 2025; He et al., 2020).
The augmentation technique to generate positive pairs is RandomCropResize with a crop rate vary-
ing within [0%, 20%]. All time series are resized to a fixed length T = 512 using interpolation.

We examine both non-overlapping and overlapping patches following Goswami et al. (2024); Nie
et al. (2023). For non-overlapping 1D patching, we generate 32 patches of size 16. For non-
overlapping 2D patching, we first arrange the 1D patches in a matrix of size 32 × 16 and then
extract 32 patches of size 2 × 8. After flattening, we obtain 32 patches of size 16, similar to the
1D setting, but semantically different. For overlapping 1D patching, we apply a stride of 8, which
yields 64 patches of size 16. For overlapping 2D patching, we rearrange these 1D patches again in
a matrix of size 64 × 16 and then extract 32 patches of size 4 × 8. Flattening yields 32 patches of
size 32.

B.2 DATASET

To pretrain the different models, we first generate a pretraining dataset from publicly available
datasets that are not part of the evaluation benchmark. In detail, we consider a concatenation of the
following datasets: ECG (Clifford et al., 2017), EMG (Goldberger et al., 2000), Epilepsy (Andrze-
jak et al., 2001), FD-A and FD-B (Lessmeier et al., 2016), Gesture (Liu et al., 2009), HAR (Anguita
et al., 2013), SleepEEG (Kemp et al., 2000). To reduce computation time, we construct a subset
of the full dataset containing 100 000 samples, with a sufficiently balanced distribution across the
individual source datasets. We give more details in Table 7 on how many samples were taken from
each dataset to form the pretraining corpus.

C DETAILS ON THE EXPERIMENTAL SETUP

Datasets UCR (Dau et al., 2019) comprises 128 univariate time series datasets of varying sample
size (16 ≤ Ntrain ≤ 8926) and series length (15 ≤ T ≤ 2844). UEA (Bagnall et al., 2018) consists
of 30 multivariate time series datasets. Following Feofanov et al. (2025), we exclude three datasets
(AtrialFibrillation, StandWalkJump, PenDigits) from UEA in our main evaluation due to their short
sequence length or small test size.
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Vision Transformers Our study mainly examines three differently pretrained ViTs: OpenCLIP
(Cherti et al., 2023; Ilharco et al., 2021), SigLIP 2 (Tschannen et al., 2025), and DINOv3 (Siméoni
et al., 2025). CLIP (Radford et al., 2021) performs contrastive learning of image and text encoders on
image-text pairs. We reuse the ViT image encoders of OpenCLIP (Cherti et al., 2023; Ilharco et al.,
2021) models trained with the LAION-2B English subset of LAION-5B (Schuhmann et al., 2022).
SigLIP 2 (Tschannen et al., 2025) adopts contrastive learning on image-text pairs, but with a Sigmoid
loss, complemented by captioning-based pretraining, self-distillation, and masked prediction. In
contrast, DINOv3 (Siméoni et al., 2025) is solely pretrained on images through self-distillation with
a student-teacher architecture and objectives at both the image and patch level. For each pretraining
approach, we consider multiple vision model sizes (ViT-B, ViT-L, ViT-H) with varying layer depth
(12, 24, and 32 layers). Additionally, we investigate the effectiveness of ViTs from DINOv2 (Oquab
et al., 2024) and Masked Autoencoders (He et al., 2022) in the appendix.

Baselines We compare TiViT to two state-of-the-art TSFMs exclusively pretrained on time series.
Mantis (Feofanov et al., 2025) is a Transformer model (8 M parameters) comprising 6 layers and 8
heads per layer, pretrained on 2 million time series with contrastive learning. As stated by Feofanov
et al. (2025), Mantis is based on the ViT architecture, making it particularly suitable for our compar-
ison with large-scale ViTs trained on natural images. Moment (Goswami et al., 2024) is a family of
Transformers pretrained on 13 million time series with masked modeling. In our study, we consider
Moment-base with 12 layers and 125 M parameters.
We further consider GPT4TS (Zhou et al., 2023) pretrained on textual data and a wide range of super-
vised and self-supervised baselines (pre-)trained per time series dataset. The 9 supervised baselines
comprise: ResNet (Wang et al., 2017), FCN (Wang et al., 2017), DTW (Dau et al., 2019), CNN
(Zebik et al., 2017), MLP (Wang et al., 2017), Encoder (Serrà et al., 2018), TWIESN (Tanisaro &
Heidemann, 2016), MCNN (Cui et al., 2016), and TimesNet (Wu et al., 2023). The 5 self-supervised
baselines are: TS2Vec (Yue et al., 2022), T-Loss (Franceschi et al., 2019), TS-TCC (Eldele et al.,
2021), TNC (Tonekaboni et al., 2021), and TST (Zerveas et al., 2021). For all of these baselines, we
utilize the classification accuracy reported by Goswami et al. (2024) in our comparison.
Furthermore, we evaluate the effectiveness of two state-of-the-art TSFMs that have been designed
for time series forecasting in time series classification: Chronos Bolt Base (Ansari et al., 2024) and
VisionTS (Chen et al., 2024) with MAE Base backbone. We average the sequence of their output
representations to obtain a single representation for linear classification.

Implementation To assess the effectiveness of TiViT and TSFM representations in time series clas-
sification, we train a logistic regressor with the LBFGS solver per dataset. Our evaluation adheres
to the standard train-test splits provided by the UCR and UEA archive and reserves 20% of the train
split for validation. For the time series-to-image transformation, we resize the grayscale images to
the resolution expected by the ViT with nearest interpolation and adjust the contrast with a factor
of 0.8. To compute the mutual kNN alignment score between models, we select the 10 largest UCR
datasets, sample 1024 time series from each dataset, and measure the overlap of their representations
for k=5. This setup is in line with Huh et al. (2024). All experiments can be performed on a single
NVIDIA V100 GPU with 16 GB memory.

Anomaly detection For this task, we equip TiViT with 6 layers of OpenCLIP ViT-B, apply no
patch overlap, and flatten the sequence of representations before learning a linear reconstruction
head per dataset. TiViT is evaluated across 248 dataset from the UCR Anomaly Archive (Wu &
Keogh, 2023) and compared to the following baselines: Moment (Goswami et al., 2024), GPT4TS
(Zhou et al., 2023), TimesNet (Wu et al., 2023), Anomaly Transformer (Xu et al., 2022), DGHL
(Challu et al., 2022), and kNN (Ramaswamy et al., 2000) with k = 5. We utilize the adjusted best
F1 score (Goswami et al., 2023; Challu et al., 2022) and VUS-ROC score (Paparrizos et al., 2022)
reported for each baseline by Goswami et al. (2024).

Forecasting We further evaluate TiViT in long-horizon time series forecasting on 8 standard datasets
(Wu et al., 2021; Ilbert et al., 2024). Similar to the best setup for anomaly detection, TiViT uti-
lizes 6 layers of OpenCLIP ViT-B as backbone, applies no patch overlap, and flattens the sequence
of representations. A linear forecasting head is learned per dataset and forecasting horizon in
{96, 192, 336, 720}. Our comparison considers 8 baselines. There are 2 TSFMs evaluated with
linear probing: Moment (Goswami et al., 2024) and GPT4TS (Zhou et al., 2023). Moreover, there
are 6 supervised methods: PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), TimesNet (Wu
et al., 2023), FEDformer (Zhou et al., 2022), N-BEATS (Oreshkin et al., 2020), and Stationary. The
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(a) ECG200 sample (b) P = 1 (c) P =
√
T (d) P = T

2

Figure 10: Effect of patch size P on the time series-to-image transformation of a sample from the
ECG 200 (Olszewski, 2001) dataset. To match the ViT input resolution, a small patch size (P = 1)
requires horizontal stretching, while a large patch size (P = T

2 ) requires vertical stretching. Both
scenarios result in redundant tokens.

Table 8: Effect of patch size and overlap on validation accuracy on UCR benchmark.

Patch size
√
T P ∗

Overlap 0.0 0.5 0.9 0.0 0.5 0.9

Val accuracy 78.0 80.3 80.7 88.1 88.9 89.7
Test accuracy 78.3 80.4 81.6 79.3 80.7 81.7

Mean Squared Error (MSE) and Mean Absolute Error (MAE) per baseline have been reported by
Goswami et al. (2024).

D ADDITIONAL ANALYSIS ON TIVIT

D.1 PATCH SIZE AND OVERLAP

In Section 4.1, we report for TiViT that a patch size P =
√
T and a stride S = P

10 yields high
classification accuracy on any time series of length T . The patch size parameter P affects the visual
appearance of the image representation provided to the ViT for feature extraction. Figure 10 displays
a time series sample from the ECG200 Olszewski (2001) dataset along with its corresponding image
representations for three different patch sizes. After patching and stacking, the 2D matrix is resized
to the quadratic image resolution required by ViTs. Using very small (Figure 10b) or very large
(Figure 10d) patch sizes results in redundant tokens representing the same input signal. To avoid
a computationally expensive hyperparameter search to find the best patch size P ∗ per dataset, we
propose to select P =

√
T for any dataset of length T . A patch size of

√
T yields a square-

shaped image prior to resizing and thus the most diverse set of patches without any horizontal or
vertical distortion (Figure 10c). Moreover, this setting is in line with our theoretical consideration
in Section 5.1.

Table 8 presents the classification accuracy for TiViT with a CLIP backbone (TiViT-CLIP) and
both non-overlapping and overlapping patches. To provide an upper bound on the classification
performance, we perform a hyperparameter search for the best patch size P ∗. Specifically, for each
dataset of length T , we consider 20 equally spaced values in [1, T2 ] and identify the patch size that
maximizes classification accuracy on the validation set. Note that, while there is a small decline
in accuracy in the case of no overlap, when consistently applying P =

√
T , the computational

cost is reduced by a factor of 20. The impact of the correct patch size vanishes with increasing
overlap. Figure 11 visualizes the effect of patch overlap for TiViT with CLIP, DINOv2, and SigLIP 2
backbones while fixing the patch size at P =

√
T . All versions of TiViT achieve high classification

accuracy when utilizing an overlap of 0.9 (corresponding to stride S = P
10 ).
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Figure 11: Effect of patch overlap on the classification accuracy of TiViT with different backbones.

Table 9: Comparison of interpolation methods on the UCR benchmark.

Interpolation Antialias Accuracy

Bilinear False 81.2
True 80.9

Bicubic False 79.1
True 79.1

Lanczos - 80.6
Nearest - 81.6

D.2 INTERPOLATION ALGORITHM FOR IMAGE RESIZING

In our time series-to-image transformation, we resize the grayscale images to the resolution ex-
pected by the ViT with nearest interpolation by default. To further investigate the impact of the
resizing method, we conduct additional experiments using bilinear and bicubic interpolation, both
with and without antialiasing, and Lanczos interpolation. Table 9 summarizes our results on the
UCR benchmark and indicates that nearest interpolation yields the highest classification accuracy.
We hypothesize that nearest interpolation is optimal for TiViT since it preserves the raw time series
signals without introducing any smoothing artifacts.

D.3 IMAGING METHOD FOR TIME SERIES

In Section 3, we describe the transformation of time series into grayscale heatmaps, motivated by our
theoretical insight in Section 5.1. Here, we explore two alternative image representations. Specif-
ically, we visualize the time series as line plots, similar to Li et al. (2023b), and Gramian Angular
Fields (GAF). We provide these 2D representations to TiViT and evaluate their effectiveness for clas-
sification on the UCR benchmark. For the two new imaging methods, we perform a hyperparameter
search on the hidden layers ([10, 14, 18]) and choose the best configuration based on validation ac-
curacy. The test accuracy is shown in Table 10. Our results indicate that TiViT achieves the highest
classification accuracy using the heatmap-based representations.

D.4 AGGREGATION OF HIDDEN TOKEN REPRESENTATIONS

As described in Section 3, we obtain a single embedding for each time series by averaging the ViT
hidden representations in a particular layer. We now evaluate the performance of TiViT when using
the CLS token from each layer instead. Table 11 compares the linear classification performance on
the UCR dataset using either the CLS token or the mean of all tokens. To ensure a fair comparison,
we determine the best performing layer for each approach based on the validation accuracy. Across
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Table 10: Comparison of imaging methods on the UCR benchmark.

Imaging method Backbone Layer Accuracy

Gramian Angular Field ViT-H/14 14 76.4

Lineplot ViT-H/14 14 80.7

Heatmap ViT-H/14 14 81.6

Table 11: Linear classification accuracy of TiViT on the UCR dataset with different ways of ag-
gregating the hidden representations per layer. We report the total number of layers including the
output layer and the index of the best performing layer starting from 0.

Model # Layers Average of tokens CLS token

Layer Accuracy Layer Accuracy

TiViT-DINOv2 25 15 80.0 17 79.1
TiViT-SigLIP 2 28 10 80.6 14 71.7
TiViT-CLIP 33 14 81.6 18 78.6

all backbones, the CLS token consistently results in lower test accuracy, confirming our choice to
use the mean hidden representation in TiViT. Interestingly, the best performing CLS tokens appear
in later layers compared to the best performing mean tokens. Therefore, utilizing the mean repre-
sentations does not only enhance classification accuracy, but also reduce computational cost.

D.5 INTRINSIC DIMENSION AND PRINCIPAL COMPONENTS OF HIDDEN REPRESENTATIONS

The intrinsic dimension quantifies the minimum number of variables required to represent a local
neighborhood of samples in the representation space. To estimate the intrinsic dimension, the TWO-
NN estimator introduced by Facco et al. (2017) leverages the distance of each data point to its first
and second nearest neighbor. As noted by the authors, a larger number of data points reduces the
average distance to the second neighbor, and thus increases the intrinsic dimension. To mitigate this
effect, they propose to subsample the dataset. Given a dataset of size N , we report the intrinsic
dimension for N

4 subsamples in the main paper, which is in line with Valeriani et al. (2023). In
Figure 12, we compare the intrinsic dimension of average representations from hidden layers using
N , N2 , N4 , and N

8 samples for estimation. The layer with the highest intrinsic dimension, which is
central to our analysis, remains the same regardless of the subsampling ratio.

Since the intrinsic dimension only characterizes the local geometry of the representation space,
we further provide a global analysis using principal components. Specifically, in Figure 13, we
determine the number of principal components that are necessary to cover 95% of the variance in
the data. For DINOv2, we observe a peak in the number of principal components in the middle
layers that corresponds to the layers achieving the best classification accuracy. Interestingly, CLIP
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Figure 12: Intrinsic dimension of hidden representations per layer from CLIP, DINOv2, and SigLIP
computed for subsamples of the dataset in {N, N2 ,

N
4 ,

N
8 }.
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Figure 13: Number of principal components necessary to cover 95% of variance in the ViT repre-
sentations per layer averaged across UCR datasets.

Table 12: Linear classification with TiViT on the UCR benchmark. For each model, we report the
test accuracy achieved with the best performing hidden layer.

Model Architecture Layer (Max) Parameters Data Accuracy

TiViT-DINOv3 ViT-L/14 17 (25) 202 M LVD-1689M 80.2
TiViT-SigLIP 2 SoViT-400m/14 12 (28) 184 M WebLI (10B) 80.6
TiViT-CLIP ViT-H/14 14 (33) 257 M LAION-2B 81.6

and SigLIP 2 exhibit two peaks in the number of principal components across the layers. The
middle-layers corresponding to the first peak yield the highest time series classification accuracy.

D.6 SIZE OF VIT BACKBONE

We report the performance of TiViT with CLIP ViT-H backbone in Section 4.2 of the main paper.
Table 13 provides a detailed analysis of how the performance of TiViT varies with the size of the
ViT backbone, including ViT-B (with two patch sizes), ViT-L, and ViT-H. Remarkably, with only 6
Transformer layers from ViT-B, TiViT achieves an accuracy of 80.8%. While matching the number
of Transformer layers in Mantis, TiViT surpasses Mantis (80.1%) in classification accuracy. How-
ever, the hidden dimensionality is higher for the ViT-B backbone used in TiViT. By utilizing a larger
backbone, specifically 14 hidden layers of ViT-H/14, we achieve the highest accuracy of 81.3%,
significantly outperforming conventional TSFMs.

D.7 SIZE OF PRETRAINING DATASET

ViTs are pretrained on massive image datasets to learn rich and transferable features. These image
datasets are orders of magnitude larger than the time series corpora used to pretrain models such as
Mantis (2M samples) or Moment (13M samples). To investigate how the size of the ViT pretraining

Table 13: Linear classification of TiViT-CLIP with varying size of the ViT backbone. For each
model, we report the test accuracy on the UCR dataset achieved with the best performing hidden
layer representation and the number of parameters up to this layer.

Architecture Layer (total number) Parameters Accuracy

ViT-B/32 8 (13) 52 M 79.8
ViT-B/16 6 (13) 36 M 80.8
ViT-L/14 10 (25) 178 M 80.3
ViT-H/14 14 (33) 257 M 81.6
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Table 14: Comparison of CLIP-ViT-L-14 pretraining datasets on UCR benchmark.

Dataset Backbone Layer Accuracy

Laion400M CLIP-ViT-L/14 10 81.6
Laion2B CLIP-ViT-L/14 10 80.5

Table 15: Comparison of different backbones and feature extraction layers on the UCR benchmark.

Backbone Layer Accuracy

ViT-H/14 14 81.6
ConvNeXt-XXLarge 15 82.1

dataset affects the classification performance of TiViT, we compare TiViT with a CLIP-ViT-L back-
bone pretrained on 400M and 2B samples. As shown in Table 14, the model pretrained on 400M
images outperforms the one pretrained on 2B images in time series classification. This suggests that
dataset size alone does not guarantee superior performance in cross-domain tasks.

D.8 CONVOLUTIONAL BACKBONE

We focus our study on ViTs because they are the most widely used vision backbones, trained on the
largest datasets, and thus enable a comparison of different pretraining paradigms. Nonetheless, we
also include a comparison with CNN-based methods. DINOv2, SigLIP 2, and MAE are exclusively
built upon ViTs, and thus the only setting we can identify with a convolutional backbone (Con-
vNeXt) is OpenCLIP. We perform an ablation study for TiViT using different ConvNeXt layers in
{10, 15, 20, 25} and evaluate the classification accuracy on the UCR benchmark. As shown in Ta-
ble 15, our method TiViT is fully compatible with pretrained convolutional models and can achieve
even higher accuracies on the UCR benchmark when using a ConvNeXt backbone compared to the
typical ViT.

D.9 MASKED AUTOENCODER BACKBONE

In the main paper, we analyze the reusability of ViT backbones from CLIP Radford et al. (2021);
Schuhmann et al. (2022), DINOv3 Siméoni et al. (2025), and SigLIP 2 Tschannen et al. (2025) in
time series classification. In contrast, Chen et al. (2024) repurpose Masked Autoencoders (MAEs)
He et al. (2022) for time series forecasting. To enable a direct comparison, we now utilize the hidden
representations of MAE Base, Large, and Huge in time series classification.

Our analysis in Table 16 shows that for MAEs using the CLS token yields better performance in time
series classification than averaging token representations. Moreover, Table 16 presents a comparison
across MAEs of different sizes, showing that larger backbones consistently achieve higher accuracy.
Different from contrastively pretrained models, summarized in Table 12 of the main paper, the
best representations for time series classification with MAE lie in later layers. We further observe
that the hidden representations of the later MAE layers up to the output layer perform similar in
time series classification, while there is a significant gap between hidden representations and output

Table 16: Linear classification accuracy of TiViT with varying MAE backbone size and aggregation
of hidden representations per layer. We report the total number of layers including the output layer
and the index of the best performing layer starting from 0.

Architecture # Layers Average of tokens CLS token

Layer Acc Layer Acc

MAE Base 13 8 72.7 9 73.8
MAE Large 25 14 74.3 18 75.6
MAE Huge 33 20 75.9 20 76.7
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Figure 14: Intrinsic dimensionality of CLS tokens per MAE layer averaged across UCR datasets.
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Figure 15: The representations of frozen ViTs and TSFMs are concatenated and used in linear
classification. Results are averaged over 128 datasets from the UCR benchmark.

representations for TiViT-CLIP (see Figure 4a in the main paper). Figure 14 illustrates the intrinsic
dimension of the CLS tokens per layer averaged across the UCR datasets. We observe that the
intrinsic dimension increases up to 60% of the layer depth, while the later layers mostly exhibit a
similar intrinsic dimension, explaining their similar classification performance.

It is worth noting that MAE has only been pretrained on ImageNet-1k Deng et al. (2009) with 1.5
million samples, whereas CLIP has been pretrained on the significantly larger LAION-2B Schuh-
mann et al. (2022) dataset with 2 billion samples. We hypothesize that being exposed to a larger set
of images during training enhances the capacity of a vision model to extract discriminative patterns
from 2D time series representations.

D.10 ALIGNMENT AND FUSION OF TIVIT AND TSFM REPRESENTATIONS

In Table 2 of our main paper, we report the alignment and joint classification accuracy for TiViT and
TSFMs. Figure 15 is an additional visualization of the pairwise scores as heatmaps.

D.11 FEATURE VISUALIZATION

In Section 4.4, we apply attention rollout to two samples from the ECG200 dataset, demonstrating
that TiViT attends to salient regions of the time series images. Figure 17 further illustrates this
behavior with three examples each from the AllGestureWiimoteX and ElectricDevices datasets,
showing the original image, the corresponding attention rollout, and the overlay.
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We further employ t-SNE to investigate the structure of the representations extracted by TiViT.
Figure 16 presents t-SNE visualizations for 12 additional datasets. The results underscore TiViT’s
ability to uncover intrinsic cluster structures without access to labels and without being explicitly
trained on time series.

Another way of understanding the features learned by ViTs is noise maximization. Ghiasi et al.
(2022) have generated images that highly activate a particular feature in ViTs starting from random
noise. TiViT applies a frozen backbone and thus utilizes the exact same features of a ViT learned
from natural images. Their visualizations underline that ViT-B captures general edges and textures
in early layers, and more specialized objects in later layers. Please note that TiViT only uses the first
six layers of ViT-B, where there are mostly patterns and less semantic components.
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(a) TwoPatterns (b) ECG5000 (c) FordA

(d) UWaveGestureLibraryX (e) UWaveGestureLibraryY (f) UWaveGestureLibraryZ

(g) UWaveGestureLibraryAll (h) FordB (i) ChlorineConcentration

(j) NonInvasiveFetalECG1 (k) NonInvasiveFetalECG2 (l) MelbournePedestrian

Figure 16: t-SNE visualizations
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Figure 17: Attention rollout.
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E DETAILED BENCHMARKING RESULTS

In the main paper, we report the average accuracy of TiViT and TSFM across 128 univariate datasets
from the UCR archive and 27 multivariate datasets from the UEA archive. Here, we report the full
linear classification benchmark with accuracy scores for Mantis, Moment, TiViT, and their combina-
tions on each dataset. Table 17 presents the performance on the UCR dataset, while Table 18 reports
the results on the UEA dataset. Additionally, Table 19 provides the mean rank of all five methods
on both benchmarks. If multiple element share the same rank, we assign them the lowest rank in the
group. Comparisons with supervised and self-supervised baselines are provided in Table 20 for the
UCR benchmark and in Table 21 for the UEA benchmark.

Furthermore, we assess the performance of TiViT against baseline methods in time series forecasting
on 8 standard datasets (Table 22) and in time series anomaly detection on 248 datasets from the UCR
Anomaly Archive (Table 23).

Table 17: Classification accuracy for 128 univariate datasets from the UCR benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

ACSF1 0.673 ± 0.012 0.667 ± 0.021 0.773 ± 0.015 0.773 ± 0.006 0.757 ± 0.015
Adiac 0.728 ± 0.004 0.728 ± 0.011 0.708 ± 0.009 0.732 ± 0.008 0.730 ± 0.012
AllGestureWiimoteX 0.686 ± 0.010 0.699 ± 0.003 0.685 ± 0.010 0.717 ± 0.009 0.726 ± 0.001
AllGestureWiimoteY 0.710 ± 0.006 0.742 ± 0.007 0.721 ± 0.015 0.750 ± 0.022 0.760 ± 0.014
AllGestureWiimoteZ 0.605 ± 0.007 0.673 ± 0.018 0.658 ± 0.015 0.690 ± 0.014 0.700 ± 0.014
ArrowHead 0.804 ± 0.012 0.745 ± 0.007 0.819 ± 0.049 0.851 ± 0.015 0.829 ± 0.035
BME 0.936 ± 0.010 0.991 ± 0.010 0.991 ± 0.015 0.987 ± 0.018 0.996 ± 0.008
Beef 0.667 ± 0.067 0.689 ± 0.019 0.800 ± 0.067 0.800 ± 0.000 0.789 ± 0.069
BeetleFly 0.850 ± 0.050 0.867 ± 0.058 0.917 ± 0.058 0.917 ± 0.058 0.950 ± 0.000
BirdChicken 0.883 ± 0.029 0.950 ± 0.000 0.917 ± 0.029 0.900 ± 0.000 0.933 ± 0.029
CBF 0.907 ± 0.030 0.990 ± 0.009 0.999 ± 0.001 0.997 ± 0.004 0.999 ± 0.001
Car 0.856 ± 0.035 0.828 ± 0.010 0.844 ± 0.010 0.878 ± 0.010 0.889 ± 0.025
Chinatown 0.962 ± 0.003 0.964 ± 0.006 0.950 ± 0.018 0.954 ± 0.025 0.964 ± 0.010
ChlorineConcentration 0.733 ± 0.010 0.643 ± 0.009 0.728 ± 0.008 0.744 ± 0.012 0.738 ± 0.000
CinCECGTorso 0.719 ± 0.056 0.727 ± 0.021 0.868 ± 0.034 0.837 ± 0.063 0.860 ± 0.039
Coffee 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Computers 0.712 ± 0.036 0.740 ± 0.012 0.785 ± 0.005 0.784 ± 0.011 0.781 ± 0.023
CricketX 0.706 ± 0.020 0.726 ± 0.015 0.753 ± 0.006 0.757 ± 0.013 0.765 ± 0.011
CricketY 0.693 ± 0.018 0.732 ± 0.017 0.765 ± 0.006 0.776 ± 0.008 0.783 ± 0.012
CricketZ 0.740 ± 0.016 0.721 ± 0.009 0.773 ± 0.017 0.779 ± 0.006 0.791 ± 0.012
Crop 0.709 ± 0.003 0.695 ± 0.001 0.675 ± 0.001 0.714 ± 0.003 0.707 ± 0.002
DiatomSizeReduction 0.900 ± 0.030 0.881 ± 0.032 0.949 ± 0.055 0.935 ± 0.048 0.944 ± 0.054
DistalPhalanxOutlineAgeGroup 0.743 ± 0.011 0.746 ± 0.017 0.703 ± 0.015 0.729 ± 0.011 0.717 ± 0.011
DistalPhalanxOutlineCorrect 0.762 ± 0.017 0.728 ± 0.007 0.769 ± 0.029 0.766 ± 0.008 0.757 ± 0.014
DistalPhalanxTW 0.643 ± 0.004 0.698 ± 0.007 0.640 ± 0.012 0.671 ± 0.011 0.626 ± 0.019
DodgerLoopDay 0.442 ± 0.014 0.517 ± 0.036 0.488 ± 0.043 0.467 ± 0.014 0.508 ± 0.040
DodgerLoopGame 0.691 ± 0.062 0.720 ± 0.018 0.797 ± 0.045 0.766 ± 0.073 0.802 ± 0.061
DodgerLoopWeekend 0.986 ± 0.013 0.978 ± 0.007 0.959 ± 0.011 0.981 ± 0.008 0.969 ± 0.015
ECG200 0.843 ± 0.006 0.840 ± 0.017 0.863 ± 0.006 0.847 ± 0.031 0.847 ± 0.021
ECG5000 0.934 ± 0.002 0.926 ± 0.005 0.934 ± 0.002 0.936 ± 0.003 0.936 ± 0.004
ECGFiveDays 0.919 ± 0.059 0.967 ± 0.012 0.953 ± 0.030 0.972 ± 0.032 0.959 ± 0.028
EOGHorizontalSignal 0.559 ± 0.012 0.542 ± 0.014 0.598 ± 0.008 0.634 ± 0.008 0.642 ± 0.012
EOGVerticalSignal 0.462 ± 0.021 0.530 ± 0.013 0.445 ± 0.006 0.476 ± 0.016 0.471 ± 0.008
Earthquakes 0.734 ± 0.025 0.707 ± 0.018 0.698 ± 0.007 0.717 ± 0.008 0.703 ± 0.017
ElectricDevices 0.626 ± 0.006 0.698 ± 0.003 0.757 ± 0.009 0.741 ± 0.003 0.748 ± 0.007
EthanolLevel 0.649 ± 0.008 0.433 ± 0.004 0.574 ± 0.008 0.617 ± 0.013 0.586 ± 0.008
FaceAll 0.724 ± 0.006 0.797 ± 0.007 0.741 ± 0.005 0.743 ± 0.005 0.762 ± 0.007
FaceFour 0.826 ± 0.076 0.958 ± 0.007 0.871 ± 0.029 0.909 ± 0.034 0.936 ± 0.035
FacesUCR 0.789 ± 0.010 0.888 ± 0.003 0.881 ± 0.007 0.881 ± 0.004 0.912 ± 0.004
FiftyWords 0.733 ± 0.015 0.736 ± 0.010 0.758 ± 0.013 0.788 ± 0.003 0.796 ± 0.006
Fish 0.949 ± 0.000 0.954 ± 0.000 0.952 ± 0.007 0.945 ± 0.020 0.968 ± 0.013
FordA 0.915 ± 0.002 0.910 ± 0.003 0.915 ± 0.003 0.927 ± 0.004 0.917 ± 0.000
FordB 0.801 ± 0.004 0.769 ± 0.002 0.812 ± 0.005 0.809 ± 0.007 0.800 ± 0.012
FreezerRegularTrain 0.973 ± 0.011 0.976 ± 0.012 0.997 ± 0.002 0.996 ± 0.005 0.997 ± 0.002
FreezerSmallTrain 0.840 ± 0.012 0.870 ± 0.020 0.992 ± 0.004 0.982 ± 0.006 0.990 ± 0.003
Fungi 0.753 ± 0.033 0.810 ± 0.025 0.787 ± 0.022 0.806 ± 0.014 0.812 ± 0.023
GestureMidAirD1 0.659 ± 0.012 0.664 ± 0.027 0.746 ± 0.013 0.731 ± 0.023 0.756 ± 0.032
GestureMidAirD2 0.567 ± 0.016 0.585 ± 0.040 0.667 ± 0.012 0.644 ± 0.032 0.669 ± 0.015
GestureMidAirD3 0.359 ± 0.019 0.392 ± 0.013 0.472 ± 0.016 0.449 ± 0.016 0.464 ± 0.025
GesturePebbleZ1 0.893 ± 0.015 0.917 ± 0.003 0.895 ± 0.006 0.924 ± 0.000 0.928 ± 0.003
GesturePebbleZ2 0.846 ± 0.018 0.895 ± 0.007 0.840 ± 0.010 0.861 ± 0.035 0.892 ± 0.017
GunPoint 0.984 ± 0.027 0.987 ± 0.007 0.996 ± 0.004 0.987 ± 0.012 0.996 ± 0.004
GunPointAgeSpan 0.980 ± 0.008 0.998 ± 0.002 0.992 ± 0.002 0.993 ± 0.002 0.994 ± 0.000
GunPointMaleVersusFemale 1.000 ± 0.000 0.999 ± 0.002 0.996 ± 0.002 1.000 ± 0.000 1.000 ± 0.000
GunPointOldVersusYoung 1.000 ± 0.000 1.000 ± 0.000 0.988 ± 0.002 1.000 ± 0.000 1.000 ± 0.000
Ham 0.752 ± 0.025 0.667 ± 0.010 0.695 ± 0.000 0.721 ± 0.024 0.724 ± 0.019
HandOutlines 0.930 ± 0.007 0.931 ± 0.006 0.936 ± 0.007 0.945 ± 0.010 0.932 ± 0.007
Haptics 0.491 ± 0.026 0.462 ± 0.002 0.498 ± 0.007 0.535 ± 0.040 0.539 ± 0.009
Herring 0.698 ± 0.018 0.682 ± 0.024 0.599 ± 0.009 0.630 ± 0.039 0.625 ± 0.027
HouseTwenty 0.947 ± 0.010 0.961 ± 0.010 0.972 ± 0.005 0.972 ± 0.010 0.980 ± 0.005
InlineSkate 0.364 ± 0.019 0.334 ± 0.021 0.398 ± 0.015 0.401 ± 0.006 0.408 ± 0.015
InsectEPGRegularTrain 0.987 ± 0.014 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
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Continuation of Table 17

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

InsectEPGSmallTrain 0.953 ± 0.008 1.000 ± 0.000 0.968 ± 0.007 0.973 ± 0.005 0.999 ± 0.002
InsectWingbeatSound 0.539 ± 0.003 0.470 ± 0.019 0.536 ± 0.015 0.560 ± 0.007 0.539 ± 0.010
ItalyPowerDemand 0.938 ± 0.005 0.910 ± 0.006 0.920 ± 0.018 0.936 ± 0.011 0.923 ± 0.018
LargeKitchenAppliances 0.859 ± 0.005 0.820 ± 0.010 0.883 ± 0.014 0.873 ± 0.018 0.879 ± 0.014
Lightning2 0.760 ± 0.041 0.781 ± 0.025 0.803 ± 0.028 0.820 ± 0.028 0.803 ± 0.016
Lightning7 0.836 ± 0.036 0.749 ± 0.021 0.831 ± 0.021 0.881 ± 0.008 0.822 ± 0.024
Mallat 0.915 ± 0.010 0.868 ± 0.028 0.956 ± 0.017 0.963 ± 0.016 0.958 ± 0.018
Meat 0.911 ± 0.038 0.939 ± 0.019 0.800 ± 0.000 0.900 ± 0.029 0.850 ± 0.044
MedicalImages 0.730 ± 0.003 0.707 ± 0.024 0.740 ± 0.006 0.780 ± 0.006 0.761 ± 0.014
MelbournePedestrian 0.933 ± 0.003 0.908 ± 0.005 0.862 ± 0.006 0.932 ± 0.005 0.925 ± 0.003
MiddlePhalanxOutlineAgeGroup 0.489 ± 0.029 0.587 ± 0.019 0.537 ± 0.036 0.530 ± 0.004 0.571 ± 0.023
MiddlePhalanxOutlineCorrect 0.816 ± 0.009 0.845 ± 0.009 0.789 ± 0.015 0.792 ± 0.016 0.805 ± 0.016
MiddlePhalanxTW 0.506 ± 0.019 0.442 ± 0.017 0.506 ± 0.023 0.498 ± 0.025 0.511 ± 0.010
MixedShapesRegularTrain 0.947 ± 0.004 0.955 ± 0.006 0.974 ± 0.002 0.973 ± 0.003 0.976 ± 0.002
MixedShapesSmallTrain 0.882 ± 0.004 0.904 ± 0.002 0.950 ± 0.002 0.937 ± 0.004 0.957 ± 0.003
MoteStrain 0.889 ± 0.028 0.895 ± 0.026 0.875 ± 0.021 0.918 ± 0.008 0.901 ± 0.025
NonInvasiveFetalECGThorax1 0.919 ± 0.002 0.797 ± 0.006 0.884 ± 0.004 0.924 ± 0.003 0.885 ± 0.009
NonInvasiveFetalECGThorax2 0.927 ± 0.002 0.817 ± 0.004 0.915 ± 0.001 0.934 ± 0.004 0.918 ± 0.005
OSULeaf 0.917 ± 0.004 0.899 ± 0.005 0.977 ± 0.006 0.972 ± 0.010 0.978 ± 0.009
OliveOil 0.856 ± 0.051 0.822 ± 0.107 0.656 ± 0.077 0.778 ± 0.019 0.711 ± 0.051
PLAID 0.775 ± 0.017 0.852 ± 0.001 0.888 ± 0.008 0.901 ± 0.011 0.928 ± 0.012
PhalangesOutlinesCorrect 0.795 ± 0.006 0.794 ± 0.008 0.789 ± 0.004 0.795 ± 0.008 0.787 ± 0.004
Phoneme 0.277 ± 0.003 0.293 ± 0.008 0.377 ± 0.006 0.372 ± 0.003 0.386 ± 0.006
PickupGestureWiimoteZ 0.713 ± 0.042 0.767 ± 0.023 0.887 ± 0.031 0.847 ± 0.046 0.893 ± 0.023
PigAirwayPressure 0.109 ± 0.007 0.588 ± 0.012 0.540 ± 0.006 0.447 ± 0.013 0.598 ± 0.010
PigArtPressure 0.780 ± 0.010 0.827 ± 0.017 0.817 ± 0.013 0.833 ± 0.019 0.846 ± 0.005
PigCVP 0.747 ± 0.027 0.753 ± 0.007 0.702 ± 0.019 0.761 ± 0.018 0.801 ± 0.012
Plane 0.997 ± 0.005 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
PowerCons 0.931 ± 0.006 0.933 ± 0.010 0.894 ± 0.022 0.943 ± 0.013 0.906 ± 0.020
ProximalPhalanxOutlineAgeGroup 0.802 ± 0.020 0.852 ± 0.007 0.833 ± 0.027 0.824 ± 0.005 0.828 ± 0.017
ProximalPhalanxOutlineCorrect 0.883 ± 0.010 0.885 ± 0.008 0.861 ± 0.020 0.871 ± 0.016 0.858 ± 0.023
ProximalPhalanxTW 0.767 ± 0.010 0.740 ± 0.015 0.751 ± 0.022 0.730 ± 0.010 0.759 ± 0.023
RefrigerationDevices 0.496 ± 0.017 0.526 ± 0.022 0.555 ± 0.007 0.531 ± 0.005 0.570 ± 0.014
Rock 0.727 ± 0.031 0.700 ± 0.060 0.873 ± 0.099 0.873 ± 0.115 0.853 ± 0.117
ScreenType 0.499 ± 0.020 0.468 ± 0.026 0.530 ± 0.014 0.516 ± 0.002 0.552 ± 0.027
SemgHandGenderCh2 0.761 ± 0.018 0.883 ± 0.006 0.879 ± 0.001 0.878 ± 0.013 0.914 ± 0.006
SemgHandMovementCh2 0.398 ± 0.010 0.654 ± 0.018 0.545 ± 0.016 0.538 ± 0.031 0.688 ± 0.024
SemgHandSubjectCh2 0.648 ± 0.013 0.826 ± 0.005 0.840 ± 0.002 0.838 ± 0.012 0.895 ± 0.007
ShakeGestureWiimoteZ 0.887 ± 0.012 0.867 ± 0.012 0.827 ± 0.031 0.907 ± 0.031 0.840 ± 0.020
ShapeletSim 0.967 ± 0.010 0.919 ± 0.012 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
ShapesAll 0.886 ± 0.003 0.844 ± 0.010 0.901 ± 0.003 0.913 ± 0.008 0.908 ± 0.007
SmallKitchenAppliances 0.733 ± 0.010 0.796 ± 0.013 0.830 ± 0.003 0.817 ± 0.018 0.812 ± 0.008
SmoothSubspace 0.898 ± 0.023 0.971 ± 0.004 0.956 ± 0.010 0.964 ± 0.010 0.971 ± 0.010
SonyAIBORobotSurface1 0.834 ± 0.013 0.858 ± 0.015 0.890 ± 0.012 0.869 ± 0.009 0.896 ± 0.010
SonyAIBORobotSurface2 0.855 ± 0.027 0.895 ± 0.012 0.911 ± 0.049 0.914 ± 0.049 0.923 ± 0.048
StarLightCurves 0.969 ± 0.003 0.968 ± 0.002 0.973 ± 0.002 0.976 ± 0.002 0.976 ± 0.002
Strawberry 0.972 ± 0.002 0.960 ± 0.004 0.959 ± 0.002 0.968 ± 0.006 0.959 ± 0.003
SwedishLeaf 0.915 ± 0.007 0.942 ± 0.006 0.955 ± 0.003 0.959 ± 0.006 0.958 ± 0.003
Symbols 0.957 ± 0.019 0.957 ± 0.031 0.966 ± 0.034 0.973 ± 0.020 0.967 ± 0.035
SyntheticControl 0.966 ± 0.004 0.992 ± 0.002 0.999 ± 0.002 0.993 ± 0.003 1.000 ± 0.000
ToeSegmentation1 0.963 ± 0.007 0.952 ± 0.012 0.952 ± 0.012 0.963 ± 0.005 0.959 ± 0.009
ToeSegmentation2 0.885 ± 0.015 0.954 ± 0.008 0.923 ± 0.008 0.895 ± 0.027 0.926 ± 0.004
Trace 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
TwoLeadECG 0.901 ± 0.020 0.998 ± 0.002 0.997 ± 0.001 0.997 ± 0.001 1.000 ± 0.000
TwoPatterns 0.989 ± 0.001 0.946 ± 0.007 0.998 ± 0.000 0.999 ± 0.001 0.998 ± 0.001
UMD 0.993 ± 0.000 0.993 ± 0.000 0.993 ± 0.000 0.993 ± 0.000 0.993 ± 0.000
UWaveGestureLibraryAll 0.923 ± 0.002 0.874 ± 0.004 0.940 ± 0.001 0.950 ± 0.005 0.944 ± 0.003
UWaveGestureLibraryX 0.792 ± 0.001 0.779 ± 0.004 0.828 ± 0.004 0.838 ± 0.004 0.838 ± 0.002
UWaveGestureLibraryY 0.711 ± 0.006 0.678 ± 0.009 0.749 ± 0.004 0.758 ± 0.004 0.763 ± 0.006
UWaveGestureLibraryZ 0.731 ± 0.001 0.742 ± 0.009 0.770 ± 0.003 0.772 ± 0.004 0.786 ± 0.001
Wafer 0.992 ± 0.002 0.996 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Wine 0.889 ± 0.019 0.796 ± 0.037 0.599 ± 0.065 0.747 ± 0.028 0.759 ± 0.049
WordSynonyms 0.655 ± 0.003 0.626 ± 0.017 0.649 ± 0.007 0.690 ± 0.005 0.681 ± 0.006
Worms 0.745 ± 0.033 0.710 ± 0.033 0.762 ± 0.027 0.805 ± 0.026 0.762 ± 0.052
WormsTwoClass 0.775 ± 0.037 0.745 ± 0.007 0.784 ± 0.020 0.792 ± 0.026 0.766 ± 0.022
Yoga 0.833 ± 0.008 0.771 ± 0.014 0.826 ± 0.009 0.852 ± 0.007 0.844 ± 0.007

End of Table
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Table 18: Classification accuracy for 27 multivariate datasets from the UEA benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

ArticularyWordRecognition 0.988 ± 0.002 0.991 ± 0.002 0.977 ± 0.003 0.977 ± 0.003 0.974 ± 0.005
BasicMotions 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
CharacterTrajectories 0.982 ± 0.001 0.973 ± 0.001 0.964 ± 0.005 0.982 ± 0.001 0.978 ± 0.005
Cricket 1.000 ± 0.000 0.986 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
DuckDuckGeese 0.467 ± 0.081 0.433 ± 0.023 0.393 ± 0.081 0.413 ± 0.064 0.433 ± 0.050
ERing 0.895 ± 0.022 0.905 ± 0.025 0.975 ± 0.014 0.977 ± 0.006 0.981 ± 0.007
EigenWorms 0.746 ± 0.022 0.746 ± 0.016 0.911 ± 0.016 0.880 ± 0.009 0.911 ± 0.012
Epilepsy 1.000 ± 0.000 0.990 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
EthanolConcentration 0.445 ± 0.013 0.269 ± 0.044 0.485 ± 0.012 0.473 ± 0.030 0.465 ± 0.019
FaceDetection 0.584 ± 0.007 0.592 ± 0.006 0.598 ± 0.004 0.584 ± 0.007 0.607 ± 0.005
FingerMovements 0.633 ± 0.045 0.593 ± 0.025 0.517 ± 0.040 0.620 ± 0.036 0.553 ± 0.050
HandMovementDirection 0.279 ± 0.051 0.212 ± 0.021 0.275 ± 0.016 0.257 ± 0.036 0.257 ± 0.027
Handwriting 0.296 ± 0.018 0.425 ± 0.013 0.307 ± 0.034 0.340 ± 0.002 0.385 ± 0.021
Heartbeat 0.735 ± 0.007 0.800 ± 0.017 0.732 ± 0.008 0.717 ± 0.022 0.769 ± 0.003
InsectWingbeat 0.231 ± 0.012 0.573 ± 0.017 0.355 ± 0.008 0.332 ± 0.018 0.443 ± 0.020
JapaneseVowels 0.918 ± 0.006 0.978 ± 0.003 0.940 ± 0.002 0.938 ± 0.012 0.933 ± 0.008
LSST 0.571 ± 0.005 0.607 ± 0.009 0.604 ± 0.005 0.610 ± 0.009 0.652 ± 0.003
Libras 0.861 ± 0.017 0.887 ± 0.026 0.907 ± 0.006 0.922 ± 0.022 0.920 ± 0.018
MotorImagery 0.530 ± 0.026 0.563 ± 0.012 0.563 ± 0.049 0.560 ± 0.044 0.553 ± 0.042
NATOPS 0.900 ± 0.029 0.931 ± 0.014 0.869 ± 0.006 0.889 ± 0.006 0.878 ± 0.006
PEMS-SF 0.705 ± 0.029 0.788 ± 0.029 0.709 ± 0.084 0.763 ± 0.044 0.742 ± 0.087
PhonemeSpectra 0.186 ± 0.004 0.272 ± 0.006 0.245 ± 0.007 0.265 ± 0.007 0.286 ± 0.008
RacketSports 0.829 ± 0.007 0.919 ± 0.004 0.846 ± 0.010 0.871 ± 0.008 0.879 ± 0.027
SelfRegulationSCP1 0.762 ± 0.010 0.825 ± 0.022 0.858 ± 0.008 0.840 ± 0.003 0.891 ± 0.010
SelfRegulationSCP2 0.509 ± 0.031 0.491 ± 0.018 0.526 ± 0.038 0.506 ± 0.017 0.517 ± 0.020
SpokenArabicDigits 0.981 ± 0.003 0.907 ± 0.006 0.969 ± 0.001 0.979 ± 0.003 0.972 ± 0.002
UWaveGestureLibrary 0.846 ± 0.010 0.879 ± 0.015 0.910 ± 0.005 0.902 ± 0.004 0.919 ± 0.009

Table 19: Mean rank of TiViT and TSFMs across datasets from the UCR and UEA archive.

Model UCR UEA

Moment 3.75 3.33
Mantis 3.43 2.85

TiViT (Ours) 2.97 2.85

TiViT + Moment (Ours) 2.20 2.63
TiViT + Mantis (Ours) 1.95 2.22

F BROADER IMPACTS

Since this paper presents foundational machine learning research, we do not see any direct societal
risks. The broader impact of our work will depend on its specific application.

We demonstrate that our method TiViT significantly improves classification accuracy. This advance-
ment can be beneficial in healthcare where the analysis of physiological signals is crucial for early
diagnosis and treatment or in industry where the accurate monitoring of sensor data enables predic-
tive maintenance and reduces downtime.

However, deep learning models including TiViT operate as black boxes with limited interpretability.
In safety-critical domains or applications directly impacting humans, such models necessitate careful
deployment and oversight. Further research into interpretability and human-in-the-loop frameworks
is essential to make deep learning models trustworthy for real-world settings.
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Table 20: Classification accuracy across 91 UCR datasets. Baselines from Goswami et al. (2024).

Accuracy TiViT + Mantis TiViT Mantis MOMENT TimesNet GPT4TS TS2Vec T-Loss TNC TS-TCC

Mean 0.848 0.834 0.826 0.794 0.572 0.566 0.851 0.833 0.786 0.793
Median 0.880 0.849 0.852 0.815 0.565 0.583 0.871 0.849 0.788 0.802
Std. 0.133 0.136 0.143 0.147 0.238 0.234 0.134 0.136 0.168 0.176

Accuracy TST CNN Encoder FCN MCNN MLP ResNet t-LeNet TWIESN DTW

Mean 0.658 0.751 0.743 0.809 0.702 0.750 0.825 0.348 0.726 0.764
Median 0.720 0.773 0.753 0.837 0.718 0.766 0.852 0.333 0.724 0.768
Std. 0.220 0.180 0.159 0.188 0.194 0.169 0.177 0.221 0.164 0.152

Table 21: Classification accuracy across 29 UEA datasets. Baselines from Goswami et al. (2024).

Accuracy TiViT + Mantis TiViT Mantis MOMENT TS2Vec T-Loss TNC TS-TCC TST DTW

Mean 71.9 70.6 69.3 0.670 0.694 0.646 0.660 0.657 0.605 0.638
Median 82.3 78.9 78.8 0.722 0.683 0.676 0.746 0.751 0.620 0.664
Std. 26.0 26.6 26.6 0.274 0.255 0.296 0.267 0.263 0.294 0.296

Method Pretraining + linear probing Supervised training
TiViT (Ours) MOMENT GPT4TS PatchTST DLinear TimesNet FEDFormer Stationary N-BEATS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.153 0.211 0.154 0.209 0.162 0.212 0.149 0.198 0.176 0.237 0.172 0.220 0.217 0.296 0.173 0.223 0.152 0.210
192 0.196 0.247 0.197 0.248 0.204 0.248 0.194 0.241 0.220 0.282 0.219 0.261 0.276 0.336 0.245 0.285 0.199 0.260
336 0.248 0.285 0.246 0.285 0.254 0.286 0.245 0.282 0.265 0.319 0.280 0.306 0.339 0.380 0.321 0.338 0.258 0.311
720 0.321 0.337 0.315 0.336 0.326 0.337 0.314 0.334 0.333 0.362 0.365 0.359 0.403 0.428 0.414 0.410 0.331 0.359

ECL

96 0.140 0.240 0.136 0.233 0.139 0.238 0.129 0.222 0.140 0.237 0.168 0.272 0.193 0.308 0.169 0.273 0.131 0.228
192 0.152 0.251 0.152 0.247 0.153 0.251 0.157 0.240 0.153 0.249 0.184 0.289 0.201 0.315 0.182 0.286 0.153 0.248
336 0.168 0.267 0.167 0.264 0.169 0.266 0.163 0.259 0.169 0.267 0.198 0.300 0.214 0.329 0.200 0.304 0.170 0.267
720 0.204 0.297 0.205 0.295 0.206 0.297 0.197 0.290 0.203 0.301 0.220 0.320 0.246 0.355 0.222 0.321 0.208 0.298

Traffic

96 0.384 0.274 0.391 0.282 0.388 0.282 0.360 0.249 0.410 0.282 0.593 0.321 0.587 0.366 0.612 0.338 0.375 0.259
192 0.398 0.280 0.404 0.287 0.407 0.290 0.379 0.256 0.423 0.287 0.617 0.336 0.604 0.373 0.613 0.340 0.403 0.274
336 0.407 0.285 0.414 0.292 0.412 0.294 0.392 0.264 0.436 0.296 0.629 0.336 0.621 0.383 0.618 0.328 0.426 0.285
720 0.443 0.303 0.450 0.310 0.450 0.312 0.432 0.286 0.466 0.315 0.640 0.350 0.626 0.382 0.653 0.355 0.508 0.335

ETTh1

96 0.391 0.417 0.387 0.410 0.376 0.397 0.370 0.399 0.375 0.399 0.384 0.402 0.376 0.419 0.513 0.491 0.399 0.428
192 0.411 0.430 0.410 0.426 0.416 0.418 0.413 0.421 0.405 0.416 0.436 0.429 0.420 0.448 0.534 0.504 0.451 0.464
336 0.425 0.442 0.422 0.437 0.442 0.433 0.422 0.436 0.439 0.443 0.491 0.469 0.459 0.465 0.588 0.535 0.498 0.500
720 0.447 0.469 0.454 0.472 0.477 0.456 0.447 0.466 0.472 0.490 0.521 0.500 0.506 0.507 0.643 0.616 0.608 0.573

ETTh2

96 0.319 0.375 0.288 0.345 0.285 0.342 0.274 0.336 0.289 0.353 0.340 0.374 0.358 0.397 0.476 0.458 0.327 0.387
192 0.363 0.406 0.349 0.386 0.354 0.389 0.339 0.379 0.383 0.418 0.402 0.414 0.429 0.439 0.512 0.493 0.400 0.435
336 0.372 0.418 0.369 0.408 0.373 0.407 0.329 0.380 0.448 0.465 0.452 0.452 0.496 0.487 0.552 0.551 0.747 0.599
720 0.407 0.447 0.403 0.439 0.406 0.441 0.379 0.422 0.605 0.551 0.462 0.468 0.463 0.474 0.562 0.560 1.454 0.847

ETTm1

96 0.315 0.367 0.293 0.349 0.292 0.346 0.290 0.342 0.299 0.343 0.338 0.375 0.379 0.419 0.386 0.398 0.318 0.367
192 0.352 0.387 0.326 0.368 0.332 0.372 0.332 0.369 0.335 0.365 0.374 0.387 0.426 0.441 0.459 0.444 0.355 0.391
336 0.381 0.404 0.352 0.384 0.366 0.394 0.366 0.392 0.369 0.386 0.410 0.411 0.445 0.459 0.495 0.464 0.401 0.419
720 0.437 0.436 0.405 0.416 0.417 0.421 0.416 0.420 0.425 0.421 0.478 0.450 0.543 0.490 0.585 0.516 0.448 0.448

ETTm2

96 0.189 0.277 0.170 0.260 0.173 0.262 0.165 0.255 0.167 0.269 0.187 0.267 0.203 0.287 0.192 0.274 0.197 0.271
192 0.252 0.318 0.227 0.297 0.229 0.301 0.220 0.292 0.224 0.303 0.249 0.309 0.269 0.328 0.280 0.339 0.285 0.328
336 0.301 0.351 0.275 0.328 0.286 0.341 0.274 0.329 0.281 0.342 0.321 0.351 0.325 0.366 0.334 0.361 0.338 0.366
720 0.382 0.405 0.363 0.387 0.378 0.401 0.362 0.385 0.397 0.421 0.408 0.403 0.421 0.415 0.417 0.413 0.395 0.419

ILI

24 2.822 1.142 2.728 1.114 2.063 0.881 1.319 0.754 2.215 1.081 2.317 0.934 3.228 1.260 2.294 0.945 4.539 1.528
36 2.862 1.143 2.669 1.092 1.868 0.892 1.430 0.834 1.963 0.963 1.972 0.920 2.679 1.080 1.825 0.848 4.628 1.534
48 2.846 1.123 2.728 1.098 1.790 0.884 1.553 0.815 2.130 1.024 2.238 0.940 2.622 1.078 2.010 0.900 4.957 1.585
60 3.023 1.155 2.883 1.126 1.979 0.957 1.470 0.788 2.368 1.096 2.027 0.928 2.857 1.157 2.178 0.963 5.429 1.661

Table 22: Long-term forecasting. Baselines from Goswami et al. (2024).
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Adjusted Best F1 VUS-ROC

TiViT Anomaly TF Moment GPT4TS TimesNet TiViT AnomalyTF Moment GPT4TS TimesNet

1sddb40 0.935 0.030 0.540 0.190 0.680 0.772 0.640 0.750 0.660 0.720
BIDMC1 1.000 0.990 1.000 1.000 1.000 0.642 0.690 0.650 0.630 0.740
CHARISfive 0.046 0.010 0.130 0.020 0.080 0.572 0.360 0.400 0.450 0.460
CHARISten 0.851 0.020 0.110 0.100 0.030 0.597 0.430 0.540 0.510 0.530
CIMIS44AirTemperature3 1.000 0.060 0.980 0.180 0.470 0.843 0.640 0.750 0.620 0.740
CIMIS44AirTemperature5 1.000 0.390 0.990 0.200 0.710 0.859 0.780 0.810 0.560 0.720
ECG2 1.000 1.000 1.000 0.900 1.000 0.821 0.830 0.840 0.780 0.600
ECG3 1.000 0.360 0.980 0.840 0.480 0.808 0.540 0.770 0.450 0.610
Fantasia 1.000 0.750 0.950 0.870 0.550 0.786 0.730 0.640 0.650 0.610
GP711MarkerLFM5z4 1.000 0.930 1.000 0.640 0.950 0.886 0.540 0.730 0.620 0.720
GP711MarkerLFM5z5 1.000 0.760 0.970 0.480 0.900 0.961 0.690 0.720 0.630 0.840
InternalBleeding5 1.000 0.940 1.000 0.920 1.000 0.932 0.460 0.690 0.630 0.940
Italianpowerdemand 0.310 0.010 0.740 0.010 0.440 0.709 0.450 0.770 0.480 0.710
Lab2Cmac011215EPG5 1.000 0.990 0.980 0.600 0.990 0.739 0.770 0.630 0.640 0.610
Lab2Cmac011215EPG6 0.267 0.410 0.100 0.100 0.170 0.554 0.700 0.480 0.520 0.450
MesoplodonDensirostris 1.000 1.000 0.840 1.000 1.000 0.748 0.850 0.720 0.690 0.790
PowerDemand1 0.994 0.870 0.440 0.760 0.950 0.919 0.720 0.540 0.600 0.750
TkeepFirstMARS 0.577 0.010 0.150 0.020 0.230 0.728 0.520 0.760 0.500 0.790
TkeepSecondMARS 1.000 0.830 1.000 0.120 0.950 0.989 0.720 0.910 0.810 0.980
WalkingAceleration5 0.967 0.990 1.000 0.870 0.930 0.968 0.940 0.870 0.910 0.850
apneaecg 0.814 0.400 0.200 0.310 0.260 0.608 0.580 0.690 0.580 0.760
apneaecg2 1.000 0.650 1.000 1.000 0.650 0.845 0.790 0.740 0.650 0.610
gait1 1.000 0.180 0.360 0.410 0.520 0.887 0.630 0.570 0.580 0.600
gaitHunt1 0.596 0.080 0.430 0.100 0.300 0.847 0.810 0.680 0.710 0.840
insectEPG2 0.962 0.120 0.230 0.810 0.960 0.871 0.650 0.820 0.560 0.730
insectEPG4 0.513 0.980 1.000 0.210 0.850 0.691 0.690 0.720 0.490 0.650
ltstdbs30791AS 1.000 1.000 1.000 1.000 1.000 0.959 0.780 0.810 0.740 0.670
mit14046longtermecg 0.676 0.450 0.590 0.580 0.600 0.661 0.790 0.660 0.610 0.840
park3m 1.000 0.150 0.640 0.630 0.930 0.875 0.630 0.780 0.540 0.780
qtdbSel1005V 0.844 0.410 0.650 0.390 0.530 0.612 0.520 0.640 0.610 0.540
qtdbSel100MLII 1.000 0.420 0.840 0.600 0.870 0.573 0.620 0.620 0.580 0.650
resperation1 0.308 0.000 0.150 0.010 0.030 0.725 0.750 0.670 0.470 0.670
s20101mML2 1.000 0.690 0.710 0.050 0.080 0.942 0.640 0.720 0.640 0.690
sddb49 1.000 0.890 1.000 0.940 1.000 0.937 0.660 0.730 0.580 0.680
sel840mECG1 0.984 0.160 0.660 0.210 0.360 0.702 0.620 0.720 0.650 0.600
sel840mECG2 0.984 0.150 0.390 0.280 0.210 0.683 0.590 0.690 0.520 0.520
tilt12744mtable 0.254 0.070 0.240 0.000 0.030 0.761 0.480 0.740 0.510 0.640
tilt12754table 0.131 0.230 0.640 0.060 0.050 0.855 0.600 0.820 0.550 0.750
tiltAPB2 1.000 0.920 0.980 0.830 0.380 0.844 0.770 0.770 0.600 0.700
tiltAPB3 0.148 0.170 0.850 0.050 0.090 0.769 0.680 0.650 0.440 0.580
weallwalk 0.706 0.000 0.580 0.130 0.170 0.849 0.730 0.930 0.870 0.850

Mean 0.802 0.475 0.684 0.449 0.570 0.789 0.659 0.711 0.605 0.695
Median 0.994 0.410 0.740 0.390 0.550 0.808 0.660 0.720 0.600 0.700
Std 0.300 0.379 0.321 0.358 0.355 0.122 0.124 0.106 0.107 0.118

Table 23: Anomaly detection performance across 41 datasets from the UCR Anomaly Archive mea-
sured using adjusted best F1 and VUS-ROC. Bold indicates the best performance per dataset/metric.
Baselines from Goswami et al. (2024).
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