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ABSTRACT

Endowing deep neural networks with the ability to reason about cause and effect
would be an important step to make them more robust and interpretable. In this
work we propose a variational framework that allows deep networks to learn
latent variables and their causal relationships from unstructured data, with no
supervision, or labeled interventions. Starting from an abstract Structural Equation
Model (SEM), we show that maximizing its posterior probability yields a similar
construction to a Variational Auto-Encoder (VAE), but with a structured prior
coupled by non-linear equations. This prior represents an interpretable SEM with
learnable parameters (such as a physical model or dependence structure), which can
be fitted to data while simultaneously learning the latent variables. Unfortunately,
computing KL-divergences with this non-linear prior is intractable. We show
how linearizing arbitrary SEMs via back-propagation produces local non-isotropic
Gaussian priors, for which the KL-divergences can be computed efficiently and
differentiably. We propose two versions, one for IID data (such as images) which
detects related causal variables within a sample, and one for non-IID data (such
as video) which detects variables that are also related over time. Our proposal is
complementary to causal discovery techniques, which assume given variables, and
instead discovers both variables and their causal relationships. We experiment with
recovering causal models from images, and learning temporal relations based on
the Super Mario Bros videogame.

1 INTRODUCTION

Human reasoning and decision-making is often underpinned by cause and effect: we take actions to
achieve a desired effect, or reason that events would have happened differently had we acted a certain
way – or if conditions had been different. Similarly, scientific inquiry uses the same tools, albeit more
formalized, to build knowledge about the world and how our society can affect it (Popper, 1962).
When building algorithms that automatically build statistical models of the world, as is common in
machine learning practice, it would then be desirable to imbue them with similar inductive priors
about cause and effect (Glymour et al., 2016). In addition to being more robust than statistical
models which only characterize the observational distribution (Peters et al., 2017), they would allow
reasoning about changing conditions outside the observed distribution (e.g. counterfactual reasoning).
They would also allow communicating their inner workings more effectively – allowing us to ask
“why” a given conclusion was reached, much in the same way that we do in scientific communication.

Despite still being actively researched, there is now a mature body of work on understanding whether
two or more variables are related as cause and effect (Peters et al., 2017). Many techniques assume
that the variables are given, and concern themselves with finding relationship between them (Spirtes
& Glymour, 1991; Chickering, 2003; Lorch et al., 2021). On the other hand, an advantage of modern
deep neural networks is that they learn intermediate representations that do not have to be manually
labeled (Yosinski et al., 2015), and effective models can be trained without supervision (Kingma &
Welling, 2014). An important question then arises: can a deep network simultaneously discover latent
variables in the data and establish cause-effect relationships between them?

We focus on learning Additive Noise Models (ANM) with Gaussian noise, which are identifiable (i.e.
causal directions are distinguishable) as long as the functions relating the variables of interest are not
linear (Hoyer et al., 2008). This model fits well a variational learning framework, and so we are able
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to derive an analogue of a Variational Auto-Encoder (VAE) (Kingma & Welling, 2014) where the
prior, rather than being an uninformative Gaussian, corresponds exactly to the ANM. When the ANM
is linear with Gaussian noise, the joint probability of the variables also becomes Gaussian, and it is
easy to perform variational inference. The dependencies between variables will then be expressed
in the covariance matrix’s sparsity structure. However, as mentioned earlier to make the causal
directions identifiable the model cannot be linear (Hoyer et al., 2008). We resolve this difficulty
by learning models that are locally linear, but globally non-linear. This approach affords the full
generality of a non-linear ANM, with the simplicity of variational inference on Gaussian models.

In summary, our contributions are:

• A rigorous derivation of the variational Evidence Lower Bound (ELBO) of an Additive Noise Model
(ANM), allowing efficient inference of Structural Equation Models (SEM) with deep networks.

• A linearization method leveraging automatic differentiation to construct a local Gaussian approxi-
mation of arbitrary non-linear ANMs.

• A temporally-aware specialization of the causal ANM that encodes causal directions implicit in the
arrow-of-time and is suitable for high-dimensional time series data such as video.

• Experiments demonstrating that the proposed method is able to fit latent variables with a dependence
structure in high-dimensional data, namely a synthetic image dataset and video game based data.

2 RELATED WORK

Our work lies on the intersection of causality, variational inference, representation learning, and
high-dimensional unstructured input domains.

Causal inference deals with determining the causes and effects from data. Causal discovery methods
generally focus on recovering the causal graph responsible for generating the observed data, e.g.
Spirtes & Glymour (1991); Chickering (2003) (for an overview of methods in see Peters et al. (2017)).
However, these methods are largely applied to structured datasets such as medical (Brooks-Gunn
et al., 1992; Sachs et al., 2005; Louizos et al., 2017) or economics data LaLonde (1986) where the
observed variables are provided by domain specialists. In contrast, we focus on unstructured data
where the variables are not provided a priori.

Variational inference is a way of performing inference by solving an optimisation problem. A popular
instance is the Variational Auto-Encoder (VAE) (Kingma & Welling, 2014) which aims to extract
a useful latent representation of the data by encoding and decoding it back. Traditionally the VAE
prior is assumed to be an isotropic Gaussian distribution and the aim is to extract independent
latent variables such as in the β-VAE (Higgins et al., 2016b) and FactorVAE (Kim & Mnih, 2018).
There are works which use hierarchical priors such as iteratively conditioning each variable on its
preceding variable in the Ladder-VAE (Sønderby et al., 2016) and conditioning each variable on all
its predecessors in NVAE (Vahdat & Kautz, 2020) and VDVAE (Child, 2021). We also use a prior
conditioning each variable on its predecessors but this comes as a natural consequence of basing our
prior on a structural equation model (SEM).

Recently there has been a growing interest in representation learning based on causal principles.
For instance, the CausalVAE (Yang et al., 2021) learns independent latent variables which are then
composed to form causal relationships, however they only consider linear relationships between
variables. Other works use different approaches to VAEs for causal learning such as the CausalGAN
(Kocaoglu et al., 2018) which use generative adversarial networks. Yet another line of work focuses
on modelling object dynamics from video such as Li et al. (2020), however they use specialised
modules for detecting keypoints and future prediction. Another line of work uses graph neural
networks to infer an interaction graph such as Kipf et al. (2018); Löwe et al. (2022), but they do not
deal with image or video data. Lippe et al. (2022) focus on causal learning with the knowledge of
interventions, whereas we assume no such knowledge. Another line of work such as Lachapelle et al.
(2022) and the iVAE (Khemakhem et al., 2020) uses non-linear Independent Component Analysis
theory. Locatello et al. (2020) explore using a small number of labeled examples for learning. Walker
et al. (2021) use a VQ-VAE for video future prediction using a hierarchical prior but do not focus on
causal relationships.
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3 BACKGROUND

In this section, we will give a self-contained overview of several results from variational and causal
inference that we build upon. While they are not new, bringing them together under one formulation
offers new insights and challenges, which we solve in sec. 4.

Our goal is to fit a distribution p(x), defined over an input space x ∈ Rm, to an empirical distribution
p̂(x) composed of finite samples, by choosing the optimal p ∈ P out of a set of candidate distributions
P (e.g. parameterized by a neural network). We do this by minimizing their KL-divergence Dx

computed over x, or equivalently maximizing the expected log-likelihood of p over the dataset p̂:
p∗ = argmin

p∈P
Dx(p̂(x)||p(x)) = argmax

p∈P
Ex∼p̂(x)[ln p(x)]. (1)

We now introduce a set of latent variables z ∈ Rd, which we can marginalize to compute

p(x) =

∫
p(z)p(x|z)dz, (2)

in terms of a conditional distribution p(x|z) and a “prior” distribution over latents p(z). In a standard
VAE, this prior is an isotropic Gaussian distribution (Kingma & Welling, 2014), while other structured
priors are possible (Sønderby et al., 2016; Vahdat & Kautz, 2020; Tomczak & Welling, 2018). In this
work, however, we will define it as a Structural Equation Model (SEM) (Pearl, 2009) (section 3.2).

3.1 VARIATIONAL INFERENCE

We can now apply standard tools of variational inference (Bishop, 2006, Ch. 10) to eq. 1 and replace
the intractable marginalization (eq. 2) with an optimization of q ∈ Q over a variational family of
distributions Q (in essence, training an additional neural network q). Eq. 1, when marginalized (eq.
2) is equivalent to (Kingma & Welling, 2014):

p∗ = argmax
p∈P, q∈Q

E
x∼p̂(x)

[
E

z∼q(z|x)
[ln p(x|z)]−Dz (q(z|x)||p(z))

]
. (3)

The first term in eq. 3 amounts to a reconstruction error, and the second term matches the latent
variables to the prior. In practice, q(z|x) and p(x|z) in eq. 3 are often defined as Gaussian distributions
parameterized by neural networks. These are the functions µq(x) ∈ Rd and Σq(x) ∈ Rd×d for the
encoder q, and µp(z) ∈ Rd and σp(z) ∈ Rd for the decoder p, which parameterize the means and
covariances of the distributions:

q(z|x) = N (z|µq(x),Σq(x)), p(x|z) = N (x|µp(z),diag(σp(z))). (4)
The KL-divergence between prior p(z) and variational posterior q(z|x) can be computed in closed
form when both are Gaussians. Note that the encoder usually outputs a diagonal covariance matrix
(motivated by the fact that an isotropic prior is also diagonal), but here we allow it to output full
covariances Σq(x), which will be important later (sec. 4).

3.2 STRUCTURAL EQUATION MODEL

We now consider a set of variables y, which have a dependency structure defined by a directed acyclic
graph (DAG) G (i.e. there is an edge (i→ j) ∈ G if yi is required to compute yj). Additionally, the
generation process for each variable yi can be described by a sequence of non-linear equations:

yi = fi(ypaG(i)) + ni, (5)

where fi : R|paG(i)| 7→ R1 is an arbitrary deterministic function, paG(i) denotes the indices of parent
nodes of i in G, and ni ∼ N (ni|0, σ2

i ) is an independent zero-mean noise variable, assumed to be
Gaussian. This represents a Structural Equation Model (SEM), more specifically an Additive Noise
Model (ANM) (Peters et al., 2017, Ch. 4.1.4) with Gaussian noise, which has the joint probability:

p(y) =

d∏
i=1

pi(yi | ypa(i)) =

d∏
i=1

N (yi − fi(ypa(i)) | 0, σ2
i ). (6)

Practical methods for causal learning with ANMs typically assume the variables y are observed, and
are concerned with recovering the true causal graph G (and sometimes the functions f ) that generated
the data (Hoyer et al., 2008; Peters et al., 2017).
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3.2.1 SCORE-BASED MODEL SELECTION

The formulation so far has assumed that the causal graph G, which encodes all the dependencies
between variables, is given. We can, however, make use of a result by Nowzohour & Bühlmann
(2016) that shows that a penalized likelihood score can be used to select between different models
p∗G(y) (each fit to an empirical distribution p̂(y)), with each assuming a different graph G ∈ G (e.g.
out of all graphs with up to d nodes). We thus select the graph that has the maximum score:

G∗ = argmax
G∈G

1

s

s∑
y∼p̂(y)

ln p∗G(y)−
|G|
ln s

, (7)

with s the number of samples, and |G| the number of edges of G. This method finds the true causal
graph when the causal dependencies in the ANM are all non-linear (Nowzohour & Bühlmann, 2016).

4 METHOD

4.1 VARIATIONAL INFERENCE WITH A CAUSAL PRIOR

The previous exposition suggests a natural way to simultaneously learn latent variables and fit a
causal model: use the ANM (eq. 6) as the prior in the variational optimization problem (eq. 3), by
setting y ≡ z. This amounts to assuming that the latent variables z have a dependency structure
defined by a DAG G, and are generated sequentially by application of the non-linear functions fi
corrupted by Gaussian noise ni. Model selection (i.e. finding the optimal graph G) can then be done
by the score-based search of sec. 3.2.1. Note that this model reduces to a VAE for a DAG with no
edges and thus null functions fi:

∀i : pa(i) = ∅ ⇒ zi = ni (reduction to standard VAE) (8)

At a high level, the same tools used to train a VAE should be applicable in this new setting. However,
the ANM is only identifiable (i.e. the true causal directions can be recovered) if the fi are non-
linear (Hoyer et al., 2008), and this makes computing the KL-divergence in eq. 3 intractable, since it
is no longer defined in closed form. We will resolve this difficulty by local linearization (sec. 4.4),
although the model will still be globally non-linear to ensure identifiability.

One major difference from the exposition by Nowzohour and Bühlmann is that they propose using
a non-parametric fitting method over known variables x, while we want to simultaneously recover
the causal structure and latent variables z (e.g. unknown parameters of objects depicted in images),
which must be estimated from inputs x (e.g. raw pixels). Another difference is that their procedure is
computationally expensive, as it entails enumerating all graphs G ∈ G explicitly. However, given
the expressiveness of deep neural network models, in sec. 4.2 we will show how we can replace this
search with a simpler model fitting procedure.

4.2 MAXIMAL DAG

For the purposes of fitting the model G and f to observed data x, we will consider a simplification
where we take all ancestors of a variable zi to be its parents pa(i), i.e. we replace G with the full
DAG with edges {i → j : i < j, i, j = 1, . . . , d}. The following proposition shows that this will
be able to model any underlying SEM, although some of the independence relations will have to be
modeled by the learnable edge probabilities described in sec. 4.5.

Proposition 1. The set of all SEMs S = {(zi = fi(zpaG(i)))
d
i=1 | ∀G, f} with arbitrary DAGs G

and probabilistic functions f is contained within the set SΩ = {(zi = fi(z1,...,i−1))
d
i=1 | ∀f}, up to

reorderings of the variables z.
Proof. See Appendix A.

Prop. 1 says that, as long as the function class of f is expressive enough (as is usually the case with
deep networks (Yosinski et al., 2015)), we can find an equivalent SEM using a fixed maximal DAG
GΩ with edges {i → j : i < j, i, j = 1, . . . , d}. This simplifies the exposition in the following
sections and provides justification for the approximation in sec. 4.5.
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4.3 PRIOR PROBABILITY FOR LINEAR SEMS

In the simple case when all functions fi of the ANM are linear, the resulting joint probability must be
Gaussian, as it is a linear combination of independent Gaussian noise variables ni (eq. 5, recalling
that y ≡ z). However, we need to compute its precise form for general linear ANMs.

Theorem 2. Consider a linear ANM defined as zi = aTi z1,...,i−1 + bi + ni, with ai ∈ Ri−1, bi ∈ R
and ni ∼ N (ni|0, σ2

i ) for i = 1, . . . , d. Missing edges in the causal graph can be represented as
zeros in ai. Then the ANM’s joint probability is given by p(z) = N (z |µ,Σ) with

µ =

(
2∏

i=d

Ai

)
b, Σ =

(
2∏

i=d

Ai

)
diag

i=1,...,d
(σ2

i )

(
2∏

i=d

Ai

)T

, (9)

Ai =

 I(i−1)×(i−1) Oi−1 O(i−1)×(d−i)

aTi 1 OT
d−i

O(d−i)×(i−1) Od−i I(d−i)×(d−i)

 , b =

 b1
...
bd

 ,

where Ik×k denotes an identity matrix, while Ok and Ok×l denote a zero column vector and matrix.
Proof. See Appendix C.

The process in Theorem 2 can be interpreted as a form of mean and covariance propagation: at each
stage the ANM applies a linear transformation to the mean and covariance from the previous stage.
The matrix

∏2
i=d Ai is a lower-triangular matrix representing the edge strengths from parent to child

nodes in G, obtained from the SEM. This linear transformation is then applied to the SEM biases b to
obtain the total mean µ, as well as to the SEM noise variances σ2

i to obtain the total covariance Σ.
For identifiability, however, we must generalize this process to non-linear ANMs, which we do next.

4.4 PRIOR PROBABILITY FOR NON-LINEAR SEMS

Our approach to deal with non-linear ANMs is to linearize them around a pivot point z◦. Due to
Taylor’s theorem this approximation will be accurate for a sufficiently small neighborhood (Nocedal
& Wright, 1999, Ch. 1). The ANM’s joint probability p(z) will then be Gaussian by Theorem 2.

Theorem 3. The best linear approximation (in the least-squares sense) of an ANM zi =
fi(z1,...,i−1) + ni (eq. 5, with missing edges in the causal graph corresponding to ignored in-
puts in fi), around a pivot point z◦, is given by eq. 9 (Theorem 2) with

ai =
∂fi(z1,...,i−1)

∂z1,...,i−1

∣∣∣∣
z1,...,i−1=z◦

1,...,i−1

and bi = fi(z
◦
1,...,i−1) + ni − aTi z

◦
1,...,i−1, (10)

where zo1 = n1, z
o
1,...,i = f(z1,...i−1) + ni and ni ∼ N (0, σ2

i ) with learnable σi.
Proof. See Appendix D.

The advantage afforded by Theorem 3 is that the ANM’s joint probability p(z) is locally Gaussian,
and we can compute its parameters by mean and covariance propagation (eq. 9). Another advantage is
that, in the context of training deep networks, one can use automatic differentiation (back-propagation)
to compute eq. 10 for arbitrary functions fi, including very expressive ones such as multi-layer
perceptrons (MLP). Since this locally-linear SEM is represented as an explicit Gaussian distribution,
the objective’s KL-divergence (eq. 3) can be computed in closed form (Kingma & Welling, 2014).
We can then obtain the full prior distribution by sampling many pivot points zo by ancestral sampling
according to Theorem 3.

4.5 GRAPH SEARCH VIA SPARSITY

To efficiently search for the graphs in eq. 7, we use Proposition 1 to justify using a fixed maximal
graph GΩ to learn a single SEM pf (z) (where we make explicit the dependence of p(z) on the
learned causal functions fi, c.f. eq. 5). This is in contrast to the previously-proposed technique of
enumerating all graphs G ∈ G and learning a different pf,G(z) for each G (Nowzohour & Bühlmann,
2016). We define the graph of dependencies:
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VAE (β = 1) VAE (β = 4) Causal-prior VAE

Figure 1: Samples from the observed and prior distributions for different VAEs, showing that the
distributions match only for the β = 4 and the causal-prior VAEs. Only the causal-prior VAE recovers
the underlying causal structure that relates the latent variables, a parabola.

Definition 4. We define the implicit dependency graph G(f) as the graph with d nodes, and each
edge i→ j exists if fj(z1,...,j−1) depends on its ith input.

We can then define the overall objective (from eq. 7 and eq. 3) as

p∗ = argmax
p∈P, q∈Q, f

1

s

s∑
x∼p̂(z)

[
E

z∼q(z|x)
[ln p(x|z)]−Dz (q(z|x)||pf (z))

]
− |G(f)|

ln s
. (11)

To approximate the |G(f)| term that counts the edges of the graph G(f), we introduce edge prob-
abilities pi→j denoting the probability that an edge from node i to j exists, which allows us to
write |G(f)| =

∑
j,i<j pi→j (i.e. for binary probabilities, this recovers the exact edge count). We

define each pi→j as a binary Gumbel-Softmax distribution (Jang et al. (2017), which is suitable
for gradient-based optimization. The edge probabilities mask the inputs of the SEM’s functions
fj(z1, . . . , zj−1), as fj(p1→jz1, . . . , pj−1→jzj−1). During model evaluation we can sample binary
edge probabilities pi→j ∈ {0, 1}, producing a discrete graph G.

We can thus use standard stochastic gradient methods to optimize eq. 11 and obtain an encoder q,
decoder p, and SEM defined by f and pi→j , the latter of which models well-defined causal directions
(as long as the underlying functions are non-linear) and reflects independence relations in the data.

4.6 IDENTIFIABILITY

In Theorem 7, we demonstrate the identifiability of the proposed model up to some unavoidable
indeterminacies. The only transformations that can be implemented by the learned deep networks
(encoder, decoder and SEM) and can result in an identical objective value to the optimal model are
reorderings of the latent variables, and as well as shifts and orthogonal transformations of the input
(implemented by both the encoder at the input, and decoder at the output). The conditions required to
achieve this result depend on common features of standard deep networks, namely an encoder and
decoder composed of ReLUs and linear operators, batch-normalization in the outputs of the SEM
f , and a SEM with fixed scale, such as the quadratic used in experiments. The proof is given in
Appendix B.

5 EXPERIMENTS

In this section we validate our method on two experiments: the first one learning atemporal variables
and the second one learning time-varying variables. In the atemporal experiment (Section 5.1) we
show that our method correctly recovers the positions of a shape placed on a parabola given a fixed
quadratic prior. In the time-varying experiment (Section 5.2) we show that our method correctly
recovers the positions of a moving character and their relationships over time, using a learnable linear
prior.

5.1 LEARNING ATEMPORAL CAUSAL RELATIONS

In this section we demonstrate the method’s ability to learn causal relationships that are not time
dependent. We use a dataset of images of oval shapes at different rotations and scales, placed at
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VAE (β = 1) VAE (β = 4)

Causal-prior VAE

Figure 2: Latent response to the object’s position for different VAEs (higher values are brighter). The
β = 4 and β = 1 VAEs have entangled responses (although it is less entangled for β = 1), while the
causal-prior VAE correctly disentangles the object’s horizontal and vertical positions.

positions that follow a parabolic arc y = x2 + n (with noise n). We thus have a causal graph with a
single edge x → y. We train our causal-prior VAE with a 3-layer MLP and a parabolic prior (see
Appendix E for details), and use the L2 loss between each image and its prediction from the decoder
as the reconstruction error (see Appendix ??). We also train a high-β and low-β VAEs for comparison
(where β denotes the multiplicative factor of the KL divergence as in (Higgins et al., 2016a)).

Latent space visualisation. In Figure 1 we show the prior (blue) and the predicted distribution
(red) for the low-β VAE, the high-β VAE, and our causal-prior VAE. For the high-β VAE (center) the
two distributions match, but the latent variables are entangled (i.e. both follow an isotropic Gaussian
distribution), and so do not reflect the underlying parabolic relationship between the variables that
generate the data (y = x2 + n). For the low-β VAE (left), although the observed variables recover
the underlying parabolic shape (red), up to a vertical reflection of the coordinates, this distribution
does not match the prior at all (blue), since it is constrained to be Gaussian. As such, this generative
model p(x) (eq. 2) cannot generate samples that respect the causal relationships in the empirical
data distribution. For our causal-prior VAE (right), the two distributions match and both follow the
underlying noisy parabolic equation. Our model can thus be used as a generator p(x) that reproduces
the true causal structure of the data, a capability that we will explore next in more detail.

Latent response to position. Figure 2 shows for different VAEs the value of each latent variable as
the position of the shape in the input image is varied, averaged over different rotations and scales. The
variables are ordered by their standard deviation (σ). The goal is to assess how sensitive each variable
is to the depicted shape’s position. For the causal-prior VAE, the variable z1 clearly corresponds to the
shape’s x position (with values linearly increasing towards the left), and variable z2 to the y position
(with values increasing towards the top), while other variables show minimal response. For the high-β
VAE the position is entangled across several variables; for the low-β VAE the variables z4 and z1
correspond approximately to shape’s x and y position, but there is still significant entanglement with
the other variables, which are also highly sensitive to the shape’s position.

Latent noise traversal. In the first and third columns of Figure 3, we show grids of images decoded
by each method, obtained by taking one sample and varying the noise ni of the two latent variables
zi (see eq. 5) that best correspond to horizontal and vertical position. In the first column, decoded
images are color-coded by their horizontal position. Since the positions of shapes in this grid are
difficult to compare, the second column shows the same images but superimposed, which reveals the
underlying parabolic structure of the data. The third column shows the same grid of decoded images,
color-coded by vertical position, while the fourth shows them superimposed. While all methods seem
to generate images following roughly the parabolic data distribution, we can observe that in both
β-VAE configurations the shapes’ positions are entangled (i.e. vary jointly) with their rotation and
scale, while the same is not true for the proposed causal-prior VAE. It is interesting to note that in the
later case, the noise n1 (corresponding to variable z1) does not map directly to the shape’s vertical
position (as observed for the β-VAE), but rather expresses its offset from the parabola, according to
z1 = z22 + n1. In the bottom-right panel, the red tint of images generated from positive noise offsets
(n1 > 0) is visible above the parabola, and the blue tint of negative offsets is visible below.

5.2 LEARNING TEMPORAL CAUSAL RELATIONS

We now evaluate our method on temporal data, namely short videos. We apply the encoder and
decoder independently to each frame, and append an encoded background frame to the the decoder’s
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Figure 3: Reconstructed images (as a 2D grid and as superimposed images) as latent noise values
are traversed at regular intervals. For the β = 1 and β = 4 VAEs the depicted shape’s position is
entangled with its rotation and scale, while for the causal-prior VAE the horizontal position and
vertical offset from the parabola are disentangled correctly.

input (to allow the latent variables to ignore background/time-invariant appearance). The SEM only
contains edges in the direction of the arrow of time (see Appendix E for details). We create a dataset
based on the Super Mario Bros video game depicting an object moving with linear motion in different
directions, at different speeds, and on varied backgrounds. Three frames are observed, with the
object’s coordinates (xi, yi) for i ∈ {1, 2} sampled uniformly from [7, 12], and the third obeying
x3 = 2x2 − x1, y3 = 2y2 − y1. We train our method with a linear prior, and otherwise similarly
to Sec. 5.1. (see Appendix F for details) and select the sparsest graph that still achieves the best
reconstruction accuracy. We use the reconstruction error given by

∑3
t=1 L2(xt, x̂t) + L2(x3, x̂

f
3 )

where xt denotes a frame at time t, x̂t denotes a prediction made using the decoder p(x̂t|zt) and
x̂f
3 denotes a prediction made using the decoder p(x̂f

3 |f3(z1, z2)) (see Appendix ?? for details). For
quantitative evaluation of learned graphs please refer to Appendix G.

Learning a causal graph. Figure 4 shows the graph learned by the causal-prior VAE, with the bot-
tom row (z1, z2, z3, z4) corresponding to latent variables at time t = 1, the middle row (z5, z6, z7, z8)
corresponding to t = 2 and the top row (z9, z10, z11, z12) corresponding to t = 3. Learned edges are
shown in black and missing ones in beige; learned functions fi are represented as a number (multi-
plicative factor) next to the corresponding edge, since they are linear in this case. The graph shows that
each component of the object’s 2D position at time t = 3 (expressed as (z10, z11)) depends on its 2D
positions at times t = 1 (z2, z3) and t = 2 (z6, z7), following the model z10 = f10(z) = 2.3z6−1.1z2
and z11 = f11(z) = 2.2z7 − 1.1z3, which matches the data generation process up to a scale factor.

Latent response to position. Figure 5 shows the response of each latent variable as the object’s
horizontal and vertical position is varied on the input. The rows correspond to variables from times
t = 3, 2, 1 respectively. We can see that z2, z6, z10 encode the object’s position along the bottom-right
to top-left diagonal at different moments in time, while z3, z7, z11 encode the position along the
orthogonal direction. The remaining variables do not exhibit any significant response to position.
This shows the variables correctly match the data generation process up to a rotation.

Interventions visualisation. Once a SEM relating the latent variables has been learned, we can
perform interventions on some of its variables. In Figure 6 we encode a randomly sampled reference

8
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1.1 1.1

2.3 2.2

z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

P(hard graph)

Figure 4: Learned graph edges and mechanisms
relating the latent variables, recovering the data
generation process up to a scaling factor.

z9 z10 z11 z12

z5 z6 z7 z8

z1 z2 z3 z4

Figure 5: Latent response of variables to the ob-
ject’s horizontal and vertical position, recovering
the data generation process up to a rotation.

z2 z3 z6 z7 z10 z11 other

3.0

1.5

+0.0

+1.5

+3.0

t = 1 t = 2 t = 3

Figure 6: Intervention results showing that inter-
vening on each variable propagates to its descen-
dants through the correct mechanism.

x1 x2 x3 x4 x5

Figure 7: Extrapolation results obtained by itera-
tively passing the encoded variables through the
learned SEM to predict their future values.

clip from the dataset and separately intervene by assigning different values (rows) to variables
z1, ..., z12 (columns), propagating the changes to their child variables using the SEM, and decoding
the results. The results are decoded using a black background and the resulting 3-frame decoded
sample is combined into a single frame by colouring the t = 1 decoded image by red, the t = 2 image
by white, and t = 3 by green. We observe that intervening on the variables for t = 1 (z2, z3) changes
both the object’s position in t = 1 (red, columns 1,2) and t = 3 (green, columns 1,2), following
the SEM. Intervening on the variables for t = 2 (z6, z7) changes the object’s t = 2 position (white,
columns 3,4) and t = 3 position (green, columns 3,4); while intervening on the variables for t = 3
(z10, z11) changes only its t = 3 position (green, columns 5,6), which reflects the fact that other
positions (in the past) do not depend on it. Intervening on other variables has no effect (last column).
This confirms that the model has learned the correct temporal causal structure, as each intervention
affects the right variables.

Extrapolation visualisation. Having learned a SEM relating those at time t to the variables at
times (t− 1, t− 2) now makes it possible to extrapolate the variable values into the future. In Figure
7 we start with 3 samples (rows) of 2 consecutive frames from the dataset x1, x2, encode them to
obtain the t = 1, 2 latent variables (z1, ..., z8), and iteratively pass them through the SEM to compute
the t = 3 latent variables (z9, ..., z12), decoding these into x̂3. We now repeat this process by taking
z5, ..., z12 as the t = 1, 2 variables and use the SEM to predict the t = 3 variables which we decode
into x̂4 and similarly for x̂5, thus obtaining predictions for 3 time steps into the future. The future
predictions confirm the knowledge learned in the SEM that the object moves linearly and can be used
to predict future frames accurately.

9
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6 CONCLUSIONS

In this work we proposed a general model that naturally extends the variational learning framework
to learn a non-linear Structural Equation Model (SEM) as the prior, which enables causal learning to
be performed on perceptual modalities such as images and video. To reconcile the non-linearity of
SEMs while using Gaussian variables we proposed a fully differentiable method that locally linearises
the SEM to obtain a locally-Gaussian distribution. Furthermore, we relaxed the search over causal
graphs as a joint continuous optimization over non-linear causal functions f . The proposed method
shows promise to scale to high-dimensional data and moderately complex SEMs, however future
work should explore more large-scale data such as long videos and other input modalities.
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Figure 8: Overview of the causal-prior VAE architecture.

APPENDIX

A PROOF OF DAG MAXIMALITY

Proposition 5. The set of all SEMs S = {(zi = fi(zpaG(i)))
d
i=1 | ∀G, f} with arbitrary DAGs G

and probabilistic functions f is contained within the set SΩ = {(zi = fi(z1,...,i−1))
d
i=1 | ∀f}, up to

reorderings of the variables z.

Proof. Because G is a DAG it has an acyclic ordering of its vertices (Bang-Jensen & Gutin, 2009);
i.e. if G has vertices V = {v1, ..., vn} we can always construct a sequence (z1, ..., zn) such that the
set Z = {z1, ..., zn} is mapped one-to-one to the set V , and such that zi is an ancestor of zj (i.e.
there exists a path from zi to zj in G) for all i < j. Therefore, the set of parents paG(zj) has to be a
subset of the set {zi|i < j}, from which Proposition 5 follows.

B JOINT IDENTIFIABILITY OF REPRESENTATION AND CAUSAL MECHANISM

Before proving our identifiability result, we must first introduce a lemma about the commutativity of
certain piece-wise linear functions.

Lemma 6. Consider a Leaky ReLU activation function (He et al., 2015), defined as:

RC,D(x) =

{
Cx if x ≥ 0

Dx if x < 0
, (12)

with constants C > 0, C ̸= 1, D > 0, D ̸= 1, C ̸= D. Then the class of functions ϕ that commute
with R, i.e.

ϕ(RC,D(x)) = RC,D(ϕ(x)),∀x (13)

is the set of monotonic piece-wise linear homogeneous functions with one piece in each half-plane,
i.e.

ϕ(x) =

{
Ax if x ≥ 0

Bx if x < 0
, A,B > 0. (14)

Proof. To solve the commutativity identity in Eq. 13, we partition it into four domains, namely
{x ≥ 0, x < 0} × {ϕ(x) ≥ 0, ϕ(x) < 0}:

If x < 0, ϕ(x) < 0 ⇒ Cϕ(x) = ϕ(Cx) ⇒ ϕ(x) = Ax (15)
If x < 0, ϕ(x) ≥ 0 ⇒ Cϕ(x) = ϕ(Dx) ⇒ ϕ(x) = 0 (16)
If x ≥ 0, ϕ(x) < 0 ⇒ Dϕ(x) = ϕ(Cx) ⇒ ϕ(x) = 0 (17)
If x ≥ 0, ϕ(x) ≥ 0 ⇒ Dϕ(x) = ϕ(Dx) ⇒ ϕ(x) = Bx (18)

Equations 15 and 18 amount to solving the equality Ef(x) = ϕ(Ex) which is satisfied for any
homogeneous linear function ϕ assuming E ̸= 1. Equations 16 and 17 amount to solving the equality
Ef(x) = ϕ(Fx) which is only satisfied for ϕ(x) = 0 assuming E ̸= 1, E ̸= F . Combining the
results from Equations 15-18 the result follows.
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We can now introduce our main result.
Theorem 7. For a causal VAE model (Eq. 3 and Eq. 5 with y ≡ z), assume the following conditions:

1. The encoder q(z|x) and decoder p(x|z) are Gaussians (Eq. 4) parameterized by deep networks,
containing a Leaky ReLU (Eq. 12) as its last layer and first layer, respectively.

2. The outputs of the SEM fi are de-meaned and normalized, i.e. they are composed with batch
normalization (BN) operators: zi = BN(f(zpa(i))) where BN(u) = (u− E[u])/

√
Var[u], or

they have a fixed constant scale.

Then the model is identifiable up to the following indeterminacies, i.e. denoting the optimal parameters
by θ∗, there is a different set of parameters θ such that pθ∗(x) = pθ(x) only under the following
learnable transformations:

1. Simultaneous shifts by b and orthogonal transformations R of the encoder’s input and decoder’s
output, i.e.: µq(x)← µq(Rx+ b), µp(z)← R−1µp(z)− b.

2. Latent variable permutations, i.e. reorderings of z.
3. If the SEM mechanisms fi contain additional symmetries (e.g. fi = fi ◦ S for some operator S),

then there will be indeterminacy up to application of that operator.

Proof. The training objective is to find the model parameters θ of the generative distribution pθ(x)
such that it matches the observed empirical distribution p(x). The parameters are assumed to exist
if the function class of pθ(x) is sufficiently expressive, as is the case in over-parameterized deep
networks. We also assume that there exists a true model θ∗ which generates the data distribution
pθ∗(x). Then the claim of non-identifiability is that there exists at least one different parameterization
θ for which pθ(x) = pθ∗(x), i.e. it is possible to learn another model that also fits the true data
distribution but has different parameters θ. We can express the lower bound on the data distribution
using the evidence lower bound (ELBO, Eq. 3)

ln pθ∗(x) ≥ Ex∼p(x)[Eqθ(z|x)[ln pθ(x|z)]−KL[qθ(z|x)||pθ(z)]] (19)

with encoder qθ(z|x), decoder pθ(x|z), and learnable prior pθ(z) generated using the SEM (slightly
overloading θ to include all parameters of the model).

Under non-identifiability, we assume that we can find another set of parameters θ that fit the data
perfectly: pθ(x) = pθ∗(x). In that case Eq. 19 becomes a strict equality, implying the following two
conditions:

ln pθ∗(x) = Ex∼p(x)[Eqθ(z|x)[ln pθ(x|z)]] (20)

0 = Ex∼p(x)[KL[qθ(z|x)||pθ(z)]], (21)

In words, the expectation of the log likelihood (first term of right-hand side of Eq. 19) becomes
the exact log evidence ln pθ∗(x), while the posterior qθ(z|x) fits the prior pθ(z) exactly (their KL-
divergence is zero). Furthermore, for the optimal model θ∗ we know that

ln pθ∗(x) = Ex∼p(x)[Eqθ∗ (z|x)[ln pθ∗(x|z)]] (22)

Note the subtle difference from Eq. 20 is to use θ∗ instead of θ. We can thus combine the results for
both models θ∗ (Equation 22) and θ (Equation 20) as

Ex∼p(x)[Eqθ(z|x)[ln pθ(x|z)]] = Ex∼p(x)[Eqθ∗ (z|x)[ln pθ∗(x|z)]] (23)

We will write the left-hand side (LHS) of Eq. 23 in a form that makes its equivalence classes more
obvious, using function composition. In order to do that, we first recall Eq. 4, which we rewrite here
(making θ explicit) for convenience:

qθ(z|x) = N (z|µθ(x),Σθ(x)) (24)

The reparametrization trick, which is at the core of VAE implementations, allows us to sample from
the probabilistic encoder qθ(z|x) with a deterministic function qθ,ϵ(x) (typically a deep network) that
takes samples ϵ from a fixed normal distribution and applies an affine transformation to them:

qθ,ϵ(x) = µθ(x) + Σθ(x) ϵ, ϵ ∼ N (0, 1). (25)

The inner expectation in the LHS of Eq. 23 can then be written as:

Ez∼qθ(z|x)[ln pθ(x|z)] = Eϵ∼N (0,1)[ln pθ(x|qθ,ϵ(x))]. (26)
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By Eq. 4 the decoder pθ(x|z) is also a Gaussian with parameterized mean µp
θ(z),

1 so Eq. 23 is
equivalent to:

Ex∼p(x)Ez∼qθ(z|x) ln pθ(x|z) = Ex∼p(x)Ez∼qθ(z|x)

[
−γ ∥µp

θ(z)− x∥2
]

(27)

= Ex∼p(x)Ez∼qθ(z|x) [Lx(µ
p
θ(z))] , Lx(x

′) = −γ ∥x′ − x∥2 ,
(28)

absorbing constants into γ. Finally, the LHS of Eq. 23 is then equivalent to the expectation of a
composition of deterministic functions (applied from right to left):

Ex∼p(x),ϵ∼p(ϵ)[Lx ◦ µp
θ ◦ qθ,ϵ ◦ x]. (29)

This makes explicit the order of operations in computing the reconstruction loss, and separates out all
non-deterministic elements into the expectation (namely by using the reparameterization trick with
ϵ ∼ p(ϵ) = N (0, 1)).

We can now enumerate the equivalence classes of Eq. 23, by inserting identity operators I = g−1◦g =
h−1 ◦ h (for arbitrary invertible functions g, h) between compositions of learnable functions in Eq.
29. Inserting these identities, Eq. 29 is equivalent to

Ex∼p(x),ϵ∼p(ϵ)[Lx ◦ (h ◦ h−1) ◦ µp
θ ◦ (g

−1 ◦ g) ◦ qθ,ϵ ◦ (h ◦ h−1) ◦ x] (30)

= Ex∼p(x),ϵ∼p(ϵ)[(Lx ◦ h) ◦ (h−1 ◦ µp
θ ◦ g

−1︸ ︷︷ ︸
µ̄p
θ

) ◦ (g ◦ qθ,ϵ ◦ h︸ ︷︷ ︸
q̄θ,ϵ

) ◦ (h−1 ◦ x︸ ︷︷ ︸
x̄

)] (31)

where we grouped the arbitrary functions with the decoder as µ̄p
θ , with the encoder as q̄θ,ϵ, and with

the input as x̄. We can then apply the substitution x̄ = h−1 ◦ x, using the fact that

Lx(x
′) = γ ∥h(x′)− h(x)∥2 = Lh◦x(h ◦ x′) (32)

is only ever true if h is an orthogonal linear transformation plus a constant (since Euclidean distances
are invariant only under generalized rotations and translations),2 and thus obtaining the equivalent
reparameterization

Ex̄∼p(x̄),ϵ∼p(ϵ)[Lx̄ ◦ µ̄p
θ ◦ q̄θ,ϵ ◦ x̄]. (33)

Thus the function class of h must necessarily be restricted to orthogonal transformations, induced by
the Euclidean structure of L (Eq. 32).

As for g, it is restricted by the fact that it must be absorbed into the encoder, i.e. in Eq. 31 we must be
able to group it with the previous encoder qθ,ϵ and define a new encoder

q̄θ,ϵ = g ◦ qθ,ϵ ◦ h (34)

that can still be implemented as a deep network (of the same function class as qθ,ϵ). Since we require
that the encoder be followed by a Leaky ReLU RC,D (assumption 1 of Theorem 7), for this to be
true, g must commute withRC,D, i.e.:

q̄θ,ϵ = g ◦ qθ,ϵ ◦ h = g ◦ RC,D ◦ q′θ,ϵ︸ ︷︷ ︸
qθ,ϵ

◦ h = RC,D ◦ g ◦ q′θ,ϵ ◦ h (35)

where the first equality is taken from Eq. 31, in the second equality we decompose the network qθ,ϵ
into its final Leaky ReLURC,D and the rest of the network q′θ,ϵ, and finally in the last step we use
the commutativity of g andRC,D (Lemma. 6). Since by Lemma. 6 only monotonic piece-wise linear
homogeneous functions commute withRC,D, this restricts the class of admissible functions for g to
that class.

An identical conclusion follows for g−1, as long as the first layer of the decoder is also a Leaky ReLU
(by assumption 1).

1Assuming identity covariance for simplicity, a common assumption in implementations, and which does not
materially change the result.

2This is the same reason why the function h and its inverse are used twice in Eq. 30 instead of inserting two
different functions, e.g. h1 and h2 and their inverses; the same generalized rotation h must be applied to both
inputs of the Euclidean distance in Eq. 32.
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This means that the latent variables are non-identifiable up to g implementing individual rescaling
of each variable and variable permutation, unless we impose further constraints. We can impose
mild structural constraints on the SEM to fix the rescaling, namely assuming that the output of each
fθ,i(zpa(i)) has fixed scale. This can be achieved by either: 1) batch-normalization; 2) a SEM with
no learnable scale. Batch-normalization, which is used by many common deep network models,
fixes the distribution mean to zero and the variance to one for each dimension, removing scaling and
shifting degrees-of-freedom. As a special case, the quadratic model used in Section 5.1) does not
have learnable scale parameters. The only remaining degrees of freedom are variable permutations,
which are unavoidable in latent variable models.

Having characterized the equivalence classes of Eq. 20, we must now consider those of Eq. 21. Using
the same reparameterization trick as in Eq. 25, the KL-divergence in Eq. 21 is equivalent to

KL[qθ(z|x)||pθ(z)] = Ez∼qθ(z|x)[ln qθ(z|x)− ln pθ(z)] (36)

= Eϵ∼p(ϵ)[ln qθ,ϵ(x)− ln pθ(qθ,ϵ(x))] (37)

Therefore, we can also express it using a composition of operators:

Ex∼p(x),ϵ∼p(ϵ)[L ◦ qθ,ϵ ◦ x− L ◦ µf
θ ◦ qθ,ϵ ◦ x], (38)

with µf
θ the mean of the Gaussian output by f (by Theorem 2), assuming variance one as before for

simplicity. We can now insert the same identity operators and follow an identical derivation to Eq.
30-33, which recovers the exact same equivalence classes as before. The only identity that can be
added differently from Eq. 30 will be an operator S for which µf

θ is invariant (µf
θ = µf

θ ◦ S), so
indeterminacy up to such symmetries of f is the only other possibility.

C PROOF OF MEAN AND VARIANCE PROPAGATION FOR LINEAR ANMS

Theorem 8. Consider a linear ANM defined as zi = aTi z1,...,i−1 + bi + ni, with ai ∈ Ri−1, bi ∈ R
and ni ∼ N (ni|0, σ2

i ) for i = 1, . . . , d. Missing edges in the causal graph can be represented as
zeros in ai. Then the ANM’s joint probability is given by p(z) = N (z |µ,Σ) with

µ =

(
2∏

i=d

Ai

)
b, Σ =

(
2∏

i=d

Ai

)
diag

i=1,...,d
(σ2

i )

(
2∏

i=d

Ai

)T

, (39)

Ai =

 I(i−1)×(i−1) Oi−1 O(i−1)×(d−i)

aTi 1 OT
d−i

O(d−i)×(i−1) Od−i I(d−i)×(d−i)

 , b =

 b1
...
bd

 ,

where Ik×k denotes an identity matrix, while Ok and Ok×l denote a zero column vector and a zero
matrix, respectively.

Proof. We can write the ANM zi = aTi z1,...,i−1 + bi + ni in a recursive multivariable form as

z1,...,i =

[
I(i−1)×(i−1)

aTi

]
z1,...,i−1 +

[
Oi−1

bi

]
+

[
Oi−1

1

]
ni (40)

Applying the formula for linear combination of Gaussians (Bishop, 2006, Ch. 8.1.4)

x ∼ N (x|µx,Σx), y ∼ N (y|µy,Σy) =⇒ Ax+By+c ∼ N (x|Aµx+Bµy+c, AΣxA
T+BΣyB

T )
(41)

to eq. 40 we can express the mean and covariance of z1,...,i as a function of the mean and covariance
for z1,...,i−1 as

µ1,...,i =

[
I(i−1)×(i−1)

aTi

]
µ1,...,i−1 +

[
Oi−1

bi

]
(42)

Σ1,...,i =

[
I(i−1)×(i−1)

aTi

]
Σ1,...,i−1

[
I(i−1)×(i−1)

aTi

]T
+

[
Oi−1

1

]
σ2
i

[
Oi−1

1

]T
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where we have used
µ1,...,i = E [z1,...,i] , Σ1,...,i = E

[
(z1,...,i − µ1,...,i)(z1,...,i − µ1,...,i)

T
]
, (43)

and for the noise variables n it holds that E [n] = 0 and E
[
nnT

]
= diagi(σ

2
i ). Now assume that eq.

39 holds for some d = k. Inserting expressions for µ1,...,k and Σ1,...,k from eq. 39 into eq. 42 and
extending the matrices with zeros and ones we obtain

µ1,...,k+1 =

[
Ik×k Ok

aTk+1 1

]( 2∏
i=k

[
Ai,d=k Ok

OT
k 1

])[
b1,...,k

0

]
+

[
Ok

bk+1

]
(44)

Σ1,...,k+1 =

[
Ik×k Ok

aTk+1 1

]( 2∏
i=k

[
Ai,d=k Ok

OT
k 1

])[ diag
i=1,...,k

(σ2
i ) Ok

OT
k 0

]
(

2∏
i=k

[
Ai,d=k Ok

OT
k 1

])T [
Ik×k Ok

aTk+1 1

]T
+

[
Ok×k Ok

OT
k 1

]
σ2
k+1

Identifying

Ak+1,d=k+1 =

[
Ik×k Ok

aTk+1 1

]
, Ai,d=k+1 =

[
Ai,d=k Ok

OT
k 1

]
, b1,...,k+1 =

[
b1,...,k
bk+1

]
(45)

eq. 44 becomes

µ1,...,k+1 =

(
2∏

i=k+1

Ai,d=k+1

)
b1,...,k+1 (46)

Σ1,...,k+1 =

(
2∏

i=k+1

Ai,d=k+1

)
diag

i=1,...,k+1
(σ2

i )

(
2∏

i=k+1

Ai,d=k+1

)T

(47)

which completes the inductive step d = k → k + 1. Finally, we apply eq. 41 to relation 40 for d = 2
to obtain

µ1,2 =

[
1
a2

]
µ1 +

[
0
b2

]
= A2b1,2 (48)

Σ1,2 =

[
1
a2

]
Σ1

[
1
a2

]T
+

[
0
1

]
σ2
2

[
0
1

]T
= A2diag(σ

2
1 , σ

2
2)A

T
2

where we have used µ1 = b1 and Σ1 = σ2
1 , which shows that eq. 39 holds for d = 2. Therefore, by

the induction principle the relation 39 holds for all d ≥ 2.

D PROOF OF LINEARISATION OF NON-LINEAR SEMS

Theorem 9. The best linear approximation (in the least-squares sense) of an ANM zi =
fi(z1,...,i−1) + ni (eq. 5, with missing edges in the causal graph corresponding to ignored in-
puts in fi), around a pivot point z◦, is given by eq. 39 (Theorem 8) with

ai =
∂fi(z1,...,i−1)

∂z1,...,i−1

∣∣∣∣
z1,...,i−1=z◦

1,...,i−1

and bi = fi(z
◦
1,...,i−1) + ni − aTi z

◦
1,...,i−1, (49)

where zo1,...,i−1 = f(z1,...i−1) + ni and ni ∼ N (0, σ2
i ) with learnable σi.

Proof. By Taylor’s theorem, expanding fi(z1,...,i−1) + ni around z◦1,...,i−1 up to first order gives

fi(z1,...,i−1) ≈ fi(z
◦
1,...,i−1) + ni + (z1,...,i−1 − z◦1,...,i−1)

T ∂fi(z1,...,i−1)

∂z1,...,i−1

∣∣∣∣
z1,...,i−1=z◦

1,...,i−1

(50)

≈ aTi z1,...,i−1 + bi (51)
where ai and bi are given by eq. 49. We can now use this linearisation of fi to define a linearised
SEM as zi = aTi z1,...,i−1 + bi and using this with Theorem 8 the result follows.
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Figure 9: The temporal causal-prior VAE architecture, for a sequence of 3 video frames (plus a
random frame to represent time-invariant information, such as background).
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of parameter controlling graph sparsity.
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Figure 11: Structural Hamming Distance as a
function of parameter controlling graph sparsity.

E TRAINING DETAILS FOR THE CAUSAL-PRIOR VAE

We used a custom dataset of 76800 binary images of size 64 × 64 containing ovals generated at
6 different scales s, 40 rotations r, 32 horizontal positions x and 10 vertical positions y, where
y = x2 + ny and s and r factors are sampled independently. We trained our causal-prior VAE and
two isotropic-prior VAEs for comparison, one with a lower β and one with higher β (where β denotes
the factor multiplying the KL divergence as defined in (Higgins et al., 2016a)). The encoder is a
3-layer MLP with 64 hidden ReLU units in each layer; the decoder is identical but with 4 layers, and
there are 5 latent variables z. We use the Adagrad optimizer (Duchi et al., 2011) with learning rate
0.003 on batches of 100 samples, until convergence. The architecture is shown in Figure 8.

F TRAINING DETAILS FOR THE TEMPORAL CAUSAL-PRIOR VAE

We created a custom dataset of 3-frame 20× 20 px video sequences of the main Super Mario Bros
character moving linearly in a random direction and with a random speed on different backgrounds,
where the character’s positions are given by x1, y1, x2, y2 ∼ U(7, 12), x3 = 2x2−x1, y3 = 2y2−y1
where xi and yi are the horizontal and vertical position at frame i and U is the uniform distribution.
We train our causal-prior VAE with 12 variables, 4 per time frame, and allow the SEM to learn
arbitrary linear relationships between them. The architecture is shown in Figure 9. Each dataset
sample consists of a tuple consisting of a background and 3 consecutive frames where the character
moves linearly. Each of the 3 frames is then encoded separately into a 4-variate Gaussian distribution
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and these are concatenated to form a 12-variate Gaussian, which is compared with its closest match
in the SEM-sampled local Gaussian distribution. The distribution is then sampled and split into 4
samples per time frame and these are concatenated with the background latents and decoded back
into 3 frames which are then compared using L2 loss with the 3 frames on the input. Additionally,
the latents from the first two frames are passed through the SEM to predict their value at the next
time frame and this is decoded and compared using L2 loss with the third frame on the input. The
architecture is shown in Figure 9.

G QUANTITATIVE EVALUATION OF LEARNED TEMPORAL GRAPHS

Reconstruction accuracy vs. graph complexity Figure 10 shows for the temporal experiments
the reconstruction accuracy achieved with the model as a function of the parameter controlling graph
sparsity (−1/ ln(s) in Equation 7) after training for 250 epochs. The plot shows that for weak edge
penalisation the reconstruction accuracy is good (around 99.7%) while if the edge penalisation is too
large the accuracy drops (to around 99.1%). This is because for weak edge penalisation the graph
is relatively dense which allows the SEM to model the time-based causal relationships between the
variables and when the penalisation is too big the graph becomes too sparse to be able to model these
relationships. Somewhere around the value of the coefficient 10−2 the graph becomes as sparse as
possible while still keeping the reconstruction accuracy high, and this is the area from which we
select the graph.

Structural Hamming Distance vs. graph complexity Figure 11 shows for the temporal experi-
ments the Structural Hamming Distance between the learned and the ground truth graph as a function
of the parameter controlling graph sparsity (−1/ ln(s) in Equation 7) after training for 250 epochs.
The SHD is computed by counting how many edges need to be inserted or removed to obtain the
ground truth graph (up to a permutation of variables within each time step). In the range where the
coefficient is below approx. 10−3 the edge penalisation is too weak resulting in a graph with too
many edges (thus a high SHD) and in the region above approx. 10−2 the graph becomes too sparse
with no edges (thus also resulting in high SHD). The region between 10−3 and 10−2 corresponds to
the region where the learned graph has exactly the same structure as the ground truth graph (and thus
SHD is zero).
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