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Abstract

Deploying multi-satellite constellations for Earth observation
requires coordinating potentially hundreds or thousands of
spacecraft. With increasing on-board capability for auton-
omy, we can view the constellation as a multi-agent system
(MAS) and employ decentralized scheduling solutions. We5

formulate the problem as a distributed constraint optimization
problem (DCOP) and desire scalable inter-agent communi-
cation. The problem consists of millions of variables which,
coupled with the structure, make existing DCOP algorithms
inadequate for this application. We develop a scheduling ap-10

proach that employs a well-coordinated heuristic, referred
to as the Geometric Neighborhood Decomposition (GND)
heuristic, to decompose the global DCOP into sub-problems
as to enable the application of DCOP algorithms. We present
the Neighborhood Stochastic Search (NSS) algorithm, a de-15

centralized algorithm to effectively solve the multi-satellite
constellation observation scheduling problem using decom-
position. In full, we identify the roadblocks of deploying
DCOP solvers to a large-scale, real-world problem, propose
a decomposition-based scheduling approach that is effective20

at tackling large scale DCOPs, empirically evaluate the ap-
proach against other baselines to demonstrate the effective-
ness, and discuss the generality of the approach.

Introduction
Large-scale, Earth observing satellite constellations with25

hundreds of spacecraft are becoming increasingly promi-
nent in order to monitor Earth phenomena. Spire, Satellogic,
Canon, SatRev, Spacety, Planet Lab’s Dove, and SkySat are
several examples (NewSpace 2023). Observation schedul-
ing for a large-scale constellation requires fusing informa-30

tion from many sources and tasking space assets that have
varying constraints, capabilities, and visibility of Earth tar-
gets. In addition to Earth observation, satellites are deployed
for a variety of applications, including forming large internet
constellations (SpaceX 2023). Any multi-satellite constella-35

tion that requires coordinating agents poses a challenging
planning and scheduling problem.

In practice, satellite observation scheduling is typically
done in a centralized fashion, where a single controller de-
velops a single schedule that specifies the actions of every40

satellite (Shah et al. 2019). Even most non-operational tech-
nology efforts are centralized (Boerkoel et al. 2021; Nag, Li,
and Merrick 2018). While centralized approaches can pro-

vide high-quality solutions, reliance on a single computing
source makes the approaches vulnerable to single point fail- 45

ures and can increase communications burden.
Framing the constellation as a multi-agent system (MAS)

enables the application of decentralized scheduling solu-
tions. Decentralized scheduling addresses both the system’s
robustness and the vulnerabilities of a central controller 50

(Bonnet and Tessier 2008; Phillips and Parra 2021). Many
MAS problems are framed to optimize a global cost func-
tion where individual agents control the parameters of the
function. Typically, the agents in the system communicate
to coordinate their parameter assignments. 55

In many applications, communication may be unreliable
for large message volume. For example, orbiters around a
comet or the sun may experience communication interfer-
ence or infrequent line of sight with each other. For an Earth
orbiting constellation, satellites may have limited cross-link 60

capability. For this reason, we desire algorithms that procure
a limited amount of messaging. Formulating the problem as
a distributed constraint optimization problem (DCOP), we
aim to produce high quality scheduling solutions.

The problem requires agents to coordinate the assign- 65

ments of millions of variables and the desire for limited
communication make the direct application of DCOP al-
gorithms inadequate. However, by decomposing the global
problem, we can deploy DCOP algorithms to solve smaller
sub-problems. We construct a heuristic, called the Geomet- 70

ric Neighborhood Decomposition heuristic (GND), that par-
titions the agents and requests in a coordinated fashion as
to instantiate sub-problems that are advantageous to solve.
Each agent individually computes the heuristic using only
knowledge of the requests to schedule and the configuration 75

of the constellation. The heuristic is grounded in geometric
computation and is composed of three layers that partition
the agents and requests into sub-problems. The goal is for
the constellation to maximize the number of requests satis-
fied, while adhering to downlinks and memory constraints. 80

The heuristic is parameterized such that the sub-problems
produced can be of arbitrary size. Through this de-
composition, we can deploy DCOP algorithms on con-
stant sized sub-problems rather than the global prob-
lem that scales with the number of agents and re- 85

quests. To solve each sub-problem using communication,
we build on the Broadcast Decentralized algorithm (BD)



(Parjan and Chien 2023), an adaptation of two incom-
plete DCOP algorithms, Maximum Gain Messaging (MGM)
and Distributed Stochastic Search Algorithm (DSA) (Zhang90

et al. 2005), for the application of multi-satellite observation
scheduling. We refer to our developed algorithm as Neigh-
borhood Stochastic Search (NSS). Our algorithm extends
the BD algorithms in two major aspects: (1) it is scalable
to large problem instances in both computational complexity95

and communication complexity, and (2) it enables constraint
reasoning, such as resource constrained scheduling.

Empirical results demonstrate the efficacy of our ap-
proach on small and large problem instances compared to
decentralized and centralized baselines. On small problem100

instances, we show the gap to optimal solutions, while large
problem instances enforce the performance at scale, includ-
ing run-time results. We aim to close the gap between decen-
tralized solutions and centralized solutions while precluding
an infeasible amount of messaging.105

Our contributions in this paper are hence:
1. uncovering the obstacles in applying existing DCOP

techniques to the large-scale, multi-satellite decentral-
ized scheduling problem,

2. introducing a decomposition-based heuristic approach to110

solve the scheduling problem and presenting the NSS al-
gorithm, and

3. demonstrating the efficacy of our approach on realistic
problem instances.

Related Work115

There are many aspects of satellite observation planning
ranging from visibility computation, to downlink schedul-
ing, to constraint based task allocation. This paper is mostly
concerned with the last subject. Previous work has predomi-
nantly focused on centralized solutions to the multi-satellite,120

resource-constrained scheduling problem (Augenstein et al.
2016; Nag, Li, and Merrick 2018; Shah et al. 2019; Squil-
laci, Roussel, and Pralet 2021; Boerkoel et al. 2021; Squil-
laci, Pralet, and Roussel 2023; He et al. 2018; Eddy and
Kochenderfer 2021; Globus et al. 2004). More recently, de-125

centralized scheduling approaches have proposed auction-
based methods (Picard 2021; Phillips and Parra 2021) and
heuristic search based methods relying on broadcasting (Par-
jan and Chien 2023). The auction-based methods rely on
a centralized controller to act as an auctioneer and has a130

prohibitive communication and computational complexity.
Each agent exchanges a polynomial (in the requests) num-
ber of messages with the auctioneer. Removing the central
auctioneer is possible, but results in an explosion of the com-
munication complexity depending on the network topology.135

We build on the approach presented by Parjan and Chien
(2023), which attempts to address some of the limitations
of the auction-based methods. In their approach, referred to
as BD, each agent uses globally communicated satisfaction
information as a search heuristic. The main limitation is that140

this approach requires each agent to send a high volume of
messages to every other agent, resulting in a communication
complexity at each iteration that is polynomial in the number
of agents and requests.

Multi-satellite observation scheduling has been framed as 145

a DCOP previously (Picard 2021; Parjan and Chien 2023).
DCOP algorithms tend to suffer from significant compu-
tational complexity or a large reliance on communication.
Solving a DCOP optimally is known to be NP-Hard (Modi
et al. 2005). Complete algorithms, such as SyncBB (Hi- 150

rayama and Yokoo 1997), ADOPT (Modi et al. 2005), or
OptAPO (Mailler and Lesser 2004) are computationally in-
feasible for our problem scale.

On the other hand, incomplete DCOP algorithms, such as
Max-Sum (Stranders et al. 2009), Maximum-Gain Messag- 155

ing (MGM) (Maheswaran et al. 2004), Distributed Stochas-
tic Search (DSA) (Zhang et al. 2005), or Distributed Gibbs
(D-Gibbs) (Nguyen, Yeoh, and Lau 2013), which trade off
optimality for scalability, require notable messaging. MGM
and DSA are two search algorithms that are the founda- 160

tion of BD, and hence NSS. MGM and DSA perform lo-
cal search to iteratively improve the global solution. Genetic
algorithms have also been applied, incurring similar com-
plexity as MGM and DSA (Mahmud et al. 2019).

NSS is motivated by Region-optimal algorithms (Pearce 165

and Tambe 2007). These algorithms solve sub-problems op-
timally, reducing the cost of complete algorithms, albeit to
the size of sub-problems. NSS extends Region-optimal algo-
rithms by obtaining incomplete solutions to sub-problems,
reducing the complexity when sub-problems remain large. 170

Another divide-and-conquer method for solving DCOPs is
the application of the distributed large neighborhood search
(DLNS) framework to DCOPs (Hoang et al. 2018).

In the next sections, we discuss the challenges of apply-
ing these algorithms to the multi-satellite constellation ob- 175

servation scheduling problem, and show how heuristically
decomposing the problem can overcome the hurdles in their
deployment while still providing high quality solutions.

Problem Formulation
In this section, we outline the multi-satellite constellation 180

observation scheduling problem (COSP). The main applica-
tion of COSP is for Earth observation, however the formu-
lation extends to orbits around other bodies. We start by for-
mally defining the problem. Then, we present the problem as
a DCOP and discuss theoretical properties of the problem, 185

including the barriers to applying current DCOP algorithms.

Defining COSP
The components of COSP are defined below.

1. H “ rhs, hes: the scheduling horizon.
2. K : the set of orbital planes. An orbital plane defines the 190

geometric plane that contains a collection of satellite or-
bits. We denote K P K as an orbital plane, and k P K for
the specific orbit of a satellite within that plane. Figure 1
shows the orbits defined by a single orbital plane with 5
satellites. 195

3. A: the set of agents. Each ai P A is a satellite in the con-
stellation. We define ai “ pk,mq where k is the orbit of
the satellite and m P R` is the memory capacity. The no-
tation kpaiq and mpaiq denote these values for agent ai,
and will use the same notation for equivalent indexing. 200



Figure 1: Visualization of an orbital plane with 5 satellites.

4. T : the set of point targets on Earth. Each ti P T is defined
as ti “ plat, lonq.

5. R: the set of requests. Each ri P R is defined as ri “

pt, hq which denotes the target to observe, t P T , and
when to observe, h Ă H .205

6. For each agent, we define the following sets.
Sai

: the set of possible request fulfillments for agent ai. A
request fulfillment, sj P Sai

, is a task that can be sched-
uled to satisfy a request. We define sj “ pr, h,mq where
r P R is the request being satisfied, h Ă hprq is the inter-210

val of the observation (including processing and slewing
time), and m P R` is the amount of memory required.
Xai

: the set of Boolean decision variables for agent ai.
For each sj P Sai

we define the Boolean decision vari-
able xj P Xai where xj “ 1 ðñ agent ai schedules215

task sj . We denote xpsjq “ xj for agent ai.
Dai : the set of downlinks for agent ai. A downlink,
dj P Dai , is defined as dj “ ph,mq where m P R`

is the maximum amount of data that can be downlinked,
and the interval h Ă H is the time window for the down-220

link. No possible tasks occur during a downlink, and all
downlinks are mandatory.
Cai

“ CDai
Y CSai

: the set of constraints where

CDai
“

ď

djPDai

cdj
, and

cdj
“

ÿ

slPS
dj
ai

xpslq ¨ mpslq ď MINpmpaiq,mpdjqq.

Here, Sdj
ai denotes the set of possible tasks for which the

soonest downlink window in the future is dj . This con-
straint enforces that agent ai never exceeds its memory
capacity and all taken observations can be downlinked at
the soonest opportunity. We define

CSai
“

ď

sj ,slPSai

csj ,sl , where

csj ,sl “ rxpsjq ¨ xpslq ` Iphpsjq X hpslq ‰ Hq ď 1s .

This constraint ensures that no tasks are scheduled to
overlap. Here, I denotes the indicator function.

The goal of the optimization problem is to maximize the225

number of requests satisfied while not violating the con-
straints of any agent. A solution, X , is the assignment of
each x P Xai

such that Cai
is satisfied for all ai.

Formulating COSP as a DCOP
We can formulate the above problem structure as a dis- 230

tributed constraint optimization problem (DCOP), similar to
previous work (Picard 2021; Parjan and Chien 2023). The
DCOP is a five-tuple xA,X ,D,F , αy which we define for
our problem below.
• A: the set of satellites as previously defined. 235

• X “
Ť

aiPA Xai : the set of Boolean decision variables
for every agent’s possible task set as previously defined.

• D “
Ť

xPX t0, 1u: all variable domains are Boolean.
• FpXq “

Ť

aiPA fai
pXai

q Y
Ť

rjPR frj pXrj q where

faipXaiq “

"

0 Cai satisfied by Xai

´8 else

and
frj pXrj q “ 1 ´

ź

xPXrj

p1 ´ xq.

Here, Xai
is the set of variables in the solution, X , such

that αpxq “ ai, and Xrj is the set of variables such 240

that x “ xpslq and rpslq “ rj . See that frj pXrj q “

1 iff there exists a satellite satisfying request rj and
faipXaiq “ 0 iff agent ai has a schedule that satisfies
its constraints.

• αpxq “ ai ðñ x P Xai maps a variable to the agent 245

that can schedule the associating request fulfillment.
The goal of a DCOP is to obtain an assignment of all vari-

ables as to maximize (or minimize) the sum of the utility
functions, X˚ “ argmaxX

ř

fPF f
`

XS˘

.
While the problem can be represented as a DCOP, there 250

exist roadblocks to applying existing DCOP algorithms. The
constraint graph defined by this formulation has a mini-
mum of |A| ` |R| « 103 complete sub-graphs derived from
fai , frj . Each ai P A contributes a clique of size |Xai |, and
each rj P R contributes a clique of size |Xrj |. In many prob- 255

lem instances, request durations are long enough such that
the majority of agents are able to satisfy any particular re-
quest. This results in |Xai

| “ Ωp|R|q and |Xrj | “ Ωp|A|q.
In addition, most of these cliques are highly connected to
each other, resulting in a cyclic graph. Figure 2 shows an 260

example of the structure we discuss for a problem instance
with 3 agents and 4 requests.

a0

a2

a1

Figure 2: Constraint graph with |A| “ 3 and |R| “ 4. Nodes
denote the variables, and edges denote a shared constraint.

Recall that we consider constellations with hundreds of
agents and thousands of requests. Therefore, since each



agent ai controls all variables in Xai , the neighborhood of265

variables for an agent is Ωp|A| ¨ |R|q « 105 variables.
The problem scale coupled with the structure make it un-
suitable for many DCOP algorithms. Complete DCOP al-
gorithms are simply infeasible for the problem size, having
a computational complexity of Op2|A|¨|R|q « 1030102. In-270

complete DCOP algorithms, such as Max-Sum (Stranders
et al. 2009) or Maximum Gain Messaging (MGM) (Mah-
eswaran et al. 2004), require many iterations, where at every
iteration, each agent would exchange Ωp|A|q messages, each
with size Ωp|R|q, which is on the order of 107 total volume if275

agents send direct messages to each other (Fioretto, Pontelli,
and Yeoh 2018). Finally, we mention that the DLNS and
region-optimal approaches, require defining sub-problems.
One application of our approach is outlining methods for
sub-problem selection. However, the above two algorithms280

still incur substantial costs when sub-problems remain large.
We mention one distinction between the scheduling prob-

lem we will examine in this paper and a traditional DCOP. In
standard DCOPs, agents know the variables and constraints
of neighboring agents (Fioretto, Pontelli, and Yeoh 2018).285

An agent is unaware of the values of the variables that other
agents control, but is privy to their existence. In our multi-
satellite constellation, we only assume that agents are aware
of the existence of other agents, but have no knowledge of
the request fulfillments (variables) other agents are attempt-290

ing to schedule. The implication is that an agent does not
know the full structures of the utility functions for which
its variables are affiliated. Note, it takes one broadcast for
each agent to share their request fulfillments before the prob-
lem becomes a standard DCOP as outlined in the previous295

section. This small nuance is motivated by the requirements
of the application, but does not impact the approach signifi-
cantly from applying to other problems.

Heuristic Decomposition
In this section, we outline the construction of the Geometric300

Neighborhood Decomposition heuristic (GND) that decom-
poses the global problem. GND, which is computed individ-
ually by each agent, inherently coordinates agents without
communication. This heuristic is grounded in geometry, and
is composed of three layers: (1) the global supply layer, (2)305

the inter-neighborhood delegation layer, (3) and the intra-
neighborhood delegation layer.

The first layer addresses the nuance of the scheduling
problem mentioned in the previous section, while the lat-
ter two layers act to partition the agents and requests into310

sub-problems. An agent computes the heuristic values only
relevant to itself, remaining unaware of the heuristic compu-
tation of other agents.

Global Supply
In our application, supply, or the number of agents capable315

of satisfying a request, is important as there are observations
for which only a few satellites have visibility, as well as re-
quests that the entire constellation can service. Identifying
supply enables agents to make informed decisions as to min-
imize redundant observations and collectively service more320

requests. The lack of knowledge of other agent variables re-
sults in agents being unaware of the global supply.

In the traditional DCOP, the supply is trivial to compute.
For a request, r, the supply is the number of agents that have
a variable x “ xpsjq such that sj “ pr, h,mq, which is 325

known since these agents all share a constraint.
We use the geometry of the satellite orbits to estimate the

visibility of a ground target for each orbital plane, obtaining
an approximation of the supply. Specifically, the supply of
a request, r, provided by an orbital plane, K, is determined 330

as the duration of time that the request is in the longitudinal
cross-tracks of the plane times the number of agents that
pass over a point per epoch. The longitudinal cross-tracks
are the intervals in which the target is within a visible range
of an orbital plane. This is determined by the point of closest 335

approach, satellite slewing capabilities, and field of view.
Figure 3 illustrates the geometric interval that a ground

target is in the cross-tracks. In the figure, ZECI denotes the
rotation axis of Earth. P1 and P2 are the bounding planes of
the cross-tracks either side of the orbital plane. The green 340

area then depicts the region for which any ground target
might be within visibility of a satellite in the orbital plane.
The right ascension bounds depict the interval of potential
visibility for a specific ground target. Combining that inter-
val with the number of agents that pass over a point per 345

epoch, we obtain the estimate of supply. The latter piece
of information is determined by the fixed amount of time
it takes any satellite in the orbital plane to complete one full
orbit and the number of agents in the plane.

Figure 3: The right ascension bounds show the interval a
target is within potential visibility of the orbital plane.

Whether the supply is estimated or known exactly makes 350

little difference to the approach. However, in this applica-
tion, knowing the supply is an unrealistic assumption.

Inter-Neighborhood Delegation
The supply layer provides a global view of the problem to
each satellite. Considering the number of satellites that can 355

service an observation request puts the contention into per-
spective. The inter-neighborhood heuristic delegates a re-
quest to a fixed subset of agents.

Each orbital plane, K P K, provides a natural grouping
of agents into a neighborhood. Satellites in the same or- 360

bital plane experience similar relative geometries of Earth
targets, making their view of the problem homogeneous.



They typically share the ability to satisfy the same requests,
making orbital planes a logical choice of neighborhoods.
We acknowledge that this neighborhood selection exploits365

specifics of our domain, and that neighborhood selection in
other domains is not always as clear-cut.

In this section, and future sections, we use the term or-
bital plane and neighborhood interchangeably. It is impor-
tant to note that our use of the term neighborhood is differ-370

ent from the typical notion of a neighborhood in DCOPs.
In a DCOP, the neighborhood refers to agents that share a
constraint. Agents in an orbital plane typically share many
constraints, however, they also share constraints with agents
in other orbital planes. At an abstract level, this layer of the375

heuristic delegates control of each utility function, frj , to a
partition of agents.

We define the inter-neighborhood delegation heuristic
based on properties of an orbital plane and the request. For
a given request, r, the neighborhood delegated to it is deter-380

mined as the orbital plane with the most agents for which
there is non-zero supply. Ties are broken by selecting the
plane with the minimum distance to the request target, tprq,
over the request window. The minimum distance is esti-
mated using three points over the continuous interval of the385

request horizon, hprq: the start, the end, and the midpoint.
This tie-breaking can be viewed as a unique secondary esti-
mate of the supply.

The inter-neighborhood delegation serves as a complete
partitioning of the global problem into sub-problems. For390

each request, r, there exists exactly one plane, K, such that
the request will be delegated. Consider that agent ai disre-
gards all variables, x, for which the associated request is not
delegated to the neighborhood of ai. We can then remove
the factors containing x from each frj and fai . The prob-395

lem has now been decomposed such that an agent is only
neighbors (by the DCOP notion) with other agents in the
same neighborhood. From this we obtain a partitioning into
|K| sub-problems in which the agents of each sub-problem
are the agents in an orbital plane, K, and the variables are400

determined by the inter-neighborhood delegation heuristic.
Later, we will present the constellation, but as a considera-

tion we note here that |K| “ 4 in our evaluations. Therefore,
while this partitioning is substantial, it is not necessarily suf-
ficient to reduce the problem scale to a desired level.405

Intra-Neighborhood Delegation
The value of the supply heuristic and the inter-neighborhood
heuristic are not unique for agents in the same orbital plane.
The final layer in the decomposition further partitions neigh-
borhoods into smaller problems. The intra-neighborhood410

heuristic is driven by agent biases, where agents with the
same biases form a subset of the partition.

First, we define the bias of an agent, denoted b. A bias
is parameterized by a periodicity, ρ P N. The periodicity
both determines the number of unique biases and the number415

of agents for which the bias repeats in a neighborhood. To
compute the bias, we index each agent in an orbital plane,
K, by arbitrarily selecting an agent 0 and ordering all the
agents in the plane from 0 to |K| ´ 1 by moving counter-
clockwise. The bias, b P r0, ρq, is computed as an integer420

- Sub-neighborhood agent
- Orbital plane agent

Figure 4: Partition within an orbital plane with ρ “ 10.

based on the index, i, of the agent: b ” i mod ρ.
The periodicity of the bias means all agents indexed

i ` n ¨ ρ possess the same bias for all n P N. Increas-
ing the periodicity creates more sub-groups of agents with
the same bias. The motivation for spacing agents with the 425

same bias as opposed to selecting consecutive agents is to
diversify the sub-neighborhood’s collective visibilities and
geometries. This creates more advantageous sub-problems
to solve by enabling a wider birth of opportunities for ob-
servation. The bias for a single agent is fixed, therefore we 430

assume it is known by all agents apriori with the configura-
tion of the satellite constellation.

We consider two biases. The supply bias sub-divides the
original supply thresholds into ρ partitions, and an agent
with bias, b, will be biased towards requests that fall into the 435

sub-bucket indexed b. The request target position bias exam-
ines the latitude and longitude of the ground target, tprq. For
both coordinates, we add a bias if the degree times ten mod-
ular ρ is equivalent to the agent bias b. We multiply by ten to
give more precision to the bias. Targets tend to be clustered 440

in small geographic regions, so using more precision pro-
vides more diversity in this bias. We mentioned previously
that many agents experience similar relative geometry with
targets in terms of time and space. The latitude and longi-
tude bias aims to disrupt that homogeneity across agents. A 445

request is delegated to the sub-neighborhood of agents for
which the shared bias has the highest value.

The intra-neighborhood delegation partitions the agents in
an orbital plane into ρ sets, where a set is defined by agents
with the same bias. Tuning ρ enables us to create partitions 450

of arbitrary size, but at a potential reduction of coordination
among agents.

Complete Heuristic
The GND heuristic, Υai

: R Ñ t0, 1u, is a function
computed by an agent that maps a request fulfillment to a 455

Boolean value. The heuristic identifies the subset of requests
assigned to the partition containing an agent. Iff Υaiprq “ 1,
then the request r is within agent ai’s partition. The agent’s
within the partition are fixed based on the geometry of the
constellation and the parameter ρ. We tuned ρ and take the 460

value ρ “ 5. We mention that small deviations in ρ had min-
imal effect on the overall performance, but drastic changes
did worse. Taking ρ “ 5 results in all sub-problem having
less than 20 agents, reducing the size from the global prob-
lem by an order of magnitude. 465



Scheduling Solutions to COSP
In this section, we present the algorithms we evaluate, in-
cluding Neighborhood Stochastic Search (NSS).

Fully Decentralized
By fully decentralized solutions, we refer to decentralized470

algorithms that do not rely on inter-agent communication.
We present three baseline algorithms.

1. Random. Each agent shuffles its set of request fulfill-
ments, Sai

. The shuffled request fulfillments are iterated
through and scheduled if they do not violate constraints.475

2. Greedy Start Time. Each agent sorts its request fulfill-
ments based on increasing start time. The sorted request
fulfillments are iterated through and scheduled if they do
not violate constraints.

3. Portfolio Greedy. Each agent samples a heuristic from480

the portfolio of heuristics, Π, uniformly at random.
The heuristic defines the greedy insertion order into the
schedule. The portfolio consists of four heuristics: ran-
dom, start time, memory usage, and off-nadir angular
separation. The random heuristic assigns a random value485

to each request fulfillment. We note that each heuristic
was evaluated individually, and the portfolio does not
contain a dominating heuristic.

In addition, to demonstrate the effectiveness of the parti-
tioning, we also evaluate the Greedy Start Time algorithm,490

but each agent first computes the decomposition using GND
and only considers the partitioned requests. We call this fully
decentralized approach Decomposition Heuristic.

Centralized Algorithm
The centralized algorithm we employ is an adaptation of495

Squeaky Wheel Optimization (SWO) (Joslin and Clements
1999). SWO is an incomplete centralized search algorithm.
Over the course of iterations, SWO heuristically creates
schedules based on priorities assigned over previous itera-
tions. In our implementation, SWO sorts the requests based500

on their priority, breaking ties with the exact supply. It then
randomly selects an available satellite to schedule the re-
quest. Requests that are not scheduled on previous iterations
have their priorities increased. In subsequent iterations, re-
quests that were not previously scheduled are attempted to505

be satisfied first.

Neighborhood Stochastic Search
The Neighborhood Stochastic Search algorithm (NSS) ex-
tends the request satisfaction variation of BD (Parjan
and Chien 2023) to scale to large problem instances and510

enable scheduling with resource constraints. We present
the pseudo-code in algorithm 1 and mention key sub-
procedures. The first step for an agent is to compute, using
GND, the sub-problem the agent is involved in solving. We
denote this sub-problem as N , which is itself a DCOP con-515

sisting of agents, ApN q Ď A, and requests, RpN q Ď R.
The procedure INITIALSOLUTION constructs an initial

schedule for agent ai. We consider two variations of this re-
lying on fully decentralized algorithms:

Algorithm 1: Neighborhood Stochastic Search for agent ai
Input: H,A,R, Sai

, Dai
, Cai

,Υai

Output: Schedule for agent ai
1: N “ COMPUTESUBPROBLEMpai, A,R, Sai

,Υai
q

2: sched = INITIALSOLUTIONpN , Sai
, Dai

, Cai
q

3: while not converged do
4: com “ MESSAGEpApN q, sched)
5: shuffle RpN q

6: for r P RpN q do
7: isAssigned “ STOCHASTICUPDATEpr, sched, comq

8: if isAssigned “ TRUE then
9: isScheduled “ SCHEDULEpr, sched, Saiq

10: end if
11: UPDATEDATASTRUCTS(isAssigned, isScheduled)
12: end for
13: end while
14: return sched

1. NSS-Random. Agents construct random initial schedules, 520

the typical initialization scheme for DSA.
2. NSS-Decomposition. The Decomposition Heuristic algo-

rithm is used for the initial schedule.
The procedure MESSAGE encapsulates the communica-

tion between agents in a sub-problem. Each agent ai mes- 525

sages the subset of R that it satisfied in the previous iteration
to each agent in its sub-problem, ApN q, and receives the
subsequent broadcast from those agents. The data structure
com encapsulates these messages. The heuristic search is
carried out in STOCHASTICUPDATE, which is adapted from 530

the BD algorithm (Parjan and Chien 2023). This procedure
updates the assignment of the agent and the request based
on the communicated information. By assignment, we refer
to whether or not the request should be scheduled by this
agent. Let m be the number of agents that satisfied request r 535

according to the broadcast. The assignment of a request r is
stochastically updated in the following ways.
• If agent ai is not assigned to r and r was not scheduled

in the previous iteration, ai assigns to r.
• If agent ai is not assigned to r and r was scheduled in the 540

previous iteration, ai remains unassigned to r.
• If agent ai is assigned to r and r was not scheduled in the

previous iteration, ai will unassign with probability Pu.
• If agent ai is assigned to r and r was scheduled in the

previous iteration, ai will unassign with probability 1
m . 545

In the procedure SCHEDULE, if an assigned request fulifll-
ment satisfies Cai

it is immediately inserted into the sched-
ule. Otherwise, the scheduler can remove a conflicting re-
quest fulfillment from the schedule to free up resources. The
removed request fulfillments are selected as the closest start 550

time to the request fulfillment to insert. Allowing agents to
de-schedule requests enables the algorithm to overcome get-
ting stuck at local minima. Note that this algorithm relies on
the parameter Pu. We use Pu “ 0.7 as published by the
authors of the BD algorithm (Parjan and Chien 2023). 555

The stochastic search performed in NSS mimics the
search of BD with some key distinctions: the use of de-



composition to reduce size, de-allocating to overcome local-
minima, the variation in initial schedule construction, and
scheduling with resource constraints.560

Theoretical Analysis of Algorithms
We summarize the computational and communication com-
plexity of the algorithms in the table below. Note that it is as-
sumed that all agents have knowledge of the requests. There-
fore, the fully decentralized algorithms incur no communi-565

cation. To more exactly capture the complexity, we define L,
the maximum size of a satellite’s schedule. The value of L
is driven by the size of the horizon, H , the requests, R, and
an agent’s capabilities, Cai . We parameterize it to capture
more exactly the complexity of our algorithms, but in prac-570

tice L ăă |R|. Checking if a request fulfillment satisfies
Cai and inserting into a schedule are both OplogLq opera-
tions. We omit the L factors in the computational complexity
of NSS and SWO as it is subsumed by larger factors.

Algorithm Computation Communication
Random Op|R| logLq N/A
Greedy Start Time Op|R| log |R|q N/A
Greedy Portfolio Op|R| log |R|q N/A
Decomposition Heuristic Op|R| ` |RpN q| log |RpN q|q N/A
NSS Op|R| ` k|RpN q||ApN q|q Opk|RpN q||ApN q|q

SWO Orkp|R|2 ` |R||A|qs OpL|A|q

The communication and computation of the decentralized575

algorithms is shown per agent. The centralized algorithm,
Squeaky Wheel Optimization (SWO), gives the complexity
required of the centralized node. Centralized algorithms re-
quire communicating the final schedules to each agent, re-
sulting in the OpL ¨ |A|q communication cost. The NSS al-580

gorithm incurs a communication cost proportional to the size
of the sub-problem. Here, ApN q is the largest set of agents
in a sub-problem and RpN q is the largest set of requests in
a sub-problem. For both NSS and SWO, we define k, the
number of iterations of the algorithm.585

The complexity analysis clearly shows that the fully de-
centralized algorithms are substantially more efficient than
either NSS or SWO, and depending on the size of the sub-
problems, NSS can be much more efficient than SWO, but
incurs more communication. In comparison to MGM, DSA,590

or BD, NSS achieves a complexity parameterized by |ApN q|

and |RpN q| in each iteration as opposed to |A| and |R|.

Experimental Setup and Results
The satellite constellation we simulate is modelled on a low
Earth orbit Planet constellation (Planet 2023). There are 200595

agents divided across 4 orbital planes. The constellation has
two near sun-synchronous orbital planes at 95˝ inclinations
composed of 95 satellites each. There are an additional two
orbital planes at 52˝ inclinations with 5 satellites each. Each
satellite has a single sensor that can slew to 60˝ off of nadir600

and an on-board memory capacity of 125 GB. Figure 5
shows the constellation centered around a sphere. We define
the communication network topology such that each satel-
lite messages the nearest agent in its neighborhood, and that
agent must relay the message. This avoids satellites messag-605

ing without line-of-sight.

Figure 5: Visualization of the satellite constellation. Dots
represent a satellite in an orbital plane.

We consider two ground stations for downlinks: the ASF
Near Space Network Satellite Tracking Ground Station and
the Guam Remote Ground Terminal System. A downlink is
modelled as a constant bit stream of 62.5 MB/s for the dura- 610

tion of visibility of the ground stations.
The target set, T , is composed of 634 globally distributed

ground targets (cities and volcanoes). We generate a cam-
paign by selecting a random periodicity in the range r4, 12s.
A periodicity of n means each target is requested to be 615

observed once within n evenly spaced intervals during the
scheduling horizon. For small problem instances, we reduce
the periodicity to 2 and randomly remove requests to obtain
a smaller set. The start of the scheduling horizon is randomly
initialized during a week long simulation and the end of the 620

horizon is fixed at 24 hours after the start time. We remove
unsatisfiable requests based on satellite visibility during the
horizon. The amount of memory required by a request ful-
fillment is sampled from a normal distribution with mean 50
MB and standard deviation 10 MB. The interval of time re- 625

quired to schedule a request fulfillment is fixed at 63 seconds
(3 seconds for the observation and 30 seconds either side for
slewing and processing).

Generating campaigns in this manner produces hard prob-
lem instances. By hard, we refer to the constraint graph 630

structure discussed previously. Despite fixing the schedul-
ing horizon at one day, it is the density of requests during
the window (i.e. requests per epoch) that drives the difficulty
of the scheduling problem. Large problem instances refer to
problems with thousands of requests, resulting in millions 635

of variables, whereas small problem instances contain less
than 500 requests. We intend to release supplemental data-
sets containing problem instances when published.

Results on Small Problem Instances
We compare the performance of the algorithms on small 640

problem instances to an optimal solution, as well as the BD
algorithm (Parjan and Chien 2023). We use a branch and
bound search to obtain an optimal schedule for the constel-
lation. The branch and bound algorithm can only execute
on small problem instances due to computational constraints 645

and the BD algorithm, likewise, due to communication con-
straints. We report the average gap in satisfaction to the opti-
mal solution, the average execution time (per agent), and the
average total messages exchanged over 50 randomly gener-
ated small problem instances in the table below. 650



Algorithm Average Gap to Optimal (%) Average Execution Time (ms) Average Messages
Random 4.427 ă 1 0
Greedy Start Time 5.158 ă 1 0
Greedy Portfolio 3.807 ă 1 0
Decomposition Heuristic 2.271 1.42 0
BD 2.373 169.84 756, 200
NSS-Random 0.580 43.24 66, 690
NSS-Decomposition 0.409 39.66 63, 180
SWO 0.012 2338.04 ă 500
Branch and Bound 0.0 6, 670, 695 ă 500

The results show that the centralized solution, SWO,
achieves near-optimal performance. The NSS algorithms
also achieve close to optimal performance, while the fully
decentralized solutions are significantly further from the
optimal solutions. Notably, the decomposition heuristic655

scheduling algorithm outperforms the other fully decentral-
ized algorithms and the BD algorithm. In comparison to BD,
the NSS algorithms achieve higher request satisfaction while
possessing faster run-times and procuring an order of mag-
nitude less messages. This supports the efficacy of GND in660

generating advantageous sub-problems and the theoretical
analysis of the cost of NSS.

Results on Large Problem Instances
We evaluate each scheduling algorithm against 100 ran-
domly generated large problem instances. Note, solving a665

large problem instance optimally would likely take longer
than the age of the universe. Figures 6 and 7 show the per-
formance of the varying approaches. The horizontal lines in
figure 6 represent the medians of the simulations. The NSS
algorithms outperform the other decentralized solutions and670

are comparable in performance to the centralized approach,
averaging just a %3 satisfaction decrease. In addition, the
results enforce the effectiveness of the decomposition as the
the fully decentralized approach outperforms the other base-
lines, and NSS-Decomposition slightly outperforms NSS-675

Random. Figure 7 also shows that as the density of requests
grow, problem instances become more difficult. The constel-
lation cannot satisfy all the requests, therefore coordinating
to reduce redundancy of observations becomes crucial.

Figure 6: Spread of percentage satisfied requests over 100
large problem instances.

Figure 8 shows the execution time of the algorithms680

across problem instances. The simulations are executed in
Java. Notice the non-linearity of the y-axis. The execution
time of the decentralized approaches are reported as aver-
age time per agent. The fully decentralized algorithms all
achieve a run-time between 1ms and 12ms. The NSS algo-685

rithms are an order of magnitude slower than the fully de-

Figure 7: Satisfied requests (%) across 100 large problems

Figure 8: Execution time (ms) across 100 large problems.

centralized approaches. The centralized approach is another
two orders of magnitude slower than the NSS algorithms.
These results support the theoretical analysis.

While centralized algorithms will nearly always provide 690

higher quality solutions, our GND-based solution is highly
effective in the decentralized context, outperforming all the
decentralized baselines. This demonstrates that high-quality
schedules can be produced in very large-scale constellations
by utilizing problem decomposition. 695

Conclusion
A major barrier to applying existing DCOP algorithms
to large-scale, real-world problems is their computation
and communication complexities, specifically when deal-
ing with highly connected constraint graphs. We pro- 700

pose a decomposition-based approach to the multi-satellite
scheduling problem that is efficient in both time and mes-
sage complexity and can scale to problems orders of magni-
tudes larger. Despite no quality guarantees, we have shown
that solving well-constructed sub-problems can generate 705

high quality global solutions while reducing the overall costs
burdened by each agent. NSS can be adapted to other do-
mains with different decomposition.

Beyond the application of scheduling a satellite constel-
lation, many large multi-agent systems posses limiting con- 710

straints, and developing algorithms that work within those
constraints is essential. Partitioning the global problem is
one strategy to enable the broader application of DCOP so-
lutions that have varying complexity.
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