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Figure 1: (a) Images generated by MM-DiT 8B-E using different forms of the same caption. Our split-text
caption enables the model to notice details, such as unripe and partly green, pink ribbon bow, and display them
in the generated image. (b) Comparison of text-to-image generation results between Stable Diffusion v3 and
ours. Obviously, ours has better semantic details and mitigates the attribute misbinding such as green car.

Abstract

Current text-to-image diffusion generation typically employs complete-text condi-
tioning. Due to the intricate syntax, diffusion transformers (DiTs) inherently suffer
from a comprehension defect of complete-text captions. One-fly complete-text
input either overlooks critical semantic details or causes semantic confusion by
simultaneously modeling diverse semantic primitive types. To mitigate this defect
of DiTs, we propose a novel split-text conditioning framework named DiT-ST. This
framework converts a complete-text caption into a split-text caption, a collection
of simplified sentences, to explicitly express various semantic primitives and their
interconnections. The split-text caption is then injected into different denoising
stages of DiT-ST in a hierarchical and incremental manner. Specifically, DiT-ST
leverages Large Language Models to parse captions, extracting diverse primitives
and hierarchically sorting out and constructing these primitives into a split-text
input. Moreover, we partition the diffusion denoising process according to its differ-
ential sensitivities to diverse semantic primitive types and determine the appropriate
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timesteps to incrementally inject tokens of diverse semantic primitive types into
input tokens via cross-attention. In this way, DiT-ST enhances the representation
learning of specific semantic primitive types across different stages. Extensive
experiments validate the effectiveness of our proposed DiT-ST in mitigating the
complete-text comprehension defect. Datasets and models are javailable.

1 Introduction

In recent years, diffusion models [I} 2] have achieved unprecedented breakthroughs [3} 4} [3] [6].
Leveraging the Transformer [[7] backbone, the Diffusion Transformer (DiT) [8] has rapidly become
the mainstream paradigm for text-to-image generation and achieves impressive performance.

Current DiTs for text-to-image generation mostly employ complete-text captions as conditioning,
which are sourced from human-curated datasets or generated by large language models (LLMs)
or multimodal large language models (MLLMs). Such complete-text captions, particularly long
ones, typically involve complex syntax with intertwined semantic primitives (object, relation, and
attribute) and potential redundancy. When dealing with this form of captions, DiTs exhibit an inherent
complete-text comprehension defect, reflecting in issues such as attribute misbinding [9} [10], style
dominance [T} [12]], semantic blending [13}[14]], and semantic entanglement [15]]. The comprehension
defect stems from two key aspects: insufficient semantic analysis and premature information exposure.

On the one hand, insufficient semantic analysis arises from multiple factors. For instance, (i) text
length bottleneck [16]]: CLIP text encoder accepts at most 77 tokens, yet effective tokens
seldom exceed 20, making it difficult to process detailed text and leading to the truncation or loss
of tail information in long captions; (i) softmax competition [I8}[T9]]: tokens compete against each
other in the softmax function, causing the representation capability to decrease as token number
increases; (iii) positional bias [20]: CLIP prioritizes the first item, making it difficult to attend
to later items and leading to semantic distortion. These factors collectively hinder models from
accurately analyzing semantic primitives and highlighting important semantic information from long
complete-text captions. Consequently, models tend to overlook and omit crucial semantic information
within a complete-text caption. However, a split-text caption derived by hierarchically sorting out
the semantic primitives within the complete-text caption may reduce the syntactical complexity and
comprehension difficulty for models, helping improve semantic analysis.
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Figure 2: (a) Attention maps [13]] for various semantic primitives. Caption: A teddy bear wearing a red ribbon
around its neck. Attentions exhibit significant overlap between the object primitive ‘ribbon’ and relation primitive
‘wears’, resulting in semantic entanglement. (b) Superimposed attention maps of object primitive type and
relation primitive type at denoising timesteps 25 and 75, respectively. Notably, the model focuses more on object
primitives during the earlier stage and shifts more attention to relation primitives in the later stage.

On the other hand, the one-time input of a complete-text caption leads to various semantic primitives
being modeled simultaneously. Since these primitives cannot be disentangled effectively within the
shared representation space, ultimately competing for representation within the same image regions.
This is the main reason for phenomena such as semantic entanglement, as illustrated in Figure [2]
(a). We summarize this problem as premature information exposure, where excessive fine-grained
details are prematurely exposed to the model before the model establishes stable primary semantic
concepts. Existing studies [211, 22} 23] 24] indicate that diffusion models establish primary semantic
concepts during the early denoising stage, while improving fine-grained details in the later stage.
Details mainly originate from attribute primitives, while primary semantic concepts derive from
object and relation primitives. In addition, as illustrated in Figure 2] (b), different denoising stages
have diverse sensitivities of semantic primitive types. We can conclude that the prioritization order for
semantic primitive types is object-relation-attribute. Therefore, we propose incrementally injecting
diverse types of semantic primitives by prioritization order to improve the proportion of sensitive
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primitive types at each stage, enabling the model to enhance the representation learning of a specific
sensitive primitive type at the corresponding stage. As discussed above, since a split-text caption is
derived by hierarchically sorting out the semantic primitives and possesses a distributed structure, it
can effectively group the same type of semantic primitives together and be injected incrementally,
naturally helping mitigate premature information exposure.

In this paper, we propose a novel framework, DiT-ST, to enhance the text-to-image DiT via split-
text caption. A split-text caption is essentially a hierarchical collection of simplified sentences
that explicitly express various semantic primitives and their interconnections, effectively reducing
the syntactical complexity to alleviate insufficient semantic analysis and grouping the same type
semantic primitives to be injected incrementally to address premature information exposure. Briefly,
we first employ LLM [25]] for caption parsing to extract various semantic primitives and assemble
a hierarchical caption parsing graph. We then construct the hierarchical collection of simplified
sentences according to the graph to realize the conversion from complete-text caption to split-text
caption. We refine the encoding of the MM-DiT backbone [26]], resulting in a DiT-ST with richer
semantic level. In addition, we determine appropriate injection timesteps for three semantic primitive
types by analyzing cross-attention convergence phenomena [22]] and identifying the inflection point
in the signal-to-noise ratio curve during denoising. After that, incrementally injecting object-relation-
attribute tokens to input tokens via cross-attention to increase the proportions of corresponding
sensitive semantic primitive types, further enhancing representation learning of specific semantic
primitives at different stages.

Extensive experiments confirm the benefits of our split-text captioning. On GenEval, our DiT-ST-M
achieves 0.69 overall accuracy and 11.3% gain over SDv3 Medium. On COCO-5K, it records the
highest average CLIPScore (34.09) and the lowest FID (22.11), delivering performance competitive
with SDv3.5 Large. All results and visualizations demonstrate that the method is both parameter-
efficient and architecture-agnostic, yielding finer detail and stronger semantic fidelity.

2 Related Work

2.1 Diffusion Transformers

Diffusion models [2l |4} 27] reverse a fixed noising process by imitating the denoising trajectory
through learned optimization. When integrated with multimodal learning [28), 29,130, |31 32] and
other techniques [33], 134} 35 36, 137} 138]], they offer a powerful generation framework for visual
content [39, |40, 41} 42| 143]] and other downstream tasks [44, 45| |46l 147 48]]. Recent advances,
Diffusion Transformer [8]] replaces U-Net [49] with Transformer [7]], enabling its strong capability for
long-range dependency modeling, scalability, and flexibility. DiT models, exemplified by DeepFloyd-
IF [3]], Flux [S0Q], PixArt-a [51]] and DreamEngine [52], have successfully achieved remarkable
generation performance, making DiT the mainstream paradigm for text-to-image generation.

2.2 Complete-Text Comprehension Defect

Complete-text comprehension defect refers to models’ difficulty in effectively analyzing and under-
standing complete text, stemming from inherent encoder limitations or structural deficiencies, such
as text length bottleneck [16], softmax competition [18}[19], positional bias [20], incorrect tokeniza-
tion [53], and frequency bias [54]. This defect results in suboptimal generation quality and generated
content that struggles to faithfully correspond to the prompt. Manifestations of complete-text compre-
hension defect include attribute misbinding [55]], object missing [S6], style dominance [11], semantic
blending [13], semantic entanglement [[15]], and etc.

Many existing methods have mitigated specific manifestations. Attend-and-Excite [9]] activates domi-
nant token attention to guide the generation process in adherence to the textual prompt. WiCLP [57]]
and research [10] address attribute misbinding and object omission by refining the text embedding
space and reweighting token-level attention to enhance compositional fidelity during generation.
DeaDiff [12] mitigates style dominance by employing exclusive subsets of cross-attention layers
for disentangling style and semantics. LongAlign [58] enhances semantic coherence by introducing
explicit linguistic structures. In contrast, SCoPE [59] operates at the sub-prompt level, beginning
with the simplest sub-prompt, then progressively introducing more complex variants and determining
injection timesteps using proportional similarity ratios to mitigate alignment degradation.



While these methods indeed mitigate the complete-text comprehension defect from various perspec-
tives, they primarily optimize for specific manifestations. Instead of addressing individual encoder
limitations, we target the fundamental cause of the comprehension defect—the inherent inability of
models to handle complex syntax within complete-text captions. Convert the form of captions to
pursue a comprehensive mitigation strategy for the complete-text comprehension defect.

3 Methodology

The overall framework of DiT-ST is illustrated in Figure[3] which incorporates three key components:
Caption Parsing, Hierarchical Caption Input, and Incremental Primitive Injection. The original caption
Cor adopts a complete-text structure. To sort out and refine semantic primitives, DiT-ST employs
LLM #% as for caption parsing, extracting various semantic primitives and assembling them into a
caption parsing graph GG. According to the relationships among various semantic primitives in graph
G, we construct them into a hierarchical collection of simplified sentences—the split-text caption
Csr—which is subsequently input to the text-to-image DiT (MM-DiT). During the DiT denoising
process, we calculate and determine appropriate timesteps for injecting each of the three semantic
primitive types. Following the object-relation-attribute order, we incrementally inject encoded
semantic primitive tokens into input tokens via cross-attention thereby enhancing the representation
learning of specific semantic primitives across different stages.
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Figure 3: The overall framework of DiT-ST. Three colors represent , and , respectively.

3.1 Caption Parsing

Caption parsing aims to split the complete-text structure of captions, resulting in a caption parsing
graph G. The reason why we choose the graph as the target product is that a hierarchical tree-like
structure [60] can clearly represent various semantic primitives and their interconnections, naturally
resolving existing problems of DiTs in this aspect. Therefore, we leverage a LLM (specifically Qwen-
Plus % [61]] in this work) as a semantic analyzer and graph generator to extract various semantic
primitives and assemble these semantic primitives to obtain the caption parsing graph G.

We define a caption parsing graph as G = (V, E), where V' denotes the set of N nodes and E denotes
the set of edges. Specifically, V = {v; | i = 1,2, ..., N}, Each node v; is defined as v; = (0;, A;),
with o; denoting the i-th object primitive and .A; = {a,} representing the set of attributes associated
with object primitive o;. O is the object set, and A is the attribute set. Relation set R consists of M
semantic relationships: R = {ry | k = 1,2,..., M }. Each edge e is modeled as a labelled triple
e = (v;,vj,7,) €V xV x R, thesetofedges E C V x V x R.

During the graph assembly, we use the root node to represent the entire caption, and recursively
decompose it into various object primitive nodes. Relations between object primitives are represented
by edges between nodes. Attributes are represented as child nodes attached to their corresponding
object primitive nodes. Therefore, for a given complete-text caption Ccr, the process to obtain the
caption parsing graph G can be formalized as follows:

LLM Parsing Graph Assembly

Cer (O,R,A) G. @)

In this way, we convert a complete-text caption into a split and hierarchical caption parsing graph.



3.2 Hierarchical Caption Input

The purpose of hierarchical caption input is to construct a split-text caption based on its caption
parsing graph. In addition, in order to make the model better adapt to the split-text caption and
enrich the overall semantic level of the input, we also modify the existing text encoding method in
text-to-image DiT to better encode the split-text caption. Thus, the hierarchical caption input process
consists of two components: split-text caption construction and DiT text encoding refinement.

3.2.1 Split-Text Caption Construction

The hierarchical structure of the caption parsing graph facilitates us to construct a split-text caption,
which is a hierarchical collection of simplified sentences. Considering that inherent positional bias
in text encoders (e.g., CLIP) is unavoidable during subsequent split-text encoding, we also take
into account the order of semantic primitives, i.e., position the important semantic primitives at the
beginning to achieve better performance. Specifically, we first rerank object primitives in the object
set O in descending order based on the node degree and the frequency of occurrence in the caption,
obtaining a reranked object set (/. We then rerank the primitives in the relation set R and attribute
set A to ensure that relations or attributes involving object primitives maintain consistency with the
object primitive order in @', resulting in R’ and A’

Subsequently, based on the reranked sets O, R’, A’ and following the object-relation-attribute hierar-
chical order, we generate corresponding simplified sentences for each primitive within these sets. The
forms of simplified sentences corresponding to objects, relations, and attributes present respectively

[OBJECT] object_i , [RELATION] object i relation_k object_j , and [ATTRIBUTE] object_z

is attribute_7 . The collection comprising all these simplified sentences constitutes the split-text
caption Cg7. The process to construct the split-text caption can be formalized as follows:

(O,R, .A) Acc.to G to Rerank (O/,R/,A/) Construct CST- (2)

3.2.2 DIiT Text Encoding Refinement

We employ the current mainstream multimodal diffusion transformer, MM-DiT [26], for text-to-
image generation. MM-DiT adopts three text encoders: CLIP-L/14, CLIP-G/14, and TS5 XXL. For a
split-text caption Cgr, after three encoders’ text encoding, three token sequences can be obtained:
TLS/T14 € RExDrjia Tg/TM € REX*Poa and TRT € REXP, where L is the token sequence length
(L <77), Dr, /14, Dg/14 and D are the dimensions of the three token sequences.

According to the original design, the concatenation of se- LoL
quences Tf/Tl , and Tg/Tl , yields a new token sequence CLIP-L/14 Tifa
whose still dimension remains smaller than D. Given that Toha D
the new token sequence must be appended with T%T for Cst CLIP-GI14 T8
input into the MM-DiT blocks, the dimension capacity re- T
mains underutilized. Therefore, we consider fully utilizing Projection

this underutilized d'imension capagity by incorporating the Cor p—

complete-text caption Co to enrich the overall semantic : . .

level of the input. As shown in Figure [, We supplement ~ Figure 4: DiT text encoding refinement.
it by adding Cor encoded through T5 XXL and followed by a linear projection, generating the token
sequence TTC5T € RLXD’ where D' = D — D r/14 — Dg/14. We perform dimensional concatenation
and sequence append as follows:

Teoncate = Concate (TE/YLL’ T57147 ng) c RLXD’ 3)

T= App@nd (Tconcate, ng) € RZLXD. (4)
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Through the above operations, we ultimately construct the input token sequence 7' which possesses a
hierarchical structure of semantic primitives and rich semantic representation.

3.3 Incremental Primitive Injection

As previously discussed, due to different denoising stages have differential sensitivities of semantic
primitive types, prematurely exposing fine-grained detail information before the model has established



stable primary semantic concepts is detrimental to generation. We propose incrementally injecting
diverse semantic primitive types to enhance differential representation learning for diverse semantic
primitive types at different stages. Therefore, incremental primitive injection involves both injection
timestep selection and semantic primitive injection.

3.3.1 Injection Timestep Selection

Since diffusion models’ prioritization order for diverse semantic primitive types during the denoising
process generally follows object-relation-attribute, we should, ideally, identify accurate timesteps
for injecting semantic primitives. However, it is practically impossible for several reasons. First,
semantic emergence occurs gradually rather than in discrete stages, lacking clear natural boundaries.
Second, there are differences across samples, and the semantic emergence process can shift or stretch
on the timeline with changes in prompts, resolution, and random seeds. Furthermore, adaptively
selecting specific timestep for each sample will incur substantial computational costs. Therefore, we
consider statistical rules across samples to identify approximately appropriate injection timesteps.

Determine the injection timestep for attribute primitives. Research [22] indicates that cross-
attention outputs converge to a fixed point after several inference steps. This point divides the denois-
ing process into two stages: semantic-planning and fidelity-improving. Since fidelity-improving stage
primarily relies on attribute information, we select the timestep corresponding to this convergence
point as the injection timestep for attribute primitives. Considering statistical rules across a batch
of samples, for a sample, we first define the attention weights output by the h-th attention head in

the m-th cross-attention layer at inference step ¢ as Attngm’h) € RYm*Km  where Q. and K,
represent the number of query tokens and key tokens, respectively. Subsequently, we calculate the
difference of single-head attention between adjacent inference steps using the Frobenius norm:

Al _ | Attn{™" — Attn{™" ||

&)
h

[ Attng™" || r + 6

where 6 serves as a numerical stabilizer, typically set to 10~8. Then, we average across all H attention
heads and all M cross-attention layers to compute the cross-attention difference for the sample:

( ) _ L1 gn N Al
A sample _ - A m,h ) 6
TS ©

By calculating the average cross-attention across all samples in the batch, we obtain the average
cross-attention difference A at ¢ inference step. We employ the moving average method to calculate
the average cross-attention A, across multiple inference steps and set a threshold 7 to identify the
inference step t* at which cross-attention converges:

w—1
~ 1 _ . ~
At:EkZ_OAtflw t*:mln{tiAt<T}7 (7)

where w denotes the size of the moving window. Thus, the timestep corresponding to inference step
t* is selected as the injection timestep s,¢, for attribute primitives.

Determine the injection timestep for relation primitives.
As previously discussed, given the entire denoising process
consists of .S timesteps, the first S — s, timesteps constitute 70

the semantic-planning stage, during which the samples maintain

a relatively high signal-to-noise ratio (SNR). Research [21] £

indicates that semantic concepts are primarily established at * =

a high SNR condition. By analyzing the variation of SNR \
across timesteps, we observe an initial rapid decline followed "

by a gradual decrease, as shown in Figure[5] Considering the -« ; — -
prioritization order for semantic primitives as object-relation- Timesteps (t)

attribute, intuitively speaking, the inflection point of the SNR Figure 5: Inflation point of SNR.
within the first S'— s, timesteps can serve as an appropriate injection timestep for relation primitives.

9% Semantic-Planning Stage



We calculate the average SNR sn7; at each timestep ¢ across all samples in the batch for the first
S — Squtr timesteps, and construct a discrete curve function y; = ¢g(sn7;), where t = 0,1,...,5 —
Sattr — 1. We employ the discrete maximum-curvature method to identify the inflection point. First,
we calculate the first-order and second-order finite differences as follows:

Yi+1 — Ye—1 Y1 — 2Ut + Y
Ay = ———, Azyt = 1 5 . (®)
SNT¢y1 — SNTE—1 (5 (smri1 — snrt_l))
Then, we calculate the discrete curvature:
A%

= 9
T T (A2 )

In this way, we can obtain the index of inflection point ¢# = arg max ;, which also is the injection
timestep s..; for relation primitives.

Determine the injection timestep for object primitives. Considering the limited number of
timesteps before s,.¢;, further partition of these timesteps lacks theoretical and computational evidence.
For simplicity, we set the timestep at ¢ = 0 as the injection timestep s.p; for object primitives.

By identifying the convergence point of cross-attention and the inflection point in SNR curve during
denoising, we are able to adaptively determine the appropriate injection timesteps according to
statistical rules and characteristics of the sample set.

3.3.2 Semantic Primitive Injection

Semantic primitive enhancement aims to increase the proportion of corresponding semantic primitives
to align the semantic primitive type sensitivity of each denoising stage. We employ the cross-
attention mechanism and incrementally inject each primitive type CP"*™ of the split-text caption
CST . ¢rrim is also encoded by three text encoders (CLIP-L/14, CLIP-G/14, and T5 XXL), obtaining
Tf;ﬁ’ € REXDPrj1a, Tpr/zl’z € RL*Po/a and THL™ € RL*D' where Dpjia+ Dgpa+D = D.
We then concate these token sequences along the dimension to obtain the primitive injection token
sequence TP""™  which is used for cross-attention calculation with 7' to enhance representation
learning of the corresponding semantic primitives at the stage.

3.4 Training Strategy

The training objective comprises two components while employing a mixing coefficient \:
L = Lcpm + ALagin, (10)

The first is conditional flow matching loss Lcgm, wWhich supervises denoising prediction, following
the setting in MM-DIiT. The other is L,,, which constrains the staged cross-attention by aligning
injected semantic primitives with split text while regularizing attention behavior for stable semantic
injection. It is composed of three components, weighted with empirically determined ratios of
a=0.6,3=0.25and n = 0.15:

Eatm = aﬁinject + ﬂﬁconv + n‘cmulex- (1 1)

The first term, Liyject, enforces the alignment between the cross-attention outputs and their target
semantics at each activated injection stage:

3 , 2
»Cinject = Et,mo [Z 52 (t) (CrOSSAttni(cbase, Ci(;j)ec[) ngget) ] . (12)

The second term, Loy, supervises the evolution of the attention signal-to-noise ratio (SNR) to ensure
proper convergence timing:

3 2
conv - Et [Z (SNRatm SNRt(ar)get( )) ] . (13)

i=1



The third term, L.x, penalizes spatial overlap between attention maps from different injection
stages to maintain independence and prevent semantic interference:

Loutex = E Z(Si(t)éj (t)Overlap(AttnMapi7AttnMapj) . (14)
i#

Together, these components ensure stable multi-stage semantic injection by enforcing semantic
precision, convergence regularity, and spatial exclusivity, which is crucial for achieving fine-grained
semantic alignment in Split-Text Conditioning.

4 Experiment

4.1 Experiment Settings

Impementation Details and Datasets To ensure fair comparison beyond the short-text bias of
MM-DiT’s original training data (CC12M [62] and ImageNet [63]]), we adopt 100K samples from the
SAM-LLaVA dataset [51]], which contains semantically rich, long captions suitable for our split-text
method. Extended training on this dataset yields MM-DiT 2B-E and MMDiT 8B-E. Following
MM-DiT [26]], we use 24 transformer layers with CLIP-L, CLIP-G, and T5-XXL as text encoders.
Complete captions are parsed into hierarchical inputs via Qwen-Plus [61], with cross-attention
incrementally injected at selected SNR-based denoising steps. Using the same training protocol, we
obtain two variants of our models: DiT-ST M (2B) and DiT-ST L (8B). For evaluation, we follow
CogView3 [64] and A-DiT [65] to construct COCO-5K, assessing performance under varying text
lengths and complexities, with results reported from our DiT-ST M and other competing method

Evaluation Metrics We evaluate DiT-ST using both quantitative and qualitative metrics. For
quantitative analysis, we adopt GenEval [60] to assess semantic comprehension, along with FID [67]]
and CLIPScore [68] to measure image quality and text-image alignment.

4.2 Main Results

In this section, we compare our method with MMDIT [26] and its variants as baselines, given
architectural similarity and shared training setup. To further evaluate the generalizability of our split-
text strategy in mitigating complete-text comprehension detect, we benchmark against competitive
methods, including PixArt-« [S1]], Flux.1 Dev [50], and the state-of-the-art DreamEngine [52].

Effectiveness of Split-text Caption Form Ta- Table 1: Comparison of the caption forms on COCO-5K.

ble[TJcompares caption utilization forms in terms :
. . Caption F CLIPS FID
of CLIPScore and FID, showing that split-text apon ~orm coref !

caption leads to consistently better performance Original Caption 31.68 24.61
B}II) parsing prompts into };)rganizgd semantic. LLM-Enhanced Caption 32.13 24.46
Split-Text Caption 34.09 22.11

primitives, our method effectively mitigates the
complete-text defect, raises CLIPScore by 7.6 % and lowers FID by 10.2 % relative to the other
two caption forms used on MM-DiT 2B-E, while still providing +6.1 % / -9.6 % gains over the
LLM-Enhanced caption, underscoreing that the observed gains are primarily attributable to the
caption structure, rather than to external LLM intervention.

Multi-Dimensional Semantic Comprehension Performance Table[2]reports comparisons on the
GenEval benchmark, which evaluates six dimensions of semantic understanding: single-object recog-
nition, multi-object reasoning, counting, color accuracy, spatial positioning, and attribute binding. Our
method achieves a competitive overall accuracy of 69%, matching the state-of-the-art DreamEngine
and closely approaching SDv3.5 Large (71%), despite a 4 x smaller parameters. Notably, our model
outperforms the SDv3 Medium baseline across all subcategories, with marked advantages in multi-
object reasoning(+0.14) and attribute binding(+0.10), indicating stronger semantic comprehension.
Compared to Flux.1 Dev and DALL-E 3, which excel in specific areas, our approach offers more
balanced and robust performance across all axes due to text-split strategy.



Table 2: Performance on GenEval{ benchmark,while underlined is the second-best performance.

Method Parameter Slr?gel T\.NO Counting Colors  Position At-trlt?ute Overall
object  object Binding
PixArt-a 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48
DALL-E 3 - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SDv3 Medium 2B 0.98 0.74 0.63 0.67 0.34 0.36 0.62
Flux.1 Dev 12B 0.98 0.81 0.74 0.79 0.22 0.45 0.66
SDv3.5 Large 8B 0.98 0.89 0.73 0.83 0.34 0.47 0.71
Dream Engine - 1.00 0.94 0.64 0.81 0.27 0.49 0.69
DiT-ST Medium 2B 0.99 0.88 0.70 0.75 0.36 0.46 0.69

Beyond GenEval, we employ CLIPScore and VQAScore [69] on the curated COCO-5K dataset. These
two metrics provide a comprehensive evaluation: CLIPScore measures global semantic similarity,
while VQAScore leverages a VQA model to directly probe for complex compositional alignment via
a probabilistic "Yes/No" query. As results listed in Table |3} DiT-ST Medium attains a CLIPScore
of 34.09, eclipsing competing methods by average 8.9 %, and even markedly surpassing SDv3.5
Large (32.74) by about 4.1%. On VQAScore, our DiT-ST Medium achieves 76.12, on par with the
larger SDv3.5 Large, while surpassing SDv3 Medium (75.37) and other baselines. These results
consistently validate that our split-text conditioning strategy enhances both compositional semantic
fidelity and cross-modal alignment, enabling the model to generate images that more accurately
capture the intended meaning of complex prompts while maintaining high perceptual quality.

Table 3: Performance of CLIPScore and VQAScore on COCO-5K.

Method PixArt-«  SDv3 Medium  Flux.1 Dev  SDv3.5 Large  DiT-ST Medium
CLIPScore? 32.58 31.31 31.52 32.74 34.09
VQAScoreT 68.86 75.37 75.19 76.49 76.12

Robust Performance to Caption Length Table [ exposes marked length sensitivity in existing
models: PixArt-« benefits from increasing caption length before plateauing, whereas SD-series
models peak on mid-length prompts and deteriorate on longer ones (e.g., SD v3 Medium falls to
27.7 in the [45,55) subband). By contrast, our 2B-parameter model sustains a CLIPScore over
32 across all bins, rises to 35.81 for the longest captions, and secures the highest overall score
(34.09), outperforming SDv3 Medium and SD v3.5 Large by 8.9% and 4.1%, respectively. These
results highlight the robustness and effectiveness of our split-text conditioning strategy in handling
variable-length and semantically complex prompts, enabling more stable text-image alignment across
diverse input distributions while remaining parameters effcient.

Table 4: CLIPScore performance comparisons on various caption length in Selected COCO-5K.

Method Parameter [10,15] [15,25) [25,35) [35,45) [45,55] Average CLIPScore
PixArt-« 0.6B 30.99 31.99 33.26 33.37 33.29 32.58
SDv3 Medium 2B 31.91 32.69 33.37 30.86 27.73 31.31
Flux.1 Dev 12B 30.59 31.16 32.36 31.08 32.83 31.52
SDv3.5 Large 8B 32.17 32.96 34.10 32.93 31.53 32.74
DiT-ST Medium 2B 32.28 32.47 33.84 34.76 35.81 34.09

4.3 Ablation Analysis

Incremental Text Injection Incremental injection improves Table 5: Comparison of incremental
the text-split pipeline by scheduling semantic primitives at the injection under CLIPScore and FID.

appropriate timesteps. As Table[5|reports, this schedule rises famod CLIPScoreT  FIDJ
CLIPScore by 3.9 % and simultaneously reduces FID by 7.3  — injection 34.09 711
%, decisively outperforming the single-shot alternative. The /o injection 3281 23.85

progressive delivery deepens semantic grounding, alleviates
attention saturation and inter-token interference, enhancing both text alignment and visual fidelity.



Hierarchical Caption Input Hierarchical Table 6: Comparison among input strategies under CLIP-
caption input aligns naturally with the text-split ~Score and FID Metrics on COCO-5K.
strategy, as it organizes diverse semantic prim-

- . Method CLIPS FID.
itive types into a structured format for gener- Origienalo Caption 3 ;)reT o 62
ation. To assess its effectiveness, we evaluate SDV3 | |1 MLE . ) ’

. . C. . -Enhanced Caption 31.95 24.46
models under three input settings: original cap- ~ Medium | . = o . it 42 24.05
tion, LLM-Enhanced caption, and hlera.rchlcal bimsy | Original Caption 31.63 2461
input. As Table[6]shows, merely swapping the ~ DITST |y y v prponced Caption 3213 2443
caption format to the hierarchical variant lifts ~ Medium | o i nput 3281 2385

CLIPScore by 3.6 % and reduces FID by 3 %
for each architecture, with additional 2 % gains over the LLM-Enhanced captions. Crucially, SDv3
Medium enjoys the same absolute improvement as our own model, despite zero fine-tuning, demon-
strating that the benefit is inherent to the representation and broadly transferable across models.

More Ablation Analysis To further validate the effectiveness of our model and design choices,
we conduct additional experiments on the orders of semantic primitive injection, timestep selection,
hyperparameter sensitivity, and other ablation studies. Please refer to the appendix for more details.

4.4 Visualization

High-Quality Generation Visualization Figure[6]showcases representative image samples gener-
ated by our DiT-ST, with rich visual details and strong semantic alignment across diverse prompts.

(a) A rustic breakfast withpoached eggs and avocado on sourdough toast, served on a ceramic platewith coffee, bathed in softmorning sunlight.
(b) A vibrant monarch butterfly with orange and black wings perched on a blooming lavender flower, surrounded by other purple blossoms.

(c) At dusk, villagers stroll leisurely along a charming cobblestone street adorned decorated with flower in the rain with their dogs.

(d) A small robin with a bright orange chest perches on arain-drenched branch, surrounded by wet green leaves.

Figure 6: High-quality generation visualization of DiT-ST Large.

More Visualiztion We provide additional visual content, including results of different caption
forms (e.g. Figure[I] (a)), performance against SDv3.5 (e.g. Figure[I](b)) and other competing models
as well as our high-quality images at multiple resolutions, which are available in the Appendix.

5 Conclusion

This paper introduces DiT-ST, a split-text conditioning framework that alleviates the complete-text
comprehension defect in DiTs. It comprises three components. (i) Caption parsing, use LLMs
to extract and organize primitives; (ii) Hierarchical input construction, construct split-text inputs
and enrich input semantics; (ii/) Incremental primitive injection, inject different primitives into
appropriate denoising stages to improve stage-specific representation learning. Extensive experiments
demonstrate the effectiveness of our split-text caption design and the excellent performance of our
proposed DiT-ST. We hope this work will offer some inspiration to the diffusion community.
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A Dataset Details

We further introduce the datasets used in our work from two aspects: training and evaluation.

For training, we observe that existing datasets used by baseline models MM-DiT [26]] are suboptimal
for complex caption-conditioned generation. Specifically, datasets like CC12M [62] have relatively
short captions (average length 10.3), and ImageNet [63] provides only class-level supervision.
Inspired by Pixart-c [S1]], which employs LLaVA to refine raw captions into high-information-density
text, we adopt the SAM-LLaVA dataset provided by Pixart-a to enhance textual supervision. We
select 100K pairs from SAM-LLaVA (available in our released CSV files) to further train MM-DiT
2B and 8B, aiming to improve their capacity on long-text generation and ensure fair comparisons.

For evaluation, we construct COCO-5K, following settings from CogView3 [64] and A-DiT [65]].
It comprises 5,000 image-text pairs sampled across multiple caption-length intervals to assess
performance under varying textual complexity. Additionally, we report gFID scores based on COCO-
30K to assess distribution-level image fidelity. Complete results are provided in Appendix [D}

B Implementation Details

In terms of implementation, we focus on the settings of key thresholds and corresponding code-level

realizations. We set the moving average window size w to 3, allowing each A; to consider the
current and two preceding steps for better capturing the SNR trend. To ensure numerical stability
when computing normalized differences, we set § = 102, For identifying the convergence point,
we use a convergence threshold 7 = 10~%. During inference, we select 40 denoising steps from
the full diffusion range (0—1000) via uniform random sampling. When determining the injection
layers, we allow flexible injection intervals. For example, around timestep 50, we inject attribute
primitives within a £10 timestep range, while around timestep 400, we permit a broader window of
+40 timesteps, reflecting the varying stability of attention dynamics at different diffusion stages.

C Further Evaluation and Model Comparison

To reduce metric variance and ensure fair model comparison, we construct a fixed 30K image-text
subset from COCO for consistent evaluation across architectures and training scales.We evaluate
and compare our method against several representative baselines, including SDv3 Medium, SDv3.5
Large, Flux .1 Deyv, Pixart-o. The evaluation results, in terms of FID, are summarized in Table On
the fixed COCO-30K subset, our DiT-ST Large model obtain the lowest FID scores. At the 2B
scale, DiT-ST Medium reaches 18.78, narrowly beating SD v3 Medium (18.82) by 0.2 %. With 8B
parameters, DiT-ST Large achieves 17.16, improving on SD v3.5 Large (17.31) by 0.9 %, a modest
yet consistent gain that shows split-text conditioning still reduces late-stage artefacts even on short
COCO captions. Flux .1 Dev (32.10) and PixArt-« (27.35) post FIDs about 40% higher than DiT-ST
Large. Flux, tuned for fast continuous-token sampling and lacking COCO fine-tuning, yields texture
artefacts; PixArt-a, trained on long, stylised captions, mismatches short, photorealistic domain. Thus,
DiT-ST equals or surpasses SD baselines and clearly outperforms models trained on divergent data.

Table 7: Performance of FID on COCO-30K.

Method PixArt-a« SDv3 Medium  Flux.1 Dev  DiT-ST Medium SDv3.5 Large DiT-ST Large
Param. 0.6B 2B 12B 2B 8B 8B
FID| 27.35 18.82 32.10 18.78 17.31 17.16

D Ablation on Injection Order of Semantic Primitives.

In this experiment, we investigate how varying the injection order of semantic primitives, namely
object, relation, and attribute, affects model performance. While our default configuration follows
an object-relation—attribute order based on semantic granularity and generation stability, we test
alternative permutations to examine the sensitivity of DiT-ST Medium to ordering strategies.Table
reveals the cost of premature information exposure. Advancing attribute tokens from their intended
late-stage slot to attribute-relation-object or attribute-object-relation cuts CLIPScore to 29.41 and
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31.10, drops of 14 % and 9 % from the default order. Early injection forces fine-grained colour and
texture cues into an unstable attention landscape; later denoising steps overwrite or mis-bind these
details, sharply reducing semantic fidelity.

Table 8: Comparison of different injection order for semantic primitives.

Order CLIPScore?
attribute-relation-object 29.41
attribute-object-relation 31.10
relation-object-attribute 32.52
relation-attribute-object 30.16
object-attribute-relation 30.79
object-relation-attribute (our setting) 34.09

E Ablation on step selection strategy for semantic primitive injection.

We further investigate the impact of injection timestep choices for different semantic primitive types
in the diffusion denoising process. Given that semantic primitives differ in abstraction level and
generation dependency, we design a progressive injection schedule tailored to each type:

* Object tokens are injected at the early stages of denoising (timesteps 0, 10, and 20), where
the model primarily focuses on establishing global layout and coarse structural elements. We
experiment with these positions to compare their impact and identify the most effective timing
for guiding the foundational composition of the generated image.

* Relation tokens are injected during mid-stage denoising. Specifically, we begin with timestep 25
as the midpoint of [0, 50], and extend to timestep 75 with five evenly spaced steps (30, 40, 50, 60,
70). We experiment with these positions to assess their impact and determine the optimal timing
for enhancing spatial and compositional coherence.

* Attribute tokens are injected during the transition from semantic interpretation to visual detail
refinement, when the model shifts focus from global structure to fine-grained features. To study
their impact on visual modeling, we take the midpoint of the [50, 400] range as reference and
select timesteps at 100-step intervals—specifically 200, 300, 400, 500, and 600—for evaluation.

This step allocation strategy reflects the assumption that lower-level semantics (e.g., object identity)
should be introduced early to guide coarse synthesis, while higher-level or localized attributes benefit
from later-stage injection when image fidelity and semantic detail are resolved.

As shown in Table [0} deviating from the default object-relation-attribute (O-R-A) schedule markedly
impairs text-image alignment. Postponing object injection to ¢ = 10-20 lowers CLIPScore by
roughly 5-6 %, underscoring the need for early global cues. Advancing relation tokens to t = 30
reduces the score by about 4 %, as premature relational reasoning diverts attention from still-forming
objects. The most severe loss, nearly 8 %, occurs when attribute tokens are introduced at t = 200;
exposing fine-grained details before the scene is stabilised disrupts subsequent refinement as claimed
in our main paper the question of premature information exposure. In aggregate, mis-timed injections
can degrade alignment by average 5%, confirming that stage-aware scheduling is critical for
maintaining semantic fidelity.

Table 9: Comparison of Different Step Selection Strategy by CLIPScore(CS).

Step O(10) O(20) R(30) R0) R(60) R(70) A(200) A300) A(500) A(600) Default
CST 3271 3224 3257 3273 3276 3245 3126 3175 3296 32.83  34.09

F Ablation on Sliding Window Size

Table shows that CLIPScore peaks at 34.090ur when the SNR-smoothing window is set to
w = 3.A narrow window (w = 1) amplifies local noise, shifting the detected inflection point and
trimming the score to 33.16 (-2.7 %). Expanding to w = 2 alleviates some volatility, yet still lags
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the optimum at 33.55 (-1.6 %). Oversmoothing with w = 4 and w = 5 postpones relation-token
injection; scores decline to 33.72 (-1.1 %) and 33.43 (-1.9 %), respectively. These results confirm
that an intermediate window is essential—wide enough to suppress spurious curvature spikes yet
narrow enough to capture the true SNR transition—thereby yielding the most consistent relation-level
guidance and highest text—image alignment.

Table 10: Comparison of different sizes of sliding window.
Window Size  CLIPScore?

1 33.16
2 33.55
3 (our setting) 34.09
4 33.72
5 33.43

G Ablation on Text Encoding Refinement.

As detailed in Section[3.2.2] our design includes a refinement for the classical text encoder of MM-
DiT. Specifically, we fully utilize the previously wasted dimension capacity by incorporating the
complete caption to enrich the overall semantic information of the input. To further validate the
effectiveness of this refinement, we conduct an ablation experiment on our DiT-ST Medium model,
trained for 5 epochs on 50K SAM-LLaVA dataset. The results are presented in Table[TT] Without
text encoding refinement, the model performance has declines of 0.62% in CLIPScore and 0.54% in
FID metrics. The result indicate that although the improvement from adding complete text captions
is modest, it indeed contributes positively to model performance without introducing additional
computational or architectural overhead.

Table 11: Comparison of w/ and w/o Text Encoding Refinement.

Method CLIPScore! FIDJ|
w/ Text Encoding Refinement 32.33 24.18
w/o Text Encoding Refinement 32.13 24.31

H Limitation

The injection timestep selection operates at the batch level rather than the sample level. This is
because sample-level adaptation would significantly increase computational cost and reduce inference
efficiency, coupled with the current lack of research on sample-level adaptation in the conditioning of
denoising processes. Therefore, this study adopts a batch-level adaptation design as a compromise.

The split-text caption may weaken cross-primitive semantic dependency. Some special long-
range dependencies (e.g., irony) could be split, leading to biased semantic understanding in the model.
To mitigate this issue, DiT-ST introduces the text encoding refinement design, which incorporates
original caption to compensate for the loss. Furthermore, existing works in the same field have not
explored evaluating the semantic fidelity of special cases such as irony.

The evaluation metrics lack human subjective assessment. The evaluation of DiT-ST primarily
relies on CLIPScore and FID, aligning with other works in the same filed. These metrics lack human
perception, particularly in fine-grained details (e.g., color tone, detail consistency). To compensate for
this limitation, similar to other prior works, we provide extensive visualizations to facilitate subjective
evaluation by readers.
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I More Visual Comparison Across Caption Forms

Original Caption LLM-Enhanced Caption Our Caption
(Complete-Text) (Complete-Text) (Split-Text)
P = — ——

==
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Original: A quiet beach with soft sand, scattered white seashells. One small bird stands alone near the water, its feet in the shallow waves,
looking down at its reflection. Gentle waves roll in behind it.
LLM-Enhanced: There is a quiet beach with soft sand and scattered white seashells. A small bird stands alone near the water, looking at its reflection.
Our: [OBJECT] beach. sand. seashells. bird. waves. [RELATION] beach has sand and seashells. bird stands near water. feet are in waves. bird looks
at its reflection. waves roll in behind the bird. [ATTRIBUTE] The beach is quiet. The sand is soft. The seashells are white and scattered. The bird
is small and alone. The waves are gentle and shallow.

s o ] b HETRIER . ;
Original: In a quiet forest filled with tall pine trees, a young deer with dots on its back stands still in the soft moss underfoot.
LLM-Enhanced: There are a quiet forest, tall pine trees and a young deer. The deer stands still on soft moss floor.
Our: [OBJECT] forest. trees. deer. moss. [RELATION] forest has tall pine trees. deer stands in moss. [ATTRIBUTE] The forest is quiet. The trees are
tall and pine. The deer is young and with dots. The moss is soft.

i . e ‘ : - J
- AT I ; = = =
Original: A yellow school bus drove through a rainy city street at night. The damp road reflects the yellow shop lights on roadside, heavy rain is falling.
LLM-Enhanced: There is a yellow school bus driving through a rainy city street at night. The wet road reflects the yellow lights of nearby shop
lights. The rain falls heavily and steadily.

Our: [OBJECT] school bus. street. shop. lights. rain. [RELATION] bus drives on damp street. shop has lights. street reflects lights. [ATTRIBUTE] The
bus is yellow. The street is damp. The lights are yellow. The rain is heavy.

Original: At a morning café, a man was flipping through newspaper by the window, with warm sunlight shining across the wooden table and a cup
of coffee beside him.

LLM-Enhanced: There is a man sitting by the window in a morning café, reading newspaper. Warm sunlight shines across the wooden table, and a
cup of coffee beside him.

Our: [OBJECT] café. man. newspaper. window. sunlight. table. coffee. [RELATION] man sits by the window. man flips through newspaper. sunlight
shines on the table. coffee is beside the man. [ATTRIBUTE] The café is morning. The table is wooden. The sunlight is warm.
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Original Caption LLM-Enhanced Caption Our Caption
(Complete-Text) (Complete-Text) (Split-Text)

B?iginal: A fﬁy white cat quietly fell asleep, nestled in a warm, brown blanket adorned with delicate embroidered floral patterns and raised stitching.
LLM-Enhanced: There is a furry white cat sleeping in a warm brown blanket. The blanket is decorated with delicate embroidered floral patterns and
raised stitching.

Our: [OBJECT] cat. blanket. patterns. stitching. [RELATION] cat sleeps in blanket. blanket is adorned with floral patterns. blanket has raised
stitching. [ATTRIBUTE] The cat is furry and white. The blanket is warm and brown. The floral patterns are delicate and embroidered. The
stitching is raised.

Original: A silver pen without its cap rests on a wooden table beside a blank white spiral-bound notebook. A few other notebooks also lie nearby.
LLM-Enhanced: There is a silver pen without cap resting on a wooden table next to a blank white spiral-bound notebook. Several other notebooks
are scattered nearby.

Our: [OBJECT] pen. table. notebook. [RELATION] pen rests on table. pen is beside notebook. other notebooks lie nearby. [ATTRIBUTE] The pen is
silver and uncapped. The table is wooden. The notebook is blank, white, and spiral-bound.

Original: A crispy fried chicken burger with lettuce, pickles, and cream sauce on top, placed beside a container of golden French fries on a
wooden table.

LLM-Enhanced: There is a crispy fried chicken burger topped with lettuce, pickles, and cream sauce, sitting next to a container of golden French
fries on a wooden table.

Our: [OBJECT] burger. lettuce. pickles. cream sauce. fries. container. table. [RELATION] burger has lettuce, pickles, and cream sauce. burger is
beside fries. fries are in a container. burger and fries are on the table. [ATTRIBUTE] The burger is crispy and fried. The lettuce, pickles and

cream sauce is on top. The fries are golden. The fable is wooden.

Original: A healthy meal with two egg yolk facing fried eggs, fresh half cut avocados, and a few slices of toasted whole wheat bread, lightly
seasoned with herb.

LLM-Enhanced: There is a healthy meal consisting of two sunny-side-up eggs, fresh halved avocados, and a few slices of toasted whole wheat
bread, lightly seasoned with herb.

Our: [OBJECT] meal. eggs. avocados. bread. herb. [RELATION] meal includes eggs, avocados, and bread. meal is seasoned with herb. [ATTRIBUTE] The
meal is healthy. The eggs are fried and yolks up. The avocados are fresh and halved. The bread is whole wheat and toasted.

Figure 7: More comparisons of different caption form and corresponding performances.
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J More Visual Comparison Across Different Models

In this section, we present more qualitative comparisons across different models. Specifically, we
employ our large-scale model DiT-ST Large and compare it with the baseline MM-DiT 8B-E under
identical prompt conditions. As shown in Figure[8] DiT-ST Large produces more compositionally
coherent and semantically aligned results, especially in complex scenes with diverse attributes.

SDv3.5 Large

Our DiT-ST Large

SDv3.5 Large

Our DiT-ST Large

/ il

A collection of vintage animal figurines arranged on a
wooden floor in front of a dark wooden cabinet filled with
more toy animals.

A cat sits calmly on the table in front of a keyboard and a
monitor, scattered papers, and a few books. Through the
window is green grass in a touch.

A pair of elegant bronze women states sits on a bench, each
holding a handbag in front of a lush green hedge.
| —

A white cat geﬁtly stared at a bird perched on a c-léy pot
before the door.

J i o [— ‘ E | "
A brass ceiling fan with wooden blades and a built-in light

fixture, mounted above a white bed in a minimal, modern
bedroom.

A black dog sitting in the driver's seat of a bright red
vintage truck, looking out of the open window with its paw
resting on the door.

-~ —"

oz it e R c -

A little baby is standing near to the apple boxes and
touching the apples, the apples are mixed of green and red
in color.

A woman is setting up a blue tent on a sandy beach near
dense green foliage with a man in yellow T-shirt watching
by.

Figure 8: Comparisons between MM-DiT 8B-E (left) and our DiT-ST Large (right)

We further compare DiT-ST Large with several state-of-the-art text-to-image generation models,
including PixArt-c, Flux, and HunyuanDiT. As illustrated in Figure our model demonstrates
competitive or superior visual quality, with stronger object fidelity, spatial consistency, and semantic
expressiveness.
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Our DiT-ST Large Flux .1 Dev PixArt-a HunyuanDiT

It .

A multi-colored wall clock is mounted on the wall, surrounded by a few sculptures, a label above reads "1106."

Figure 9: Comparisons among DiT-ST Large, Flux, PixArt-a and HunyuanDiT.
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K More High Quality Images Generated by Our DiT-ST Large

AU
L

Figure 10: High-quality 1024 x 1024 images generated by our DiT-ST Large
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Besides the standard 1024 x 1024 images shown in Figure[T0] we further generate multi-scale samples
put in Figure[T1] confirming that our DiT-ST Large maintains visual fidelity and semantic alignment
across different resolutions and formats.

Figure 11: High-quality and multi-scale generation results by our DiT-ST Large
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:The abstract and introduction clearly outline the core contributions of our work
DiT-ST, including the motivation, methodological innovations, and performance gains.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We acknowledge the limitations of our work and will provide a dedicated
discussion in the appendix.Rather than aiming to surpass all existing baselines, our contribu-
tion focuses on developing an effective and generalizable method that performs consistently
across tasks and domains. We believe this design choice better serves long-term robustness
and transferability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

25



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes the necessary theoretical results with all assumptions
clearly stated and referenced in the respective sections. All proofs and lemmas are either
presented within the main paper

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To ensure full reproducibility, we release all necessary resources, including
model weights, training and evaluation code, and preprocessed datasets. Detailed instructions
for environment setup and running experiments are provided in GitHub repository.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release both source code and necessary data to facilitate faithful repro-
duction of our results. The code repository includes training and inference scripts and
environment configuration files. In addition, we provide access to all datasets used in our
experiments on huggingface.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all experimental settings in both the main paper and the appendix.
Key implementation details such as data splits, model architecture, optimizer type, learning
rate schedules, and hyperparameter configurations are summarized in the main text to
support result interpretation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We evaluate our method using commonly adopted standard metrics, including
[e.g., FID, CLIPScore, or others], to ensure comparability with existing baselines. In
addition to quantitative evaluation, we also provide visualizations of generated outputs
to support qualitative assessment and highlight consistency across samples. These visual
results, alongside statistical metrics, offer a comprehensive understanding of model behavior.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify in the main paper that all experiments were conducted on NVIDIA
A100 GPUs.Each training run took approximately 12-24 GPU hours.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research fully conforms to its principles. Our work does not involve sensitive user data,
human subjects, or harmful applications. All datasets used are either publicly available or
properly licensed, and we ensure transparency, reproducibility, and responsible reporting
throughout the paper.
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Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work introduces a novel and generalizable perspective for improving
existing generative models, aiming to address foundational challenges in a model-agnostic
manner. Rather than optimizing for narrow task-specific gains, our approach seeks to uncover
transferable mechanisms that can be broadly applied across architectures and domains. This
may positively influence future research toward more unified and interpretable generative
modeling. While our method is not designed for deployment in sensitive or high-risk
applications, we acknowledge the broader implications of advancing generation quality, and
support responsible usage and release protocols.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We acknowledge that high-quality generative models may pose risks of
misuse, such as unauthorized image synthesis or disinformation. To mitigate such risks, we
commit to releasing our pretrained models and code under a non-commercial research-only
license. We also include usage guidelines outlining responsible applications, and plan to
implement content safety filters to restrict harmful outputs. Furthermore, we will monitor the
downstream use of our models and reserve the right to restrict access if misuse is identified.

Guidelines:
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We make proper attribution to all external assets used in our work. Specifically,
we use the COCO 2017 dataset, which is publicly available under a Creative Commons
Attribution 4.0 License (CC-BY 4.0), and we follow its terms of use. Our experiments are
based on the Stable Diffusion v3 model provided by Stability Al, which is released under a
custom non-commercial license; we cite the official source and follow the stated restrictions.
We also build on open-source libraries from Hugging Face, such as Transformers and
Diffusers, which are released under the Apache 2.0 license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets in this work. All experiments are conducted
using publicly available datasets (e.g., COCO 2017) and existing pretrained models (e.g.,
Stable Diffusion v3). We ensure that these assets are properly cited and used in accordance
with their respective licenses.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any form of crowdsourcing or research with human
subjects. All experiments are conducted using publicly available datasets and pretrained
models without collecting new human-provided annotations or feedback.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects or crowdsourcing.
All experiments are conducted using publicly available datasets and pretrained models,
without collecting new human annotations, feedback, or participation. Therefore, no IRB or
equivalent ethical approval is required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We used the Qwen Plus API, a large language model, to assist in processing and
structuring textual data used during pre-processing. This usage does not directly affect the
core model architecture or training process and can be replaced by any other LLM models,
but facilitates intermediate data organization and annotation required for our pipeline. We
describe this usage and its scope in Appendix G to ensure transparency and reproducibility.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Diffusion Transformers
	Complete-Text Comprehension Defect

	Methodology
	Caption Parsing
	Hierarchical Caption Input
	Split-Text Caption Construction
	DiT Text Encoding Refinement

	Incremental Primitive Injection
	Injection Timestep Selection
	Semantic Primitive Injection

	Training Strategy

	Experiment
	Experiment Settings
	Main Results
	Ablation Analysis
	Visualization

	Conclusion
	Dataset Details
	Implementation Details
	Further Evaluation and Model Comparison
	Ablation on Injection Order of Semantic Primitives.
	Ablation on step selection strategy for semantic primitive injection.
	Ablation on Sliding Window Size
	Ablation on Text Encoding Refinement.
	Limitation
	More Visual Comparison Across Caption Forms
	More Visual Comparison Across Different Models
	More High Quality Images Generated by Our DiT-ST Large

